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Resumen: En el presente proyecto de grado se propone el desarrollo de un algoritmo de 

aprendizaje por refuerzo profundo (DRL) para optimizar la gestión del Internet Táctil (TI), una 

tecnología que demanda requisitos de red muy estrictos. Dado que los protocolos clásicos no 

satisfacen esos requisitos, se proponen técnicas avanzadas de aprendizaje automático para una 

gestión dinámica y adaptable del TI. Específicamente, se implementaron dos enfoques de DRL: 

Deep Q-Network (DQN) y Advantage Actor-Critic (A2C), evaluados en un entorno de simulación 

que emula diversas condiciones de red. Los resultados demostraron que ambos métodos logran un 

rendimiento parecido, aunque A2C supera a DQN en la reducción de latencia y el manejo de 

pérdida de paquetes, posicionándose como la alternativa más eficiente, con la capacidad de 

satisfacer las exigencias de las aplicaciones TI. 
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Capítulo 1                                          

Introducción 

 
 

En la actualidad, la interacción con dispositivos a través de interfaces táctiles se está 

convirtiendo en una parte de nuestra vida cotidiana. Es por ello que, a medida que el uso del 

Internet Táctil (TI) se expande, es esencial garantizar una experiencia de usuario satisfactoria y la 

usabilidad de las aplicaciones en tiempo real. Esto requiere de comunicaciones ultra confiables de 

baja latencia (URLLC), alta disponibilidad y seguridad extrema. Sin embargo, estos requisitos no 

pueden ser garantizados por los enfoques tradicionales de gestión de la Internet. En este sentido, 

dado a que el aprendizaje por refuerzo profundo (DRL) ha demostrado eficacia en la toma de 

decisiones en entornos complejos, se propone el desarrollo de un algoritmo que mediante el uso 

de técnicas de DRL permita mejorar el rendimiento de las redes para permitir el TI. 

 

1.1. Planteamiento del Problema 

La gestión eficiente del TI debe garantizar la transmisión fluida y precisa de las sensaciones 

táctiles para asegurar la calidad de servicio (QoS) y de la experiencia (QoE) en las aplicaciones de 

TI. Particularmente, la latencia y la congestión de red pueden afectar significativamente la QoS y 

la QoE en las aplicaciones. A su vez, los enfoques tradicionales de la capa de transporte, como el 

protocolo de control de transmisión (TCP), aunque es ampliamente utilizado, no es adecuado para 
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estas aplicaciones debido a su limitación en el manejo de la congestión y la pérdida de paquetes. 

Otros protocolos, como el protocolo de datagramas de usuario (UDP), no ofrecen una solución 

óptima debido a su peor manejo de paquetes y menor confiabilidad.  

Cabe mencionar que, en una reciente investigación realizada por Shahzad y colaboradores 

en 2023 [1], aborda este problema mediante un enfoque de aprendizaje por refuerzo (RL) simple 

para optimizar la selección entre dos esquemas de codificación de red lineal aleatoria (RLNC), en 

función de las condiciones de la red. Específicamente, la técnica de RLNC permite que la estrategia 

de ‘almacenar y reenviar’, la cual es una de las soluciones actuales de la capa de transporte, que 

consiste en poner en cola primero los paquetes y luego reenviarlos al destino, sea sustituida por la 

estrategia de ‘computar y reenviar’, ya que esta proporciona mayor resiliencia a la perdida de datos 

y permite a los nodos en la red procesar los paquetes entrantes a medida que los reciben. De esta 

forma mejora el rendimiento general de la red. El modelo propuesto muestra resultados favorables, 

ya que gracias al uso de técnicas de RL maximiza el rendimiento general mientras minimiza la 

latencia de entrega. 

Basado en esto, esta tesis propone el desarrollo de un algoritmo utilizando técnicas 

avanzadas de RL para mejorar el rendimiento de las redes, en particular, para manejar 

eficientemente problemas como la congestión y la pérdida de paquetes, y así superar las 

limitaciones de la capa de transporte para aplicaciones táctiles. Lo novedoso de esta propuesta es 

la incorporación de DRL, una evolución del RL simple. Particularmente, el DRL emerge como 

una solución prometedora, capaz de adaptarse a condiciones variables y optimizar la gestión de 

manera autónoma. Esa autonomía se puede usar para hacer un análisis del espacio continuo más 

eficiente que lo propuesto por Shahzad y colaboradores [1], o para aprender la función de 

recompensa adecuada para el TI. 
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1.2. Justificación 

La QoS y la QoE de las aplicaciones de TI están estrechamente relacionadas a condiciones 

de red optimas, factores críticos como la latencia y la congestión de red juegan un papel 

fundamental en su rendimiento. Una latencia alta puede causar retrasos perceptibles lo que 

deteriora la experiencia del usuario, ya que estas aplicaciones requieren una respuesta inmediata. 

Además, la congestión de red puede generar la perdida de paquetes, lo que reduce el rendimiento 

y aumenta la latencia, con lo cual se afecta de forma negativa la QoS y la QoE.  

Por su parte, el protocolo TCP está diseñado para asegurar la fiabilidad en la transmisión 

de los datos, pero no es adecuado para el manejo de los estrictos requerimientos de alta 

disponibilidad y baja latencia que demandan las aplicaciones de TI. TCP proporciona una alta 

confiabilidad a cambio de la sobrecarga de paquetes, lo que introduce latencia adicional debido a 

sus mecanismos de control de flujo y congestión, los cuales son útiles para asegurar la integridad 

de los datos, pero generan ineficiencias en aplicaciones sensibles al tiempo. Por estas razones, es 

necesario considerar y/o proponer soluciones innovadoras que puedan optimizar la gestión de 

recursos para mejorar la QoS y la QoE en las aplicaciones de TI. 

En este sentido, se espera que al aplicar DRL en la gestión del TI resulte en mejoras en la 

eficiencia y adaptabilidad en los sistemas de red. Para ello, se propone el uso de dos enfoques de 

DRL, Deep Q Network (DQN) y Advantage Actor-Critic (A2C), estos algoritmos tienen la 

capacidad de adaptarse a diversas condiciones del entorno. DQN permite manejar espacios de 

estados grandes y complejos, lo que lo hace ideal en situaciones donde se deben tomar decisiones 

secuencialmente. Asimismo, considera las consecuencias futuras de las acciones actuales; esto es 
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de gran utilidad en el caso del TI donde se deben tomar decisiones continúas y se debe tener en 

cuenta como afectaran en el rendimiento de la red. Por su parte, A2C utiliza dos redes neuronales, 

una para la determinar las acciones y otra para evaluar el valor de las acciones, lo que mejora la 

estabilidad y eficiencia del aprendizaje; esto es crucial en un entorno dinámico como el del TI, 

donde la incertidumbre puede afectar los resultados. 

De esta manera, al llevar a cabo esta investigación se pretende contribuir en el área del 

DRL por medio de su aplicación a la gestión del TI y, en el avance de la tecnología de redes. 

1.3. Objetivos 
 

1.3.1. Objetivo general: 
 
Desarrollar un algoritmo de aprendizaje por refuerzo profundo para la gestión del Internet 

táctil. 

1.3.2. Objetivos específicos: 
 

● Investigar sobre la gestión del TI y las técnicas de DRL. 

● Diseñar y desarrollar un algoritmo de DRL para la gestión del TI.  

● Desarrollar pruebas experimentales para evaluar el rendimiento del algoritmo propuesto. 

● Analizar y comparar los resultados obtenidos con otros enfoques de gestión del TI para 

identificar ventajas y desafíos del algoritmo. 

1.4 Antecedentes 
 

En la actualidad, el TI promete revolucionar la interacción humana con máquinas mediante 

la transmisión de sensaciones táctiles en tiempo real. Así, resulta de gran importancia la 
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comprensión de los trabajos relacionados y las tendencias actuales para abordar los desafíos y 

oportunidades en esta área en constante evolución. 

Sharma y colaboradores en 2020 [2] llevaron a cabo un estudio cuyo objetivo fue ofrecer 

una visión integral del TI y sus avances recientes, presentando un marco que comprende la 

identificación y análisis de los principales problemas técnicos involucrados, la arquitectura TI, las 

áreas de aplicación, los tres paradigmas principales de TI, y las tecnologías habilitadoras. Además, 

han proporcionado algunos temas para futuras direcciones de investigación. El resultado muestra 

un estudio bastante completo que permite una mejor visión o comprensión de los diferentes 

aspectos relacionados al TI, destacando que los objetivos más desafiantes de las próximas 

investigaciones o sistemas 5G están dirigidos a lograr una latencia ultra baja de aproximadamente 

1ms y una confiabilidad ultra alta para así generar un mejor rendimiento de la red y proporcionar 

QoS y QoE en las aplicaciones táctiles. 

En el trabajo realizado por Shahzad y colaboradores en 2023 [1], se presenta un sistema de 

gestión para TI, llamado marco de codificación de red lineal aleatorio selectivo basado en RL (RS-

RLNC), con el fin de mejorar el rendimiento de las aplicaciones ejecutándose en el TI. Su objetivo 

fue diseñar un modelo de gestión que pueda adaptarse a las condiciones de red cambiantes y que 

minimice el retraso en la entrega de paquetes. Para ello, la solución aplicada usa un esquema de 

RLNC selectivo basado en RL para tomar decisiones sobre cuándo cambiar entre RLNC de bloque 

y RLNC deslizante según las condiciones de la red. Los resultados de la simulación muestran que 

RS-RLNC supera a las soluciones actuales de capa de transporte, y es capaz de minimizar la 

pérdida de paquetes y mejorar el rendimiento y la QoS en aplicaciones de TI. 
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Ahora bien, dicha propuesta es basada en un esquema que discretiza las acciones (no lo ve 

como un espacio continuo), por lo que no realiza un análisis exhaustivo del contexto. Además, 

presupone el esquema de recompensa. Sin embargo, este estudio proporciona una base sólida a la 

presente investigación, ya que demuestra cómo la integración de técnicas de RL y codificación de 

red pueden resultar en una transmisión de datos más eficiente y robusta. De esta forma, sobre estas 

bases se pueden incorporar técnicas que permitan mejorar el mecanismo de aprendizaje. 

Ramírez y colaboradores en 2022 [3] presentan el desarrollo de un modelo de despacho 

económico hidrotérmico basado en DRL, el cual considera la incertidumbre en los flujos de agua 

y la demanda de energía. La finalidad de este estudio es minimizar los costos de suministro 

eléctrico utilizando de manera eficiente los recursos energéticos disponibles. Para ello, formulan 

el problema como un proceso de decisión de Markov (MDP) y proponen varios enfoques de DRL, 

como los algoritmos DQN y A2C, los cuales permiten abordar problemas de optimización 

complejos que involucran incertidumbre. DQN se utiliza para aprender una política óptima en un 

espacio de acción discreto, el cual utiliza una red neuronal para aproximar la función Q 

actualizando sus valores mediante un proceso de aprendizaje basado en la experiencia acumulada, 

lo que permite adaptarse a diferentes escenarios hidrológicos y demandas energéticas, y así 

aprende a seleccionar las acciones que minimizan el costo de suministro. Por su parte, A2C se 

utiliza para el caso continuo, este aprende directamente del espacio de observación por medio de 

un método de gradiente de políticas, lo que mejora la eficiencia del aprendizaje y así permite una 

adaptación más rápida a cambios en las condiciones del entorno, lo cual optimiza el despacho 

económico hidrotérmico. Los resultados muestran que los métodos propuestos pueden aprender 

políticas robustas que manejan diferentes escenarios de afluencia y demanda, con lo cual se 

demuestra que supera las limitaciones de los métodos deterministas tradicionales. En definitiva, la 
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importancia de este enfoque radica en la capacidad de mejorar la toma de decisiones en la 

planificación y operación de sistemas energéticos, lo cual facilita la gestión de riesgos.  

Aunque este estudio se enfoca en el problema del despacho económico hidrotérmico, los 

conceptos y técnicas de DRL desarrollados podrían ser aplicables en otras áreas que requieren la 

gestión de decisiones secuenciales bajo incertidumbre, como es el caso de la gestión del TI, donde 

la incertidumbre de variables claves como las condiciones de red, son factores críticos que deben 

ser gestionados para generar políticas operativas más robustas y confiables, y de esta manera, 

mejorar el rendimiento de las redes.  

Li y colaboradores en 2018 [4] plantean en su estudio el uso de DRL como una solución 

prometedora capaz de gestionar de forma eficiente los recursos en segmentación de redes 5G. Su 

objetivo principal es investigar y demostrar si el DRL puede optimizar la asignación de recursos 

tanto en el acceso radioeléctrico como en el núcleo de la red, y así superar las limitaciones de los 

métodos tradicionales, como es el caso de la asignación equitativa o los algoritmos de predicción 

manual. Para ello, la solución propuesta consiste en aplicar algoritmos de Deep Q-Learning (DQL) 

que combinan redes neuronales con aprendizaje por refuerzo, lo que permite al sistema aprender 

de forma dinámica la mejor estrategia de asignación de recursos adaptándose en tiempo real a la 

variabilidad de la demanda. Los resultados demuestran que DRL alcanza una mayor eficiencia en 

el uso de recursos en comparación con los métodos tradicionales. A pesar de ello, reconoce que 

aún existen limitaciones como la necesidad de una gran cantidad de datos para entrenar los 

modelos. No obstante, este estudio evidencia que DRL es una herramienta prometedora para la 

gestión eficaz de recursos. 
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Ssengonzi y colaboradores en 2022 [5] presentan una investigación sobre la aplicación de 

DRL en la gestión y optimización de la segmentación de redes en 5G y redes futuras. Su objetivo 

principal es abordar los vacíos que existen en la asociación entre DRL y la gestión que plantea la 

segmentación y virtualización de redes en entornos 5G. Con este fin, realiza una revisión detallada 

de los conceptos fundamentales de DRL, los principios de segmentación y virtualización de redes, 

los desafíos actuales, las soluciones propuestas y las posibles líneas de investigación. Dentro de 

las soluciones planteadas destacan los algoritmos basados en DQL; estos se implementan en 

diferentes niveles, como en la asignación de recursos a segmentos, el control de admisión de 

nuevos segmentos, la reconfiguración de segmentos, la gestión de la movilidad y seguridad de los 

segmentos, entre otros. Cabe mencionar que los trabajos evaluados demuestran que el DRL ofrece 

soluciones de gran potencial en la gestión de redes 5G. Sin embargo, aún existen desafíos por 

resolver, como el uso limitado que tiene en la previsión y predicción de tráfico, y la necesidad de 

continuar con la investigación para mejorar la estabilidad y escalabilidad de estos modelos.  

En una reciente investigación llevada a cabo por Kokkinis y colaboradores en 2025 [6], 

proponen un sistema basado en DRL para la administración dinámica de recursos de radio en el 

TI, concretamente para aplicaciones de teleoperación video-háptica. Para ello, utilizan el método 

Soft Actor Critic (SAC), el cual se caracteriza por su eficacia en entornos dinámicos. Este utiliza 

las redes neuronales actor y crítico que son las encargadas de estabilizar y mejorar las 

actualizaciones de políticas durante el proceso de entrenamiento, además, incorpora un coeficiente 

de entropía que ayuda a mantener la estabilidad entre la exploración y explotación. Este enfoque 

permite que un agente aprenda mediante la retroalimentación de recompensas a asignar los 

recursos de radio entre los flujos de datos hápticos y de video considerando los requisitos de 

latencia, pérdida de paquetes, tasa de datos y la sincronización entre ambas modalidades, de esta 
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manera maximizar la satisfacción del usuario en escenarios de red cambiantes. Los resultados 

mostraron que el marco propuesto permite una gestión eficiente de la sincronización video-háptica 

en condiciones variables de red, con lo cual logra un aumento significativo en la satisfacción del 

usuario en comparación con los métodos convencionales.  

En definitiva, este estudio no solo muestra la utilidad del DRL en la gestión de redes de 

teleoperación video-háptica, la cual se considera una rama tecnológica del TI, sino que, además, 

su enfoque en la sincronización y adaptabilidad a condiciones dinámicas posibilita sistemas 

autónomos más robustos. Sin embargo, no se compara con otros algoritmos de DRL, lo que impide 

identificar las ventajas especificas del SAC en este caso. 

1.5 Organización de la tesis 
 

En el capítulo 2 se presenta el marco teórico, con los conceptos más importantes 

relacionados al trabajo y el modelo base. Luego, en el capítulo 3 se describe el enfoque de gestión 

inteligente del TI donde se explica la formulación del problema como un proceso de decisión de 

Markov, las estrategias de gestión basadas en DRL, y las métricas a utilizar. En el capítulo 4 se 

explica la implementación y el análisis de los resultados. Finalmente, en el capítulo 5 se presentan 

las conclusiones y recomendaciones para trabajos futuros. 
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Capítulo 2                                     

Fundamentación Teórica 

 
 

En este capítulo, se explorarán los fundamentos teóricos que sustentan este estudio sobre 

la gestión del TI mediante algoritmos de DRL. Se abordarán conceptos claves relacionados al tema 

necesarios para comprender la propuesta de este trabajo, como los conceptos de aprendizaje 

automático, RL, DRL, entre otros. 

2.1 Internet Táctil (TI) 

 
El término “Internet táctil” fue definido por la Unión Internacional de Telecomunicaciones 

(UIT) en un informe en agosto de 2014, como la red que permitirá la interacción háptica, es decir, 

la percepción y manipulación de objetos mediante el tacto. Además, señala que el carácter del TI 

es definido por la latencia extremadamente baja combinada con alta disponibilidad, confiabilidad 

y seguridad [7]. 

Otra definición es la dada por la IEEE P1918.1, en la cual lo describe como “Una red o red 

de redes para acceder, percibir, manipular o controlar de forma remota objetos o procesos reales o 

virtuales en tiempo real percibido por humanos o máquinas” [8]. También, es considerada como 

la siguiente fase de la evolución del internet de las cosas (IoT), la cual ha emergido como un 
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paradigma de comunicación crucial que ofrece una solución eficiente para mejorar las 

interacciones entre humanos y máquinas (H2M) y entre máquinas (M2M), facilitando las 

comunicaciones hápticas como aplicación principal, proporcionando un canal en tiempo real para 

transmitir sensaciones táctiles y movimientos [1]. 

En particular, la TI se describe como una red que debe cumplir con ciertos requerimientos 

técnicos claves como [2]:  

● Conectividad Ultrasensible: Necesita una latencia de extremo a extremo muy baja, de alrededor 

de 1ms.  

● Conectividad Ultra Confiable: Requiere alta confiabilidad en la red que garantice un 

rendimiento estable bajo diversas condiciones. 

● Inteligencia de borde distribuida: debe implementar técnicas de inteligencia artificial (IA) en 

el borde de las redes inalámbricas, que ayuden o permitan predecir y calcular las acciones 

futuras de los usuarios. 

● Transmisión y procesamiento de datos táctiles: Necesita mecanismos de codificación táctil que 

permitan transmitir información háptica a través de redes de conmutación de paquetes. 

● Seguridad y privacidad: Requiere que la autenticación sea parte integral de la transmisión 

física, ya que el método actual de separar la autenticación de la transmisión física no permite 

alcanzar una baja latencia de extremo a extremo.  

Estos requisitos aseguran que las aplicaciones de TI funcionen de manera eficiente. Sin 

embargo, demandan una revisión de los protocolos tradicionales. 
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2.2 Introducción al Aprendizaje Automático (ML) 
 

El aprendizaje automático o aprendizaje de máquina es un área de la IA, que comprende el 

proceso mediante el cual las máquinas adquieren conocimiento y mejoran su rendimiento a partir 

de datos o experiencia, sin la necesidad de la intervención humana directa. Es decir, en lugar de 

programar las reglas o algoritmos, el aprendizaje automático permite que a través de ejemplos de 

datos las computadoras aprendan patrones y relaciones.  

Una de las definiciones más reconocidas es la de Arthur Samuel en 1959, que dice que el 

“Aprendizaje automático es el campo de estudio que da al computador la habilidad de aprender 

sin haber sido explícitamente programado para ello” [9]. 

El aprendizaje automático comprende principalmente tres paradigmas de aprendizaje: 

aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. El aprendizaje 

supervisado utiliza datos preclasificados con etiquetas que especifican sus características. Este 

principalmente se usa para clasificación y regresión. El aprendizaje no supervisado procesa 

grandes cantidades de datos sin etiquetas identificando patrones y similitudes sin intervención 

humana. Este se usa para agrupar datos. El aprendizaje por refuerzo se describe más adelante. 

En general, los algoritmos de aprendizaje automático basados en datos al entrenarse 

generan un modelo de conocimiento (ya sea predictivo, de diagnóstico, de optimización, 

prescriptivo, entre otros), que dependerá del tipo de problema al que se esté aplicando. Sin 

embargo, cualquiera que sea el problema la aplicación del mismo requiere la realización de una 

serie de etapas [9]: 

● Preprocesamiento de datos: Implica la limpieza y transformación de los datos para que 

puedan ser utilizados por el algoritmo de aprendizaje automático. 
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● Separación en conjunto de entrenamiento y pruebas: El conjunto de datos (dataset) se 

divide en dos subconjuntos, el de entrenamiento para entrenar y estimar los parámetros del 

modelo y, el de prueba para probar el modelo de conocimiento construido. 

● Configuración del algoritmo: Se definen los hiperparámetros del algoritmo de aprendizaje 

con valores que se deben ajustar adecuadamente, como el número de épocas y la tasa de 

aprendizaje en el caso del aprendizaje profundo.  

● Entrenamiento del modelo: Consiste en construir el modelo de conocimiento con el 

algoritmo de aprendizaje, a su vez optimizando sus hiperparámetros. 

● Validación: Consiste en probar el modelo de conocimiento usando el conjunto de datos de 

pruebas, para determinar numéricamente qué tan efectivo es el modelo de conocimiento. 

Para ello, existen diferentes métricas de calidad, dependiendo del tipo de problema. 

2.3 Aprendizaje por refuerzo (RL) 
 

El RL es considerado el tercer paradigma del ML. Este consiste en que un agente mediante 

la interacción con un entorno sea capaz de percibir el estado del mismo, y aprenda a tomar 

decisiones que maximicen una recompensa numérica. Para ello, el agente debe descubrir qué 

acciones proporcionan una mayor recompensa a través del ensayo y error. Dichas acciones no solo 

afectan la recompensa inmediata, sino también los estados futuros y las recompensas posteriores 

[10]. 

2.3.1 Bases de RL 
 

Un sistema de RL incluye elementos clave como una política, una señal de recompensa, 

una función de valor y, opcional, un modelo del entorno. La política guía el comportamiento del 

agente, ya que puede ser un conjunto de reglas o asociaciones entre estados y acciones. La señal 
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de recompensa indica los efectos positivos o negativos para el agente, similar a las experiencias 

de placer o dolor en sistemas biológicos; esta es proporcionada por el entorno, lo cual el agente 

intenta maximizar a largo plazo. La función de valor, por su parte, evalúa las recompensas a largo 

plazo. Finalmente, un modelo del entorno puede predecir el comportamiento del entorno, 

permitiendo inferencias y la planeación de acciones. Juntos estos elementos permiten que el agente 

aprenda y tome decisiones óptimas para maximizar las recompensas acumuladas [10]. 

El RL emplea la estructura formal de los procesos de decisión de Markov (MDP), que 

permite describir la interacción entre un agente que aprende y su entorno mediante el uso de 

estados, acciones y recompensas. Esta interacción puede observarse en la Figura 2.1. 

 

 

Figura 2.1 Interacción de un agente con su entorno en un modelo RL. Fuente: [10] 

     Donde:  

● Agente (Agent): Es el encargado de interactuar con el entorno, hace observaciones, ejecuta 

acciones, y recibe recompensas por ello. 

● Entorno (Environment): Comprende lo que está fuera del agente, es decir, con lo que 

interactúa. 

● Acción (Action): Son los ajustes que el agente puede realizar al entorno. 
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● Estado (State): Son las condiciones u observaciones que el entorno proporciona al agente. 

● Recompensa (Reward): Es un valor numérico que obtiene el agente al ejecutar una acción 

sobre el entorno y, que busca maximizar con el tiempo. Puede ser positiva o negativa, para 

indicar que tan buena fue la acción ejecutada. 

De esta manera, en cada paso de tiempo t, el agente observa el estado St de un espacio de 

estados S del entorno, y selecciona una acción At del espacio de acciones A(s) siguiendo una 

política π(at/st). Como consecuencia de ejecutar dicha acción, un paso de tiempo después, el agente 

recibe una recompensa numérica Rt+1 ∈ R ⊂ ℝ y se encuentra ante un nuevo estado St+1. Esta 

interacción da como resultado la siguiente trayectoria: 

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... 

 

Cabe resaltar que en un MDP, la probabilidad de cada posible valor para St y Rt dependen 

únicamente del estado y acción inmediatamente anterior, St-1 y At-1. 

Por otro lado, la mayoría de los algoritmos de RL implican la estimación de funciones de 

valor, las cuales miden que tan bueno es estar en un estado dado. Esta valoración se basa en las 

recompensas futuras o retorno esperado, que dependen de las acciones del agente, las cuales son 

guiadas por políticas específicas. Una política es un mapeo de estados a probabilidades de 

seleccionar cada acción posible [10]. Ejemplo, si un agente sigue la política π en el tiempo t, 

entonces π(a|s) es la probabilidad de que At = a si St = s. 

En general, la solución a un problema de RL consiste en identificar  una política que 

maximice la recompensa a largo plazo, satisfaciendo la función de estado-valor óptima denotada 

como 𝜐 ∗ y definida como: 
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𝜐 ∗(𝑠) ≐ 𝑚𝑎𝑥𝜋𝜐 𝜋(𝑠)                                                                        (1)                                                    

 

Asimismo, la función óptima de acción-valor 𝑞 ∗ que representa el valor óptimo que se 

logra al tomar la acción a en el estado s siguiendo la política óptima, y está definida como:   

𝑞 ∗ (𝑠, 𝑎) ≐ 𝑚𝑎𝑥𝜋𝑞 𝜋(𝑠, 𝑎)                                                            (2)          

                                           

Y en términos de 𝑞 ∗ quedaría:  

𝑞 ∗ (𝑠, 𝑎) =  𝔼[𝑅𝑡+1 + 𝛾 𝑣 ∗(𝑠𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                (3)                  

 

2.3.2 Algoritmo Q-Learning 
 

Este algoritmo fue uno de los primeros avances del RL, introducido por Watkins en 1989, 

y es uno de los más utilizados en este campo [10]. El objetivo de Q-Learning es encontrar una 

política de acción óptima para maximizar la recompensa total a lo largo del tiempo. Se define 

como:  

 

𝑄(𝑆𝑡, 𝐴𝑡) ⟵ 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 +  𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1; 𝑎𝑡) − 𝑄(𝑆𝑡, 𝐴𝑡)]                  (4)              

 

Donde S y A es el conjunto de estados y acciones, respectivamente, R es la función de 

recompensa, α es el parámetro de aprendizaje, γ es el factor de descuento, St representa el estado 

actual, St+1 el estado siguiente al estado St al ejecutar la acción at, y Q(St+1; at) es la mejor estimación 

de Q para una acción a ejecutar en el estado St+1. 
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2.4 Aprendizaje por refuerzo profundo (DRL) 

El DRL combina redes neuronales profundas con algoritmos de RL para aprender de datos 

complejos y/o de mayor dimensión, ya que las redes neuronales son capaces de extraer 

características complejas que permiten resolver problemas de alta dimensionalidad o de estados 

continuos [11]. Estos métodos utilizan las redes neuronales para representar el estado o para 

aproximar alguno de los componentes del RL como la función de valor (vˆ(s; θ)), la política (π(a|s; 

θ)), el modelo del entorno (función de transición de estado), o la función de recompensa, donde 

los parámetros θ corresponde a los pesos de las redes neuronales [11].  

En este proyecto se plantea implementar dos algoritmos de DRL: DQN y A2C. 

2.4.1. Deep Q-Network (DQN) 
 

DQN es un algoritmo que consiste en utilizar dos redes neuronales para aproximar la 

función Q, denominadas red objetivo (Target Network) y red Q (Q-Network), las cuales se 

encargan de estimar la recompensa futura y el valor de la función Q, respectivamente. Se denotan 

como red objetivo a θQ′ y red Q a θQ, respectivamente. Entonces, la regla de actualización de DQN 

es:  

𝑄𝑛+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑛(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾𝑚𝑎𝑥𝑎𝜖 𝐴𝑡+1𝑄𝑛(𝑠𝑡+1, 𝑎) − 𝑄𝑛(𝑠𝑡, 𝑎𝑡)]     (5)                                             

Donde θQ estima el valor de la función Q y es equivalente a Qn(st, ɑ t). Por su parte, θQ′ 

estima la recompensa futura de tomar una acción a y, al agregar esta estimación a la recompensa 

actual se obtiene una estimación de la recompensa total en el tiempo t. Entonces, al considerar la 

red neuronal y reescribir R(st,ɑt,st+1) + γ.maxaϵAt+1 Qn(st+1, ɑ), se tiene la siguiente expresión 

equivalente:  
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𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾𝑚𝑎𝑥𝑎𝜖 𝐴𝑡+1
𝜃𝑄′

                                                            (6)                                                       

Ahora, para calcular el error por medio de una función de pérdida (Loss) se utilizan como 

argumentos la predicción de θQ y la suma entre la recompensa y la predicción de θQ′, con lo cual, 

suponiendo que la función de perdida es la ecuación de mínimos cuadrados (MSE), el cálculo del 

error quedaría:  

𝐿(𝜃) = [(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾. 𝜃𝑄′
− 𝜃𝑄)

2
]                                              (7)                                         

Por otro lado, la red Q y la red objetivo generalmente tienen la misma arquitectura, por ello 

solo se entrena la red Q y usando esta se actualiza la red objetivo a intervalos regulares para 

estabilizar el proceso de aprendizaje [12]. Considerando esto, en la Figura 2.2 se muestra la 

arquitectura DQN. 

 

 
Figura 2.2 Arquitectura DQN. Fuente [3] 

 

 

 

2.4.2 Advantage Actor Critic (A2C) 
 

Los algoritmos actor-crítico están basados en los métodos de descenso de gradientes, es 

decir, estos aprenden directamente del espacio de observación mediante el uso de técnicas que 
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permiten ajustar continuamente la política del agente para maximizar la recompensa acumulada 

en el tiempo. Cabe mencionar que estos son uno de los más utilizados en un marco RL [3].  

El actor-crítico con ventaja utiliza dos redes neuronales, una red actor que decide que 

acción tomar en un estado dado, y una red critico que evalúa que tan buena fue tomar esa acción. 

Ella calcula la diferencia entre el valor estimado de una acción y el valor esperado del estado 

actual, lo cual ayuda a disminuir la varianza en las estimaciones y mejorar el aprendizaje. Se 

calcula con la siguiente expresión: 

 

𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡+1 + 𝛾 ⋅ 𝑉(𝑠𝑡+1  ) −  𝑉(𝑠𝑡)                                          (8)                              

Donde A(st, ɑt) estima el interés de tomar la acción ɑt en el estado st, rt+1 es la recompensa 

obtenida después de tomar la acción ɑt en el estado st, γ es el factor de descuento, V(st+1) representa 

el valor estimado del siguiente estado st+1 y V(st) es el valor estimado del estado actual st. Cabe 

mencionar que, si A(st, ɑt) es positivo indica que tomar la acción ɑt en el estado st es mejor que lo 

esperado, y si es negativo es peor que lo esperado.  

En general, el algoritmo actor-critico combina el gradiente de política para el actor y la 

función de valor para el crítico.  La expresión del gradiente de política es: 

 

𝛻𝜃𝐽(𝜃) ≈
1

𝑁
 ∑ 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑖|𝑠𝑖) · 𝐴(𝑠𝑖, 𝑎𝑖)

𝑁
𝑖=0                                                   (9)                                    

 

Donde J(θ) es el rendimiento esperado de la política basada en los parámetros θ, πθ(ɑ|s) es 

la función de política que indica la probabilidad de elegir la acción ɑ en el estado s, N es el número 

total de experiencias muestreadas, A(si, ɑi) es la ventaja de tomar la acción ɑi en el estado si, i 
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representa el índice de la muestra y 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑖|𝑠𝑖) es la dirección en la que se deben modificar 

los parámetros θ para mejorar la política. Por otro lado, la expresión de la función de valor es: 

 

 𝛻𝑤𝐽(𝑤) ≈
1

𝑁
 ∑ 𝛻𝑤(𝑉𝑤(𝑠𝑖) − 𝑄𝑤(𝑠𝑖, 𝑎𝑖))2𝑁

𝑖=1                                                   (10) 

 

Donde  𝛻𝑤𝐽(𝑤) es el gradiente de la función de pérdida basada en los parámetros w, 𝑉𝑤(𝑠𝑖) 

es la estimación del crítico sobre el valor del estado si con parámetro w, 𝑄𝑤(𝑠𝑖, 𝑎𝑖) es la estimación 

del crítico sobre el valor de la acción ɑi en el estado si, N es el número de muestras utilizadas, i el 

índice de la muestra y 𝛻𝑤(𝑉𝑤(𝑠𝑖) − 𝑄𝑤(𝑠𝑖, 𝑎𝑖))2 mide el error entre la estimación del valor del 

estado Vw y el valor de acción Qw, lo que determina en qué dirección ajustar los parámetros w para 

mejorar su evaluación de valores minimizando errores. 

Ahora, para la actualización del actor se utiliza el ascenso de gradiente, lo que significa 

que modifica sus parámetros para maximizar las recompensas futuras de la siguiente manera:  

 

𝜃𝑡+1 =  𝜃𝑡 +  𝛼𝛻𝜃𝐽(𝜃𝑡)                                                         (11) 

 

Donde α es la tasa de aprendizaje del actor y t es el paso de tiempo dentro de un episodio. 

En cuanto a la actualización del crítico, se utiliza el descenso de gradiente, lo que implica modificar 

sus parámetros para reducir el error en sus estimaciones y así mejorar sus predicciones sobre el 

valor de los estados y acciones. Se actualiza de la siguiente forma: 

 

𝑤𝑡 =  𝑤𝑡 −  𝛽𝛻𝑤𝐽(𝑤𝑡)                                                             (12)     
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Donde w son los parámetros de la red crítico y β es la tasa de aprendizaje del crítico. 

El esquema actor-crítico proporciona una mejor función de puntuación, ya que en lugar de 

esperar hasta el final del episodio permite realizar una actualización en cada paso del proceso, 

similar al aprendizaje por diferencia temporal (TD Learning) [13]. 

En general, en este enfoque se observa que el actor se encarga de seleccionar la acción a 

tomar y de estimar 𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑎𝑖|𝑠𝑖) en la ecuación (9). Por otro lado, el crítico se encarga de 

estimar 𝑉𝑤(𝑠𝑖) y 𝑄𝑤(𝑠𝑖, 𝑎𝑖) de la ecuación (10), evaluando que tan buena fue la acción tomada y 

cómo debe ajustarse. La arquitectura del actor-crítico se muestra en la Figura 2.3. 

 

 
Figura 2.3 Arquitectura Actor-Critico (tomado de [18]) 

 

2.5 Modelo RL base de nuestra propuesta 
 

El diseño de RL del sistema de RS-RLNC para la gestión del TI propuesto en [1], 

comprende: 
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 Un espacio de acción, donde esta predeterminado RLNC deslizante, y la acción consiste 

en continuar utilizando RLNC deslizante o cambiar a RLNC en bloque, o viceversa. 

 Un espacio de estado con dos variables, la congestión incipiente (ICt) y la tasa estimada de 

error del canal (pe). 

 Una función de recompensa, definida de la siguiente forma: 

𝑟𝑡 =
𝑔𝑜𝑜𝑑𝑝𝑢𝑡𝑡

𝑟𝑇𝑇
 

 

Donde goodput es el rendimiento útil de la red, definido como la cantidad de datos útiles 

transmitidos correctamente por unidad de tiempo y rTT es el tiempo de ida y vuelta de los paquetes 

entregados en el momento t. 

El algoritmo de RL implementado en este modelo fue el algoritmo Q-learning debido a su 

técnica sencilla de actualización de iteración de valores, junto al método ϵ-greedy para la 

exploración durante la fase de aprendizaje inicial. Dicho método toma una acción aleatoria a con 

probabilidad ϵ y una acción avara (greedy) dada por a= max Qt(a) con probabilidad 1- ϵ.   

La evaluación del algoritmo se realiza en términos del rendimiento, latencia y complejidad 

de decodificación, utilizando las métricas de rendimiento útil acumulado, el retardo promedio 

móvil (MA) y la recompensa, ya que esta relación entre el buen rendimiento y el rTT hace 

referencia a mejorar el rendimiento y mantener un valor bajo de rTT. 

Los resultados de la simulación muestran que RS-RLNC supera las soluciones actuales de 

la capa de transporte mostrando un mejor rendimiento cuando las condiciones de la red cambian, 

minimizando la pérdida de paquetes. 
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Capítulo 3                                                   

Enfoque de Gestión Inteligente del Internet 

Táctil 

 
En este capítulo, se formaliza el problema de decisión de Markov aplicado al contexto de 

la gestión del TI, detallando los elementos fundamentales que lo conforman. Se describe al agente 

encargado de tomar decisiones, las posibles acciones que puede ejecutar, y el entorno en el que 

actúa. De igual manera, se presentan los enfoques de gestión basados en DRL y las métricas de 

calidad utilizadas para evaluar el rendimiento de los algoritmos y del sistema. 

  

3.1 Formulación del problema como un proceso de decisión de 

Markov 
 

3.1.1 Agente (Agent) 
 

El agente es el responsable del aprendizaje, la toma de decisiones y la interacción con el 

entorno. En este esquema, el agente se comporta como un controlador de red. Para ello, basándose 

en el estado actual determinado por las condiciones de la red ejecuta una acción (a) cuya finalidad 

es mejorar el rendimiento de la misma. El entorno procesa esta acción para optimizar la red, con 

lo cual alcanza un nuevo estado (Next State), y proporciona una recompensa al agente. Esta 

información le permite al agente ajustar su política y mejorar sus decisiones futuras. 
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El diseño del agente (agente DRL) se lleva a cabo utilizando algoritmos de DRL, 

específicamente los descritos en el capítulo 2, DQN y A2C. 

3.1.2 Acciones (Action) 

 

Ajustar el número de segmentos en que se fragmenta un paquete o flujo de datos permite 

adaptar la transmisión a las condiciones de la red. Un valor alto genera mayor tolerancia a errores, 

lo que es ideal en redes con alta tasa de pérdida, pero aumenta la latencia. A su vez, un valor bajo 

minimiza el procesamiento, pero lo hace vulnerable a pérdidas de paquetes. En base a esto, el 

agente debe aprender a ajustar dinámicamente el número de segmentos para adaptarse a las 

condiciones variables de la red, y así minimizar la latencia y maximizar el rendimiento. Con este 

fin, se propone que el agente ajuste el número de segmentos entre -2 y 2, es decir que pueda 

seleccionar entre mantener, o aumentar o disminuir en 1 o 2 segmentos. Ahora, de acuerdo a los 

algoritmos a utilizar, se define la acción para el caso continuo y discreto: 

 Para el caso continuo, el agente genera un valor dentro del rango [-2,2] que se utiliza 

para modificar la cantidad de segmentos. Así, si el valor es positivo se incrementa el 

número de segmentos y si es negativo se disminuye. Por ejemplo, si el valor es 1 se 

incrementa en 1 el número de segmentos. 

 Para el caso discreto, el conjunto de acciones que el agente puede elegir es {-2, -1, 0, 

1, 2}. Por ejemplo, en el caso de seleccionar 0 se mantiene el número de segmentos.   

3.1.3 Entorno (Environment) 

El entorno es con lo que interactúa el agente. Este representa la red y permite la interacción 

de las entradas, que es la acción, y las salidas, que corresponde al estado y la recompensa. Estos 

se describen a continuación. 
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3.1.3.1 Estados (State) 
 

Los estados corresponden a las diferentes condiciones de la red que el entorno da al agente, 

y se representan como combinaciones de las siguientes variables: 

 Ancho de banda (BW), el cual representa la capacidad de transmisión de datos disponible 

o que la red puede manejar. Un mayor ancho de banda permite transmitir más datos en 

menor tiempo. Esta varía entre 10 - 500 Mbps. 

 Tasa de error del canal (pe), que indica el número de bits recibidos de un flujo de datos con 

errores. Esta varía de forma aleatoria entre 0 - 50 %. 

 Número de segmentos del paquete (ns), el cual indica la cantidad de segmentos en que se 

divide la transmisión de datos. Un número elevado de segmentos puede aumentar la 

sobrecarga y afectar el rendimiento. 

 Índice de congestión (IC), representa el nivel de saturación de la red. Una alta congestión 

puede generar retrasos y la pérdida de paquetes, con lo cual afecta la QoS y la QoE. 

Estas variables son fundamentales ya que permiten identificar problemas en la red. Por lo 

tanto, ofrecen la información necesaria para que el agente decida la acción a ejecutar. De esta 

manera, el espacio de estados queda así: 

𝑆𝑡 = ( 𝐵𝑤, 𝑝𝑒, 𝑛𝑠, 𝐼𝐶𝑡 )                                                             (13) 

 

Donde Bw es el ancho de banda (por sus siglas en inglés, bandwidth), pe es la tasa de error, 

ns el número de segmentos, y ICt es el índice de congestión en el tiempo t. 
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3.1.3.2 Recompensa (Reward) 
 

La recompensa es una salida del entorno, específicamente un valor numérico que el entorno 

da al agente por tomar una acción en un estado. El agente busca obtener la mayor recompensa 

posible, identificando a su vez la política que minimice la función objetivo. Para el contexto del 

proyecto, la función de recompensa se plantea de forma similar a [1]: 

𝑟𝑡 =
𝑔𝑜𝑜𝑑𝑝𝑢𝑡𝑡

𝑟𝑇𝑇
                                                                    (14) 

 

Donde goodput es el rendimiento útil de la red y rTT es el tiempo de ida y vuelta de un 

subconjunto de paquetes entregados en el tiempo t. Estas métricas son de gran relevancia ya que 

se busca aumentar la cantidad de datos útiles transmitidos y mantener un tiempo de envío y 

respuesta bajo para mejorar la eficiencia de la red. Particularmente, goodput será definido en la 

sección 3.3.2. 

3.1.4 Exploración – Explotación 

 

La exploración y la explotación son conceptos fundamentales en el diseño de algoritmos 

RL, ya que ayudan al agente a decidir cuándo probar nuevas acciones para descubrir estrategias 

más efectivas en busca de mejores recompensas, y cuándo aprovechar lo que ya sabe para elegir 

la mejor acción que le permita obtener beneficios inmediatos. En este trabajo se utiliza el método 

épsilon – greedy y el de exploración por distribución gaussiana. 

3.1.4.1 Epsilon – Greedy 
 

El método ε - greedy es una estrategia común en algoritmos de RL como Q-Learning. Este 

funciona eligiendo la mejor acción con probabilidad 1 – ε, es decir explota el conocimiento 
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existente para maximizar la recompensa [10]. Así mismo, con probabilidad ε selecciona una acción 

aleatoria, permitiendo descubrir nuevas estrategias (ver algoritmo en Tabla 3.1). El parámetro ε 

varía entre 0 y 1, y se reduce con el tiempo para favorecer progresivamente la explotación sobre 

la exploración. Este esquema se utiliza en DQN. 

Tabla 3.1.  

Algoritmo ε-greedy para la elección de exploración y explotación del agente 

Algoritmo 1 Algoritmo ε-greedy para seleccionar exploración y explotación 

Entrada: valor aleatorio, valor de decaimiento, valor mínimo. 

Parámetros: parámetro ε de exploración inicial  

Salida: decisión si explora o explota 

1: Initialize r = 0, ε = 1 

2: r = rand(0,1) 

3: ε = ε * decay 

4: ε = max(ε, ε_min) 

5: if  r < ε: 

6:        explore 

7: else: 

8:        exploit 

 

 

3.1.4.2 Exploración por distribución Gaussiana 
 

Este método consiste en elegir acciones aleatorias utilizando una distribución normal de 

probabilidad, y se implementa en algoritmos con un espacio de acción continuo. Por lo tanto, este 

se utiliza en el A2C, en el cual la red actor genera acciones aleatorias alrededor de la media (μ) 

con una dispersión controlada por la varianza (σ2). Al inicio, la varianza es alta y permite explorar 
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diversas acciones, pero a medida que el algoritmo aprende, la media se acerca a la mejor acción y 

la varianza disminuye favoreciendo la explotación. 

3.2. Estrategias de Gestión basadas en DRL 
 

En esta sección se explican los detalles de los algoritmos utilizados en este proyecto.  

3.2.1 DQN 
 

En este caso, el agente aprende de sus experiencias acumuladas. Para ello, almacena las 

experiencias en un buffer o memoria en cada episodio et = (St, At, Rt, St+1, done), y luego selecciona 

una muestra aleatoria para continuar con el entrenamiento de la red Q. Para el cálculo de la 

estimación de la recompensa futura se usa la red objetivo, y se actualizan los pesos de la red 

principal a través de descenso de gradiente. Además, cada 100 iteraciones se actualizan los pesos 

de la red objetivo con la red entrenada. Por otro lado, para la exploración y explotación se utiliza 

el método ε – greedy que se mencionó anteriormente. Para este algoritmo, los hiperparámetros 

utilizados se muestran en la Tabla 3.2, y el algoritmo DQN desarrollado se detalla en la Tabla 3.3, 

donde se puede ver que en el paso 10 se selecciona la acción usando ε –greedy, en el paso 11 se 

ejecuta la acción, y se observa la recompensa y el nuevo estado. Asimismo, entre los pasos 17 al 

21 se actualiza el valor Q(s,ɑ), y en los pasos 23 y 24 se ajustan los parámetros del modelo 

utilizando descenso de gradiente, minimizando el error cuadrático medio (MSE). 
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Tabla 3.2.  

Hiperparámetros DQN 

Pɑrάmetro  Vɑlor 

1: Optimizɑdor 

2: Mɑximo número de pɑsos: 

3: Tɑsɑ de ɑprendizɑje (α) 

4: Fɑctor de descuento (ɤ) 

5: Tɑsɑ de explorɑción (ε) 

6: Fɑctor de decɑimiento para ε 

7: Valor mínimo de ε 

8: Tɑmɑño del buffer () 

9: Número de muestrɑs por lote 

10: Número de cɑpɑs ocultɑs 

11: Número de unidɑdes por cɑpɑ 

12: Número de sɑlidɑs 

13: Función de ɑctivɑción de cɑpɑs ocultɑs 

14: Función de ɑctivɑción de sɑlidɑ 

ADAM 

3495 

0.01 

0.9 

1.0 

0.995 

0.01 

2000 

32 

2 

16 

1 

LeɑkyReLU 

Lineɑl 
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Tabla 3.3.  

Algoritmo DQN 

Algoritmo 2 Algoritmo DQN 

Entrada: estɑdo, ɑcción 

Parámetros: pɑrάmetro de ɑprendizɑje, fɑctor de descuento, pɑrάmetro de explorɑción 

Salida:  políticɑ óptimɑ 

1:  

2: 

3:  

4:  

5:  

6:  

7:  

8:   

9:  

10:  

11:  

12: 

13:  

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27:  

Initiɑlize Tɑctile Internet model 

Initiɑlize replɑy memory 𝒟 to cɑpɑcity N 

Initiɑlize Q network (θ) 

Initiɑlize tɑrget Q network (θˈ) with θ weights 

 

 

for eɑch episode I do: 

    Initiɑlize stɑte s0   

    while t= 1…T1 in episode I do: 

        ɑction = cɑll ε-greedy Algorithm 

        execute ɑction ɑt ɑnd observe rewɑrd rt ɑnd stɑte st+1 

        store trɑnsition (st, ɑt, rt, st+1, done) in 𝒟 

        Updɑte st ← st+1  

 

             if size bɑtch ˂ 𝒟 size: 

             sɑmple rɑndom bɑtch (sj, ɑj, rj, sj+1, done) uniformly from 𝒟 

             if done = True: 

                 𝑄𝑗(𝑠𝑡, 𝑎𝑡) = 𝑟𝑗 

             else: 

                  𝑄𝑗(𝑠𝑡, 𝑎𝑡) = 𝑟𝑗 + 𝛾 · 𝑚𝑎𝑥𝑎(𝜃ˈ(𝑠𝑗+1)) 

             end if 

             Update model with Gradient Descent 

             loss ←  𝑀𝑆𝐸 (𝑦𝑗, 𝜃(𝑠𝑗)) 

             every ω step update θˈ← θ 

         end if 

    end while 

end for 
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3.2.2. A2C 
 

Este algoritmo combina una red actor que genera una distribución de probabilidad (media 

μ y desviación estándar σ) para cada acción continua, y una red crítico que estima el valor del 

estado actual para calcular la ventaja, que indica cuánto mejor es una acción respecto al promedio. 

Luego, se calculan la pérdida de la red actor y crítica, y se agrega un coeficiente de entropía para 

fomentar la exploración. Este modelo se actualiza en cada paso con la experiencia obtenida, 

utilizando una pérdida combinada que incluye la maximización de la probabilidad de buenas 

acciones, la minimización del error en la estimación de valores, y la penalización de políticas 

deterministas, lo que permite equilibrar el rendimiento y estabilidad. En la Tabla 3.4 se muestran 

los hiperparámetros utilizados para este algoritmo y en la Tabla 3.5 se describe el algoritmo A2C 

desarrollado. En este algoritmo se puede ver que en el paso 9 se selecciona una acción desde una 

distribución normal, y en el paso 10 se ejecuta la acción y se observa la recompensa y el nuevo 

estado. Después, en los pasos 11 y 12 se calcula el objetivo TD y la ventaja, en los pasos 13 y 17 

se actualizan el crítico y el actor, respectivamente. Finalmente, en el paso 19 se actualizan los 

parámetros del modelo mediante descenso de gradiente. 
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Tabla 3.4.  

Hiperparámetros A2C 

Pɑrάmetro  Vɑlor 

1: Optimizador 

2: Máximo número de pasos: 

3: Tasa de aprendizaje (α) 

4: Factor de descuento (ɤ) 

5: Coeficiente de entropía (exploración) 

6: Número de capas ocultas actor 

7: Número de unidades por capa actor 

8: Número de salidas actor 

9: Número de capas ocultas critico 

10: Número de unidades por capa crítico 

11: Número de salidas crítico 

12: Función de activación de capas ocultas 

actor 

13: Función de activación de capas ocultas 

critico 

14: Función de activación de salida actor 

15: Función de activación de salida crítico 

ADAM 

3495 

0.001 

0.99 

0.01 

2 

64 

2, media y std  

2 

64 

1 

ReLU 

ReLU 

Softplus para σ ˃ 0 

Lineal 
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Tabla 3.5.  

Algoritmo A2C 

Algoritmo 3 Algoritmo A2C 

Entrada: estɑdo, ɑcción. 

Parámetros: pɑrɑmetro de ɑprendizɑje, fɑctor de descuento, coeficiente de entropíɑ. 

Salida:  políticɑ óptimɑ, función de vɑlor. 

1:  

2: 

3:  

4:  

5:  

6:  

7:  

8:   

9:  

10:  

11:  

12: 

13:  

14: 

15: 

16: 

17: 

 

18: 

19: 

20: 

21: 

  

Initiɑlize Tɑctile Internet model 

Initiɑlize Actor 𝜋𝜃 (mu, sigma) 

Initiɑlize Critic 𝑉𝜙
𝜋 

Initiɑlize ADAM optimizer with leɑrning rɑte 

 

for eɑch episode I do: 
       Initiɑlize stɑte s0  

     while t= 1…..T in episode I do: 

         sɑmple ɑction ɑt ~  π (ɑ|μ,σ) = 𝒩(ɑ|μ, σ) ɑccording to current policy 

         execute ɑction ɑt ɑnd observe rewɑrd rt and stɑte st+1  

               set TD tɑrget  𝑦𝑡 = 𝑟 + 𝛾𝑉𝜙
𝜋(𝑠𝑡+1) ∗ (1 − 𝑑𝑜𝑛𝑒)  

         compute advantage 𝛿𝑡 =  𝑦𝑡 −  𝑉𝜙
𝜋 (𝑠𝑡)  r 

        Updɑte critic minimizing loss   ℒ𝑐𝑟𝑖𝑡𝑖𝑐 = 𝛿𝑡
2
 

          

         Compute log probability 𝑙𝑜𝑔𝜋 = −0.5 ∗ (
(ɑ−𝜇)

𝜎
)

2

− 𝑙𝑜𝑔 (𝜎) 

        Compute entropy 𝐻 = 0.5 ∗ (𝑙𝑜𝑔(2𝜋𝜎2) + 1)  

       Update ɑctor policy minimizing loss   

                                               ℒ𝑎𝑐𝑡𝑜𝑟 =  −𝑙𝑜𝑔𝜋 · 𝛿𝑡 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑐𝑜𝑒𝑓 ∗ 𝐻  

      Update model parameters using gradient descent on total loss 

     Updɑte St ←st+1           

   end while 

end for 
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3.3. Métricas de evaluación 
 

Las métricas de calidad utilizadas son de dos tipos, relacionadas al rendimiento del 

algoritmo y asociadas a la calidad del servicio, es decir, evalúan el desempeño del sistema 

controlado por el agente. 

3.3.1. Recompensa acumulada  
 

La recompensa acumulada corresponde a la suma total de las recompensas obtenidas en 

cada episodio. Esta evalúa si el agente está aprendiendo a maximizar su objetivo [10], y se calcula 

mediante la siguiente expresión: 

𝑅𝑡𝑒 =  ∑𝑛(𝑅1 +  𝑅2 +··· +𝑅𝑛)                                                (15)  

Donde, Rte es la recompensa total acumulada en el episodio, Rn es la recompensa obtenida 

en el paso n, y n corresponde al número de pasos. Finalmente, se calcula la recompensa promedio 

global donde se incluyen todos los episodios desde la fase de exploración inicial hasta alcanzar su 

convergencia. Este análisis global se obtiene con la siguiente expresión: 

𝑅 =  
∑𝑒 (𝑅1 + 𝑅2 +··· +𝑅𝑒)

𝑁
                                                    (16)  

Donde, Re representa la recompensa del episodio e y N el número de episodios. 

3.3.2. Rendimiento útil acumulado 
 

El rendimiento útil (goodput) es una medida de la eficiencia de la red. Hace referencia a la 

cantidad de datos útiles entregados por unidad de tiempo y a diferencia del rendimiento 

(throughput), no incluye los datos redundantes o los retransmitidos [15]. Se calcula mediante la 

siguiente expresión: 
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𝑔𝑜𝑜𝑑𝑝𝑢𝑡𝑡 =  
𝐷𝑎𝑡𝑜𝑠 ú𝑡𝑖𝑙𝑒𝑠 𝑒𝑛𝑡𝑟𝑒𝑔𝑎𝑑𝑜𝑠

𝑇𝑖𝑒𝑚𝑝𝑜 𝑡𝑜𝑡𝑎𝑙
                                             (17)  

Donde el tiempo total es la latencia y los datos útiles entregados se calculan de la siguiente 

manera: 

𝐷𝑎𝑡𝑜𝑠 ú𝑡𝑖𝑙𝑒𝑠 𝑒𝑛𝑡𝑟𝑒𝑔𝑎𝑑𝑜𝑠 =  
𝑡𝑎𝑚𝑎ñ𝑜 𝑝𝑎𝑞𝑢𝑒𝑡𝑒

𝑛𝑠
∗ (1 − 𝑝𝑒)                        (18) 

Donde ns es el número de segmentos y pe es la tasa de error. Ahora, el rendimiento útil 

acumulado se define como el rendimiento útil obtenido en cada episodio, quedando así: 

𝑔𝑜𝑜𝑑𝑝𝑢𝑡𝑇 =  ∑𝑛(𝑔1 +  𝑔2 +··· +𝑔𝑛)                                            (19) 

Donde, el gn es el rendimiento útil en el paso de tiempo n. Para el análisis global se plantea 

el promedio del rendimiento útil acumulado en cada episodio de la siguiente manera: 

𝐺 =  
∑𝑛 (𝑔1 +  𝑔2 +··· +𝑔𝑛)

𝑁
                                                    (20)  

Donde, G es el rendimiento útil promedio, gn es el rendimiento obtenido en el episodio n y 

N es el número de episodios. 

3.3.3. Retardo promedio móvil 
 

El retardo promedio móvil (Moving Average Delay - DMA) es una métrica que permite 

analizar la tendencia del retardo en una ventana móvil de los últimos W pasos o paquetes. Se 

calcula así: 

𝐷𝑀𝐴𝑡 =  
1

𝑊
 ∑ 𝐿𝑘

𝑡

𝑘=𝑡−𝑊+1

                                                               (21) 
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Donde, DMAt es el retardo promedio móvil en el tiempo t, Lk es el retardo o la latencia del 

paquete en el paso k, y W es el tamaño de la ventana. Esta medida permite identificar patrones de 

comportamiento en el tiempo, por lo cual es útil en redes donde los retardos variables pueden 

afectar la QoS y QoE. Interpretación: Tiempo promedio de transmisión por  

3.3.4. Pérdida de paquetes 
 

Esta métrica se representa como el porcentaje de paquetes perdidos en el momento de su 

transmisión respecto al total de paquetes enviados. Se calcula mediante la siguiente expresión: 

𝑃𝑙𝑜𝑠𝑠 =  
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑎𝑞𝑢𝑒𝑡𝑒𝑠 𝑝𝑒𝑟𝑑𝑖𝑑𝑜𝑠

𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑎𝑞𝑢𝑒𝑡𝑒𝑠 𝑒𝑛𝑣𝑖𝑎𝑑𝑜𝑠
∗ 100                                          (22) 

Esta métrica permite conocer la tasa de pérdida de paquetes y con ello el estado de la red. 

Un alto porcentaje de pérdida indica congestión o problemas en la red, lo cual afecta la QoS y QoE 

de las aplicaciones.   

Cabe mencionar que en la simulación de pérdida de paquetes se considera que un paquete 

se pierde si un valor aleatorio es mayor a la tasa de pérdida de paquetes o, si el ICt es mayor a 

BW/ns, ya que si esto se cumple indica que hay más tráfico del que puede manejar el ancho de 

banda asignado a cada segmento, lo que resulta en la pérdida de paquetes. 

3.3.5.  Paquetes demorados 
 

Esta métrica hace referencia a los paquetes que superan un umbral de tiempo. Los paquetes 

con retraso suelen ser inútiles para aplicaciones sensibles como las aplicaciones TI, lo cual afecta 

la QoS y QoE. Esta se calcula similar a la pérdida de paquetes, pero con los paquetes retrasados, 

así: 
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𝑃𝑑𝑒𝑙𝑎𝑦 =  
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑎𝑞𝑢𝑒𝑡𝑒𝑠 𝑑𝑒𝑚𝑜𝑟𝑎𝑑𝑜𝑠

𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑝𝑎𝑞𝑢𝑒𝑡𝑒𝑠 𝑒𝑛𝑣𝑖𝑎𝑑𝑜𝑠
∗ 100                                          (23) 
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Capítulo 4                                     

Implementación y Análisis de Resultados 

 
En este capítulo, evaluamos el rendimiento de los algoritmos propuestos utilizando 

nuestro enfoque de gestión, mediante simulaciones. 

4.1. Configuración de las simulaciones 
 

El modelo de red planteado simula una red táctil donde el agente debe controlar 

dinámicamente el número de segmentos (entre 1 y 10) en que se fragmenta un paquete o flujo de 

datos para ser transmitido bajo condiciones variables de BW, IC y pe. En cada paso se simula el 

envío de paquetes considerando pérdidas aleatorias con una probabilidad del 80%, y se calculan 

las métricas de rendimiento útil y retardo promedio móvil.  

Para su evaluación, entrenamos nuestros agentes realizando diversas simulaciones en las 

que se debe completar la entrega de 4000 paquetes considerando diferentes parámetros de red. 

Estos parámetros utilizados se seleccionaron tomando en cuenta la investigación base de nuestro 

estudio [1] y la configuración de red en la categoría de TI para sistemas de teleoperación 

establecidos en el estándar IEEE1918.1 [16].  La configuración de los escenarios y los parámetros 

seleccionados se muestran en la Tabla 4.1. 
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Tabla 4.1  

Parámetros de la simulación 

Parámetros Valor 

Retardo de 

propagación 

extremo a extremo 

(tPD) 

1 – 50 ms 

Escenario 1                                                        1 ms 

Escenario 2                                                        50 ms 

Escenario 3                                                         1 - 50 ms 

Tasa de error (pe) 0 % - 50 % 

Escenario 1                                                         0% - 50% 

Escenario 2                                                         5% 

Escenario 3                                                         10% 

Ancho de banda 

(BW) 

10 – 500 Mbps 

Escenario 1                                                          100 – 500 Mbps 

Escenario 2                                                          10 Mbps 

Escenario 3                                                          100 Mbps 

N° Paquetes 

entregados 

4000 

Tipo de Trafico TCP 

Algoritmos Q-Learning DQN A2C 

Tasa de aprendizaje 

(α) 

0.1 0.01 0.001 

Factor de descuento 

(ɤ) 

0.99 0.9 0.99 

Valor para la 

exploración  

1 1 0.01 

 

 

4.2. Experimentos 
 

4.2.1. Prueba inicial (Escenario 1) 
 

Realizamos una prueba inicial utilizando el dataset de parámetros de red definidos en [17], 

con un BW variable entre 100 y 500 Mbps, un retardo de propagación de extremo a extremo (tPD) 

de 1ms y pe seleccionado de forma aleatoria entre 0 y 50%, lo que lo hace un entorno dinámico. 
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La Figura 4.1(a) representa la curva de aprendizaje de los agentes mediante la recompensa 

acumulada, donde se observa que A2C tiene un mejor aprendizaje, aunque muy similar a DQN. 

Mientras que en la Figura 4.1(b) se puede ver que Q-Learning y A2C tienen un retardo menor en 

comparación con DQN. Por su parte, la curva del rendimiento útil acumulado (ver Figura 1 del 

Apéndice) tiene un comportamiento similar a la curva de recompensa, donde A2C muestra mejor 

rendimiento. En la Tabla 4.2 se pueden ver los valores promedios finales (de todas las corridas) de 

las medidas de evaluación, en la cual se observa que A2C tiene mejor recompensa y rendimiento 

acumulado, superando a DQN y Q-Learning, debido a su capacidad para adaptarse de forma 

dinámica a las condiciones variables de la red. En cuanto al retardo promedio móvil, las diferencias 

entre los algoritmos son mínimas donde Q-Learning tiene un menor retardo, aunque similar a A2C. 

Esto se debe a que Q-Learning puede ser más eficiente en tiempo de respuesta por su simplicidad 

algorítmica, sin embargo, A2C mantiene un retardo competitivo a pesar de su mayor complejidad. 

 

 

  

 

 

Figura 4.1 Comparación de curva de aprendizaje (a) y retardo promedio móvil (b) entre los algoritmos. 

(a) (b) 
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Tabla 4.2.  

Estadísticas de las medidas de evaluación para la prueba inicial 

Algoritmo Promedio de 

Recompensa 

Acumulada 

Promedio de 

Rendimiento útil 

Acumulado 

Promedio de 

Retardo promedio 

móvil (ms) 

Q-Learning 2.472.184,84 7.624,84 1,89 

DQN 3.055.374,99 9.565,11 1,94 

A2C 3.417.649,11 10.520,87 1,90 

 

 

4.2.2. Resultados 
 

Para las siguientes simulaciones planteamos 3 escenarios con las configuraciones 

mostradas en la Tabla 4.1, utilizando datos generados en Mininet. 

La Figura 4.2 representa el escenario 1, el cual se caracteriza por ser un entorno dinámico. 

En la Figura 4.2(a) y 4.2(b) se muestra la curva de aprendizaje de los algoritmos utilizados y el 

rendimiento útil de la red, donde se observa que A2C y DQN tienen un comportamiento casi 

similar, mientras que el de Q-Learning es menor considerablemente. En la Figura 4.2(c) se 

compara los porcentajes de paquetes perdidos, que muestra que A2C tiene una menor pérdida de 

paquetes y es más estable, a diferencia de DQN y Q-Learning con porcentajes mayores muy 

similares. En la Figura 4.2(d) se muestra la evolución del retardo promedio móvil en el que se 

observan fluctuaciones por parte de los diferentes algoritmos, sin embargo, A2C tiene menor 

retardo con una mayor estabilidad, DQN muestra un mayor retardo, aunque más estable que Q-

Learning, con un retardo bastante variable debido a su convergencia lenta. Esto se debe a las 

condiciones cambiantes de la red. 
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Figura 4.2 Comparación de la recompensa acumulada (a), rendimiento útil (b), pérdida de paquetes (c) y 

retardo promedio móvil (d). 

 

En la Tabla 4.3 podemos ver los valores promedios finales de estas métricas, donde se 

observa que A2C es más eficiente y equilibrado en entornos dinámicos, ya que logra una mayor 

recompensa y rendimiento útil acumulado, manteniendo un menor retardo promedio móvil y un 

menor porcentaje de pérdida de paquetes respecto a DQN y Q-Learning. Esto se debe gracias a su 

enfoque basado en política y valor que le permite tener capacidad de adaptación a condiciones 

dinámicas y optimizar decisiones en tiempo real. Por su parte, DQN mejora a Q-Learning en 

cuanto a recompensa acumulada, rendimiento útil acumulado y pérdida de paquetes, pero no 
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alcanza a A2C, debido a que, aunque maneja mejor la variabilidad que Q-Learning no es tan 

robusto frente a una aleatoriedad extrema en comparación con A2C. Finalmente, Q-Learning 

aunque tiene un retardo menor que DQN y similar a A2C, muestra un peor desempeño en las otras 

métricas, lo que evidencia sus limitaciones en entornos dinámicos. 

 

Tabla 4.3.  

Estadísticas de las medidas de evaluación para el escenario 1 

Algoritmo Promedio de 

Recompensa 

Acumulada 

Promedio de 

Rendimiento 

útil Acumulado 

Promedio de 

Retardo 

promedio 

móvil (ms) 

Promedio 

de Pérdida 

de paquetes 

(%) 

Q-Learning 6.358.068,33 12.877,19 1,13 1,20 

DQN 7.779.402,42 15.828,0 1,20 1,19 

A2C  8.328.648,86 16.871,55 1,12 1,16 

 

Para el escenario 2, en la Figura 4.3 se muestra el retardo promedio móvil y la pérdida de 

paquetes con un BW = 10 Mbps, tPD = 50 ms y pe = 5%. Estos parámetros representan un entorno 

menos dinámico. La Figura 4.3(a) muestra que A2C tiene un retardo notablemente menor en 

relación a DQN y Q-Learning. Asimismo, en la figura 4.3(b) se observa que DQN tiene una mayor 

pérdida de paquetes, similar a Q-Learning, mientras que A2C muestra un mejor manejo de la 

pérdida de paquetes. Esto se debe a que A2C, gracias a su arquitectura distribuye el tráfico de 

forma equilibrada, con lo cual ajusta dinámicamente la política para evitar congestión y errores en 

enlaces con bajo BW, lo que minimiza tanto el retardo como la pérdida de paquetes. Por su parte, 

DQN aprende a evitar congestiones mediante su historial de experiencias, por lo tanto, se ve 

afectada si no es tan grande su memoria; mientras que Q-Learning no gestiona adecuadamente la 

saturación y añade retrasos por tomar decisiones subóptimas. Las curvas de recompensa 
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acumulada y rendimiento útil acumulado muestran un comportamiento parecido, donde A2C y 

DQN son casi similar (ver Figura 2(a) y 2(b) en el Apéndice, respectivamente).  

 

 

Figura 4.3 Comparación de retardo promedio móvil (a) y pérdida de paquetes (b) con BW = 10 Mbps y tPD = 

50ms. 

 

Los valores promedios finales de las métricas se muestran en la Tabla 4.4, en la cual se 

puede ver que A2C tiene mejor desempeño en todas las variables gracias a su enfoque que le 

permite adaptarse a las condiciones, y en este caso, optimizar el uso de BW limitado a la vez que 

minimiza el retardo. DQN tiene una mayor recompensa y rendimiento útil acumulado, aunque con 

un retardo y pérdida de paquetes ligeramente mayor respecto a Q-Learning; esto debido a su 

dependencia de aproximaciones basadas en valor, mientras que Q-Learning muestra un desempeño 

inferior, lo que muestra sus limitaciones en entornos complejos y restrictivos. 
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Tabla 4.4.  

Estadísticas de las medidas de evaluación para el escenario 2 

Algoritmo Promedio de 

Recompensa 

Acumulada 

Promedio de 

Rendimiento útil 

Acumulado 

Promedio de 

Retardo 

promedio móvil 

(ms) 

Promedio 

de Perdida 

de paquetes 

(%) 

Q-Learning 2.801,76 282,14 50,93 2,04 

DQN 3.494,09 352,23 51,12 2,18 

A2C  3.711,44 372,65 50,61 1,26 

 

 

La Figura 4.4 representa el escenario 3. En esta se muestra el retardo promedio móvil con 

un BW = 100 Mbps, pe = 10% y tPD de (a) 1 ms, (b) 2 ms, (c) 4 ms y (d) 50 ms. Esta configuración 

permite representar un entorno con mayor dinamismo como ocurre en las aplicaciones de 

teleoperación TI. 

En este escenario, también se evaluó el retraso y la pérdida de paquetes. Para ello se 

estableció un tiempo límite definido como tPD + 10%, de esta manera si un paquete supera este 

tiempo de entrega, se considera demorado o retrasado. Este porcentaje de demora es importante 

ya que nos permite identificar que algoritmo cumple mejor con los estrictos requisitos de TI o, se 

adecua mejor a las necesidades de transmisión de datos de cada aplicación de TI. Los detalles en 

cuánto a demora y pérdida de paquetes se presentan en la Tabla 4.5, incluyendo en la columna [1] 

el mejor valor obtenido en el trabajo [1] como referencia comparativa. En esta Tabla se observa 

que A2C tiene el mejor desempeño en todas las configuraciones de retardo (tPD = 1ms, 2ms, 4ms, 

50ms), ya que minimiza la pérdida y demora de paquetes, gracias a su enfoque que optimiza 

políticas en tiempo real para adaptarse a las condiciones priorizando la confiabilidad. También, se 

puede ver que las demoras son menores en A2C, especialmente en altos tPD; esto se debe a que 

A2C evita retransmisiones innecesarias. Por su parte, DQN y Q-Learning tiene mayores demoras 
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y pérdida de paquetes, algunas ligeramente similares, esto debido a que DQN tiende a sobreestimar 

valores Q lo que lleva a decisiones subóptimas que aumentan las pérdidas, mientras que Q-

Learning al ser más simple tiende a ser más robusto en algunos casos por su simplicidad. Además, 

se observa que nuestra propuesta DRL tiene mejor desempeño, con menor demora y menor pérdida 

de paquetes respecto a [1], a excepción del caso cuando tPD toma el valor de 50 ms. En ese caso, 

el enfoque propuesto en [1] tiene menor pérdida de paquetes. Las representaciones gráficas del 

porcentaje de pérdida y demora de paquetes se pueden observar en el Apéndice (Figura 4 y 5, 

respectivamente). 

Tabla 4.5.   

Datos de demora y pérdida de paquetes 

Parámetros Valores 

Algoritmo Q-L DQN A2C [1] Q-L DQN A2C [1] Q-L DQN A2C [1] Q-L DQN A2C [1] 

tpD 1 ms 2 ms 4 ms 50 ms 

Perdidos 

(%) 

2,04 2,10 1,15 1,6 1,19 1,23 1,18 1,4 1,22 1,19 1,19 1,4 1,99 2,09 1,66 1,3 

Demorados 

(%) 

1,76 3,29 1,06 8 1,20 0,82 0,81 6,4 0,72 0,80 0,72 6,2 0,48 0,52 0,26 5 

 

Por otro lado, en la Tabla 4.6 se muestran los valores promedios finales de las métricas 

principales, en la que se observa que DQN supera ligeramente a A2C en cuanto a la recompensa 

y rendimiento útil acumulado, y ambas superan considerablemente a Q-Learning. Sin embargo, en 

cuanto al retardo promedio móvil, A2C logra mejores resultados en todos los casos de tPD, gracias 

a su enfoque de política directa. Cabe destacar que se observa que el retardo de propagación es un 

factor crítico en la medida del retardo promedio móvil que afecta el rendimiento de la red a medida 

que aumenta, pero A2C demuestra mejor equilibrio ante esto. Además, se puede ver que DQN a 

pesar de tener mayor recompensa tiene mayor retardo en comparación con Q-Learning, esto es 
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debido a su complejidad computacional, ya que añade pequeñas demoras al procesar los datos, 

mientras que Q-Learning realiza búsquedas sencillas en tabla.  

 

 

Figura 4.4 Comparación del retardo promedio móvil para tPD (a) 1 ms, (b) 2 ms, (c) 4 ms y (d) 50 ms. 

 

En la Figura 3 del Apéndice se puede ver la representación del rendimiento útil acumulado 

para este escenario donde DQN y A2C tienen un comportamiento casi similar. En general, los 
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resultados muestran que A2C tiene el mejor desempeño adaptándose a las diferentes 

configuraciones de red y tPD.  

 

Tabla 4.6.  

Estadísticas de las medidas de evaluación para el escenario 3 

Algoritm

o 

Promedio de Recompensa 

Acumulada 

Promedio de Rendimiento útil 

Acumulado 

Promedio de Retardo 

promedio móvil (ms) 

tpD 1ms 2ms 4ms 50ms 1ms 2ms 4ms 50ms 1ms 2ms 4ms 50ms 

Q-

Learning 

6.960.622,93 1.818.502,53 458.715,22 2.948,01 14.273,84 7.352,37 3.697,65 296,92 1,13 2,12 4,19 50,98 

DQN 
8.861.177,94 2.283.765,20 569.903,70 3.674,08 18.021,32 9.200,73 4.600,26 370,57 1,21 2,17 4,28 51,02 

A2C  
8.851.985,48 2.223.089,0 554.557,90 3.512,37 17.825,05 8.942,19 4.461,69 352,85 1,06 2,08 4,17 50,54 

 

 

4.3. Comparación cuantitativa 
 

En esta sección, se presenta una comparación cuantitativa para evaluar el rendimiento de 

nuestra propuesta en relación al enfoque RS-RLNC propuesto en [1], mediante una evaluación 

numérica de diferencias. En este caso, la comparación se realiza con los datos de porcentaje de 

pérdida y demora de paquetes expuestos en la Tabla 4.5, de los cuales se tomaron los mejores 

valores obtenidos para cada valor de tPD, es decir, los valores de A2C junto a los datos de [1]. 

Para realizar la comparación se utilizaron las siguientes medidas estadísticas: 

1. Diferencia absoluta, la cual consiste en restar el valor de referencia del valor comparado, 

para medir la variación entre estos dos valores. Su expresión es: 

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 𝑣𝑎𝑙𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑑𝑜 − 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎       (24) 
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2. Diferencia relativa, se expresa como un porcentaje para comparar la magnitud del cambio 

con respecto a un valor inicial. Se calcula así: 

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =  
𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑎

𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎
𝑥100                                 (25) 

 

También, se utilizó la prueba t de Student, la cual compara la media de dos conjuntos de 

datos y evalúa si la diferencia entre ellos es suficientemente grande para afirmar que hay una 

diferencia significativa. En esta se plantean dos hipótesis:  

 

 Hipótesis nula (H0): No hay diferencia entre las medias (μ1 = μ2). 

 Hipótesis alternativa (H1): Existe diferencia (μ1 ≠ μ2, μ1 ˂ μ2 o μ1 ˃ μ2). 

 

Luego, se calcula el estadístico t según el tipo de prueba. En este caso, como se trata de 

muestras independientes, al ser las medias de dos grupos distintos mide la diferencia entre estas, y 

se calcula con la siguiente expresión: 

 

𝑡 =  
𝑋1−𝑋2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

                                                                 (26)  

 

Donde, X1 y X2 son las medias de las muestras, s1
2 y s2

2 son las varianzas muestrales, y n1 

y n2 son los tamaños de las muestras. Un valor grande de t indica mayor diferencia entre los grupos. 

Ahora, se busca el valor de p asociado al valor estadístico, con un nivel de significancia 
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comúnmente de 0.05 (α = 0.05). Si p ˂ 0.05 se rechaza H0 e indica que hay una diferencia 

significativa, y si p ≥ 0.05 indica que las diferencias no son significativas. 

 

4.3.1. Pérdida de paquetes 
 

En la Tabla 4.7 se muestran los mejores valores de cada enfoque (A2C y [1]) con su 

respectiva media y desviación estándar. 

 

Tabla 4.7.  

Datos de pérdida de paquetes 

Enfoque % de pérdida de paquetes Media Desviación 

estándar 1 ms 2 ms 4 ms 50 ms 

[1] 1,6 1,4 1,4 1,3 1,42 0,12 

Este trabajo 1,15 1,18 1,19 1,66 1,29 0,24 

 

 

Tomando como valor referencial la media de los datos de [1] se calcularon la diferencia 

absoluta y relativa según las ecuaciones (24) y (25), quedando: 

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 1.42 % − 1. 29 % =    0.13 %   

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =  
0.13

1.42
𝑥100 = 9.12 %      

 

Esto demuestra que nuestro enfoque reduce un 0.13% los paquetes perdidos con una mejora 

de 9.12% respecto a la propuesta en [1].  
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4.3.2. Paquetes demorados 
 

Para la comparación en cuanto a la demora de paquetes en la Tabla 4.8, se muestran los 

mejores valores de cada enfoque (A2C y [1]) con su respectiva media y desviación estándar. 

Tabla 4.8.  

Datos de paquetes demorados 

Enfoque % de paquetes demorados Media Desviación 

estándar 1 ms 2 ms 4 ms 50 ms 

[1] 8 6,4 6,2 5 6,4 1,23 

Este trabajo 1,06 0,81 0,72 0,26 0,71 0,33 

 

Al calcular la diferencia absoluta y relativa, queda: 

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 6.4 % − 0.71% =    5.69 %  

 

𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =  
5.69

6.4
𝑥100 = 88.90 %      

 

Esto demuestra que nuestro enfoque reduce un 5.69 % los paquetes retrasados y tiene una 

mejora del 88.9 % respecto a la propuesta en [1]. 

4.3.3. Prueba t de Student 
 

Para validar los resultados anteriores se utilizó la prueba t de Student con los datos de las 

tablas 12 y 13. Los resultados se muestran en la Tabla 4.9, en la cual se observa que, en el caso de 

la métrica de pérdida de paquetes, p ≥ 0.05, lo que indica que no hay diferencia significativa, o no 

hay evidencia suficiente para demostrarlo. Sin embargo, en el caso de la métrica de paquetes 
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demorados, p ˂ 0.05, con lo cual hay diferencias significativas y, por lo tanto, muestra que nuestro 

enfoque reduce significativamente el porcentaje de paquetes demorados respecto a [1]. 

Tabla 4.9.  

Datos estadísticos de la prueba t de Student 

Métrica  Media ([1]) Media (Este trabajo) p Significativo 

%Pérdida 

paquetes 

1,42 ± 0,12 1.29 ± 0,24 0,38 No 

%Paquetes 

demorados 

6,4 ± 1.23 0.71 ± 0,33 0,0001 Sí 

 

 

4.4. Comparación cualitativa 
 

En esta sección, comparamos nuestra propuesta con otros trabajos relacionados lo que nos 

permite destacar las similitudes y diferencias entre las distintas propuestas (ver Tabla 4.10). Para 

ello, se definen tres criterios: 

 Criterio 1: utiliza algoritmos de DRL. 

 Criterio 2: está enfocado en minimizar la latencia. 

 Criterio 3: busca mejorar la pérdida de paquetes. 

 

Tabla 4.10.  

Comparación cualitativa 

Trabajos Criterios 

C1 C2 C3 

[1]     

[4]    

[6]    

Este trabajo    
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Tomando como referencia estos criterios, en la Tabla 4.10 se presenta un análisis 

cualitativo de nuestro enfoque y trabajos afines. En [1] se buscó minimizar la latencia en la entrega 

de paquetes para así mejorar el rendimiento y QoS en las aplicaciones TI. Asimismo, mediante 

simulaciones de diferentes condiciones de red buscó identificar que esquema de codificación de 

los utilizados tiene mejor desempeño respecto a la pérdida de paquetes. No obstante, el sistema 

planteado utiliza un enfoque RL simple. En [4] se utiliza el algoritmo DQL para optimizar la 

asignación de recursos en la segmentación de redes. Este, a pesar de mostrar resultados 

favorecedores, no busca mejorar la pérdida de paquetes ni está enfocado en minimizar la latencia, 

sin embargo, la considera como un requisito importante en la obtención de la recompensa. En [6] 

se utiliza el algoritmo DRL Soft Actor-Critic (SAC) para garantizar una distribución eficiente de 

los recursos de radio entre los flujos de datos hápticos y de video, para ello considera la pérdida 

de paquetes y los requisitos de latencia, aunque no se enfocó en minimizarla. Por otro lado, ese 

trabajo está enfocado en aumentar la satisfacción del usuario mediante la optimización de la 

asignación de los recursos en las aplicaciones de teleoperación video-háptica la cual es una rama 

o proceso del TI. 

Como se observa en la Tabla 4.10, los trabajos anteriores no cumplen con todos los 

criterios. Es por ello que este estudio representa un avance importante al integrar estos aspectos 

claves, como el enfoque en minimizar la latencia y la mejora en la pérdida de paquetes. Considerar 

estos criterios permite una mayor eficiencia en la transmisión de datos al reducir errores y 

retransmisiones innecesarias, lo que optimiza el rendimiento de la red, y mejora la QoS y QoE de 

las aplicaciones sensibles a la latencia y a la fiabilidad en la entrega de datos. Además, el uso de 
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técnicas avanzadas de DRL permite lograr un equilibrio óptimo entre los criterios, superando así 

las limitaciones de los enfoques existentes. 
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Capítulo 5                                           

Conclusiones y Trabajos Futuros 

 

En esta investigación desarrollamos dos algoritmos DRL para la gestión del TI. Para ello, 

se llevó a cabo un diseño integral del entorno que simula la red TI teniendo en cuenta sus 

principales componentes (como la capacidad de BW, tasa de error, tPD, simulación de congestión 

y pérdida, entre otros), y su interacción con los algoritmos DRL. Particularmente, se propusieron 

los algoritmos DQN para el manejo de acciones discretas y A2C para el manejo de acciones 

continuas.  

Los resultados obtenidos mediante simulaciones en diversos escenarios demostraron que 

A2C y DQN logran una recompensa y rendimiento útil acumulado muy similar en varios de los 

casos. En el escenario 1, que simula un escenario dinámico con BW y pe variable, y en el escenario 

2, que simula un entorno menos dinámico con un BW limitado, A2C obtuvo mejores resultados 

en todas las métricas. En el escenario 3, que simula dinamismo con variación en el tPD, A2C 

mostró mejores resultados en el tiempo de entrega, demora y pérdida de paquetes; mientras que 

DQN mostró mejor resultado en cuanto a la recompensa y rendimiento útil acumulado, aunque 

con un valor ligeramente mayor a A2C. En conclusión, se demostró la eficacia de los algoritmos 

DRL demostrando su potencial en entorno complejos. 
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Las limitaciones de este trabajo fueron las siguientes: primero, el estudio solo se probó con 

características de sistemas de teleoperación, por lo cual se debe evaluar su utilidad en otros 

entornos de redes con requisitos diferentes. Además, el entorno de simulación estuvo limitado a 

un número reducido de nodos, lo que dificulta la aplicación de los resultados a redes más grandes 

y complejas. Por otro lado, no se tomaron en cuenta factores externos como interferencias, lo que 

es común en entornos reales. 

Finalmente, para trabajos futuros se propone:  

 Aplicar otros algoritmos como Soft Actor-Critic (SAC) o Deep Determinist Policy 

Gradient (DDPG), los cuales consideran diferentes características durante el proceso 

de aprendizaje. Por ejemplo, el SAC incorpora entropía máxima, lo que incentiva a 

explorar diferentes políticas sin caer en soluciones subóptimas, ofreciendo mejor 

estabilidad. En cuanto a DDPG con su enfoque determinístico y uso de replay buffer, 

aprovecha mejor los datos. Además, estos algoritmos ofrecen un mejor manejo de 

espacios de búsqueda continuos. 

 

 Considerar otras acciones como: la asignación de ancho de banda disponible de 

acuerdo a las necesidades de las diferentes aplicaciones TI para optimizar el 

rendimiento y evitar cuellos de botella; o la implementación de técnicas para el 

manejo de la congestión o priorización de tráfico que reducirían la pérdida de 

paquetes y latencia para así garantizar un servicio más estable. 

 

 Estudiar otros casos en la TI como aplicaciones en sistemas de control industrial 

remoto, que requieren fiabilidad extrema, es decir, cero pérdida de paquetes en 
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comandos críticos; o realidad virtual/aumentada colaborativa, la cual requiere 

latencia menor a 20 ms y sincronización entre múltiples usuarios. Sus requisitos 

extremos podrían ser útiles para validar algoritmos de optimización DRL. 
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Apéndice 

 

Figura 1. Curva del rendimiento útil acumulado de la prueba inicial 
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Figura 2. Curvas de la recompensa acumulada (a) y rendimiento útil acumulado (b) del 

escenario 2 
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Figura 3. Rendimiento útil acumulado del escenario 3 para (a) 1 ms, (b) 2 ms, (c) 4 ms y (d) 50 

ms 
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Figura 4. Porcentaje de pérdida de paquetes del escenario 3 para (a) 1 ms, (b) 2 ms, (c) 4 ms y 

(d) 50 ms 
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Figura 5. Porcentaje de paquetes demorados del escenario 3 para (a) 1 ms, (b) 2 ms, (c) 4 ms y (d) 

50 ms 

 

 

 

 


