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Absfrocf-In this work, an approach for the development of 
adaptive fuzzy models is presented. The approach allows to incor- 
porate the system dynamics into the fuzzy membership functions 
which are defined in terms ofa dynamic function with adjustable 
parameters. These parameters are adapted using a gradient de- 
scent based algorithm. Some application examples to illustrate the 
performance of the dynamical adaptive fuzzy models on system 
identification are presented. 

I. INTRODUCTION 

An important aspect about fuzzy modeling is the search for 
the design methods to develop accurate representation models 
of real process using the available knowledge about them. A 
rather classic method for the development of fuzzy models is 
the so called direct procedure which does not allow the incor- 
poration of quantitative observations about the system opera- 
tion in order to determine the structure and parameters of the 
model. Also, if there is a poor expert knowledge, the fuzzy 
model obtained from such a background will have an inade- 
quate performance. In order to improve the development of 
fuzzy models, new design methods like the associate with the 
adaptive fuzzy systems design, allows the incorporation of the 
available data [l]. Other approaches, like the ones based upon 
artificial neural networks, have provided supervised learning al- 
gorithms to adapt parameters of fuzzy systems . The resulting 
fuzzy models have both the advantages of neural networks and 
fuzzy logic systems: they are universal approximators, they can 
leam through different methods, and the knowledge about the 
process may be incorporated into the model parameters. 

In this work, a new approach for the development of adap- 
tive fuzzy models is presented. In this approach the system 
variables dynamics may he incorporated into fuzzy membership 
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functions of the proposed model. As a result, the fuzzy model 
incorporates dynamical membership functions whose parame- 
ters are adjusted via descent gradient learning algorithm. 

In the following section, basic concepts about linguistic 
models and adaptive fuzzy models are revised and an analytic 
description of these model classes is presented. The third 
section includes the new dynamical adaptive fuzzy model, 
followed by illustrative examples about the construction of 
identification models in section four. Section five is devoted to 
conclusions and recommendations. 

11. LINGUISTIC AND ADAPTIVE FUZZY MODELS 

Without loss of generality, a linguistic fuzzy logic model de- 
scribed by a base of M fuzzy rules may be given by the follow- 
ing generic tule: 

R") : I F  XI is F: AND ... AND xn i s  FA 
THEN y isG'  (1) 

where X = (21 z2 _._ z,)= is a vector of input linguistic 
variables z, defined on an universe of discourse U;. The out- 
put linguistic variable y is defined on an universe of discourse 
V. On the other hand, F: and d are fuzzy sets on U; and V, 
respectively, (i = 1, ..., n), (1 = 1, ..., M ) .  

The analytic expression that summarizes the inference mech- 
anism the fuzzy logic system (FLS) described in (I) ,  using the 
fuzzification method of ordinary sets, the center-average de- 
fuzzification method and gaussian membership functions for 
the fuzzy sets associated to the input variables, is given by the 
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following equation [I]: decreased. Figure 2 illustrates a fuzzy partition of the variables 
space as suggested in [ 3 ] .  

c ~ ~ y '  (ny= ,ezp  [-VI) 
E:, (n;=, ezp [--I) Y W  = (2) 

where y' is the centre of the fuzzy set GI; af defines the mem- 
bership function mean value for the fuzzy set Fj associated to 
the variable zi in the rule I; Bf is the variance with respect a:, 
for the fuzzy set Ff associated to the variable zi in the rule 1. 

Note that the FLS represented by equation (2) may be trans- 
formed into an Adaptive Fuzzy System (AFS) by properly ad- 
justing the parameters 7'. a: and s! using a learning algorithm. 
Reference [I] proposes a gradient descent based supervised 
leaming mechanism for the tuning the before mentioned pa- 
rameters. 

In most practical applications, a FLS like (2), with a gradient 
descent based leaming algorithm for adjusting the parameters 
a:, Bf and y', is not good enough for the construction of an 

particular, based on the generic base 
of rules described by ( I )  and the characteristics ofgradient de- 
scent methods there would be a different membership function 
of each fuzzy set defined in the base of rules and therefore the 
linguistic values F; are a con- 
sequence, there is not any guarantee of overlapping different 
fuzzy sets and the rules may be weakly activated, or not ac- 
tivated at all, for some input data presented after the training 
is completed. This fact is particularly true when gaussian and 
triangular membership functions are used. 

Figure 1 illustrates a partition of the variables space when 
an AFS as the one described by (2) is used. Reference [3 ]  

Fig. 2. Fuuy partition using a Mamdani's table 

111. DYNAMICAL ADAPTIVE FUZZY MODELS 

fuzzy model. The AFS presented in the previous section may be improved 
by defining dynamical membership functions which incorpo- 
rates the into fuzzy mod- 
els. This way, the resulting Dynamical Adaptive Fuzzy Model 
(DAFM) can adapt itself to changes in the domain of discourse 
Of the 

Figure 3 depicts the idea behind of the definition of dy- 
Note that the dynamical 

characteristic of the membership functions avoids the before 
mentioned weakness associated with the activation of fuzzy 
rules in AFS. 

The corresponding analytic expression of a DAFM based on 

behaviour Of 

,,sed into rule 1 [2]. 

membership 

Fig. 3. Dynamical membership function for a given variable zi 

(2), is as follows: 
Fig. I .  F u v y  partition by using a elassic AFS 

presents an approach that improves the fuzzy rules activation. 
[ - - 

vi lli.., by defining abase of knowle'dge with some h e s  showing the - I /  
same fuzzv sets for some of the inout variables. This anoroach y(X't) = 
allows to generate a base of rules'similar to the ones &ained 
when the classical "Mamdani's tables" are used. This wav. the 

L J ,  number of tuning parameters in the resulting base of rules is (3) 
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where X is a vector of input variables z;; t is the time; 21' is a 
vector of P parameters ut of the function 7'; ut - is a vector of Q 
parameters vi, of the function a;; wf is a vector of R parameters 
w:, of the function / 3 f ;  p = 1, ..., P,  q = 1, ..., Q, r = 1, ..., R. 

Once the DAFM is defined, the general structure of the 
functions ~' (d , t ) ,  aI(u1, - t) and /3: (wf,t) - has to be specified 
and a procedure to obtain the parameters U;, ut, and wf7 
should be proposed. 

A. General structure of the functions 

Functions -,'(&t), a f ( v f , t )  and (wf,t)  should be 
chosen in such a way thG represent the -hole domain of 
discourse range of input and output variables through time. 

Let z ; ( t j ) ,  i = 1, ..., n, be the input variables values to the 
DAFM at time t j  which generate the output y ( t j ) .  Taking into 
account the meaning of the functions af(uf,t j)  and a,! (w:, t j )  

in the gaussian expression given in (3), ageneral structure for 
these functions may be stablished as: 

(4) 

- 

a f ( v f ,  - tl) = f(V&Zi(tj)) 

P f ( d , t j )  = g ( w f > d ( t j ) )  - (5) 

+(d,tj) = h(diB(tj)) (6) 

where: 

or, alternatively: 

The equation (7) is the sample mean of the previous observa- 
tions of the input variables zi until time t j .  The equation ( 8 )  
is the average of the sample deviation of the value xi(&) with 
respect to % ; ( t k ) ,  until time t j .  The equation (9) is the aver- 
age of the 6 previous observations of the output variable y until 
time t(j-l), while the equation (IO) is the sample mean of the 
previous observations of the output variable y until t(j-l). 

In this work, the general structure of the previous functions 
are proposed as follows: 

a:(v:, - t j )  = * Z i ( t j )  (11) 

B f ( 3 , t j )  1 = wf, * ( u : ( t j )  +wiz)  

-,'(21', t j )  = U: * V ( t j )  

(12) 

(13) 

The expression proposed in (1  1) allows the adjusting of the 
membership functions mean value of the fuvy  sets F: around 

0-7803-7280-8/02/$10.00 02czoO2 IEEE 

the sample mean T i ( t j ) ,  through the parameter vfl. The 
expression proposed in (12) allows the adjusting of such a 
membership functions base around ut($) .  Ifu:(tj) has a very 
small value, the parameter wf2 avoid an indeterminate number 
in the equation (3) when the function @i(wf,tj) is computed. 
The equation (13), allows the adjusting ofFhe centre of fuzzy 
set G' around p ( t j )  through the parameter U:. 

B. The parameters adjustment 

In this work, the gradient descent based algorithm is used 
for the parameters tuning of DAFM. 

Based on the mean quadratic error E given by the equation 
(14): 

(14) E =  5 ( V e ( t j ) - d t j ) ) '  

where y ( t j )  is the output of the system at time t j  and y.(tj) 
is the output estimated by the fuzzy model (3) at time t j ;  the 
adjustment laws using the gradient descent based method, are 
given by the equations (15), (16), (17): 

1 

where K is the current iteration in the training phase and p j  is 
the learning rate 0' = 1,2,3). 

Developing the previous expressions, it has that: 

In order to simplify the notation, it is denoted -,'(d, tl) = 
y', af (v : ,  t j )  = a', and &(tu:, - t j )  = 81. Then, - 

158 



where: 

Substituting (18), (19) and (20) respectively into (lS), (16) 
and (17), the adjustment laws of the parameters are obtained. 
In the particular case of the functions proposed in (1  I ) ,  (12) 
and (13), it has that: 

IV. ILLUSTRATIVE EXAMPLES 

In the following sections, two examples illustrate the perfor- 
mance of the DAFM in system identification. The performance 
of the fuzzy model in system identification is evaluated accord- 
ing to the identification error e ( t )  defined as: 

4 = [ y e ( t j )  - ~ ( t j ) l  (28) 

where y ( t j )  is the output of the system and y . ( t j )  is the esti- 
mated output by the fuzzy model ( 3 )  at time t j .  

The first example shows a system with an unknown nonlinear 
part; in the second the output is not well-known. The DAFM 
will be used in order to estimate the unknown parts. 

In order to propose an identification fuzzy model, the 
equation (9) is used taking 6 = 1, then B ( t j )  = y ( t j - 1 ) .  This 
way, the centre of fuzzy set G' depend on the last available 
value of the output y .  

A .  Example I 

In this example, the system has been described by the 
following difference equation: 

~ ( k  + 1) = 0 .3y (k )  + 0 .6y (k  - 1) + g[u(k) ]  (29) 

where g[u(k)] = 0.6sin(?iu(k)) + 0.3sin(3xu(k)) + 
0.1 sin(5au(k)) 

The estimated function y,(k + 1) is: 

y , (k  + 1) = 0 . 3 y ( k )  + 0 . 6 y ( k  - 1) + ge[~(k)] (30) 

where ge[u(k)] is estimated by using a DAFM. 
The input variable to the fuzzy model is zl(k) = u ( k )  and 

~ ( t ( ~ _ ~ ) )  = g[u(k - l)]. A set of 1000 training patterns has 

been obtained from a random input on the interval [-1,1], and 
1000 training cycles has been made in the training phase with 
an arbitrary initial values of the parameters on the interval [0, I]. 
The hest models with respect to the identification error have 
been obtained with M = 10,20,30 and pi = 0.1 

The performance of the previous models has been tested with 
the input signal u(k) = sin(Zrk/250). Figure 4 shows the 
identification ermr of y ( k +  1). The low error has been achieved 
with M = 10. The figure 5 illustrates the performance of such 
a fuzzy model. Also, the performance of the previous fuzzy 

' i '  I '  
02 

I 

Fig. 4. Identification error using u(k) in the example 1. The fimt model 
( M  = 10) has the solid line, the second model ( M  = 20) has the dashed line 
and third model ( M  = 30) has the painted line. 
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Fig. 5.  Real output and estimated output (dashed line) using the fuzzy model 
with M = 10 andthc input u(k), in the example I 

model has been tested using the input ul(k). Figure 6 shows 
the performance of this fuzzy model. 

= { 3 + (0.5(u. + u b ) )  if 251 < k < 500 
sin(Zrrk/250) if otherwise 

( 3 1 )  

where U. = sin(2xk/250) and ub = sin(Zxk/25). 
Based on the identification error, the performance of the pro- 

posed fuzzy model performance is adequate. The identification 
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Fig. 6. Real output and estimated output (dashed line) using the fuvy model 
w i t h M =  lOandtheinputu~(k),intheexampIe I 

Fig. 7. Identification ermr using u ( k )  in the example 2. The fint model 
( M  = 10) has the solid line, the second model ( M  = 20) has the dashed linc 
and third model ( M  = 30) has the pointed line. 

error in the figure 6 is increased when the input signal suddenly 
changes, however, the identification fuzzy model follows the 
real output. In VI  an adaptive fuzzy model with M = 40,120 
adjustable Parameters and 5000 training cycles is Proposed. 
Here, the proposed model uses M = 10 and 30 adjustable 

4 k )  = sin(2rk/250). In the figure 7, the identification er- 
rors of y(k + 1) is shown. The low error has been achieved 
with M = 10, Figure g shows its perfomance using the input 
u(k). Figure 9 illustrates the performance of this model using 

parameters. 

B. Example 2 

In this example, the system has been described by the 
following difference equation: 

~ ( k + 1 ) = g [ y ( k ) , y ( k - l ) , ~ ( k - 2 ) , u ( k ) , u ( k - 1 ) 1  (32) 

l+"(r-z)~+V(k-i)~ 
where g[,l = ~ ( r ) u ~ ~ - l ) u ( k - z ) " ( ~ - i ) ( ~ ( ~ - z ) - l ) + " ( k ~  

The estimated function y,(k + 1) is: 

Y& + 1) = ge[Y(k),Y(k - l),Y(k - 2 ) , u ( k ) ,  4 k -  1)1 (33) 

k), 
y(k - 11, ~ ( k )  = d k  - 21, 24(k) = U&\ Y 

= g[u(k - l)]. A set of 
1000 training patterns has been obtained using a random input 
on the interval [-1,1], and 1000 training cycles has been made 
in the training phase from arbitrary initial values of the param- 
eters on the interval [0,1]. The best models with respect to the 
identification ermr are given on the table I. The performance 

where se[.] is estimated using a DAFM. 
The input variables to the fuzzy model are zl(k) = 

u(k - 1) and y 
Fig. 8. Real output and estimated output (dashed line) using the hzzy model 
with M = 10 and the input u(k),  in the cxample 2 

the input u1 (k) 

(34) 
sin(Znk/250) if otherwise 

= [ 1.5 + (U, + ub) if 501 < k < 800 

where uo = 0.8sin(2nk/250) andub = 0.2sin(2ak/25) 
According to the identification error, the proposed fuzzy model 
has an adequate performance. In the figure 9 The identification 
error is increased just at time when the input signal suddenly 
changes; however, like the previous example, the identification 
fuzzy model follows the real output and the identification error 
remain around cero. 

This example has been developed in [I], using a model 
with M = 40, 440 adjustable parameters and 5000 training 

TABLE I 
TRAININGPHASE. EXAMPLE I 

of the previous models has been tested with the input signal 
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cycles from an adequate selection of the initial values of the 
parameters. Here, the proposed model uses M = 10 and 1 I O  
adjustable parameters from an initial randomly selection of 
parameters values. 

V. CONCLUSION 

New approaches in fuzzy modeling that permit to solve prac- 
tical limitations found in classic adaptive fuzzy modeling, are 
considered an interesting contribution in the fuzzy logic field. 

In this work, an approach for dynamical adaptive fuzzy mod- 
eling is proposed. This approach permits incorporate into the 
fuzzy membership functions the temporal behaviour of the sys- 
tem variables, allowing to the fuzzy model adapt itself to the 
changes that dynamically can be presented in the domains of 
discourse. The resulting dynamical adaptive fuzzy model per- 
mits to improve the fuzzy rules activation and the overlapping 
of the fuzzy sets. 

The functions that describes the dynamical membership 
functions are based on the sample mean and sample deviation 
of the available observation about the variables of the system. 
The parameters adjustment algorithm is based on the descent 
gradient supervised learning method, but the design of on-line 
learning algorithms could be an interesting goal. 

The illustrative examples in system identification show that 
the performance of the proposed fuzzy models based on the 
identification error is adequate. These models follows the real 
output using input signals with sudden changes on the time. 
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