
An Approach to Mapping Parallel Programs on
Hypercube Multiprocessors

Aguilar Jose
CEMISID. Dpto. de Computación.

Facultad de Ingeniería. Universidad de los Andes.
Av. Tulio Febres. Mérida, Edo. Mérida-Venezuela

Telf: (58.74)440002 Fax:(58.74)402872
email: aguilar@ing.ula.ve

Abstract

 In this work, we propose a heuristic algorithm based
on Genetic Algorithm for the task-to-processor mapping
problem in the context of local-memory multiprocessors
with a hypercube interconnection topology. Hypercube
multiprocessors have offered a cost effective and feasible
approach to supercomputing through parallelism at the
processor level by directly connecting a large number of
low-cost processors with local memory which
communicate by message passing instead of shared
variables. We use concepts of the graph theory (task
graph precedence to represent parallel programs, graph
partitioning to solve the program decomposition
problem, etc.) to model the problem. This problem is
NP-complete which means heuristic approaches must be
adopted. We develop a heuristic algorithm based on
Genetic Algorithms to solve it.

1. Introduction

 The advent of cost-effective VLSI components in the
past few years has made feasible the commercial
development of massively parallel computers with
hundreds of processors. Because of appealing properties
such as node and edge symmetry, logarithmic diameter,
high fault resilience, scalability, and the ability to host
popular interconnection networks, namely ring, torus,
tree and linear array, hypercube multiprocessors has been
the focus of many researchers over the past few years [2,
5, 6]. This topology has result in several commercial
product (Origin2000, Intel iPSC, NCUBE/10,
Caltech/JPL, etc.).
 Conceptually, the hypercube interconnection network
is a multidimensional binary cube with a processor or
procesors cluster at each of its vertices. An n-
dimmensional hypercube has 2n processors or processor

clusters and n2n-1 links. Each processor or processors
cluster has its own local memory and interprocessor
communication is done by explicit message passing
directly or through some intermediate processors. This
type of architecture is more readily scaled up to very large
numbers of processors than multiprocessors designs based
on globally shared memory [4, 6].
 The effective exploitation of the potential power of
this type of parallel architecture requires efficient
solutions to the task-to-procesor mapping problem. The
problem is that of optimally allocating the tasks of
parallel program among the processors in order to
minimize the execution time of the program. The
mapping problem is NP-complete [4, 7, 8, 9, 10] which
means heuristics approaches must be adopted. The
mapping of the tasks to processors may either be
performed statically (before program execution) or
dynamically in an adaptive manner as the parallel
program executes. The appropriate approach depends on
the nature of the model of the parallel programs. If the
characterization of the parallel program, i.e. the
dependence between tasks and their execution time can be
accurately estimated a priori, then a static approach is
more attractive, since the mapping computation need
only be performed once. We only consider static mapping
scheme in this paper.
 In this work, the task-to-processor static mapping
problem in the context of a local-memory
multiprocessors with a hypercube interconnection
topology is solved using an algorithm based on Genetic
Algorithms. We will model a parallel program execution
as an acyclic directed graph whose nodes represent the
tasks with known (or estimated) computation times, and
whose arcs represent the precedence relations between
tasks, that is the explicit execution dependences [7, 8, 9,
10]. This graph is called tasks graph. Our approach is
composed by two phases: in the first phase an initial

tasks graph k-partitioning is done in a manner of
minimize communication volume and load imbalance
cost between the subgraphs (clusters), where k is the
number of processors. In the second phase, task clusters
are assigned among processors of the system with
hypercube interconnection topology in a manner that
minimize the communication distance between clusters.
 This paper is organized as follows. In section 2 we
formalized the mapping problem. In section 3 the
theoretical basis of Genetic Algorithms are reviewed.
Then, we present our algorithm. In section 4 we compare
the effectiveness of our scheme with previous work [5, 7,
10]. Remarks concerning future work and conclusions are
provided in section 5.

2. Mapping Problem

 The parallel program is characterized by a task graph:
Gt = (N, A, C, t), where N = {1, ... ,n} is the set of n
tasks that compose the program, and C, t denote the
times related to task execution and to communication
between tasks. Thus, each task i has a weight C(i) which
defines its execution time, for i=1, ..., n. tij will denote

the data communication requirements between tasks j and
i. A = {aij} is the adjacency matrix representing the

precedence order between the tasks. Since the graph is
acyclic, we may number the tasks in a manner such that
aij=0 if i > j [7, 8, 9, 10].

 The parallel computer is represented as a hypercube
graph Gm=(P, E) where m denotes the dimension. An

hypercube of dimension m has 2m nodes and (m2m-1)=k
edges. That is, the nodes P = (1, ..., k) represent the
processors and the edges E represent the communication
links. The system is assumed to be homogeneous, with
identical processors. Hence, in contraste to the task
graph, no weights are associated with the nodes or edges
of the processors graph. If the nodes are labeled from 0 to
2m-1 in binary, then an edge connects two nodes if only
if their binary labels differ in exactly one bit position.
The hamming distance between two nodes equals the
minimal length of any path connecting these nodes.
 The problem is that of assigning the n tasks to k
processors. This means that we have to create task
clusters (Gt1, ..., Gtk) in a way which optimizes

performance. The problem is then characterized by the
following objectives:

- The load of the different task clusters must be balanced.
- The communication between different task clusters

must be kept to a minimum.
- Two task clusters with communication between them

must be mapped onto nearest-neighbor processors.

 That is, the task-to-processor mapping is a function
M:N->P. M(i) gives the processor onto which task i is

mapped.The tasks cluster p (TCp) is defined as the set of
tasks assigned to cluster p:

 TCp= {j / M(j) = p} for p = 1, ..., k

 The load of TCp (L_TCp) is the total execution time
of all tasks assigned onto it:

L_TCp = ∑
i∈ TCp

C(i)

and the idealized average load is given by

L_TC =
k
∑

p=1
(L_TCp -

k
∑

p=1
L_TCp/k)2

 The communication between TCp and TCq is equal to

C_TCpq = ∑
i,j ∈ D

t i j

where, D={(i ∈ TCp) & (j ∈ TCq) & (p .not equal. q)
 & (aij = 1 or aji = 1)}

 The first and second contraint can be solved as

min (L_TC + Σp,q C_TCpq) (1)
 M

 If we suppose that each task cluster must be mapped
to a different processor, the nearest-neighbor approach can
be solved using the next cost function

CCP =
k
∑

p,q=1& p≠q
C_TCpq PATHpq

where, PATHpq is the minimal length of any path
connecting nodes p

and q (hamming distance)

and, the function to be minimized is

 min (CCP) (2)
 M

3. Our Approach

 In this section, we present Genetic Algorithms and
formalize our strategy to solve the mapping problem.

3.1 Genetic Algorithms

 This is an optimization algorithm based on the
principles of evolution in biology. A genetic algorithm
(GA) follows an "intelligent evolution" process for

individuals based on the utilization of evolution operators
such as mutation, inversion, selection and crossover [1,
3, 7, 10]. The idea is to find the best local optimum,
starting from a set of initial solutions (individuals), by
applying the evolution operators to successive solutions
so as to generate a new and better local minimum. The
procedure evolves until it remains trapped in a local
minimum. We can represent individuals as string. The
main program for a GA is the following:

Generation of individuals which represent potential
solutions

Repeat until system convergence
 Evaluation of every individual
 Selection of the best individual for reproduction
 Reproduction of the individual using the evolutive

operators
 Replace the worst old individuals by the new

individuals

 In this work, we used the mutation, inversion and
crossover operators. The crossover used is standard, a
single cutting point chosen with uniform probability
over the string length (individuals representation) and a
swap of the genetic material following it. The mutation
operator is the standard, which modifies each string
element according to probability pm. Under inversion
operator two points are chosen along the length of the
individual, the individual is cut at those points, and the
end points of the cut section switch places. In this
method three parameters are studied: the maximum
number of generations (NUMGEN), the size of the
population and the probability (PM) to use the mutation
operator after the crossover operator.

3.2 Our Heuristic Algorithm

 The mapping algorithm proceeds in two phases: An
initial mapping is first generated by grouping tasks of the
tasks graph into clusters in a manner that improves load
balancing and communication cost. Then, clusters are
assigned among processors in a manner that the nearest
neighbor property is satisfied.
 For the first phase (Cluster formation), the tasks graph
is partitioned into as many clusters as the number of
processors. We define this problem as a graph
partitioning problem, the objective is to split the tasks
graph in several subgraphs, so as to minimize the cost of
imbalance and the cost of connection (communication
cost) between them (cost function 1). The GA applied in
this case follows the next procedure: we define a search
space of n vectors where everyone represents an
individual, and every individual represents a possible
solution (partition). Each vector has n elements (tasks)
and every element has a value among 1...K, according to
the cluster to which it belongs. We begin with an initial
population of individuals randomly defined and we choose
the individuals with minimal cost for generating new

individuals using the mutation and crossover operators.
Since the population is constant, we substitute the worst
individuals of initial solution by the best individuals
generated.
 For the second phase (Processor Allocation), the
clusters generated in the first are allocated to some
processor, one cluster per processor, in a manner that
minimizes the intercluster communication path length.
That is, an optimal mapping is generated by assigning
clusters to processors in a manner to minimize the cost
function 2 (nearest-neighbor property). The GA applied in
this case follows the next procedure: we define a search
space of k vectors where everyone represents an
individual, and every individual represents a possible
solution (cluster assignment). Each vector has k elements
(clusters) and every element has a value different among
1...K, according to the processor to which it is assigned.
So that, each cluster is assigned to a different processor.
We begin with an initial population of individuals
randomly defined and we choose the individuals with
minimal cost for generating new individuals using the
inversion operators. We use only this operator because it
mades modifications in individuals which assure each
cluster is assigned to a different processor. Since the
population is constant, we substitute the worst
individuals of initial solution by the best individuals
generated.

4. Result Analysis

 In this section, we compare the effectiveness of our
algorithm (GA) with a mapping algorithm (NN) proposed
in [5], using a number of sample Task Graphs. One of
the sample is a finite element graph (figure 1) and one is
a random graph. The first graph is representative of the
kinds of graphs that result from exploiting parallelism
from computation modeling physical systems by finite
elements (it is not a directed graph). The last sample is
completely a random acyclic directed graph. It is defined
for the number of tasks in the graph (n) and the average
degrees (d) of the tasks [7, 10].

Figure 1. Sample problem graph used for performance
evaluation.

 We have used the parameters that give the best
performances in GA according to the results of the works
[7, 8, 9, 10]. NUMGEN allows to optimize the speed-up
of the algorithm to reach an optimal solution. We remark
than the quality of the solutions improves more rapidly

in the first generations that in the following. Thus, a
satisfactory quality can be obtained rapidly without to
wait that the algorithm converges (NUMGEN=10). If the
size of the population is large, we obtain better results,
but the execution time if large. For small size is possible
a rapid convergence but an optimal solution can not be
found. We begin with an initial population of n and k
individuals for each phase respectively. In the first phase,
we used the crossover operator and then the mutation
operator according to the PM probability. If PM is large
we obtain good results, but it implies an execution time
large. We define PM as 0,8.
 The performance criteria studied are: execution time of
the algorithms (in seconds) and cost function 2 value of
the solutions. Mappings were generated for a target 16
and 32 processor hypercube system. The number of
simulations per a given set of parameters is either
(depending of which occurs first): 30 simulations or the
number of simulation required to obtain a given standard
deviation of the cost function 2 (σ). Due to space

limitations, the results presented in this section were
chosen because they are representative of the phenomena
studied. We fix σ = 0.1. We have used a Ultra I
SPARCstation with 32K RAM.
 Both approaches result in mappings requiring many
interprocessor communication messages (cost function2),
that is due to load balancing constraint. In the first case
(figure 2), NN gives the best results, and the execution
time are similar. NN make a nearest-neighbor mapping
that permits good solutions for high degree of locality
and planar nature graphs (sample 1). Our approach
explicitly minimizes total communication (length and
volume), and NN approach minimizes total number of
messages. This is the reason of the best results in the
second case (figure 3) when we use our GA based
heuristic (due to a low degree of random task graphs). In
the second case (figure 3), NN execution times are
smaller. That is due, GA need a large time to reach a
good suboptimal solution.

0

20

40

60

80

100

120

140

100 200

NUMBER OF NODES

C
O
S
T

F
U
N
C
T
I
O
N

500

0

250

 500

 750

1000

1250

1500

1750

100 200

GA

NN

NUMBER OF NODES

E
X
E
C
U
T
I
O
N

T
I
M
E

500

Figure 2. Results and Execution Time of the simulation for 16 processors and sample 1.

10

20

30

40

50

60

70

80

10 50

NUMBER OF NODES

C
O
S
T

F
U
N
C
T
I
O
N

100

0

150

 300

 450

 600

 750

 900

1050

10 50

NUMBER OF NODES

E
X
E
C
U
T
I
O
N

T
I
M
E

100

Figure 3. Results and Execution time of the simulation for 16 processors and random graphs with d = 3.

5. Conclusions

 In this paper, we introduced a method to solve the
task-to-processor mapping problem in the context of a
local-memory multiprocessors with a hypercube
interconnection topology. Our method explicitly
minimizes total communication (length and volume) and
load imbalance costs. The method is based on two
phases: in the first phase an initial tasks graph k-
partitioning is done in a manner of minimize
communication (volume) and load imbalance costs
between the subgraphs. In the second phase, task clusters
are assigned among processors of the system with
hypercube interconnection topology in a manner that
minimizes communication length .
 To evaluate the quality of the results obtained, we
compared results obtained with a heuristic proposed in [5]
for the same problem. The experiments we have run show
that the results obtained by our method vary widely
depending on the type and size of the graphs considered.
Overall, GA appears to be preferable for random task
graph with low messages between tasks. That is due to
our approach uses a procedure that explicitly attempts to
improve load balance. For de case of the sample 1 there is
a lot of communication messages, and NN gives the best
results because it minimizes the total number of
messages.The Genetic Algorithm is easy to implement
on a parallel machine, and this can considerably improve
the speed obtained with our approach.

Acknowledgments

 This work was supported by CONICIT grant S1-
95000884, CDCHT-ULA grant I-503-95-A05 and
CeCalCULA (High Performance Computing Center of
Venezuela).

References

[1] M. Muhlenbein, G. Schleutter and D. Kramm. Evolution
algorithms in combinatorial optimization. Parallel
Computing, 7(2): 65-93, 1988.

[2] V. Lo. Heuristic Algorithms for task assignment in
Distributed Systems. IEEE Transaction on Computer,
37:1384-1397, 1988.

[3] D. Golberg. Genetic algorithms in search, optimization
and machine learning, Addison-Wesley, NY, 1989.

[4] K. Shin and M. Chen. On the number of acceptable task
assignment in Distributed Computer Systems. IEEE
transaction on Computer, 39(1), 1990.

[5] P. Sadayappan, F. Ercal and J. Ramanujam. Cluster
partitioning approaches to mapping parallel programs
onto a hypercube. Parallel Computing, 13:1-16, 1990.

[6] N. Bowen and C. Nikolau. On the assignment problem of
arbitrary process systems to heterogeneous Distributed
Computer Systems. IEEE Transaction on Computers,
41(3), March, 1992.

[7] J. Aguilar. Heuristics to optimize the Speed-up of Parallel
Programs. Lecture Notes in Computer Science, 1127:174-
183, 1996.

[8] J. Aguilar and T. Jimenez. A Processor Management
System for PVM. Lecture Notes in Computer Science,
1300:158-161, 1997.

[9] J. Aguilar. Estudio del Problema de Asignación de Tareas
en los Sistemas Distribuidos: funciones de costo y
métodos de resolución", Revista Técnica de Ingeniería,
Universidad del Zulia, 20(3): 203-213, 1997.

[10] J. Aguilar. and E. Gelenbe. Task Assignment and
Transaction Clustering Heuristics for Distributed
Systems. Information Sciences, 97(2):199-219, 1997.

