
 
 

  

Abstract—In mathematical models where the dimensions of 
the matrices are very large, the use of classical methods to 
compute the singular values is very time consuming and 
requires a lot of computational resources. In this way, it is 
necessary to find new faster methods to compute the singular 
values of a very large matrix. We present a method to estimate 
the singular values of a matrix based on Genetic Programming 
(GP). GP is an approach based on the evolutionary principles 
of the species. GP is used to make extrapolations of data out of 
sample data. The extrapolations of data are achieved by 
irregularity functions which approximate very well the trend of 
the sample data. GP produces from just simple’s functions, 
operators and a fitness function, complex mathematical 
expressions that adjust smoothly to a group of points of the 
form (xi,yi). We obtain amazing mathematical formulas that 
follow the behaviour of the sample data. We compare our 
algorithm with two techniques: the linear regression and non 
linear regression approaches. Our results suggest that we can 
predict with some percentage of error the largest singular 
values of a matrix without computing the singular values of the 
whole matrix and using only some random selected columns of 
the matrix.  

I. INTRODUCTION 
he analysis of singular values and singular value 
decomposition (SVD) is applied in a widely different 

kind of disciplines. The more classical application is in least 
square fitting of data [4], [11]. One particular application is 
also in data mining, where is used for ranking documents in 
very large databases. For example, latent semantic indexing 
(LSI) is a variant of the vector space model in which a low-
rank approximation to the vector space representation of the 
database is employed. That is, we replace the original matrix 
by another matrix that is close as possible to the original 
matrix, but whose column space is only a subspace of the 
column space of the original matrix [2], [9]. This new matrix 
is composed by the largest singular values of the original 
matrix.     

We propose an algorithm to estimate the largest singular 
values of matrices of large dimensions based on Genetic 
Programming (GP). Our algorithm can be split in two 
phases, one phase of acquisition of data and the other phase 
of extrapolation of the data. In the phase of acquisition of 
data we use randomised algorithms which are based in 
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random sampling. This means that the problem is solved 
using randomly selected samples of data, because the data is 
very large to be processed by standard methods [6], [10]. In 
these types of algorithms the correct answer is not always 
achieved, but we can say that the answer is correct with 
some probability. The data obtained in this phase consists of 
points (xi, yi), where xi is the number of columns sampled 
from the original matrix and yi is the particular singular 
value corresponding to the smaller matrix formed by the 
sampled columns. In the phase of extrapolation of data we 
use the GP [1], [7] and the data received from the phase of 
acquisition of data. This is the phase that we are going to 
study in this work, because the extrapolation problem can be 
complex and time consuming if we like to obtain good 
results. Particularly, we make estimations of the singular 
values of the matrix of large dimensions. Our algorithm 
generates a mathematical expression which tries to represent 
the general trend of the data as accurate as possible. This 
mathematical expression is used to make an extrapolation to 
estimate the singular value corresponding to this data. That 
is, an extrapolation is made for every singular value after the 
phase of acquisition of data.  

Obviously if we use a large number of samples the data 
will be better, but the time of computation will be higher and 
eventually bigger than if we use a classical method for 
computing the singular values. We make comparisons 
between the effectiveness of our algorithm based on GP and 
extrapolations using linear regression, and non linear 
regression.  The comparisons are made for large and small 
dense and sparse matrices. 

This paper is organized as follows. In section 2 we present 
the concept of the singular values of matrices. In section 3, 
we illustrate our algorithm to estimate the largest singular 
values of matrices of large dimensions. In section 4, we 
propose an efficient algorithm for solving the data 
extrapolation problem based on GP. In section 5, we present 
the linear regression and non linear regression approaches to 
compare our algorithm with them, and the experimental 
studies on different matrices (dense and sparse). Finally, 
some concluding remarks are given. 

II. SINGULAR VALUES OF MATRICES 
The singular value decomposition (SVD) has enjoyed a 

long and rich history. Singular value analysis has been 
applied in a wide variety of problems, it has become an 
invaluable tool in applied mathematics and mathematical 
modeling [3]. Recently, it is being used in data mining 
applications and by search engines to rank documents in 
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very large databases, including the Web. The dimensions of 
matrices, which appear in these applications, are becoming 
so large that classical algorithms for computing the SVD 
cannot always be used. In general, the singular value 
decomposition is the factorization of a matrix A into the 
product: 

 
A= U Σ VT 

 
of  unitary matrices U and V and a diagonal matrix Σ. A 

formal statement of the existence theorem for the SVD and 
associated definitions can be found in standards texts on 
linear algebra. 

Accurate estimates of the largest 10%-25% singular 
values of a matrix are useful for understanding properties of 
the matrix form a theoretical perspective. In general, 
singular values can be used, among many things, to 
determine: 

--The 2-norm of a matrix: represents the maximum 
magnification that can be undergone by any vector when 
acted on by the matrix. 

--The closest distance to any matrix with rank N, 
whenever the N-th singular value can be estimated 

--A lower bound for the condition number of a matrix. The 
condition number of a matrix, is one of the simplest and 
useful measures of the sensitivity of a linear system 
associated with the matrix. 

A. Singular Values and Information Retrieval 
As mentioned earlier, the SVD is being used in some 

automated search and retrieval systems to rank document in 
very large databases, and more recently, it has been extended 
to retrieval, ranking and visualization systems for the web 
[2], [9]. These systems are based on a pre-processed 
mathematical model of document query space. The 
relationship between possible query terms and documents is 
represented by an m by n matrix A, with ijth entry aij. 

The entries aij consist of information on whether term i 
occurs in document j, and may also include weighting 
information to take into account specific properties, such as: 
the length of the document, the importance of the query term 
in the document, and the frequency of the query term in the 
document. A= [aij] is usually a very large, sparse matrix, 
because the number of keyword terms in any single 
document is usually a very small fraction of union of the 
keyword terms in all of the documents. 

After creation and pre-processing of the matrix A, the 
next step is to computation of the SVD of A. Although the 
computation does not have to take place in real time, it has 
to be completed quickly to enable frequent updating of the 
matrix model  

The noise matrix A is reduced by constructing a modified 
matrix Ak, from the k largest singular values and their 
corresponding vectors, i.e. 

 
Ak= Uk ΣkVk

T 

 
Queries are processed in two steps: a) Query projection 

step: input queries are mapped to pseudo-documents in the 
reduced query-document space by the matrix Uk, then 
weighted by the corresponding singular values Si from the 
reduced rank, singular matrix Σk. b) Matching step: 
similarities between the pseudo-document q’ and documents 
in there reduced term document space Vk

T are ranked by 
measuring the cosine of the angle between the query and the 
modified document vector. 

III. DESCRIPTION OF THE ALGORITHM TO ESTIMATE THE 
LARGEST SINGULAR VALUES OF MATRICES OF LARGE 

DIMENSIONS 
Let A be a very large matrix M x N whose singular values 

cannot be computed due to its size. As we said before, the 
procedure proposed is composed by two phases,  
 
• The first phase is the acquisition of the singular values 

of the smaller matrices composed by random selection 
of some columns from the original very large matrix. 
For example, suppose we are interested in estimate the 
first (largest) singular value. We can start with a small 
number n of sampled columns to obtain a smaller matrix 
and repeat the process with the same number n to obtain 
different small matrices. For each small matrix we 
compute the first singular value, these values will be in 
most cases different. Then, we compute the mean of 
these firsts singular values (yi) for xi = n, therefore we 
get one point (xi, yi). For obtain others points (xi, yi), we 
just choose a different value n (n << N) and do the same 
procedure described before.  

• The second phase is the extrapolation process, in this 
phase we use the points (xi, yi) produced by the phase 
one and adjust a curve to fit this group of points. Then 
we use the curve to make a prediction about the first 
singular value of the original large matrix when xi = N. 
Obviously this process can be done for others singular 
values. For this phase, we propose an algorithm based 
on GP. 

IV. DATA EXTRAPOLATION USING GENETIC PROGRAMMING 
Curve fitting is the problem arising when we have 

different points (data) and we wish to find a function capable 
to adjust to these points [3]. Then, we can use this function 
to make extrapolations to predict behave of others points 
outside the original range (out of sample) where are the 
input data. Due the random nature of our algorithm to obtain 
the points (xi, yi), we can be sure that the data will always 
have certain degree of experimental random noise, therefore 
our strategy is to obtain a curve that represents the general 
trend of the data for our particular application. 

We use GP to achieve the automatic creation of 
mathematical expressions; this is achieved by feeding 
genetically a population of mathematical expressions, using 
the principles of natural selection from the “theory of 
evolution” of Darwin and genetic operations inspired 
biologically. The biological operations more common 
include sexual recombination, mutation and replication 
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(duplication) [1, 7, 8]. GP use the evolution of populations 
(of math expressions) with the objective of find the best 
mathematical expression to adjust to the points (xi, yi). In GP 
we use a fitness function which allows to measure how fit is 
a math expression (individual) to adjust to the points, 
therefore each individual have his own fitness. Individuals 
are then probabilistically selected from the population based 
on their fitness to participate in different genetic operations. 
The fittest individuals have better chance of being selected, 
but unfit individuals are allocated in some trials, so GP is not 
purely a gradient algorithm. 

--The functions used by us were: 53 ,, xxx , 
),(,,, 102 xArctgxLogxLogLnx .  

--The constants used were: 2, 3, 5, 7, 9.  
--The operators used were: +, -, /, *.  
 
All this functions, constants and operators, are used by GP 

to generate mathematical expressions using genetic 
operations. Hence, with GP we can generate complex 
functions with any regularity form that follow very accurate 
some trend of points like, for example:  
 

p x( ) atan 1( ) atan log x( )( )+ 5 x( )    
ln 7 5 x+( )

0.69

 
 
 

 
7+ 5 x−

 
 
 

 
⋅+:=

 

V. NUMERICAL EXPERIMENTS 
We implemented our algorithm using two different kinds 

of matrices: Dense and Sparse. 
To adjust the points of the form (xi, yi) we compare our 

approach with linear regression and non linear regression 
approaches.  

A. Linear Regression 
The general model of linear regression can be presented 

by: 
 

y = a0 z0 + a1z1 + a2 z2 +… + am zm + e 
 

Where z0, z1, z2,…, zm are the (m+1) different functions. 
This model includes a lot of different regressions. One 
particular case is when the zi are simple monomials and the 
regression is called polynomial. Is remarkable that the 
terminology linear only refers to the dependence of the 
model in the parameters (ai), but the function zi can be 
highly non linear. In our study we use logarithms functions 
and roots functions, but the most used functions are R(t)= 
a√t+b,  R(t)= a√t+bLn(t)+c. 

B. Non Linear Regression 
There are different cases where the linear model is not the 

best way to adjust the data, in such case is better to use the 
non linear model. The non linear model has non linear 
dependence in their parameters ai. For example one common 
function used by us is R(t)= atb+c, which includes a lot of 
roots functions. We will not enter in more details about all 
the different aspects of the non-linear regression, because is 
beyond the scope of this paper. 

C. Dense matrix 2000 x 3000 
In the figure 1, we show the evolution of the singular 

values for different numbers of columns sampled. We can 
see that the singular values grow with the numbers of 
columns sampled. The most relevant information in this 
graph is the irregularity of the curve that link the points, this 
show the difficulty associated to make predictions with some 
groups of points of the singular values for the original large 
matrix. S1 is the largest singular value and S2 is the second 
largest singular value. 
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Fig. 1. Singular values of small matrices for different % of sampled columns. 

 
In table 1 we show some results from different 

experiments and the percentage error in the predictions of 
the first (S1) and second (S2) largest singular values. We see 
that the error of our approach is very good with an execution 
time smaller than linear regression approach. That is, our 

approach can follow the trend of the sample data better. 
 

TABLE 1  
RESULTS FOR DENSE MATRICES 

Methods S1=  Error S2= Error 
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1224.97 28.71 

GP, Sampled Col 20% 1224 0.079% 28.72 0.034% 

GP, Sampled Col  2.5% 1232 0.57% 28.407 0.01% 

Linear reg, Sampled Col 15%, R(t)= 
a√t+b, 9 points 

1225 0.001% 35.894 25% 

Non-linear reg, Sampled Col  5%, 
R(t)= atb+c, 13 points 

1217 0.40% 31.861 10.9% 

Non-linear reg, Sampled Col  2%, 
R(t)= atb+c, 5 points 

1208 1.38% 32.361 12% 

E. Sparse matrix 2500 x 3500 
In table 2 we show some results from different 

experiments and the percentage error in the predictions of 
the singular values for this case. Similar to the previous one, 
here we obtain very good results with our algorithm with the 
smallest execution time. Even in some cases we obtain the 
best results. 

 
TABLE 2  

RESULTS FOR SPARSE MATRICES 
Methods S1=22.72 Error S2=7.8 Error 

GP  Sampled Col 16%, 5 points 22.67 0.22% 7.03 9.87% 
Linear reg, Sampled Col 15%,  R(t)= 

a√t+bLn(t)+c, 11 points 
23.018 1.31% 11.506 47% 

Linear reg, Sampled Col 15%,  R(t)= 
a√t+b, 11 points 

19.235 15.3% 7.579 2.83% 

Non-linear reg, Sampled Col  2%,  
R(t)= atb+c, 18 points 

23.398 2.98% 6.389 18% 

Non-linear reg, Sampled Col. 15%, 
R(t)= atb+c, 5 points 

23.56 3.69% 7.63 2.17% 

F. Text Mining Matrix 
In this set of experiments we consider a 50000 by 10000 

matrix from a text-mining problem. The matrix represents 
data to be input into an automatic retrieval system. It is 
sufficiently small that we can use a software package to 
compute all of the singular values and vectors and compare 
result with our method. 

We took random samples of the rows of the matrix and 
computed the largest 3 singular values of the smaller matrix 
constructed form the randomly sampled rows. We repeat the 
process 100 times and computed the mean and the standard 
deviation. Results form our experiments are given in table 1. 
 

TABLE 3  
ESTIMATES OF SINGULAR VALUES OF A DOCUMENT-QUERY MATRIX 

No. Documents sampled %  of Documents  Est. for S1  Est. for S2 Est. for S3 

5000 10% 127.8 94.2 72.3 
10000 
20000 

20% 
40% 

144.6 
223.4 

105.4 
145.2 

86.1 
106.2 

30000 
40000 

60% 
80% 

301.1 
410.2 

176.6 
197.1 

124.3 
138.1 

50000 100% 432.2 206.2 167.2 
     

 
When the number of documents is 50000 they are the 

actual values. 
 

VI. CONCLUSION 
We show here that we can predict with some percentage 

of error the largest singular values of a matrix without 
computing the singular values of the whole matrix and using 

only some random selected columns of the matrix. This 
matrix whose elements belongs to the interval [0,1], may be 
dense or sparse. In the case that the matrix is dense the 
predictions are very good, and although for a sparse matrix 
the predictions are not so good, but still fairly acceptable. 
We think that the reason of this difference is that the random 
selection for sparse matrices may some times not include 
relevant columns whose elements contain an important 
contribution to the value of the singular values. 

In other order of ideas we also show that GP is a versatile 
tool to generate functions for extrapolation and curve fitting, 
in particular we show that its results are comparable with the 
classical techniques of linear regression and non linear 
regression and in some cases better. However the functions 
obtained with GP are very different in form than the 
classical functions used for extrapolation. It is very 
interesting how GP produces from just simples functions, 
operators and fitness function, complex mathematical 
expressions that adjust smoothly to a group of points. One 
interesting work than can be developed in a future with GP 
is to try to generate functions in higher dimensions capable 
of make extrapolations and interpolations. Additionally is 
possible to apply a variant of our method to estimate the 
singular vectors of large matrices. 
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