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DESARROLLO DE UN ALGORITMO DE APRENDIZAJE POR REFUERZO
PROFUNDO PARA LA GESTION DEL INTERNET TACTIL

Br. DUNIA DARISNEY MARQUINA MARQUINA

Proyecto de Grado — Sistemas Computacionales

Resumen: En el presente proyecto de grado se propone el desarrollo de un algoritmo de
aprendizaje por refuerzo profundo (DRL) para optimizar la gestion del Internet Tactil (TI), una
tecnologia que demanda requisitos de red muy estrictos. Dado que los protocolos clasicos no
satisfacen esos requisitos, se proponen técnicas avanzadas de aprendizaje automatico para una
gestion dinamica y adaptable del TI. Especificamente, se implementaron dos enfoques de DRL.:
Deep Q-Network (DQN) y Advantage Actor-Critic (A2C), evaluados en un entorno de simulacién
que emula diversas condiciones de red. Los resultados demostraron que ambos métodos logran un
rendimiento parecido, aunque A2C supera a DQN en la reduccion de latencia y el manejo de
pérdida de paquetes, posicionandose como la alternativa mas eficiente, con la capacidad de

satisfacer las exigencias de las aplicaciones T1I.

Palabras clave: aprendizaje por refuerzo, redes neuronales, baja latencia, internet tactil,

aprendizaje automatico.
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Capitulo 1

Introduccion

En la actualidad, la interaccion con dispositivos a través de interfaces tactiles se esta
convirtiendo en una parte de nuestra vida cotidiana. Es por ello que, a medida que el uso del
Internet Tactil (T1) se expande, es esencial garantizar una experiencia de usuario satisfactoria y la
usabilidad de las aplicaciones en tiempo real. Esto requiere de comunicaciones ultra confiables de
baja latencia (URLLC), alta disponibilidad y seguridad extrema. Sin embargo, estos requisitos no
pueden ser garantizados por los enfoques tradicionales de gestion de la Internet. En este sentido,
dado a que el aprendizaje por refuerzo profundo (DRL) ha demostrado eficacia en la toma de
decisiones en entornos complejos, se propone el desarrollo de un algoritmo que mediante el uso

de técnicas de DRL permita mejorar el rendimiento de las redes para permitir el TI.

1.1. Planteamiento del Problema

La gestion eficiente del T1 debe garantizar la transmision fluida y precisa de las sensaciones
tactiles para asegurar la calidad de servicio (QoS) y de la experiencia (QoE) en las aplicaciones de
TI. Particularmente, la latencia y la congestion de red pueden afectar significativamente la QoS y
la QOE en las aplicaciones. A su vez, los enfoques tradicionales de la capa de transporte, como el

protocolo de control de transmision (TCP), aunque es ampliamente utilizado, no es adecuado para
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estas aplicaciones debido a su limitacion en el manejo de la congestion y la pérdida de paquetes.
Otros protocolos, como el protocolo de datagramas de usuario (UDP), no ofrecen una solucién

Optima debido a su peor manejo de paquetes y menor confiabilidad.

Cabe mencionar que, en una reciente investigacion realizada por Shahzad y colaboradores
en 2023 [1], aborda este problema mediante un enfoque de aprendizaje por refuerzo (RL) simple
para optimizar la seleccion entre dos esquemas de codificacion de red lineal aleatoria (RLNC), en
funcidn de las condiciones de la red. Especificamente, la técnica de RLNC permite que la estrategia
de ‘almacenar y reenviar’, la cual es una de las soluciones actuales de la capa de transporte, que
consiste en poner en cola primero los paquetes y luego reenviarlos al destino, sea sustituida por la
estrategia de ‘computar y reenviar’, ya que esta proporciona mayor resiliencia a la perdida de datos
y permite a los nodos en la red procesar los paquetes entrantes a medida que los reciben. De esta
forma mejora el rendimiento general de la red. EI modelo propuesto muestra resultados favorables,
ya que gracias al uso de técnicas de RL maximiza el rendimiento general mientras minimiza la

latencia de entrega.

Basado en esto, esta tesis propone el desarrollo de un algoritmo utilizando técnicas
avanzadas de RL para mejorar el rendimiento de las redes, en particular, para manejar
eficientemente problemas como la congestion y la pérdida de paquetes, y asi superar las
limitaciones de la capa de transporte para aplicaciones tactiles. Lo novedoso de esta propuesta es
la incorporacion de DRL, una evolucion del RL simple. Particularmente, el DRL emerge como
una solucion prometedora, capaz de adaptarse a condiciones variables y optimizar la gestion de
manera autonoma. Esa autonomia se puede usar para hacer un andlisis del espacio continuo mas
eficiente que lo propuesto por Shahzad y colaboradores [1], o para aprender la funcion de

recompensa adecuada para el TI.
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1.2. Justificacion

La QoS y la QoE de las aplicaciones de T1 estan estrechamente relacionadas a condiciones
de red optimas, factores criticos como la latencia y la congestion de red juegan un papel
fundamental en su rendimiento. Una latencia alta puede causar retrasos perceptibles lo que
deteriora la experiencia del usuario, ya que estas aplicaciones requieren una respuesta inmediata.
Ademas, la congestion de red puede generar la perdida de paquetes, lo que reduce el rendimiento

y aumenta la latencia, con lo cual se afecta de forma negativa la QoS y la QoE.

Por su parte, el protocolo TCP esta disefiado para asegurar la fiabilidad en la transmision
de los datos, pero no es adecuado para el manejo de los estrictos requerimientos de alta
disponibilidad y baja latencia que demandan las aplicaciones de Tl. TCP proporciona una alta
confiabilidad a cambio de la sobrecarga de paquetes, lo que introduce latencia adicional debido a
sus mecanismos de control de flujo y congestidn, los cuales son Utiles para asegurar la integridad
de los datos, pero generan ineficiencias en aplicaciones sensibles al tiempo. Por estas razones, es
necesario considerar y/o proponer soluciones innovadoras que puedan optimizar la gestion de

recursos para mejorar la QoS y la QoE en las aplicaciones de TI.

En este sentido, se espera que al aplicar DRL en la gestion del TI resulte en mejoras en la
eficiencia y adaptabilidad en los sistemas de red. Para ello, se propone el uso de dos enfoques de
DRL, Deep Q Network (DQN) y Advantage Actor-Critic (A2C), estos algoritmos tienen la
capacidad de adaptarse a diversas condiciones del entorno. DQN permite manejar espacios de
estados grandes y complejos, lo que lo hace ideal en situaciones donde se deben tomar decisiones

secuencialmente. Asimismo, considera las consecuencias futuras de las acciones actuales; esto es
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de gran utilidad en el caso del Tl donde se deben tomar decisiones continlias y se debe tener en
cuenta como afectaran en el rendimiento de la red. Por su parte, A2C utiliza dos redes neuronales,
una para la determinar las acciones y otra para evaluar el valor de las acciones, lo que mejora la
estabilidad y eficiencia del aprendizaje; esto es crucial en un entorno dindmico como el del TI,

donde la incertidumbre puede afectar los resultados.

De esta manera, al llevar a cabo esta investigacion se pretende contribuir en el area del

DRL por medio de su aplicacion a la gestion del T1y, en el avance de la tecnologia de redes.

1.3. Objetivos

1.3.1. Objetivo general:

Desarrollar un algoritmo de aprendizaje por refuerzo profundo para la gestion del Internet
tactil.
1.3.2. Objetivos especificos:

e Investigar sobre la gestion del Tl y las técnicas de DRL.
e Disefiar y desarrollar un algoritmo de DRL para la gestion del TI.
e Desarrollar pruebas experimentales para evaluar el rendimiento del algoritmo propuesto.

e Analizar y comparar los resultados obtenidos con otros enfoques de gestion del T para

identificar ventajas y desafios del algoritmo.

1.4 Antecedentes

En la actualidad, el Tl promete revolucionar la interaccién humana con maquinas mediante

la transmision de sensaciones tactiles en tiempo real. Asi, resulta de gran importancia la
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comprension de los trabajos relacionados y las tendencias actuales para abordar los desafios y

oportunidades en esta area en constante evolucion.

Sharma y colaboradores en 2020 [2] llevaron a cabo un estudio cuyo objetivo fue ofrecer
una vision integral del Tl y sus avances recientes, presentando un marco que comprende la
identificacion y analisis de los principales problemas técnicos involucrados, la arquitectura TI, las
areas de aplicacion, los tres paradigmas principales de T1, y las tecnologias habilitadoras. Ademas,
han proporcionado algunos temas para futuras direcciones de investigacion. El resultado muestra
un estudio bastante completo que permite una mejor vision o comprension de los diferentes
aspectos relacionados al TI, destacando que los objetivos mas desafiantes de las préximas
investigaciones o sistemas 5G estan dirigidos a lograr una latencia ultra baja de aproximadamente
1ms y una confiabilidad ultra alta para asi generar un mejor rendimiento de la red y proporcionar

QoS y QoE en las aplicaciones tactiles.

En el trabajo realizado por Shahzad y colaboradores en 2023 [1], se presenta un sistema de
gestion para T, llamado marco de codificacion de red lineal aleatorio selectivo basado en RL (RS-
RLNC), con el fin de mejorar el rendimiento de las aplicaciones ejecutandose en el TI. Su objetivo
fue disefiar un modelo de gestion que pueda adaptarse a las condiciones de red cambiantes y que
minimice el retraso en la entrega de paquetes. Para ello, la solucién aplicada usa un esquema de
RLNC selectivo basado en RL para tomar decisiones sobre cuando cambiar entre RLNC de bloque
y RLNC deslizante segun las condiciones de la red. Los resultados de la simulacion muestran que
RS-RLNC supera a las soluciones actuales de capa de transporte, y es capaz de minimizar la

pérdida de paquetes y mejorar el rendimiento y la QoS en aplicaciones de TI.
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Ahora bien, dicha propuesta es basada en un esquema que discretiza las acciones (no lo ve
como un espacio continuo), por lo que no realiza un analisis exhaustivo del contexto. Ademas,
presupone el esquema de recompensa. Sin embargo, este estudio proporciona una base solida a la
presente investigacion, ya que demuestra como la integracion de técnicas de RL y codificacion de
red pueden resultar en una transmision de datos mas eficiente y robusta. De esta forma, sobre estas

bases se pueden incorporar técnicas que permitan mejorar el mecanismo de aprendizaje.

Ramirez y colaboradores en 2022 [3] presentan el desarrollo de un modelo de despacho
economico hidrotérmico basado en DRL, el cual considera la incertidumbre en los flujos de agua
y la demanda de energia. La finalidad de este estudio es minimizar los costos de suministro
eléctrico utilizando de manera eficiente los recursos energéticos disponibles. Para ello, formulan
el problema como un proceso de decisién de Markov (MDP) y proponen varios enfoques de DRL,
como los algoritmos DQN y A2C, los cuales permiten abordar problemas de optimizacion
complejos que involucran incertidumbre. DQN se utiliza para aprender una politica 6ptima en un
espacio de accion discreto, el cual utiliza una red neuronal para aproximar la funcion Q
actualizando sus valores mediante un proceso de aprendizaje basado en la experiencia acumulada,
lo que permite adaptarse a diferentes escenarios hidrolégicos y demandas energéticas, y asi
aprende a seleccionar las acciones que minimizan el costo de suministro. Por su parte, A2C se
utiliza para el caso continuo, este aprende directamente del espacio de observacién por medio de
un método de gradiente de politicas, o que mejora la eficiencia del aprendizaje y asi permite una
adaptacion mas rapida a cambios en las condiciones del entorno, lo cual optimiza el despacho
econémico hidrotérmico. Los resultados muestran que los métodos propuestos pueden aprender
politicas robustas que manejan diferentes escenarios de afluencia y demanda, con lo cual se

demuestra que supera las limitaciones de los métodos deterministas tradicionales. En definitiva, la
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importancia de este enfoque radica en la capacidad de mejorar la toma de decisiones en la

planificacion y operacion de sistemas energéticos, lo cual facilita la gestion de riesgos.

Aunque este estudio se enfoca en el problema del despacho econdmico hidrotérmico, los
conceptos y técnicas de DRL desarrollados podrian ser aplicables en otras areas que requieren la
gestion de decisiones secuenciales bajo incertidumbre, como es el caso de la gestion del T1, donde
la incertidumbre de variables claves como las condiciones de red, son factores criticos que deben
ser gestionados para generar politicas operativas mas robustas y confiables, y de esta manera,

mejorar el rendimiento de las redes.

Li y colaboradores en 2018 [4] plantean en su estudio el uso de DRL como una solucion
prometedora capaz de gestionar de forma eficiente los recursos en segmentacion de redes 5G. Su
objetivo principal es investigar y demostrar si el DRL puede optimizar la asignacion de recursos
tanto en el acceso radioeléctrico como en el nucleo de la red, y asi superar las limitaciones de los
métodos tradicionales, como es el caso de la asignacion equitativa o los algoritmos de prediccion
manual. Para ello, la solucién propuesta consiste en aplicar algoritmos de Deep Q-Learning (DQL)
que combinan redes neuronales con aprendizaje por refuerzo, lo que permite al sistema aprender
de forma dinamica la mejor estrategia de asignacion de recursos adaptandose en tiempo real a la
variabilidad de la demanda. Los resultados demuestran que DRL alcanza una mayor eficiencia en
el uso de recursos en comparacion con los métodos tradicionales. A pesar de ello, reconoce que
aun existen limitaciones como la necesidad de una gran cantidad de datos para entrenar los
modelos. No obstante, este estudio evidencia que DRL es una herramienta prometedora para la

gestion eficaz de recursos.
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Ssengonzi y colaboradores en 2022 [5] presentan una investigacion sobre la aplicacion de
DRL en la gestion y optimizacion de la segmentacion de redes en 5G y redes futuras. Su objetivo
principal es abordar los vacios que existen en la asociacion entre DRL y la gestion que plantea la
segmentacion y virtualizacion de redes en entornos 5G. Con este fin, realiza una revision detallada
de los conceptos fundamentales de DRL, los principios de segmentacion y virtualizacion de redes,
los desafios actuales, las soluciones propuestas y las posibles lineas de investigacion. Dentro de
las soluciones planteadas destacan los algoritmos basados en DQL,; estos se implementan en
diferentes niveles, como en la asignacion de recursos a segmentos, el control de admision de
nuevos segmentos, la reconfiguracion de segmentos, la gestion de la movilidad y seguridad de los
segmentos, entre otros. Cabe mencionar que los trabajos evaluados demuestran que el DRL ofrece
soluciones de gran potencial en la gestion de redes 5G. Sin embargo, aln existen desafios por
resolver, como el uso limitado que tiene en la prevision y prediccién de trafico, y la necesidad de

continuar con la investigacion para mejorar la estabilidad y escalabilidad de estos modelos.

En una reciente investigacion llevada a cabo por Kokkinis y colaboradores en 2025 [6],
proponen un sistema basado en DRL para la administracién dinamica de recursos de radio en el
TI, concretamente para aplicaciones de teleoperacion video-haptica. Para ello, utilizan el método
Soft Actor Critic (SAC), el cual se caracteriza por su eficacia en entornos dinamicos. Este utiliza
las redes neuronales actor y critico que son las encargadas de estabilizar y mejorar las
actualizaciones de politicas durante el proceso de entrenamiento, ademas, incorpora un coeficiente
de entropia que ayuda a mantener la estabilidad entre la exploracion y explotacién. Este enfoque
permite que un agente aprenda mediante la retroalimentacion de recompensas a asignar los
recursos de radio entre los flujos de datos hapticos y de video considerando los requisitos de

latencia, pérdida de paquetes, tasa de datos y la sincronizacion entre ambas modalidades, de esta
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manera maximizar la satisfaccion del usuario en escenarios de red cambiantes. Los resultados
mostraron que el marco propuesto permite una gestion eficiente de la sincronizacion video-héptica
en condiciones variables de red, con lo cual logra un aumento significativo en la satisfaccion del

usuario en comparacion con los métodos convencionales.

En definitiva, este estudio no solo muestra la utilidad del DRL en la gestion de redes de
teleoperacion video-haptica, la cual se considera una rama tecnoldgica del TI, sino que, ademas,
su enfoque en la sincronizacion y adaptabilidad a condiciones dinamicas posibilita sistemas
autbnomos mas robustos. Sin embargo, no se compara con otros algoritmos de DRL, lo que impide

identificar las ventajas especificas del SAC en este caso.

1.5 Organizacion de la tesis

En el capitulo 2 se presenta el marco tedrico, con los conceptos mas importantes
relacionados al trabajo y el modelo base. Luego, en el capitulo 3 se describe el enfoque de gestion
inteligente del T1 donde se explica la formulacion del problema como un proceso de decision de
Markov, las estrategias de gestion basadas en DRL, y las métricas a utilizar. En el capitulo 4 se
explica la implementacién y el analisis de los resultados. Finalmente, en el capitulo 5 se presentan

las conclusiones y recomendaciones para trabajos futuros.



Capitulo 2

Fundamentacion Tedrica

En este capitulo, se exploraran los fundamentos teéricos que sustentan este estudio sobre
la gestion del TI mediante algoritmos de DRL. Se abordaran conceptos claves relacionados al tema
necesarios para comprender la propuesta de este trabajo, como los conceptos de aprendizaje

automatico, RL, DRL, entre otros.

2.1 Internet Tactil (T1)

El término “Internet tactil” fue definido por la Unidn Internacional de Telecomunicaciones
(UIT) en un informe en agosto de 2014, como la red que permitira la interaccion héaptica, es decir,
la percepcion y manipulacién de objetos mediante el tacto. Ademas, sefiala que el caracter del T1
es definido por la latencia extremadamente baja combinada con alta disponibilidad, confiabilidad

y seguridad [7].

Otra definicion es la dada por la IEEE P1918.1, en la cual lo describe como “Una red o red
de redes para acceder, percibir, manipular o controlar de forma remota objetos o procesos reales o
virtuales en tiempo real percibido por humanos o maquinas” [8]. También, es considerada como

la siguiente fase de la evolucion del internet de las cosas (loT), la cual ha emergido como un

10
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paradigma de comunicacién crucial que ofrece una solucion eficiente para mejorar las
interacciones entre humanos y maquinas (H2M) y entre maquinas (M2M), facilitando las
comunicaciones hapticas como aplicacion principal, proporcionando un canal en tiempo real para

transmitir sensaciones tactiles y movimientos [1].

En particular, la TI se describe como una red que debe cumplir con ciertos requerimientos

técnicos claves como [2]:

e Conectividad Ultrasensible: Necesita una latencia de extremo a extremo muy baja, de alrededor

de 1ms.

e Conectividad Ultra Confiable: Requiere alta confiabilidad en la red que garantice un

rendimiento estable bajo diversas condiciones.

e Inteligencia de borde distribuida: debe implementar técnicas de inteligencia artificial (IA) en
el borde de las redes inalambricas, que ayuden o permitan predecir y calcular las acciones

futuras de los usuarios.

e Transmision y procesamiento de datos tactiles: Necesita mecanismos de codificacion tactil que

permitan transmitir informacidn haptica a través de redes de conmutacion de paquetes.

e Seguridad y privacidad: Requiere que la autenticacion sea parte integral de la transmision
fisica, ya que el método actual de separar la autenticacién de la transmision fisica no permite

alcanzar una baja latencia de extremo a extremo.

Estos requisitos aseguran que las aplicaciones de TI funcionen de manera eficiente. Sin

embargo, demandan una revision de los protocolos tradicionales.
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2.2 Introduccion al Aprendizaje Automatico (ML)

El aprendizaje automaético o aprendizaje de maquina es un area de la IA, que comprende el
proceso mediante el cual las maquinas adquieren conocimiento y mejoran su rendimiento a partir
de datos o experiencia, sin la necesidad de la intervencién humana directa. Es decir, en lugar de
programar las reglas o algoritmos, el aprendizaje automético permite que a través de ejemplos de

datos las computadoras aprendan patrones y relaciones.

Una de las definiciones mas reconocidas es la de Arthur Samuel en 1959, que dice que el
“Aprendizaje automatico es el campo de estudio que da al computador la habilidad de aprender

sin haber sido explicitamente programado para ello” [9].

El aprendizaje automatico comprende principalmente tres paradigmas de aprendizaje:
aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. El aprendizaje
supervisado utiliza datos preclasificados con etiquetas que especifican sus caracteristicas. Este
principalmente se usa para clasificacion y regresion. El aprendizaje no supervisado procesa
grandes cantidades de datos sin etiquetas identificando patrones y similitudes sin intervencion

humana. Este se usa para agrupar datos. EI aprendizaje por refuerzo se describe mas adelante.

En general, los algoritmos de aprendizaje automatico basados en datos al entrenarse
generan un modelo de conocimiento (ya sea predictivo, de diagnostico, de optimizacion,
prescriptivo, entre otros), que dependera del tipo de problema al que se esté aplicando. Sin
embargo, cualquiera que sea el problema la aplicacion del mismo requiere la realizacion de una

serie de etapas [9]:

e Preprocesamiento de datos: Implica la limpieza y transformacion de los datos para que

puedan ser utilizados por el algoritmo de aprendizaje automatico.
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e Separacion en conjunto de entrenamiento y pruebas: El conjunto de datos (dataset) se
divide en dos subconjuntos, el de entrenamiento para entrenar y estimar los parametros del

modelo y, el de prueba para probar el modelo de conocimiento construido.

e Configuracion del algoritmo: Se definen los hiperparametros del algoritmo de aprendizaje
con valores que se deben ajustar adecuadamente, como el nimero de épocas Yy la tasa de

aprendizaje en el caso del aprendizaje profundo.

e Entrenamiento del modelo: Consiste en construir el modelo de conocimiento con el

algoritmo de aprendizaje, a su vez optimizando sus hiperparametros.

e Validacion: Consiste en probar el modelo de conocimiento usando el conjunto de datos de
pruebas, para determinar numéricamente qué tan efectivo es el modelo de conocimiento.

Para ello, existen diferentes métricas de calidad, dependiendo del tipo de problema.

2.3 Aprendizaje por refuerzo (RL)

El RL es considerado el tercer paradigma del ML. Este consiste en que un agente mediante
la interaccion con un entorno sea capaz de percibir el estado del mismo, y aprenda a tomar
decisiones que maximicen una recompensa numeérica. Para ello, el agente debe descubrir qué
acciones proporcionan una mayor recompensa a través del ensayo y error. Dichas acciones no solo
afectan la recompensa inmediata, sino también los estados futuros y las recompensas posteriores

[10].

2.3.1 Bases de RL
Un sistema de RL incluye elementos clave como una politica, una sefial de recompensa,
una funcion de valor y, opcional, un modelo del entorno. La politica guia el comportamiento del

agente, ya que puede ser un conjunto de reglas o asociaciones entre estados y acciones. La sefial
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de recompensa indica los efectos positivos 0 negativos para el agente, similar a las experiencias
de placer o dolor en sistemas biol6gicos; esta es proporcionada por el entorno, lo cual el agente
intenta maximizar a largo plazo. La funcién de valor, por su parte, evalta las recompensas a largo
plazo. Finalmente, un modelo del entorno puede predecir el comportamiento del entorno,
permitiendo inferencias y la planeacion de acciones. Juntos estos elementos permiten que el agente

aprenda y tome decisiones Optimas para maximizar las recompensas acumuladas [10].

El RL emplea la estructura formal de los procesos de decision de Markov (MDP), que
permite describir la interaccion entre un agente que aprende y su entorno mediante el uso de

estados, acciones y recompensas. Esta interaccion puede observarse en la Figura 2.1.

';| Agent ll
state reward action

s, | |R, A

E Rnl i
:.

PR Environment |€—

Figura 2.1 Interaccién de un agente con su entorno en un modelo RL. Fuente: [10]

Donde:
e Agente (Agent): Es el encargado de interactuar con el entorno, hace observaciones, ejecuta

acciones, y recibe recompensas por ello.

e Entorno (Environment): Comprende lo que esta fuera del agente, es decir, con lo que

interactla.

e Accion (Action): Son los ajustes que el agente puede realizar al entorno.
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e Estado (State): Son las condiciones u observaciones que el entorno proporciona al agente.

e Recompensa (Reward): Es un valor numérico que obtiene el agente al ejecutar una accion
sobre el entorno y, que busca maximizar con el tiempo. Puede ser positiva 0 negativa, para

indicar que tan buena fue la accion ejecutada.

De esta manera, en cada paso de tiempo t, el agente observa el estado St de un espacio de
estados S del entorno, y selecciona una accién A del espacio de acciones A(s) siguiendo una
politica m(ai/st). Como consecuencia de ejecutar dicha accion, un paso de tiempo después, el agente
recibe una recompensa numérica Ri+1 € R € R y se encuentra ante un nuevo estado St+1. ESta

interaccion da como resultado la siguiente trayectoria:

So, Ao, Ry, S1, A1, R2, So, Az, R, ...

Cabe resaltar que en un MDP, la probabilidad de cada posible valor para Sty Rt dependen

Unicamente del estado y accion inmediatamente anterior, St.1 Yy At-1.

Por otro lado, la mayoria de los algoritmos de RL implican la estimacion de funciones de
valor, las cuales miden que tan bueno es estar en un estado dado. Esta valoracion se basa en las
recompensas futuras o retorno esperado, que dependen de las acciones del agente, las cuales son
guiadas por politicas especificas. Una politica es un mapeo de estados a probabilidades de
seleccionar cada accion posible [10]. Ejemplo, si un agente sigue la politica © en el tiempo t,

entonces 7(als) es la probabilidad de que At=asi St=Ss.

En general, la solucidon a un problema de RL consiste en identificar una politica que
maximice la recompensa a largo plazo, satisfaciendo la funcion de estado-valor 6ptima denotada

como v, y definida como:
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v.(s) = max,v(s) €y

Asimismo, la funcion optima de accion-valor g * que representa el valor 6ptimo que se

logra al tomar la accién a en el estado s siguiendo la politica 6ptima, y esta definida como:

q * (s,a) = max,q (s, a) (2)

Y en términos de q * quedaria:

q*(s,a) = E[Rey1 +y vu(se)ISe = 5,4 = a] 3)

2.3.2 Algoritmo Q-Learning

Este algoritmo fue uno de los primeros avances del RL, introducido por Watkins en 1989,
y es uno de los mas utilizados en este campo [10]. El objetivo de Q-Learning es encontrar una
politica de accion dptima para maximizar la recompensa total a lo largo del tiempo. Se define

como.

Q(Se, Ap) «— Q(Sp, Ap) + a[Rpp1 + ymaxaQ(Ses1; ar) — Q(Se, Ap)] (4)

Donde S y A es el conjunto de estados y acciones, respectivamente, R es la funcion de
recompensa, a es el parametro de aprendizaje, y es el factor de descuento, St representa el estado
actual, St+1 el estado siguiente al estado Stal ejecutar laaccion at, y Q(St+1; ar) es la mejor estimacion

de Q para una accion a ejecutar en el estado Si+1.
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2.4 Aprendizaje por refuerzo profundo (DRL)

El DRL combina redes neuronales profundas con algoritmos de RL para aprender de datos
complejos y/o de mayor dimensién, ya que las redes neuronales son capaces de extraer
caracteristicas complejas que permiten resolver problemas de alta dimensionalidad o de estados
continuos [11]. Estos métodos utilizan las redes neuronales para representar el estado o para
aproximar alguno de los componentes del RL como la funcion de valor (v'(s; 0)), la politica (n(als;
0)), el modelo del entorno (funcidon de transicion de estado), o la funcion de recompensa, donde

los parametros 6 corresponde a los pesos de las redes neuronales [11].

En este proyecto se plantea implementar dos algoritmos de DRL: DQN y A2C.

2.4.1. Deep Q-Network (DQN)

DQN es un algoritmo que consiste en utilizar dos redes neuronales para aproximar la
funcion Q, denominadas red objetivo (Target Network) y red Q (Q-Network), las cuales se
encargan de estimar la recompensa futura y el valor de la funcion Q, respectivamente. Se denotan
como red objetivo a 09 y red Q a 6%, respectivamente. Entonces, la regla de actualizacion de DQN

€es:

Qn+1(Se,ar) = Qu(sp, ar) + a[R(Se, ap, Ser1) + YMaXge ar+10n(Ser1, @) — Qu(spa)]  (5)

Donde 6° estima el valor de la funciéon Q y es equivalente a Qn(st, at). Por su parte, 8%
estima la recompensa futura de tomar una accion a y, al agregar esta estimacion a la recompensa
actual se obtiene una estimacion de la recompensa total en el tiempo t. Entonces, al considerar la
red neuronal y reescribir R(st,at,St+1) + ymMaXaeat1 Qn(St+1, a), se tiene la siguiente expresion

equivalente:
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!

R(st, A, Sp1) +ymaxg, At+19Q (6)

Ahora, para calcular el error por medio de una funcion de pérdida (Loss) se utilizan como
argumentos la prediccion de 9 y la suma entre la recompensa y la prediccion de 69, con lo cual,
suponiendo que la funcién de perdida es la ecuacion de minimos cuadrados (MSE), el célculo del

error quedaria:

L) = [(R(St) at, Ser1) T V- 09 — HQ)Z] (7)

Por otro lado, lared Q y la red objetivo generalmente tienen la misma arquitectura, por ello
solo se entrena la red Q y usando esta se actualiza la red objetivo a intervalos regulares para
estabilizar el proceso de aprendizaje [12]. Considerando esto, en la Figura 2.2 se muestra la

arquitectura DQN.

__________________________________

! Agenti
. Target Q .
. network !
1 )
W ) ! r !
T : ! Replacement DON Loss !
' ]
H i
1
—*  Qnetwork Update E
1 B et I
: '

IACUO ns

Environment

Figura 2.2 Arquitectura DQN. Fuente [3]

2.4.2 Advantage Actor Critic (A2C)
Los algoritmos actor-critico estan basados en los métodos de descenso de gradientes, es

decir, estos aprenden directamente del espacio de observacion mediante el uso de técnicas que
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permiten ajustar continuamente la politica del agente para maximizar la recompensa acumulada

en el tiempo. Cabe mencionar que estos son uno de los mas utilizados en un marco RL [3].

El actor-critico con ventaja utiliza dos redes neuronales, una red actor que decide que
accion tomar en un estado dado, y una red critico que evalUa que tan buena fue tomar esa accion.
Ella calcula la diferencia entre el valor estimado de una accion y el valor esperado del estado
actual, lo cual ayuda a disminuir la varianza en las estimaciones y mejorar el aprendizaje. Se

calcula con la siguiente expresion:

A(se,ar) =711+ Y - V(Serr ) — V(sp) (8)
Donde A(st, at) estima el interés de tomar la accion azen el estado s, ri+1 €s la recompensa
obtenida después de tomar la accion aten el estado s, y es el factor de descuento, V(st+1) representa
el valor estimado del siguiente estado st+1 y V(st) es el valor estimado del estado actual s;. Cabe
mencionar que, si A(St, ar) es positivo indica que tomar la accion at en el estado st es mejor que lo

esperado, y si es negativo es peor que lo esperado.

En general, el algoritmo actor-critico combina el gradiente de politica para el actor y la

funcidn de valor para el critico. La expresion del gradiente de politica es:

Vo) (8) ~ = X, Vglog ma(ailsy) - A(si, a;) ©9)

Donde J(0) es el rendimiento esperado de la politica basada en los pardmetros 0, me(als) es
la funcidn de politica que indica la probabilidad de elegir la accion a en el estado s, N es el numero

total de experiencias muestreadas, A(Si, ai) es la ventaja de tomar la accion aien el estado s, i
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representa el indice de la muestra'y Vylog mg(a;|s;) es la direccion en la que se deben modificar

los pardmetros 6 para mejorar la politica. Por otro lado, la expresion de la funcion de valor es:

Vu] W) = = Sy By (M () = Qu (51, @))? (10)

Donde 7,,J(w) es el gradiente de la funcidn de pérdida basada en los parametros w, V,, (s;)
es la estimacion del critico sobre el valor del estado si con parametro w, Q,,(s;, a;) es la estimacion
del critico sobre el valor de la accion a;i en el estado si, N es el nUmero de muestras utilizadas, i el
indice de la muestra 'y %, (V;,(s;) — Q,,(s;, a;))? mide el error entre la estimacién del valor del
estado Vw Yy el valor de accion Qw, lo que determina en qué direccion ajustar los pardmetros w para
mejorar su evaluacion de valores minimizando errores.

Ahora, para la actualizacion del actor se utiliza el ascenso de gradiente, lo que significa

que modifica sus parametros para maximizar las recompensas futuras de la siguiente manera:
Ot11 = 0+ aVe](6,) (11)
Donde a es la tasa de aprendizaje del actor y t es el paso de tiempo dentro de un episodio.
En cuanto a la actualizacion del critico, se utiliza el descenso de gradiente, lo que implica modificar

sus parametros para reducir el error en sus estimaciones y asi mejorar sus predicciones sobre el

valor de los estados y acciones. Se actualiza de la siguiente forma:

we = we — BV, J(wy) (12)
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Donde w son los pardmetros de la red critico y B es la tasa de aprendizaje del critico.

El esquema actor-critico proporciona una mejor funcion de puntuacion, ya que en lugar de
esperar hasta el final del episodio permite realizar una actualizacion en cada paso del proceso,

similar al aprendizaje por diferencia temporal (TD Learning) [13].

En general, en este enfoque se observa que el actor se encarga de seleccionar la accion a
tomar y de estimar Vglog mg(a;|s;) en la ecuacién (9). Por otro lado, el critico se encarga de
estimar V,, (s;) y Q. (s;, a;) de la ecuacion (10), evaluando que tan buena fue la accién tomada y

cdémo debe ajustarse. La arquitectura del actor-critico se muestra en la Figura 2.3.

AGENT

_r Policy

o

Action
State .
ENVIRONMENT
Actor
_...
i | Adv= Q(s,a) - V(s)
Action
N = wvis) — Reward
State — -4
Critic
State

Figura 2.3 Arquitectura Actor-Critico (tomado de [18]

2.5 Modelo RL base de nuestra propuesta
El disefio de RL del sistema de RS-RLNC para la gestion del Tl propuesto en [1],

comprende:
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e Un espacio de accion, donde esta predeterminado RLNC deslizante, y la accion consiste

en continuar utilizando RLNC deslizante o cambiar a RLNC en bloque, o viceversa.

e Un espacio de estado con dos variables, la congestion incipiente (ICy) y la tasa estimada de

error del canal (pe).

e Una funcion de recompensa, definida de la siguiente forma:

__goodput,
T TrT

Donde goodput es el rendimiento Gtil de la red, definido como la cantidad de datos Utiles
transmitidos correctamente por unidad de tiempo y rTT es el tiempo de ida y vuelta de los paquetes

entregados en el momento t.

El algoritmo de RL implementado en este modelo fue el algoritmo Q-learning debido a su
técnica sencilla de actualizacion de iteracién de valores, junto al método e-greedy para la
exploracion durante la fase de aprendizaje inicial. Dicho método toma una accion aleatoria a con

probabilidad € y una accion avara (greedy) dada por a= max Qt(a) con probabilidad 1- €.

La evaluacion del algoritmo se realiza en términos del rendimiento, latencia y complejidad
de decodificacion, utilizando las métricas de rendimiento Gtil acumulado, el retardo promedio
movil (MA) y la recompensa, ya que esta relacion entre el buen rendimiento y el rTT hace

referencia a mejorar el rendimiento y mantener un valor bajo de rTT.

Los resultados de la simulacién muestran que RS-RLNC supera las soluciones actuales de
la capa de transporte mostrando un mejor rendimiento cuando las condiciones de la red cambian,

minimizando la pérdida de paquetes.



Capitulo 3
Enfoque de Gestion Inteligente del Internet
Tactil

En este capitulo, se formaliza el problema de decisién de Markov aplicado al contexto de
la gestion del TI, detallando los elementos fundamentales que lo conforman. Se describe al agente
encargado de tomar decisiones, las posibles acciones que puede ejecutar, y el entorno en el que
actua. De igual manera, se presentan los enfoques de gestion basados en DRL y las métricas de

calidad utilizadas para evaluar el rendimiento de los algoritmos y del sistema.

3.1 Formulacién del problema como un proceso de decision de
Markov

3.1.1 Agente (Agent)

El agente es el responsable del aprendizaje, la toma de decisiones y la interaccion con el
entorno. En este esquema, el agente se comporta como un controlador de red. Para ello, basandose
en el estado actual determinado por las condiciones de la red ejecuta una accion (a) cuya finalidad
es mejorar el rendimiento de la misma. El entorno procesa esta accion para optimizar la red, con
lo cual alcanza un nuevo estado (Next State), y proporciona una recompensa al agente. Esta

informacion le permite al agente ajustar su politica y mejorar sus decisiones futuras.

23
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El disefio del agente (agente DRL) se lleva a cabo utilizando algoritmos de DRL,

especificamente los descritos en el capitulo 2, DQN y A2C.

3.1.2 Acciones (Action)

Ajustar el nimero de segmentos en que se fragmenta un paquete o flujo de datos permite
adaptar la transmision a las condiciones de la red. Un valor alto genera mayor tolerancia a errores,
lo que es ideal en redes con alta tasa de pérdida, pero aumenta la latencia. A su vez, un valor bajo
minimiza el procesamiento, pero lo hace vulnerable a pérdidas de paquetes. En base a esto, el
agente debe aprender a ajustar dindmicamente el nimero de segmentos para adaptarse a las
condiciones variables de la red, y asi minimizar la latencia y maximizar el rendimiento. Con este
fin, se propone que el agente ajuste el nUmero de segmentos entre -2 y 2, es decir que pueda
seleccionar entre mantener, o aumentar o disminuir en 1 o0 2 segmentos. Ahora, de acuerdo a los

algoritmos a utilizar, se define la accion para el caso continuo y discreto:

e Para el caso continuo, el agente genera un valor dentro del rango [-2,2] que se utiliza
para modificar la cantidad de segmentos. Asi, si el valor es positivo se incrementa el
nimero de segmentos y si es negativo se disminuye. Por ejemplo, si el valor es 1 se
incrementa en 1 el nimero de segmentos.

e Para el caso discreto, el conjunto de acciones que el agente puede elegir es {-2, -1, 0,

1, 2}. Por ejemplo, en el caso de seleccionar 0 se mantiene el nimero de segmentos.

3.1.3 Entorno (Environment)

El entorno es con lo que interactua el agente. Este representa la red y permite la interaccion
de las entradas, que es la accion, y las salidas, que corresponde al estado y la recompensa. Estos

se describen a continuacion.
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3.1.3.1 Estados (State)

Los estados corresponden a las diferentes condiciones de la red que el entorno da al agente,

y se representan como combinaciones de las siguientes variables:

Ancho de banda (BW), el cual representa la capacidad de transmision de datos disponible
0 que la red puede manejar. Un mayor ancho de banda permite transmitir mas datos en

menor tiempo. Esta varia entre 10 - 500 Mbps.

e Tasade error del canal (pe), que indica el nimero de bits recibidos de un flujo de datos con
errores. Esta varia de forma aleatoria entre 0 - 50 %.

e Numero de segmentos del paquete (ns), el cual indica la cantidad de segmentos en que se
divide la transmision de datos. Un numero elevado de segmentos puede aumentar la
sobrecarga y afectar el rendimiento.

e Indice de congestion (IC), representa el nivel de saturacion de la red. Una alta congestion

puede generar retrasos y la pérdida de paquetes, con lo cual afecta la QoS y la QoE.

Estas variables son fundamentales ya que permiten identificar problemas en la red. Por lo
tanto, ofrecen la informacion necesaria para que el agente decida la accion a ejecutar. De esta

manera, el espacio de estados queda asi:

S; = (Bw,pe,ns,IC; ) (13)

Donde Bw es el ancho de banda (por sus siglas en inglés, bandwidth), pe es la tasa de error,

ns el nimero de segmentos, y IC; es el indice de congestion en el tiempo t.
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3.1.3.2 Recompensa (Reward)

La recompensa es una salida del entorno, especificamente un valor numérico que el entorno
da al agente por tomar una accion en un estado. El agente busca obtener la mayor recompensa
posible, identificando a su vez la politica que minimice la funcion objetivo. Para el contexto del
proyecto, la funcion de recompensa se plantea de forma similar a [1]:

__goodput,
T TrT

(14)

Donde goodput es el rendimiento Gtil de lared y rTT es el tiempo de ida y vuelta de un
subconjunto de paquetes entregados en el tiempo t. Estas métricas son de gran relevancia ya que
se busca aumentar la cantidad de datos Utiles transmitidos y mantener un tiempo de envio y
respuesta bajo para mejorar la eficiencia de la red. Particularmente, goodput sera definido en la

seccion 3.3.2.

3.1.4 Exploracion — Explotacion

La exploracion y la explotacion son conceptos fundamentales en el disefio de algoritmos
RL, ya que ayudan al agente a decidir cuando probar nuevas acciones para descubrir estrategias
mas efectivas en busca de mejores recompensas, y cuando aprovechar lo que ya sabe para elegir
la mejor accion que le permita obtener beneficios inmediatos. En este trabajo se utiliza el método

épsilon — greedy y el de exploracion por distribucion gaussiana.

3.1.4.1 Epsilon — Greedy
El método € - greedy es una estrategia comun en algoritmos de RL como Q-Learning. Este

funciona eligiendo la mejor accion con probabilidad 1 — &, es decir explota el conocimiento
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existente para maximizar la recompensa [ 10]. Asi mismo, con probabilidad € selecciona una accion
aleatoria, permitiendo descubrir nuevas estrategias (ver algoritmo en Tabla 3.1). El parametro ¢
varia entre 0 y 1, y se reduce con el tiempo para favorecer progresivamente la explotacion sobre

la exploracién. Este esquema se utiliza en DQN.

Tabla 3.1.

Algoritmo e-greedy para la eleccion de exploracion y explotacion del agente

Algoritmo 1 Algoritmo e-greedy para seleccionar exploracion y explotacion

Entrada: valor aleatorio, valor de decaimiento, valor minimo.
Pardmetros: parametro ¢ de exploracion inicial
Salida: decision si explora o explota

Initializer =0,e=1
r=rand(0,1)
e=¢& *decay
& =max(s, &_min)
if r<e:

explore
else:

exploit

3.1.4.2 Exploracion por distribucion Gaussiana

Este método consiste en elegir acciones aleatorias utilizando una distribucién normal de
probabilidad, y se implementa en algoritmos con un espacio de accién continuo. Por lo tanto, este
se utiliza en el A2C, en el cual la red actor genera acciones aleatorias alrededor de la media ()

con una dispersion controlada por la varianza (c2). Al inicio, la varianza es alta y permite explorar
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diversas acciones, pero a medida que el algoritmo aprende, la media se acerca a la mejor accion y

la varianza disminuye favoreciendo la explotacion.

3.2. Estrategias de Gestion basadas en DRL

En esta seccidn se explican los detalles de los algoritmos utilizados en este proyecto.

3.2.1 DON

En este caso, el agente aprende de sus experiencias acumuladas. Para ello, almacena las
experiencias en un buffer o memoria en cada episodio et= (S, At, Ry, St+1, done), y luego selecciona
una muestra aleatoria para continuar con el entrenamiento de la red Q. Para el calculo de la
estimacion de la recompensa futura se usa la red objetivo, y se actualizan los pesos de la red
principal a través de descenso de gradiente. Ademas, cada 100 iteraciones se actualizan los pesos
de la red objetivo con la red entrenada. Por otro lado, para la exploracién y explotacion se utiliza
el método € — greedy que se menciond anteriormente. Para este algoritmo, los hiperparametros
utilizados se muestran en la Tabla 3.2, y el algoritmo DQN desarrollado se detalla en la Tabla 3.3,
donde se puede ver que en el paso 10 se selecciona la accién usando € —greedy, en el paso 11 se
ejecuta la accion, y se observa la recompensa y el nuevo estado. Asimismo, entre los pasos 17 al
21 se actualiza el valor Q(s,a), y en los pasos 23 y 24 se ajustan los pardmetros del modelo

utilizando descenso de gradiente, minimizando el error cuadratico medio (MSE).
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Tabla 3.2.

Hiperparametros DQN

Parametro Valor
1: Optimizador ADAM
2: Maximo numero de pasos: 3495
3: Tasa de aprendizaje (a) 0.01

4: Factor de descuento (x) 0.9

5: Tasa de exploracion () 1.0

6: Factor de decaimiento para & 0.995
7: Valor minimo de & 0.01

8: Tamarnio del buffer () 2000
9: Numero de muestras por lote 32

10: Numero de capas ocultas 2

11: Numero de unidades por capa 16

12: Numero de salidas 1

13: Funcion de activacion de capas ocultas LeakyReLU

14: Funciodn de activacion de salida

Lineal
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Tabla 3.3.

Algoritmo DQN

Algoritmo 2 Algoritmo DQN

Entrada: estado, accion
Parametros: parametro de aprendizaje, factor de descuento, parametro de exploracion
Salida: politica éptima

1:

2
3
4
5:
6:
7.
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

Initialize Tactile Internet model

Initialize replay memory Dto capacity N
Initialize Q network (0)

Initialize target Q network (0') with 0 weights

for each episode I do:
Initialize state sp
while t= 1...T; in episode I do:
action = call e-greedy Algorithm
execute action a;and observe reward r:and state S;+1
store transition (s, a, I't, St+1, done) in 2
Update s; . st+1

if size batch < Dsize:
sample random batch (s;, aj, rj, sj+1, done) uniformly from D
if done = True:
Qj(sp,ar) =1
else:
Qj(se,ar) =1+ vy - maxy(6'(sj+1))
end if
Update model with Gradient Descent
loss — MSE (y;,0(s;))
every w step update 6" — 0
end if
end while
end for
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3.2.2. A2C

Este algoritmo combina una red actor que genera una distribucion de probabilidad (media
u y desviacion estandar o) para cada accion continua, y una red critico que estima el valor del
estado actual para calcular la ventaja, que indica cuanto mejor es una accion respecto al promedio.
Luego, se calculan la pérdida de la red actor y critica, y se agrega un coeficiente de entropia para
fomentar la exploracion. Este modelo se actualiza en cada paso con la experiencia obtenida,
utilizando una pérdida combinada que incluye la maximizacion de la probabilidad de buenas
acciones, la minimizacion del error en la estimacion de valores, y la penalizacién de politicas
deterministas, lo que permite equilibrar el rendimiento y estabilidad. En la Tabla 3.4 se muestran
los hiperparametros utilizados para este algoritmo y en la Tabla 3.5 se describe el algoritmo A2C
desarrollado. En este algoritmo se puede ver que en el paso 9 se selecciona una accién desde una
distribucion normal, y en el paso 10 se ejecuta la accion y se observa la recompensa y el nuevo
estado. Después, en los pasos 11 y 12 se calcula el objetivo TD y la ventaja, en los pasos 13y 17
se actualizan el critico y el actor, respectivamente. Finalmente, en el paso 19 se actualizan los

parametros del modelo mediante descenso de gradiente.
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Tabla 3.4.

Hiperparametros A2C

Parametro Valor
1: Optimizador ADAM
2: Maximo numero de pasos: 3495
3: Tasa de aprendizaje (a) 0.001
4: Factor de descuento (x) 0.99

5: Coeficiente de entropia (exploracion) 0.01

6: Numero de capas ocultas actor 2

7: Numero de unidades por capa actor 64

8: Numero de salidas actor 2, media y std
9: Numero de capas ocultas critico 2

10: Numero de unidades por capa critico 64

11: Numero de salidas critico 1

12: Funcion de activacion de capas ocultas ReLU
actor ReLU

13: Funcién de activacion de capas ocultas
critico

14: Funcion de activacion de salida actor
15: Funcion de activacion de salida critico

Softplus para g > 0
Lineal
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Tabla 3.5.

Algoritmo A2C

Algoritmo 3 Algoritmo A2C

Entrada: estado, accion.
Parametros: parametro de aprendizaje, factor de descuento, coeficiente de entropia.
Salida: politica 6ptima, funcién de valor.

1:  Initialize Tactile Internet model
2:  Initialize Actor mg (MU, Sigma)
3: Initialize Critic Vy
4: Initialize ADAM optimizer with learning rate
5:
6:  for each episode I do:
7 Initialize state so
8: while t= 1.....Tin episode | do:
9: sample action at~ = (a|u,0) = Malu, o) according to current policy
10: execute action atand observe reward riand state si+1
11: set TD target y; =1 + YV (St41) * (1 — done)
12: compute advantage 8, = y, — Vg (s¢)
13: Update critic minimizing 10ss £ ;i = 6;°
14:
;g Compute log probability logm = —0.5 * ((C‘%”))Z —log (o)
17: Compute entropy H = 0.5 * (log(2ma?) + 1)
Update actor policy minimizing loss
18: Loctor = —logm- 6, — entropyYcoer * H
19: Update model parameters using gradient descent on total loss

20: Update St «—st+1
21: end while
end for
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3.3. Métricas de evaluacion
Las métricas de calidad utilizadas son de dos tipos, relacionadas al rendimiento del
algoritmo y asociadas a la calidad del servicio, es decir, evalian el desempefio del sistema

controlado por el agente.

3.3.1. Recompensa acumulada
La recompensa acumulada corresponde a la suma total de las recompensas obtenidas en
cada episodio. Esta evalUa si el agente esta aprendiendo a maximizar su objetivo [10], y se calcula

mediante la siguiente expresion:

Donde, Rtces la recompensa total acumulada en el episodio, Rnes la recompensa obtenida
en el paso n, y n corresponde al numero de pasos. Finalmente, se calcula la recompensa promedio
global donde se incluyen todos los episodios desde la fase de exploracion inicial hasta alcanzar su
convergencia. Este analisis global se obtiene con la siguiente expresion:

_ Ze (Rl + RZ T+ +Re)

R
N

(16)

Donde, Rerepresenta la recompensa del episodio e y N el nimero de episodios.

3.3.2. Rendimiento util acumulado

El rendimiento atil (goodput) es una medida de la eficiencia de la red. Hace referencia a la
cantidad de datos utiles entregados por unidad de tiempo y a diferencia del rendimiento
(throughput), no incluye los datos redundantes o los retransmitidos [15]. Se calcula mediante la

siguiente expresion:
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Datos utiles entregados

(17)

goodput, =

Tiempo total

Donde el tiempo total es la latencia y los datos Utiles entregados se calculan de la siguiente

manera:

. tamano paquete
Datos ttiles entregados = — * (1 — pe) (18)

Donde ns es el nimero de segmentos y pe es la tasa de error. Ahora, el rendimiento dtil

acumulado se define como el rendimiento til obtenido en cada episodio, quedando asi:

goodputT = ¥n(g1+ g2+ +0n) (19)
Donde, el gnes el rendimiento util en el paso de tiempo n. Para el andlisis global se plantea
el promedio del rendimiento util acumulado en cada episodio de la siguiente manera:

_ 2n(g1t ga+ +9n)

¢ N

(20)

Donde, G es el rendimiento util promedio, gn es el rendimiento obtenido en el episodio n'y

N es el nimero de episodios.

3.3.3. Retardo promedio movil
El retardo promedio movil (Moving Average Delay - DMA) es una métrica que permite
analizar la tendencia del retardo en una ventana mdvil de los Gltimos W pasos 0 paquetes. Se

calcula asi:

t
1
DMA, = Z Ly (21)
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Donde, DMAes el retardo promedio mavil en el tiempo t, Lk es el retardo o la latencia del
paquete en el paso k, y W es el tamafio de la ventana. Esta medida permite identificar patrones de

comportamiento en el tiempo, por lo cual es util en redes donde los retardos variables pueden

afectar la QoS y QoE.

3.3.4. Pérdida de paquetes
Esta métrica se representa como el porcentaje de paquetes perdidos en el momento de su

transmision respecto al total de paquetes enviados. Se calcula mediante la siguiente expresion:

Numero de paquetes perdidos
Pioss = - ; * 100 (22)
Numero de paquetes enviados

Esta métrica permite conocer la tasa de pérdida de paquetes y con ello el estado de la red.
Un alto porcentaje de pérdida indica congestion o problemas en la red, lo cual afecta la QoS y QoE

de las aplicaciones.

Cabe mencionar que en la simulacion de pérdida de paquetes se considera que un paquete
se pierde si un valor aleatorio es mayor a la tasa de pérdida de paquetes o, si el ICtes mayor a
BW/ns, ya que si esto se cumple indica que hay mas trafico del que puede manejar el ancho de

banda asignado a cada segmento, lo que resulta en la pérdida de paquetes.

3.3.5. Paquetes demorados

Esta métrica hace referencia a los paquetes que superan un umbral de tiempo. Los paquetes
con retraso suelen ser indtiles para aplicaciones sensibles como las aplicaciones TI, lo cual afecta
la QoS y QoE. Esta se calcula similar a la pérdida de paquetes, pero con los paquetes retrasados,

asi:



Capitulo 3. Enfoque de Gestion Inteligente del Internet Tactil

37

Numero de paquetes demorados

Pielay = 7 -
eray Numero de paquetes enviados

*

100

(23)



Capitulo 4

Implementacion y Analisis de Resultados

En este capitulo, evaluamos el rendimiento de los algoritmos propuestos utilizando

nuestro enfoque de gestion, mediante simulaciones.

4.1. Configuracion de las simulaciones

El modelo de red planteado simula una red tactil donde el agente debe controlar
dindmicamente el nimero de segmentos (entre 1 y 10) en que se fragmenta un paquete o flujo de
datos para ser transmitido bajo condiciones variables de BW, IC y pe. En cada paso se simula el
envio de paquetes considerando pérdidas aleatorias con una probabilidad del 80%, y se calculan

las métricas de rendimiento Util y retardo promedio movil.

Para su evaluacion, entrenamos nuestros agentes realizando diversas simulaciones en las
que se debe completar la entrega de 4000 paquetes considerando diferentes parametros de red.
Estos parametros utilizados se seleccionaron tomando en cuenta la investigacion base de nuestro
estudio [1] y la configuracion de red en la categoria de TI para sistemas de teleoperacion
establecidos en el estdndar IEEE1918.1 [16]. La configuracion de los escenarios y los parametros

seleccionados se muestran en la Tabla 4.1.

38
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Tabla 4.1

Parametros de la simulacion

Parametros Valor
Retardo de 1-50 ms
ropagacion .

Extr%rgo aextremp ~ cscenariol 1 ms

(tPD) Escenar!o 2 50 ms
Escenario 3 1-50 ms

Tasa de error (pe) 0% -50 %
Escenario 1 0% - 50%
Escenario 2 5%
Escenario 3 10%

Ancho de banda 10 — 500 Mbps

(BW) Escenario 1 100 — 500 Mbps
Escenario 2 10 Mbps
Escenario 3 100 Mbps

N° Paquetes 4000

entregados

Tipo de Trafico TCP

Algoritmos Q-Learning DON A2C

Tasa de aprendizaje 0.1 0.01 0.001

CY)

Factor de descuento 0.99 0.9 0.99

()

Valor para la 1 1 0.01

exploracién

4.2. Experimentos

4.2.1. Prueba inicial (Escenario 1)

Realizamos una prueba inicial utilizando el dataset de parametros de red definidos en [17],

con un BW variable entre 100 y 500 Mbps, un retardo de propagacion de extremo a extremo (tPD)

de 1ms y pe seleccionado de forma aleatoria entre 0 y 50%, lo que lo hace un entorno dindmico.
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La Figura 4.1(a) representa la curva de aprendizaje de los agentes mediante la recompensa
acumulada, donde se observa que A2C tiene un mejor aprendizaje, aunque muy similar a DQN.
Mientras que en la Figura 4.1(b) se puede ver que Q-Learning y A2C tienen un retardo menor en
comparacion con DQN. Por su parte, la curva del rendimiento Util acumulado (ver Figura 1 del
Apéndice) tiene un comportamiento similar a la curva de recompensa, donde A2C muestra mejor
rendimiento. En la Tabla 4.2 se pueden ver los valores promedios finales (de todas las corridas) de
las medidas de evaluacion, en la cual se observa que A2C tiene mejor recompensa y rendimiento
acumulado, superando a DQN y Q-Learning, debido a su capacidad para adaptarse de forma
dinamica a las condiciones variables de la red. En cuanto al retardo promedio movil, las diferencias
entre los algoritmos son minimas donde Q-Learning tiene un menor retardo, aunque similar a A2C.
Esto se debe a que Q-Learning puede ser mas eficiente en tiempo de respuesta por su simplicidad

algoritmica, sin embargo, A2C mantiene un retardo competitivo a pesar de su mayor complejidad.

167 Recompensa Acumulada ba Retardo promedio movil

1.000

— Q-Learning QLeaming
— DQN

— DON

— mc 23 A2

0.100 4

0.010 A

Recompensa acumulada
Retardo promedio movil (ms)

0.001 o

0.000 +

0 500 1000 1500 2000 2500 3000 3500 4000 "o 500 1000 1500 2000 2500 3000 3500 4000
Numero de paquetes NUmero de paquetes

(a) (b)

Figura 4.1 Comparacion de curva de aprendizaje (a) y retardo promedio movil (b) entre los algoritmos.
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Tabla 4.2.

Estadisticas de las medidas de evaluacion para la prueba inicial

Algoritmo Promedio de Promedio de Promedio de
Recompensa Rendimiento util Retardo promedio
Acumulada Acumulado movil (ms)
Q-Learning 2.472.184,84 7.624,84 1,89
DON 3.055.374,99 9.565,11 1,94
A2C 3.417.649,11 10.520,87 1,90

4.2.2. Resultados

Para las siguientes simulaciones planteamos 3 escenarios con las configuraciones

mostradas en la Tabla 4.1, utilizando datos generados en Mininet.

La Figura 4.2 representa el escenario 1, el cual se caracteriza por ser un entorno dinamico.
En la Figura 4.2(a) y 4.2(b) se muestra la curva de aprendizaje de los algoritmos utilizados y el
rendimiento util de la red, donde se observa que A2C y DQN tienen un comportamiento casi
similar, mientras que el de Q-Learning es menor considerablemente. En la Figura 4.2(c) se
compara los porcentajes de paquetes perdidos, que muestra que A2C tiene una menor pérdida de
paquetes y es mas estable, a diferencia de DQN y Q-Learning con porcentajes mayores muy
similares. En la Figura 4.2(d) se muestra la evolucion del retardo promedio movil en el que se
observan fluctuaciones por parte de los diferentes algoritmos, sin embargo, A2C tiene menor
retardo con una mayor estabilidad, DQN muestra un mayor retardo, aunque mas estable que Q-
Learning, con un retardo bastante variable debido a su convergencia lenta. Esto se debe a las

condiciones cambiantes de la red.
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Rendimiento Util Acumulado
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Figura 4.2 Comparacién de la recompensa acumulada (a), rendimiento Gtil (b), pérdida de paquetes (c) y
retardo promedio movil (d).

En la Tabla 4.3 podemos ver los valores promedios finales de estas métricas, donde se
observa que A2C es mas eficiente y equilibrado en entornos dinamicos, ya que logra una mayor
recompensa Yy rendimiento Gtil acumulado, manteniendo un menor retardo promedio mévil y un
menor porcentaje de pérdida de paquetes respecto a DQN y Q-Learning. Esto se debe gracias a su
enfoque basado en politica y valor que le permite tener capacidad de adaptacion a condiciones
dindmicas y optimizar decisiones en tiempo real. Por su parte, DQN mejora a Q-Learning en

cuanto a recompensa acumulada, rendimiento Gtil acumulado y pérdida de paquetes, pero no
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alcanza a A2C, debido a que, aunque maneja mejor la variabilidad que Q-Learning no es tan
robusto frente a una aleatoriedad extrema en comparacién con A2C. Finalmente, Q-Learning
aunque tiene un retardo menor que DQN y similar a A2C, muestra un peor desempefio en las otras

métricas, lo que evidencia sus limitaciones en entornos dindmicos.

Tabla 4.3.

Estadisticas de las medidas de evaluacion para el escenario 1

Algoritmo Promedio de Promedio de Promedio de Promedio
Recompensa Rendimiento Retardo de Pérdida
Acumulada atil Acumulado  promedio de paquetes
maovil (ms) (%)
Q-Learning 6.358.068,33 12.877,19 1,13 1,20
DQN 7.779.402,42 15.828,0 1,20 1,19
A2C 8.328.648,86 16.871,55 1,12 1,16

Para el escenario 2, en la Figura 4.3 se muestra el retardo promedio movil y la pérdida de
paquetes con un BW =10 Mbps, tPD =50 ms y pe = 5%. Estos parametros representan un entorno
menos dinamico. La Figura 4.3(a) muestra que A2C tiene un retardo notablemente menor en
relacion a DQN y Q-Learning. Asimismo, en la figura 4.3(b) se observa que DQN tiene una mayor
pérdida de paquetes, similar a Q-Learning, mientras que A2C muestra un mejor manejo de la
pérdida de paquetes. Esto se debe a que A2C, gracias a su arquitectura distribuye el tréfico de
forma equilibrada, con lo cual ajusta dindmicamente la politica para evitar congestion y errores en
enlaces con bajo BW, lo que minimiza tanto el retardo como la pérdida de paquetes. Por su parte,
DQN aprende a evitar congestiones mediante su historial de experiencias, por lo tanto, se ve
afectada si no es tan grande su memoria; mientras que Q-Learning no gestiona adecuadamente la

saturacion y afiade retrasos por tomar decisiones subdptimas. Las curvas de recompensa
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acumulada y rendimiento atil acumulado muestran un comportamiento parecido, donde A2C y

DQN son casi similar (ver Figura 2(a) y 2(b) en el Apéndice, respectivamente).
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Figura 4.3 Comparacién de retardo promedio movil (a) y pérdida de paquetes (b) con BW = 10 Mbps y tPD =

50ms.

Los valores promedios finales de las métricas se muestran en la Tabla 4.4, en la cual se

puede ver que A2C tiene mejor desempefio en todas las variables gracias a su enfoque que le

permite adaptarse a las condiciones, y en este caso, optimizar el uso de BW limitado a la vez que

minimiza el retardo. DQN tiene una mayor recompensa y rendimiento util acumulado, aunque con

un retardo y pérdida de paquetes ligeramente mayor respecto a Q-Learning; esto debido a su

dependencia de aproximaciones basadas en valor, mientras que Q-Learning muestra un desempefio

inferior, lo que muestra sus limitaciones en entornos complejos y restrictivos.
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Tabla 4.4.

Estadisticas de las medidas de evaluacion para el escenario 2

Algoritmo Promedio de Promedio de Promedio de Promedio
Recompensa Rendimiento util Retardo de Perdida
Acumulada Acumulado promedio movil de paquetes
(ms) (%)
Q-Learning 2.801,76 282,14 50,93 2,04
DON 3.494,09 352,23 51,12 2,18
A2C 3.711,44 372,65 50,61 1,26

La Figura 4.4 representa el escenario 3. En esta se muestra el retardo promedio maévil con
un BW =100 Mbps, pe =10% y tPD de (a) 1 ms, (b) 2 ms, (c) 4 ms y (d) 50 ms. Esta configuracion
permite representar un entorno con mayor dinamismo como ocurre en las aplicaciones de

teleoperacion TI.

En este escenario, también se evalud el retraso y la pérdida de paquetes. Para ello se
estableci6 un tiempo limite definido como tPD + 10%, de esta manera si un paquete supera este
tiempo de entrega, se considera demorado o retrasado. Este porcentaje de demora es importante
ya que nos permite identificar que algoritmo cumple mejor con los estrictos requisitos de Tl o, se
adecua mejor a las necesidades de transmision de datos de cada aplicacion de TI. Los detalles en
cuanto a demora y pérdida de paquetes se presentan en la Tabla 4.5, incluyendo en la columna [1]
el mejor valor obtenido en el trabajo [1] como referencia comparativa. En esta Tabla se observa
que A2C tiene el mejor desempefio en todas las configuraciones de retardo (tPD = 1ms, 2ms, 4ms,
50ms), ya que minimiza la pérdida y demora de paquetes, gracias a su enfoque que optimiza
politicas en tiempo real para adaptarse a las condiciones priorizando la confiabilidad. También, se
puede ver que las demoras son menores en A2C, especialmente en altos tPD; esto se debe a que

A2C evita retransmisiones innecesarias. Por su parte, DQN y Q-Learning tiene mayores demoras
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y pérdida de paquetes, algunas ligeramente similares, esto debido a que DQN tiende a sobreestimar
valores Q lo que lleva a decisiones subdptimas que aumentan las pérdidas, mientras que Q-
Learning al ser mas simple tiende a ser mas robusto en algunos casos por su simplicidad. Ademaés,
se observa que nuestra propuesta DRL tiene mejor desempefio, con menor demora y menor pérdida
de paquetes respecto a [1], a excepcion del caso cuando tPD toma el valor de 50 ms. En ese caso,
el enfoque propuesto en [1] tiene menor pérdida de paquetes. Las representaciones graficas del
porcentaje de pérdida y demora de paquetes se pueden observar en el Apéndice (Figura 4 y 5,

respectivamente).

Tabla 4.5.

Datos de demora y pérdida de paquetes

Parametros Valores

Algoritmo Q-L DQN A2C [1] Q-L DQN A2C [1] Q-L DQN A2C [1] Q-L DQN A2C [1]
tpD 1ms 2ms 4 ms 50 ms
PerdidOS 2,04 2,10 1,15 1,6 1,19 1,23 1,18 1,4 1,22 1,19 1,19 1,4 1,99 2,09 1,66 1,3
(%)

DemOI’adOS 1,76 3,29 1,06 8 1,20 0,82 0,81 6,4 0,72 0,80 0,72 6,2 0,48 0,52 0,26 5
(%)

Por otro lado, en la Tabla 4.6 se muestran los valores promedios finales de las métricas
principales, en la que se observa que DQN supera ligeramente a A2C en cuanto a la recompensa
y rendimiento Gtil acumulado, y ambas superan considerablemente a Q-Learning. Sin embargo, en
cuanto al retardo promedio moévil, A2C logra mejores resultados en todos los casos de tPD, gracias
a su enfoque de politica directa. Cabe destacar que se observa que el retardo de propagacion es un
factor critico en la medida del retardo promedio mavil que afecta el rendimiento de la red a medida
que aumenta, pero A2C demuestra mejor equilibrio ante esto. Ademas, se puede ver que DQN a

pesar de tener mayor recompensa tiene mayor retardo en comparacion con Q-Learning, esto es
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debido a su complejidad computacional, ya que afiade pequefias demoras al procesar los datos,

mientras que Q-Learning realiza busquedas sencillas en tabla.
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Figura 4.4 Comparacion del retardo promedio movil para tPD (a) 1 ms, (b) 2 ms, (¢) 4 msy (d) 50 ms.

En la Figura 3 del Apéndice se puede ver la representacion del rendimiento Gtil acumulado

para este escenario donde DQN y A2C tienen un comportamiento casi similar. En general, los
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resultados muestran que A2C tiene el mejor desempefio adaptandose a las diferentes

configuraciones de red y tPD.

Tabla 4.6.

Estadisticas de las medidas de evaluacion para el escenario 3

Algoritm
0

Promedio de Recompensa
Acumulada

Promedio de Rendimiento til
Acumulado

Promedio de Retardo
promedio movil (ms)

tpD

ims 2ms 4ms

50ms

ims 2ms 4ms 50ms

Ims 2ms 4ms 50ms

Q_

Learning

6.960.622,93 1.818.502,53 458.715,22

2.948,01

14.273,84 7.352,37 3.697,65 296,92

113 2,12 4,19 50,98

DON

8.861.177,94 2.283.765,20 569.903,70

3.674,08

18.021,32 9.200,73 4.600,26 370,57

121 2,17 4,28 51,02

A2C

8.851.985,48 2.223.089,0 554.557,90

3.512,37

17.825,05 8.942,19 4.461,69 352,85

1,06 2,08 4,17 50,54

4.3. Comparacion cuantitativa

En esta seccidn, se presenta una comparacion cuantitativa para evaluar el rendimiento de

nuestra propuesta en relacion al enfoque RS-RLNC propuesto en [1], mediante una evaluacion

numérica de diferencias. En este caso, la comparacion se realiza con los datos de porcentaje de

pérdida y demora de paquetes expuestos en la Tabla 4.5, de los cuales se tomaron los mejores

valores obtenidos para cada valor de tPD, es decir, los valores de A2C junto a los datos de [1].

Para realizar la comparacion se utilizaron las siguientes medidas estadisticas:

1. Diferencia absoluta, la cual consiste en restar el valor de referencia del valor comparado,

para medir la variacion entre estos dos valores. Su expresion es:

Diferencia absoluta = valor comparado — valor de referencia

(24)
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2. Diferencia relativa, se expresa como un porcentaje para comparar la magnitud del cambio

con respecto a un valor inicial. Se calcula asi:

Diferencia absoluta

Diferencia relativa =

(25)

— X
valor de referencia

También, se utilizo la prueba t de Student, la cual compara la media de dos conjuntos de
datos y evalda si la diferencia entre ellos es suficientemente grande para afirmar que hay una

diferencia significativa. En esta se plantean dos hipétesis:

e Hipdtesis nula (Ho): No hay diferencia entre las medias (1= po).

e Hipotesis alternativa (H1): Existe diferencia (1 # p2, pul < p2 0 pa> po).

Luego, se calcula el estadistico t segun el tipo de prueba. En este caso, como se trata de
muestras independientes, al ser las medias de dos grupos distintos mide la diferencia entre estas, y

se calcula con la siguiente expresion:

(26)

Donde, X1y Xzson las medias de las muestras, s1%y s2? son las varianzas muestrales, y n
y nz2son los tamarios de las muestras. Un valor grande de t indica mayor diferencia entre los grupos.

Ahora, se busca el valor de p asociado al valor estadistico, con un nivel de significancia
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comunmente de 0.05 (o = 0.05). Si p < 0.05 se rechaza Hop e indica que hay una diferencia

significativa, y si p > 0.05 indica que las diferencias no son significativas.

4.3.1. Pérdida de paquetes
En la Tabla 4.7 se muestran los mejores valores de cada enfoque (A2C y [1]) con su

respectiva media y desviacion estandar.

Tabla 4.7.

Datos de pérdida de paquetes

Enfoque % de pérdida de paquetes Media Desviacion
1ms 2ms 4 ms 50 ms estandar
[1] 1,6 1,4 1,4 1,3 1,42 0,12
Este trabajo 1,15 1,18 1,19 1,66 1,29 0,24

Tomando como valor referencial la media de los datos de [1] se calcularon la diferencia

absoluta y relativa segun las ecuaciones (24) y (25), quedando:

Diferencia absoluta = 1.42% —1.29% = 0.13%

0.13
Diferencia relativa = mxloo =9.12%

Esto demuestra que nuestro enfoque reduce un 0.13% los paquetes perdidos con una mejora

de 9.12% respecto a la propuesta en [1].
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4.3.2. Paquetes demorados
Para la comparacion en cuanto a la demora de paquetes en la Tabla 4.8, se muestran los

mejores valores de cada enfoque (A2C y [1]) con su respectiva media y desviacion estandar.

Tabla 4.8.

Datos de paquetes demorados

Enfoque % de paquetes demorados Media Desviacion
1ms 2ms 4 ms 50 ms estandar
[1] 8 6,4 6,2 5 6,4 1,23
Este trabajo 1,06 0,81 0,72 0,26 0,71 0,33

Al calcular la diferencia absoluta y relativa, queda:

Diferencia absoluta = 6.4 % — 0.71% = 5.69 %

5.69
Diferencia relativa = HxlOO = 88.90 %

Esto demuestra que nuestro enfoque reduce un 5.69 % los paquetes retrasados y tiene una

mejora del 88.9 % respecto a la propuesta en [1].

4.3.3. Prueba t de Student

Para validar los resultados anteriores se utilizo la prueba t de Student con los datos de las
tablas 12 y 13. Los resultados se muestran en la Tabla 4.9, en la cual se observa que, en el caso de
la métrica de pérdida de paquetes, p > 0.05, lo que indica que no hay diferencia significativa, o no

hay evidencia suficiente para demostrarlo. Sin embargo, en el caso de la métrica de paquetes



52
Capitulo 4. Implementacion y Analisis de Resultados

demorados, p <0.05, con lo cual hay diferencias significativas y, por lo tanto, muestra que nuestro

enfoque reduce significativamente el porcentaje de paquetes demorados respecto a [1].

Tabla 4.9.

Datos estadisticos de la prueba t de Student

Metrica Media ([1]) Media (Este trabajo) p Significativo
%Pérdida 1,42 +0,12 1.29+0,24 0,38 No

paquetes

%Paquetes 6,4 +1.23 0.71+0,33 0,0001 Si
demorados

4.4. Comparacion cualitativa
En esta seccion, comparamos nuestra propuesta con otros trabajos relacionados lo que nos
permite destacar las similitudes y diferencias entre las distintas propuestas (ver Tabla 4.10). Para
ello, se definen tres criterios:
e Criterio 1: utiliza algoritmos de DRL.
e Criterio 2: esta enfocado en minimizar la latencia.

e Criterio 3: busca mejorar la pérdida de paquetes.

Tabla 4.10.

Comparacién cualitativa

Trabajos Criterios
Cl C2 C3
[1] v v
[4] v
[6] v
v v v

Este trabajo
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Tomando como referencia estos criterios, en la Tabla 4.10 se presenta un anélisis
cualitativo de nuestro enfoque y trabajos afines. En [1] se buscé minimizar la latencia en la entrega
de paquetes para asi mejorar el rendimiento y QoS en las aplicaciones TI. Asimismo, mediante
simulaciones de diferentes condiciones de red buscé identificar que esquema de codificacion de
los utilizados tiene mejor desempefio respecto a la pérdida de paquetes. No obstante, el sistema
planteado utiliza un enfoque RL simple. En [4] se utiliza el algoritmo DQL para optimizar la
asignacion de recursos en la segmentacion de redes. Este, a pesar de mostrar resultados
favorecedores, no busca mejorar la pérdida de paquetes ni esta enfocado en minimizar la latencia,
sin embargo, la considera como un requisito importante en la obtencion de la recompensa. En [6]
se utiliza el algoritmo DRL Soft Actor-Critic (SAC) para garantizar una distribucion eficiente de
los recursos de radio entre los flujos de datos hapticos y de video, para ello considera la pérdida
de paquetes y los requisitos de latencia, aunque no se enfocd en minimizarla. Por otro lado, ese
trabajo estd enfocado en aumentar la satisfaccion del usuario mediante la optimizacion de la
asignacion de los recursos en las aplicaciones de teleoperacion video-haptica la cual es una rama

0 proceso del TI.

Como se observa en la Tabla 4.10, los trabajos anteriores no cumplen con todos los
criterios. Es por ello que este estudio representa un avance importante al integrar estos aspectos
claves, como el enfoque en minimizar la latencia y la mejora en la pérdida de paquetes. Considerar
estos criterios permite una mayor eficiencia en la transmisién de datos al reducir errores y
retransmisiones innecesarias, lo que optimiza el rendimiento de la red, y mejora la QoS y QoE de

las aplicaciones sensibles a la latencia y a la fiabilidad en la entrega de datos. Ademas, el uso de
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técnicas avanzadas de DRL permite lograr un equilibrio 6ptimo entre los criterios, superando asi

las limitaciones de los enfoques existentes.



Capitulo 5

Conclusiones y Trabajos Futuros

En esta investigacion desarrollamos dos algoritmos DRL para la gestion del TI. Para ello,
se llevd a cabo un disefio integral del entorno que simula la red TI teniendo en cuenta sus
principales componentes (como la capacidad de BW, tasa de error, tPD, simulacion de congestion
y pérdida, entre otros), y su interaccion con los algoritmos DRL. Particularmente, se propusieron
los algoritmos DQN para el manejo de acciones discretas y A2C para el manejo de acciones

continuas.

Los resultados obtenidos mediante simulaciones en diversos escenarios demostraron que
A2C y DQN logran una recompensa y rendimiento Gtil acumulado muy similar en varios de los
casos. En el escenario 1, que simula un escenario dinamico con BW y pe variable, y en el escenario
2, que simula un entorno menos dinamico con un BW limitado, A2C obtuvo mejores resultados
en todas las métricas. En el escenario 3, que simula dinamismo con variacion en el tPD, A2C
mostrd mejores resultados en el tiempo de entrega, demora y pérdida de paquetes; mientras que
DQN mostré mejor resultado en cuanto a la recompensa y rendimiento Gtil acumulado, aunque
con un valor ligeramente mayor a A2C. En conclusion, se demostro la eficacia de los algoritmos

DRL demostrando su potencial en entorno complejos.

55
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Las limitaciones de este trabajo fueron las siguientes: primero, el estudio solo se prob6 con
caracteristicas de sistemas de teleoperacion, por lo cual se debe evaluar su utilidad en otros
entornos de redes con requisitos diferentes. Ademas, el entorno de simulacion estuvo limitado a
un numero reducido de nodos, lo que dificulta la aplicacion de los resultados a redes mas grandes
y complejas. Por otro lado, no se tomaron en cuenta factores externos como interferencias, lo que

es comun en entornos reales.

Finalmente, para trabajos futuros se propone:

e Aplicar otros algoritmos como Soft Actor-Critic (SAC) o Deep Determinist Policy
Gradient (DDPG), los cuales consideran diferentes caracteristicas durante el proceso
de aprendizaje. Por ejemplo, el SAC incorpora entropia méaxima, lo que incentiva a
explorar diferentes politicas sin caer en soluciones suboptimas, ofreciendo mejor
estabilidad. En cuanto a DDPG con su enfoque deterministico y uso de replay buffer,
aprovecha mejor los datos. Ademas, estos algoritmos ofrecen un mejor manejo de

espacios de busqueda continuos.

e Considerar otras acciones como: la asignacion de ancho de banda disponible de
acuerdo a las necesidades de las diferentes aplicaciones Tl para optimizar el
rendimiento y evitar cuellos de botella; o la implementacién de técnicas para el
manejo de la congestién o priorizacion de trafico que reducirian la pérdida de

paquetes y latencia para asi garantizar un servicio mas estable.

e Estudiar otros casos en la Tl como aplicaciones en sistemas de control industrial

remoto, que requieren fiabilidad extrema, es decir, cero pérdida de paquetes en
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comandos criticos; o realidad virtual/aumentada colaborativa, la cual requiere
latencia menor a 20 ms y sincronizacion entre maltiples usuarios. Sus requisitos

extremos podrian ser Utiles para validar algoritmos de optimizacion DRL.
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Figura 1. Curva del rendimiento util acumulado de la prueba inicial
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Recompensa acumulada

Figura 2. Curvas de la recompensa acumulada (a) y rendimiento atil acumulado (b) del
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Figura 3. Rendimiento Gtil acumulado del escenario 3 para (a) 1 ms, (b) 2 ms, (¢) 4 msy (d) 50
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Figura 4. Porcentaje de pérdida de paquetes del escenario 3 para (a) 1 ms, (b) 2 ms, (¢) 4 ms 'y

(d) 50 ms
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Figura 5. Porcentaje de paquetes demorados del escenario 3 para (a) 1 ms, (b) 2 ms, (c) 4 msy (d)

50 ms
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