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Abstract. We propose an adaptive cache coherence-replacement scheme for
distributed systems that is based on several criteria about the system and appli-
cations, with the objective of optimizing the distributed cache system perform-
ance. We examine different distributed platforms (shared memory systems, dis-
tributed memory systems, and web proxy cache systems) and the potential of in-
corporating coherency-replacement issues in the cache memory management
system. Our coherence-replacement scheme assigns a replacement priority value
to each cache block according to a set of criteria to decide which block to re-
move. The goal is to provide an effective utilization of the distributed cache
memory and a good application performance

1 Introduction

The performance of distributed caching mechanisms is an active area of research [2, 3,
4,5, 7, 8, 10]. A distributed cache memory is the simplest cost-effective way to
achieve a high-speed memory hierarchy. A cache provides, with high probability,
instructions and data needed by the local CPU at a rate that is more in line with the
local CPU’s demand rate. Many studies have examined policies for cache replacement
and cache coherence; however, these studies have rarely taken into account the com-
bined effects of policies [2, 5]. In this paper we propose an adaptive cache coherence-
replacement scheme for distributed systems. Our approach combines classical coher-
ence protocols (write-update and write-invalid protocols) and replacement policies
(LRU, LFU, etc.) to optimize the overall performance (based on criteria such as net-
work traffic, application execution time, data consistence, etc.). This work is based on
previous work we have done on cache replacement mechanisms which have shown
that adaptive cache replacement policies improve the performance of computing sys-
tems [1]. The cache coherence mechanism is responsible for determining whether a
copy in the distributed cache system is stale or valid. At the same time, it must update
the invalid copies when a given site requires a block. We study the impact of our
scheme in different distributed systems: shared-memory systems, distributed-memory
systems, and web proxy systems.
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2. Theoretical Aspects

2.1 Coherence Problem

Distributed cache systems provide decreased latency at a cost: every cache will some-
times provide users with stale pages. Every local cache must somehow update pages
in its cache so that it can give users pages which are as fresh as possible. Indeed, the
problem of keeping cached pages up to date is not new to cache systems: after all, the
cache is really just an enormous distributed file system, and distributed file systems
have been with us for years. In conventional distributed systems terminology, the
problem of updating cached pages is called coherence [2, 4, 5,7, 12].

Specifically, the cache coherence problem consists of keeping a data element found
in several caches current with each other and with the value in main memory (or local
memories). A cache coherence protocol ensures the data consistency of the system:
the value returned by a read must always be the last value written to that location.
There are two classes of cache coherence protocols [12]: write-invalidate and write-
update. In a write-invalidate protocol, a write request to a block invalidates all other
shared copies of that block. If a processor issues a read request to a block that has been
invalidated, there will be a coherence miss. That is, in write-invalidate protocols
whenever a processor modifies its cache block, a bus invalidation signal is sent to all
other caches in order to invalidate their content. In a write-update protocol on the
other hand, each write request to shared data updates all other copies of the block, and
the block remains shared. That is, in write-update protocols a copy of the new data is
sent to all caches that share the old data. Although there are fewer read misses for a
write-update protocol, the write traffic on the bus is often so much higher that the
overall performance is decreased. A variety of mechanisms have been proposed for
solving the cache coherence problem. The optimal solution for a multiprocessor sys-
tem depends on several factors, such as the size of the system (i.e., the number of
processors), etc. The main types of coherence mechanisms are [12]: Snooping Coher-
ence, Directory Coherence, and Software Cache Coherence Mechanism.

2.2. Replacement Policy Problem

A replacement policy specifies which block should be removed when a new block
must be entered into an already full cache; it should be chosen so as to ensure that
blocks likely to be referenced in the near future are retained in the cache. The choice
of replacement policy is one of the most critical cache design issues and has a signifi-
cant impact on the overall system performance. Common replacement algorithms used
with such caches are [1, 3, 6, 8, 9]: First In-First Out (FIFO), Most Recent Used
(MRU), Least Recently Used (LRU), Least Frequently Used (LFU), Least Frequently
Used (LFU)-Aging, Greedy Dual Size (GDS), Frequency Based Replacement (FBR),
Random (RAND), Priority Cache (PC), Prediction.

In general, the policies anticipate future memory references by looking at the past
behavior of the programs (program’s memory access patterns). Their job is to identify
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a line/block (containing memory references) which should be thrown away in order to
make room for the newly referenced line that experienced a miss in the cache.

3. An Adaptive Coherence-Replacement Policy

Normally, user cache access patterns affect cache replacement decisions while block
characteristics affect cache coherency decisions. Therefore, it is reasonable to consider
replacing cache blocks that have expired or are closed to expiring because their next
access will result in an invalidation message. In this way, we propose a cache coher-
ence-replacement mechanism that incorporates the state information into an adaptive
replacement policy. The basic idea behind the proposed mechanism is to combine a
coherence mechanism with our adaptive cache replacement algorithm [1]. Our adap-
tive cache coherence-replacement mechanism exploits semantic information about the
expected or observed access behavior of particular data shared objects on the size of
the cache items, and the replacement phase employs several different mechanisms,
each one appropriate for a different situation. Since our coherence-replacement is
provided in software, we expect the overhead of providing our mechanism to be offset
by the increase in performance that such a mechanism will provide. We incorporate
the additional information about a program’s characteristics, which is available in the
form of the cache block states, in our replacement system. Our system can be applied
to different distributed systems independent of the coherence protocol. We assume
that if a place has an invalid copy of a block, a request to this block is a miss access. In
this way, we guarantee to search for a valid copy of the block. We assume three types
of target systems:

3.1 Cache Coherence-Replacement in a Shared Memory Multiprocessor

In a shared-memory multiprocessor system, local caches are used to reduce memory
access latency and network traffic [8, 12]. Each processor is connected to a fast mem-
ory ‘backed up’ by a large (and slower) main memory. This configuration enables
processors to work on local copies of main memory blocks, greatly reducing the num-
ber of memory accesses that the processor must perform during program execution.
Although local caches improve system performance, they introduce the cache coher-
ence problem: multiple cached copies of the same block of memory must be consistent
at any time during a run of the system. In general, each cache block can be in one of
the following four states:

Invalid: a stale copy.

Shared: multiple copies of the block exist.

Exclusive: only one processor has a copy of the block.

Modified: the processor has the only valid copy of the block in cache.
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We can use both coherence protocols (write-invalid and write-update). In this case,
our adaptive cache coherence-replacement mechanism is as follows:

1. If write miss (if the processor has a copy of the block, it is invalid) then

1.1 Search for a valid copy (shared memory or remote cache memory). A read-
miss request is sent to the system

1.2 If cache is full, choose a replacement policy according to a decision system.

1.3 Receive a valid copy

1.4 Moditfy block (critical section)

1.5 Call coherence protocol (write-invalidate or write-update protocol)

1.6 Change state to modified (if we use write-invalidate protocol) or shared (if
we use write-update protocol) or exclusive (if it has the only copy in the
system)

1.7 Change state of all other copies of this block to invalid (if we use write-
invalidate protocol) or shared (if we use write-update protocol)

2. If read miss then

2.1 Search for a valid copy (shared memory or remote cache memory). A read-
miss request is sent to the system

2.2 If cache is full, choose a replacement policy according to a decision system.

2.3 Receive a valid copy

2.4 Change state of the different copies of the block to shared or exclusive (if it
has the only copy on the system)

2.5 Read block

3. If write hit then

3.1 Modify block (critical section)

3.2 Call coherence protocol (write-invalidate or write-update protocol)

3.3 Change state to modified (if we use write-invalidate protocol) or shared (if
we use write-update protocol) or exclusive (if it has the only copy on the
system)

3.4 Change state of all other copies of this block to invalid (if we use write-
invalidate protocol) or shared (if we use write-update protocol)

4. If read hit then

4.1 Read block

3.2 Cache Coherence-Replacement in a Distributed Memory Multiprocessor

In this case, we study a distributed memory multiprocessor (DM) in which each proc-
essor is associated with a private cache. Local cache memory is the simplest cost-
effective way to achieve a high-speed memory hierarchy in a distributed memory
system. A local cache provides, with high probability, instructions and data needed by
the local CPU at a rate that is more in line with the CPU’s demand rate [2, 12]. In this
case, each cache block can be in one of the following state:

Invalid: a stale copy.
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Shared_up: multiple copies of the block exist and all memory copies are up-to-date.

Shared_nup: multiple copies of the block exist and not all memory copies are up-to-
date.

Exclusive_up: only one processor has a copy of the block, and the local memory copy
is up-to-date.

Exclusive_nup: only one processor has a copy of the block, and the local memory
copy is not up-to-date.

Modified: the processor has the only valid copy of the block and all memory copies
are stale.

In our approach, we assume a protocol which guarantees that the local memory has
the same version of a given block as its cache memory. That means, the differentiation
between Shared_up and Shared_nup is not necessary (only a Shared state is needed);
similarly for Exclusive_up and Exclusive_nup, where only an Exclusive state is re-
quired. In addition, when we update the state of a block at a given site (according to
the coherence protocol), both block copies are updated (local memory and its cache
memory) if the cache memory has a copy. With these assumptions, the adaptive cache
coherence-replacement mechanism for this case is the same as the previous one.

3.3 Cache Coherence-Replacement in a Web Proxy Cache

The growth of the Internet and the WWW has significantly increased the amount of
online information and services available. However, the client/server architecture
employed by the current Web-based services is inherently unscalable. Web caches
have been proposed as a solution to the scalability problem [3, 4, 5, 7, 10, 13]. Web
caches store copies of previously retrieved objects to avoid transferring those objects
in response to subsequent requests. Web caches are located throughout the Internet,
from the user’s browser cache through local proxy caches and backbone caches, to the
so-called reverse proxy caches located near the origin of the content. Client browsers
may be configured to connect to a proxy server, which then forwards the request on
behalf of the client. All Web caches must try to keep cached pages up to date with the
master copies of those pages, to avoid returning stale pages to users. There are strong
benefits for the proxy to cache popular requests locally. Users will receive cached
documents more quickly. Additionally, the organization reduces the amount of traffic
imposed on its wide-area Internet connection.

Because a cache server has a fixed amount of storage, the server needs a cache re-
placement mechanism [3, 5]. Recent studies on web workload have shown tremendous
breadth and turnover in the popular object set-the set of objects that are currently be-
ing accessed by users [13]. The popular object set can change when new objects are
published, such as news stories or sports scores, which replace previously popular
objects. We should define cache replacement policies based on this workload charac-
terization. In addition, a cache must determine if it can service a request, and if so, if
each object it provides is fresh. This is a typical question to be solve with a cache
coherence mechanism. If the object is fresh, the cache provides it directly, if not, the
cache requests the object from its origin server.
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Our adaptive coherence-replacement mechanism for Web caches is based on sys-
tems like Squid [11], which caches Internet data. It does this by accepting requests for
objects that people want to download and by processing their requests at their sites. In
other words, if users want to download a web page, they ask Squid to get the page for
them. Then Squid connects to the remote server and requests the page. It then trans-
parently streams the data through itself to the client machine, but at the same time
keeps a copy. The next time someone wants that same page, Squid simply reads it
from its disks, transferring the data to the client machine almost immediately (Internet
caching). Normally, in Internet caching cache hierarchies are used. The Internet Cache
Protocol (ICP) describes the cache hierarchies. The ICP’s role is to provide a quick
and efficient method of intercache communication, offering a mechanism for estab-
lishing complex cache hierarchies. ICP allows one cache to ask another if it has a valid
copy of a object. Squid ICP is based on the following procedure [11]:

1. Squid sends an ICP query message to its neighbors (URL requested)

2. Each neighbor receives its ICP query and looks up the URL in its own cache. If a
valid copy exists, the cache sends ICP_HIT, otherwise ICP_MISS

3. The querying cache collects the ICP replies from its peers. If the cache receives
several ICP_HIT replies from its peers (neighbors), it chooses the peer whose re-
ply was the first to arrive in order to receive the object. If all replies are
ICP_MISS, Squid forwards the request to the neighbors of its neighbors, until to
find a valid copy.

Neighbors refer to other caches in a hierarchy (a parent cache, a sibling cache or
the origin server). Squid offers numerous modifications to this mechanism, for exam-
ple: i) Send ICP queries to some neighbors and not to others, ii) Include the origin
sever in the ICP "ping" so that if the origin servers reply arrives before any ICP-hits,
the request is forward there directly, iii) Disallow or require the use of some peers for
certain requests. In this case, each cache block can be in one of the following states:

Invalid: a stale copy.

Normally, there is only one state because the users typically do not write. Then, the
adaptive cache coherence-replacement mechanism is as follows:

1. If read miss then
1.1 Search for a valid copy (using the ICP). A read-miss request is sent using the
ICP
1.2 If cache is full, choose a replacement policy according to a decision system.
1.3 Receive a valid copy
1.4 Read block
2. If read hit then
2.1 Read block
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3.4 Our Generic Replacement Subsystem

Typically, a cache replacement technique must be evaluated with respect to an offered
workload that describes the characteristics of the requests to the cache. Of particular
interest are patterns in the objects referenced and the relationships among accesses.
Workload is sufficiently complicated that we can use other types of information to try
to solve this problem. Thus, we define a set of parameters that we can use to select the
best replacement policy in a dynamic environment:

e Information about the system: Workload, Bandwidth, Latency, CPU Utilization,
Type of system (Shared memory, etc.)

e Information about the application: Information about the data and cache block or
objects (Frequency, Age, Size, Length of the past information (patterns), State
(invalid, shared, etc.)), Type an degree of access pattern on the system (High or
low spatial locality (SL), High or low temporal locality (TL)).

e  Other information: Cache conflict resolution mechanism, Pre-fetching mecha-
nism.

An optimal cache replacement policy would know the future workload. In the real
world, we must develop heuristics to approximate ideal behavior. For each of the
policies we listed in section 2.2, we define the information that is required by them:

e LFU: reference count.

e LRU: the program’s memory access patterns.

e  Priority Cache: information at runtime or compile time (data priority bit by
cache/block).

e  Prediction: a summary of the entire program’s memory access pattern.

e FBR: the program’s memory access patterns and organization of the cache mem-
ory.

e  MRU: the program’s memory access patterns.

e  FIFO: the program’s memory access patterns.

e GDS: size of the objects, information to calculate the cost function, reference
count.

e Aging approaches: GDS-aging: GDS age factor or LFU-aging: LFU age factor.

We define one expression, called the key value, to define the priority of replace-
ment of each block/object. According to this value, the system chooses the block with
higher priority to replace (low key value). The key value is defined as:

Key-Value = (CF+A+FC)/S + cache factor @)

where,
- FC is the frequency/reference count, that is the number of times that a block has
been referenced,
- As the age factor,
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S is the size of the block/object,

CF is the cost function that can include costs such as latency or network band-

width.

The first part of Equation (1) is typical for the GDS, LRU and LFU policies (using
information about objects to reference and not about cache blocks). The cache factor is

defined according to the replacement policy used:

LFU: blocks with a high frequency count have the highest cache factor.
LRU: the least recently used block has the highest cache factor.

Priority Cache: defined at runtime or compile-time.

Prediction: the least used block in the future has the highest cache factor.
FBR: the least recently used block has the highest cache factor.

MRU: the most recently used block has the highest cache factor.

FIFO: the block at the head of the queue has the highest cache factor.
GDS: not applicable.

Aging approaches: FC/A, with a reset factor that restarts this value after a given

number of ages or when the age average is more than a given value.

The coherence-replacement policy defines the cache factor so that: blocks in invalid
state have the highest priority to be chosen to replace. Otherwise, blocks in shared
states must be chosen to replace, then blocks in exclusive states, and finally, blocks in
modified states. If there are several blocks in a particular state, we use the replacement
policy specified in our decision system [1]. The decision system is composed of a set
of rules to decide the replacement policy to use. Each rule selects a replacement policy

to apply according to different criteria:

If TL is high and the system’s memory access pattern is regular then
Use a LRU replacement policy

If TL is low and the system’s memory access pattern is regular then
Use a LFU replacement policy

If TL is low and the system’s memory access pattern is large then
Use a MFU replacement policy

If we require a precise decision using a large system’s memory access pattern

history then

Use a Prediction replacement policy

If objects/blocks have variable sizes then
Use a GDS replacement policy

If a fast decision is required then
Use a RAND replacement policy

If there is a large number of LRU candidate blocks then
Use a FBR replacement policy

If SL is high then
Use a hybrid FBR + GDS replacement policy

If the system’s memory access pattern is irregular then
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Use an age replacement policy

If the Local CPU utilization is low then
Choose a process to suspend (In this case, we can use a PC policy to select
the process) and call the algorithm again for this reduced set of processes.

For all other situations, choose randomly a replacement policy. The CPU utilization
criterion avoids the starvation or thrashing problem on the system. In general, these
rules are based on the average of the different criteria in the system. We can take into
account the victim’s information (the process that has been selected to expel its page)
with the next rule:

If the victim’s SL or TL is high then
Lock this page % Choose another page
And call the decision system again with this smaller problem.

If we don’t find a page to expel according to the last rule, we choose the first victim
process that we had selected and we suspend this process. In the case of web proxy
systems, we don’t use the last two rules because they are very specific for multiproc-
essing systems.

4. Conclusions

The goal of this research was to formulate an overarching framework subsuming vari-
ous cache management strategies in the context of different distributed platforms. We
have proposed an adaptive coherence-replacement policy. Our approach includes
additional information/factors such as frequency of block use, state of the blocks, etc.,
in replacement decisions. It takes into consideration that coherency and replacement
decisions affect each other. This adaptive policy system must be validated by experi-
mental work in the future, for example, using the Squid open source proxy cache [11].
In general, we plan to do a prototype implementation of our techniques and study their
impact on the quality of the cache management, taken into consideration the additional
cost (in time and space) our approach requires.
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