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Abstract: - Motifs (patterns, signatures, domains) are useful to determine nucleotides/amino-acids that are 

likely involved in structures, functions, regulations and evolutions, or to infer homology between 

genes/proteins. The main objective of this paper is the fusion of motifs. Our task is to analyze a set of possible 

motifs and to detect if similarity exists between them, to construct a general motif. The motifs fusion method is 

based on the algorithm of combinatorial optimization called Artificial Ants System. This method uses the 

nucleotides of the first motif to construct the graph where the ants will walk. Then, the graph is crossed by the 

ants according to the path of the second motif, using a transition function that promoves to flow the path 

between similar nucleotides. The ants when walking leave pheromone in the nodes, in a way that at the end 

several have a lot of or little pheromone. Finally the graph is crossed again to construct the resultant motif 

composed by the nodes with much pheromone. 
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1 Introduction 
This paper defines and develops a computational 

method for the fusion of DNA motifs. We propose an 

algorithm based on ACO [1], [2], with some 

modifications. This algorithm can efficiently find the 

union between two motifs and allows the generation of 

a new motif. 

Currently, there are several methods of patterns 

discovery (using Regular Expressions, Hidden 

Markov Model (HMM), Automata, and PSSM 

Matrix). The regular expressions are the most 

commonly used by biologists, as well as the 

graphical method of LOGOS, since visually are 

simpler to understand and interpret for them [3], [4]. 

To discover of DNA motif historically has been 

used the Pratt method [5], which is based on the 

algorithm Knuth-Morris-Pratt [6], but there are 

other tools, between the most well-known we have 

[7], [8], [9], [10], [11], [12]: TEIRESIAS, MEME. 

The discovery of common motifs between 

sequences that are distant in evolutionary level 

(non-homologous or non-related sequences) is a 

very complex problem. In addition, there are tools 

that allow comparing DNA motifs and SLM (Short 

Linear Motifs) defined as regular expressions, such 

as CompariMotif [13], FunClust [14], and Bio.motif 

[15]. However, these tools do not allow fusing them 

into a common expression. 

Specifically, our task is to analyze a set of DNA 

motifs stored in a database, detect if there are 

similarities between them, and construct general 

patterns. The patterns found can be explained by the 

existence of segments that have been preserved 

during the natural evolution of proteins, and suggest 

that the obtained regions play a functional role in 

their mechanisms and structure.  

On general, finding the common motif to a set of 

motifs is a problem. Most of the algorithms of 

motifs search use heuristic techniques to obtain near 

optimal solutions with a relatively low 

computational cost [3]. For example, some works 

based on bio-inspired algorithms are: in [16] 

presents an approach based on the Ants Colony 

Optimization method combined with a Max-Min 

strategy for DNA sequences. In [17] implements a 
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method based on the Ant Colony Optimization 

algorithm and the expectation maximization (EM) to 

find DNA motifs (specifically, for collections of 

TFBSs) in a set of bio-sequences.  

 

2 Theoretical Framework  
 

2.1 Ant Colony Optimization (ACO) 
Ant Colony Optimization (ACO) is a type of 

metaheuristic whose philosophy is inspired by the 

behavior of real ants searching foods [1], [2]. The 

main aspect of ACO is the transition probability of 

an ant walking in the graph. This one is defined by 

(see Eq. 1): 

 

 

                                                                                                  

 (1) 

Where τr is the quantity of pheromone track in the 

node r of the graph, ηr is the visibility of the node r 

(frequently is 1/dir, where dir is the distance that 

exists between the current node i and the node r), 

Nk(i) is the neighborhood of the ant k when it is in 

the node i, θ and β are two parameters that consider 

the relative importance between the pheromone 

tracks and the visibility.   

Additionally, ACO uses a reinforcement learning 

mechanism to update the pheromone on the graph. 

The pheromone update can be carried out once all 

the ants have completed its solutions, (see Eq. 2):  

(2) 

Where: τr(t) is the intensity of the trace deposited 

on node r at time t; α is a coefficient such that (1 - α) 

represents the evaporation rate of the pheromone 

between the time t and t +1. ∆τr is the pheromone 

quantity let in a node r for the k
th
 ant between the 

interval t and t+1 (see Eq. 3). 

 

(3) 

 

ACO has demonstrated its effectiveness in the 

resolution of different combinatory optimization 

problems considered difficult [2], [18].  

 

2.2 Motif 
A Motif is a region or portion of a protein sequence 

that has a specific structure and is functionally 

significant. Protein families are often characterized 

by one or more such motifs. Detection of motifs in 

proteins is an important problem since the motifs 

carry out and regulate various functions, and the 

presence of specific motifs may help to classify a 

protein [19].  

A motif, in the context of biological sequence 

analysis, is a consensus pattern of DNA bases or 

amino acids which accurately captures a conserved 

feature common to a group of DNA or protein 

sequences. DNA motifs are sometimes termed 

signals: examples are regulatory sequences, scaffold 

attachment sites, and messenger RNA splice sites. 

Examples of protein motifs, which are also known 

as fingerprints, include enzyme active sites, 

structural domains, and cellular localization tags. 

Motif discovery is the act of identifying and 

characterizing motifs, and underlies a number of 

important biomedical activities. For example: the 

identification of regulatory signals has applications 

for gene finding in sequenced genomes, 

understanding of regulatory networks, and the 

design of drugs for regulating specific genes; and 

protein motifs are routinely used to identify the 

function of newly-sequenced genes and to 

understand the basis of a protein’s cellular function 

[20]. 

 

3 Problem Formulation 
The problem consists to construct a common motif 

for the motifs that have a high degree of similarity. 

We developed a method to fusion of similar motifs. 

We used the Ant Colony Optimization to construct a 

graph with the nucleotides of the first motif. Then, 

the graph is crossed by the ants according to the 

path of the second motif. Finally the graph is 

crossed again to construct the resultant regular 

expression. In each execution of our algorithm, two 

motifs are fused. In general, the macro-algorithm for 

the fusion process is: 

1. Create the route graph. 

2. Walk of the ants on the route graph. 

3. Choose the best nodes 

4. Construct the resultant motif 

 

3.1 Create the route graph 
Because the problem of motif fusion emerges from 

the study of the primary structure of DNA 

molecules, which is a linear structure consisting of 

nucleotides, there are two basic conditions for the 

design of the graph where will walk the ants: 

The first stems from an analysis in the 

construction of motifs, which shows that is essential 

for this task the position of different nucleotides 

along of the chains that can be viewed as one-

dimensional arrays. In the second, we establish that 

the product of the motif fusion must generate a new 
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motif that contains the nucleotides chains that 

belong to motifs fused.  

For the previous reasons, our graph will be 

represented in the plane, and each node will have 

arcs at the right and left sides, in this way the ants 

can only move them in horizontal direction. The 

nodes must store the pheromone level deposited by 

the ants that visit them and the nucleotide that 

represent (see Fig. 1). This information will be 

constituted by the type of nucleotide that represents 

(A, C, G, T) or an identifier for special nodes (see 

Table I). 

 

Fig. 1. Data strusture of a node  

TABLE I. IDENTIFIER FOR SPECIAL NODES 

Information 
Special 

Identifier 

Gap X 

Start Start 

End End 

For the graph construction we transform the first 

motif in a stack data structure (for example, see the 

motif TGAGCA in Fig. 3). 

 

Fig 2. Transformation of a motif 1 in a stack 

Additionally, two nodes are defined that serve as 

guide for the construction of the graph, to indicate 

the start and the end of the route (Fig. 3). Then, we 

proceed to extract the elements that are at the top of 

the stack iteratively, and built the nodes in the graph 

(nucleotides) which are in the same position in the 

chain. Also adds a node gap, which will serve as an 

auxiliary route for cases in which the ants must not 

continue for any of the available nodes. In this way, 

we avoid that an ant stops itself. Finally, when the 

stack is empty we stop the construction of the graph. 

In our approach, we build the route graph using the 

first motif to fuse (motif1) (see Fig 3).  

 
Fig.3 Route graph of the motif 1 

 

3.2 Walk of the ants on the route graph 
The artificial ant’s colony, as in natural ant colonies, 

evolves by the actions performed by its members. 

This way, the route graph is walked by the N-ants 

that constitute the colony. So, it is necessary to 

define the number of individuals of the colony, 

before they begin to walk on the route graph. In our 

case, each ant has a route map defined by the second 

motif to fuse. We define an ant type data structure 

composed of 6 elements, whose characteristics are 

described in Table II. It contains the needed 

information for the ants to walk on the route graph. 

TABLE II. ELEMENTS OF THE ANT DATA STRUCTURE 

Element Characteristics 

Start node 
Address of the node where start the 

ant to walk the route graph 

Route map 

Stack that contains the motif that must 

follow the ant, and serves to know that 

nodes should be visited by the ant in 

the route graph or not. 

Pheromone increase 

coefficient 

Real number (0,1), it’s used to 

establish the pheromone concentration 

that deposits the ants in each visited 

node of the route graph. 

Equalities similarity 

index 

Integer number [0.10], it determines 

the pheromone level deposited by the 

ant, when the node found in the graph 

is identical to the expected to the route 

map. 

Differences 

similarity index 

Integer number [0.10], it determines 

the pheromone level deposited by the 

ant, when the nucleotide found in the 

route graph is not equal to the route 

map 

Gaps similarity 

index 

Integer number [0.10], it serves to 

mark the selected node, if node type is 

a Gap. 

 

 We use the second motif (motif2) to construct 

the route map of the ants, transforming the motif in 

a stack data structure. 

At the start, the ant is placed in the initial node of 

the route graph, and with the route map it observes 

the contiguous nodes at the right side (see Fig. 4). 
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Fig 4. Ant n the initial node of the route graph. 

The ant executes the function of transition to each 

one of the nodes that can visit in the next position. 

This function consists of two phases; the first phase 

calculates the probability to visit each contiguous 

node ( )(rP k
n ) (see Eq. 4) (based on its pheromone 

level ‘τr’ and the index of similarity `φr' of each 

node (‘r’ indicates one of the neighbouring nodes in 

the position `k', and `n' is the number of 

neighbouring nodes at the right side for that position 

`k'):
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The second phase decides the node to visit using 

the simulation of Monte Carlo. When the ant moves 

to a node, it deposits pheromone that increases the 

pheromone concentration in the node. The quantity 

of deposited pheromone depend on the similarity 

index with respect to the nucleotide waited 

according to the route map (see Eq. 5)
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r ϕσττ *+=               (5) 

The similarity index is defined as follows: if the 

nucleotide of the route graph is equal to the 

nucleotide of the route map of the ant, then we use 

the equalities similarity index; otherwise if the 

visited node contain gap, then the gaps index is 

used; otherwise, is used the differences similarity 

Index. In our example, the final route of an ant is 

observed in the Fig. 5. 

 

Fig. 5. The final route of the ant 

For a colony, the previous process is repeated for 
each ant. Additionally, the same process is executed 
recursively until the number of colony cycles 
desired. At the end of a cycle, there is an evaporate 
pheromone traces, decrementing the pheromone 
levels of all nodes in the graph (see Eq. 6), where 
"ρ" is the pheromone evaporation coefficient. 

                        
k
r

k
r τρτ *)1( −=

                  (6) 

 

3.3 Choose the best nodes 
Once the colony has completed its work, we 

delete the arcs that lead to those nodes with a 

pheromone level below the pheromone threshold 

that the user has defined (for our example, we fix 

the pheromone threshold to 1.0), which help to 

preselect to the nucleotides that contribute to the 

best solutions. Fig. 6 shows the selected nodes 

because they exceeded the threshold (in blue). 

 
Fig. 6. Route graph with the pheromone levels of 

each node 

3.4 Construct the resultant motif 
Finally, the selected route graph is filtered to 

delete irrelevant information and to define the 

resulting sequence. To make this task, we have to 

analyze the marked nodes of the graph and insert the 

nucleotides selected in a list of chains that will 

contain the value corresponding to each motif 

position. To achieve this goal the following criteria 

are used: 

1. If in the position one node (nucleotide or gap) 

which has passed the pheromone threshold 

exists, it will be inserted in the list. 

2. If more than one node in the same position (a 

nucleotide and a gap) that has passed the 

pheromone threshold exist, the following 

conditions are applied:    
a) If the level of pheromone of the nucleotide 

node is superior we insert the nucleotide in 
the list. 

b) In other case we insert the gap in the list.  
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We take the list that contains the nucleotide 

corresponding to each position in order to construct 

the resultant motif (see Fig. 7). 

 
Fig. 7. Resultant fusion motif 

4 Experiments of Fusion of Motifs 
To run the system, it is necessary to adjust a set 

of parameters. Because the number of adjustable 

parameters in the developed system is extensive, 

some values for the tests were fixed with a default 

value (see Table III). The only parameters that we 

have varied are the parameters that determine the 

collective behaviour: the cycle’s number and the 

ant’s number. By this way, the solution depends 

fundamentally on the behaviour of the colony. 

TABLE III. PARAMETER LIST 

System Parameters Value 

Pheromone increase coefficient 0,1 

Similarity index for the 

nucleotides that are the same 
10 

Similarity index for the 

nucleotides that are different 
1 

Similarity index for gaps 3 

Pheromone initial level on the 

graph nodes 
1,0 

Pheromone evaporation 

coefficient 
0,05 

 

To a qualitative comparison of our method with 

previous work, we carry out experiments on real 

datasets previously constructed in [21] (see the 

results in Table IV). In this case we compare S1 

with S2, the resultant motif with S3, and so on. 

TABLE IV. MOTIFS FUSION 

Sequences [8] Our approach 

S1:ATCATCCGTGTA

GCTCAAAA 

S2:ATCATCCGTGTA

GCTCAAAA 

ATCATCCGT

GTAGCTCAA

AA 

ATCATCCGTG

TAGCTCAAAA 

S3:AGATCCGTAAC

GAAGTTTAC 
ATCCGT 

AxxATCCGTxx

xGxxxxxxA 

S4:CCCCATCCGTA

ATTACCTAT 
ATCCGT 

xxxxATCCGTxx

xxxxxxxxx 

The subsequence ATCCGT is the consensus 

sequence. This study suggests that the results 

provided by our system are similar to the results that 

are found in [21], with the additional advantage that 

our system does not require the use of post –

processing.  

We carry out a second qualitative comparison 

with real datasets of the Escherichia coli sequences 

(they have two highly conserved parts, called the -

35 and -10 regions) [22]. The fusion of a set of these 

sequences is shown in Table V. In [22] is not 

presented the consensus motif of each fusion. In our 

case, we fuse the motif resulting of the two previous 

rows with the following until the end. 

TABLE V. RESULTS OF THE FUSION OF SEQUENCES 

OF ESCHERICHIA COLI 

Sequence Fusion  Sequences 

Bgl R mut : A A C T G T G A G C 

A T G G T C A T A T T T 

Bgl R mut : A A C T G T G A G C 

A T G G T C A T A T T T 

RS : A A C T G T G A 

G C A T G G T C A T 

A T T T 

RS : A A C T G T G A G C A T G 

G T C A T A T T T 

Deo P2 site 1 :  A A T T G T G A T 

G T G T A T C G A A G T G 

RS : A(2)-x-T-G-T-G-

A-x(6)-T-C-x(2)-A-x-

T-x 

RS : A(2)-x-T-G-T-G-A-x(6)-T-C-

x(2)-A-x-T-x 

Lac site 1: T A A T G T G A G T T 

A G C T C A C T C A T    

RS : x-A-x-T-G-T-G-A-

x(6)-T-C-x(6) 

RS : x-A-x-T-G-T-G-A-x(6)-T-C-

x(6) 

Lac site 2: A A T T G T G A G C G 

G A T A A C A A T T T 

RS: x-A-x-T-G-T-G-A-

x(14) 

RS :  x-A-x-T-G-T-G-A-x(14) 

Mal k: T T C T G T G A A C T A A 

A C C G A G G T C 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

Mal T: A A T T G T G A C A C A 

G T G C A A A T T C 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

Tna A: G A T T G T G A T T C G A 

T T C A C A T T T 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

Uxu AB: T G T T G T G A T G T G 

G T T A A C C C A A 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

pBR P4: C G G T G T G A A A T A 

C C G C A C A G A T 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

Cat site 2: A C C T G T G A C G G 

A A G A T C A C T T C 

RS: x(3)-T-G-T-G-A-

x(14) 

RS: x(3)-T-G-T-G-A-x(14) 

Tdc: A T T T G T G A G T G G T C 

G C A C A T A T 

RS: x(3)-T-G-T-G-A-

x(14) 

According to [22] the consensus sequences are 

TTGACA and TATAAT. In our case, the consensus 

sequence is TGTGA. In contrast with [29], we 

obtained a consensus sequence for all sequences in 

the Table VI. Our system features well-conserved 

positions, in [22] it is unclear what positions are 

absolutely conserved, and the consensus sequences 
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presented do not found within the sequences shown 

in Table V. 

 

5 Conclusion 
We propose a motif for the construction of the 

route graph and other motif defines the route map 

that the ants use to walk. In addition, the ants 

execute the transition function to each one of the 

nodes that it can visit in the next position using the 

similarity index between the nodes of the route map 

and of the route graph. This approach has very good 

results for ADN sequences, we are going to test this 

approach in proteins (which are composed of 

sequences of more than four nucleotides), this is not 

possible for the approaches [16, 17]. 

. 
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