
Middleware for Improving Security in a Component Based Software
Architecture

Abraham Blanca1, Aguilar Jose1, Leiss Ernst2
University of Los Andes1, University of Houston2

blancataz@gmail.com, aguilar@ula.ve, coscel@cs.uh.edu

Abstract

We developed a framework for reflective

middleware that monitors security capabilities that
every software component has. The main idea is to
monitor the applications, changing or tuning the
software components with the explicit goal of making
the whole system as secure as possible. The
middleware is flexible enough to be configured with
the specific needs of the system that is going to be
monitored. This experience can be implemented not
only for security purposes but also for performance
monitoring, load balancing or resource management
in areas like Grid computing, DataWarehouses,
Webservices among others.

1. Introduction

The main idea of this work is the implementation of
a middleware to monitor (called introspection in [6,7])
base applications, in order to change or tune (called
intercession in [6,7]) the software components with the
specific goal of making the whole system as secure as
possible. Levels of security are defined before start the
execution of a given application, so that in runtime the
middleware can make the following decisions. : tune
one or more components, change one or more
component, or send an alarm. When the middleware
tunes a component, it changes the encryption
mechanisms; if the middleware needs to change the
component, then it downloads a new component and
makes the change; and finally, the middleware can
send an alarm to a group of users or system
administrators. Tuning and changing are performed
when the middleware finds a security thread in one
component and its related or depended components. In
this way, our middleware not only audits automatically
the security of a system that is composed by several
software components, but also makes changes to
components that does not pass the security test. This is
particularly important for big systems that have many

software components, some of them developed as
black boxes. Other similar works are: GridKit
Middleware [9], which is one of the dynamically
configurable middleware families that have been
developed using the OpenCOM component model and
it is oriented to manage grid resources[9]. Other work
is DynamicTAO that is primarily targeted for static
hard real-time applications such as Avionics systems.
This one assumes that once it is initially configured, its
strategies will remain in place until it completes its
execution. There is very little support for on-the-fly
reconfiguration. [28]. Universally Interoperable Core is
a reflective middleware infrastructure that is
customizable to ubiquitous computing scenarios [28].
Gaia is a component-based operating system based on
a reflective middleware substrate [28]. The second part
of this paper will present general theoretical aspects,
the third part will explain the middleware architecture,
fourth part will show the implementation, and finally,
the conclusions of this work.

2. Theoretical Aspects:

2. 1. Autonomic Systems

 An autonomic environment proposes the capability
of self-managing systems, which must be able to have
knowledge of their components, that is, status,
capabilities, etc. An autonomic system is aware of its
environment conditions and the context surrounding its
activities. This may include the possibility of
proactively changing or predicting behaviors. All this
provides opportunities for planning and affecting the
state of the system if this is needed [3]. Autonomic
system characteristics are being applied in four
fundamental areas [3]: (i) Self-configuring capabilities:
adapt it to unpredictable conditions by automatically
changing its configuration. (ii)Self-healing capabilities:
Prevention of and recovery from failure. (iii) Self-
Optimizing capabilities: Continued system tuning. (iv)
Self-Protecting capabilities: Identifying and defend it

Fourth International Conference on Networked Computing and Advanced Information Management

978-0-7695-3322-3/08 $25.00 © 2008 IEEE

DOI 10.1109/NCM.2008.261

502

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

against various types of attacks, such as viruses,
unauthorized access, and denial of services attacks.
Some of the most interesting research areas in
autonomic computing are [3]: (i)Recovery operations
(fault tolerance): These types of systems should find a
way to stabilize themselves if a failure occurs. (ii)
Predictive capabilities and continuous optimization:
An autonomic system should take actions proactively
to support its system objectives without user control or
intervention. (iii)Security vulnerability determination:
The system will protect itself from accidental and
malicious harm; when damage occurs, the system
should attempt to recover it. An architecture for
autonomic computing includes four main aspects: the
processes definition which describes the business
processes that are automated in the autonomic system;
the resources definition which describes the resource
types that will be used and managed by the autonomic
system; the technical reference architecture that
describes how the system elements are going to be
integrated together in order to support the services
delivered in an organization; and the application
patterns that are in charge of constructing templates to
make all parts working together, specifying predefined
situations commonly found in real deployments [5].

2.2 Software Architecture [2]

The discipline of software architecture proposes a new
set of concepts for describing and reasoning about
software composition at the high level of abstraction at
which software architects conceive and reason about
software systems. In other words, the software
architecture should represent a high-level view of the
system revealing the structure, but hiding most
implementation details. Abstractly, software
architecture involves the description of: elements from
which systems are built, interactions among those
elements, patterns that guide their composition, and
constraints on these patterns. More specifically, an
architectural description of a software system should
identify: the partition of the overall functionality into
components; the behavior of these components; the
protocols used by the components to communicate and
cooperate, i.e., which connectors exist between them.
There are many models for software architecture, the
one that was used as inspiration for this middleware is
Fractal [10] which was created as a modular and
extensible component model that can be used with
various programming languages to design, implement,
deploy and reconfigure systems and applications, more
details are provided in [10, 17]. Others very known
software architectures are the three tiers architecture,
five tiers architecture or n-tiers architecture, the tiers

are also called layers or views and among the most
common layers are the Presentation Layer, Business
Tier, Business Logic, Data Access Tiers Data Tier,
Logical and Physical Layers[2,22].

2.3 Computational Reflection

Reflection is the ability of a running program to
examine itself and its software environment and to
change what it does depending on what it determines in
this process [6, 7]. Using this capability; systems can
explain their behavior and modify their processing
methods, for example, to improve their performance. A
reflective system has two levels, a base level which
consists of base entities that perform the usual
functionalities of the system, regardless of whether it is
reflective or not, and a meta level which consists of
entities that perform reflection (Internal states and
behavior can be accessed and modified through a self-
representation). A reflective system processes
information about itself and its environment, making
changes in order to reach some goals (for example,
improve its performance) [7, 10, 11]. This activity
involves three important aspects: introspection (state
observation), intercession (alteration of its execution
and behavior), and reification (making implementation
information available to the application) [7, 12, 13].
Some works with the objective of improving and
creating new reflective programming languages are the
following: Apertos [14, 16] is a distributed object
oriented system that uses reflection.. Iguana is another
project whose goal it is to provide support for the
construction of (system) software that can be
dynamically customized to achieve non functional
changes [18, 20]. Another reflective language is
OpenC++, a version of C++ with a Metaobject
Protocol (MOP) [18, 20]. MPC++ is a compile-time
metalevel architecture in C++ that extends and
modifies language semantics, incorporating reflection
properties into the C++ language [19, 20]. OpenJava is
a new macro system developed for Java; its main idea
is to use metaobjects, thereby incorporating into this
programming language reflective computing [12,13].
Proactive is a library created for Grid resources
management, it has been developed in Java and
incorporates reflection among many other
functionalities [1]. ABCL/R3 [21], Smalltalk and
NeoClasstalk [23] are other reflective programming
languages.

2.4 Multi Agent Systems (MAS)

A MAS is a system composed of several agents. An
agent is a physical or abstract entity that can perceive

503

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

its environment using sensors, evaluate the perceptions
in order to make decisions and communicate with
others agents. In our case, an agent is defined as a
software entity that has knowledge about a particular
problem, can interact with other agents, and perform
tasks to solve that problem [8, 15]. The agents have
autonomy, so they make its own decisions and have
their own resources. The agents have their local views
so each agent has a limited view of the system and they
work in an asynchronous and decentralized way, there
is no controlling agent. Multi-agent systems can
manifest self-organization and complex behaviors even
when the individual strategies of all their agents are
simple [8, 15].

3. The Reflective Collective Middleware

3.1 Reflective Middleware Architecture

This is an architecture composed of three intelligent
agents, in order to monitor and change composed
systems that are running in a known environment; the
main components of the middleware are shown in Fig
1. An initial configuration is required; this is done
using a XML file, where the specific tasks and the
expected behaviors which are going to be monitored
are defined. The three intelligent agents are defined as
followed: Monitor: Its main goal is to observe
(introspection) the base level in order to reflect on it.
This agent supervises base level components, their
state variables, and performances, among other issues,
in order to allow system reflection. Reflector: This
agent processes and analyses base level information.
Its main function is to manage the environment
variables and to interrupt direct communication among
components of the system. In addition, it can generate
the necessary changes (intercession) at the base level.
Information Manager: It manages information related
to the patterns, and knowledge of the system.
Depending on the complexity of the information that
will be used, this component uses a database or text
files to store the data. All this is configured when the
middleware is installed. In this way, our middleware
incorporates the following characteristics into the base
level: Self-Awareness: The system knows itself and is
aware of its states and behaviors. Self-Optimizing: It
will detect system degradation and intelligently make
changes to avoid dangerous situations. Preventive
plans: It will detect potential problems and reconfigure
the system in order to keep it working. It will display
proactive behavior. Contextually Aware: It is aware of
the full system execution environment, and is able to
react to changes in this environment. Portability: It is
portable across multiple software architectures.

3.2 Reflective Middleware Library

A middleware was built to work as another layer into
the system architecture of any application. This
provides the possibility of monitoring the environment
where the base software is loaded, which system
components are active, what security risks and faults
can be expected, and what decisions must be made if
either an expected or unexpected issue occurs. Three
main agents have been created: a Monitor, a Reflector
and an Information Manager; the middleware has a
coordinator mechanism based in direct and indirect
communication, the direct communication is
established using messages between agents, and the
indirect communication is created when the agents go
to the historic information that is manipulated by the
Information Manager. That is, the communication
among middleware agents is based on direct messages
and blackboard indirect communication using a
collective memory. Each middleware agent has well
defined tasks and all their experiences are kept in XML
files that construct the knowledge base. Even when
three main agents exist, other specialized agents can be
created to manage special cases. That is, new agents
can easily be incorporated to the middleware in order
to add new functionalities, when more specialized
tasks want to be performed. In this case for example, a
special agent was created in order to manipulate
security subjects, like the encryption mechanisms. The
environment represents where the base application is
running and it is what the middleware is going to
reflect on and change if needed. In order to use the
middleware, the initial configuration should be done
creating configuration XMLs, with the specifications
about the base system that will be monitored and
manipulated, what conditions will generate changes,
and what changes will be performed.

4. A Study Case: Middleware for Software
Security Improvement

4.1 Problem Statement

In this particular case, the library will be tested only for
security aspects; it will make decisions not only about
fault recovery, but also to prevent as much as possible
security holes when new behavior is adopted by the
system. . When an application is built using different
software components and these components change
dynamically, security aspects have to be considered in
order to keep the system secure. For this goal, the
middleware must update its information each time that
the application is changed because a software

504

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

component is removed, exchanged for another one, or
updated. There are three general aspects that our
middleware must manage when security is studied in a
composed system application. They are [4]:
Confidentiality: It is also known as disclosure; it is the
ability of making information available only to
authorized users. Integrity: This property allows data
to be modified only by authorized users.
Authentication: This is the process of verifying a user’s
claimed identity. It is the logical step that follows
identification. The middleware will allow keeping a
system as secure as possible adding these three
characteristics in a dynamic way. Each time that the
system suffers a change, the library will take care of: -
Confidentiality and integrity of the information that is
processed. - Authentication of the software
components that will be added or upgraded. - Update
information related to new, expected risks that
software changes can bring to the application.

Fig. 1: Reflective Middleware Architecture.

Each software component in a composed application
will have a level of security that is related to the way
the component uses and manages the information and
authentication; this security level is a number from 0 to
3, with 3 denoting a most trusted component (see Table
1). The composed system will be only as secure as its
most insecure component. There will be a required
security level for the application; if that value
decreases below the required level as the result of
changes, the middleware must change one or more
components in order to increase the value again. A
combination of each characteristic with different
security levels can be defined for each component of
the system, these are called requirements, and the
middleware will monitor the behavior of the
components and evaluate if they accomplish the
requirements.
Security Confidentiality Integrity Authentication

Level
0 Use of no

encryption.
Provide basic
process to
assure the
integrity of
information.

Public
information.

1 Some encryption
needed – No
specific
encryption
method.

The integrity of
the information
is needed. No
verification
processes are
required to
validate the
information.

Information and
system access
are related to
each user.

2 Encryption is
needed with the
strongest
available
method.

A good
validation is
required to
assure the
integrity of the
data. The
system provides
audit
mechanisms.

Information and
system access
are related to
each user and a
log of all user
activities is stored.

Table 1: Secure levels description related to each
secure characteristic

4.2 Implementation

This middleware reflects over the complete system
software architecture allowing dynamic selection of
new software components based on security aspects.
The main questions are: how to bring a new component
into a “secure” system without losing that security,
how to determine the trust of the new component, how
to integrate that component, how to select the safest
component, and how to change the actual component
in order to improve the system security. The tasks that
the middleware performs are the following: Monitor: It
will check if each component in the system has the
required security characteristic; if it realizes that this is
not the case, a message is sent to the Reflector. The
communication in this case is made through direct
messages, the track of the found situation is stored in a
XML file which can be accessed by any of the agents
in order to look for relevant legacy information that
can be used to process information and make the right
decision when it is needed. Reflector: It will make the
decision as to what action to take. At present, there are
only three main actions: change the component,
upgrade (Install a new version) the component or tune
the existing component (if a tuning is needed for this
particular use case, the encryption mechanism is
changed). The communication in this case is indirect,
and the “experience” about how good the change was
is stored in an XML file as historic information.
Information Manager: It will store all the information
generated after each change. Also, it will give
information to the Monitor so it can make the decisions
based on the historic events. For this particular case,
the most important fact is what encryption mechanism
has had less attacks, and which one has kept the

Monitor

• Observation

Reflector
-
Reasoning (Analyze)
- Taking Decisions

Information Management:

•Learning

•Keeping Experiences

Environment
Collective
Memory

“Knowledge”

Coordinator
Mechanism

See

Modify

It’s reflected to
Modify

Access Access

Send

Specialized
Agents

Environment

505

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

application information safer for more time, this will
give to the reflector the idea of what mechanism to
choose when a high security level is required by the
base application. As this implementation will focus on
security, the middleware was configured to check
confidentiality, integrity, and authentication of a
specific application (Fig 2). In our case, we suppose an
application that consists of three software components
that work together, each one of the components has
different security requirement, some can be updated,
and some must only be replaced if fails. For this case,
we are focusing the security in the access to the
information that the three base components manage.
The middleware takes all the initial requirements from
a XML file (Fig. 3). Beside Monitor, Reflector and
Information Manager, a specialized agent was created
to change cryptographic algorithms when is needed, all
legacy information for indirect communication is
stored in XML files, and the Monitor will check the
base system components in order to determine if
security was broken. Reflector will make the changes
to the base system components (Fig. 2).

Fig. 2: Testing Architecture (Security Use Case)

4.3. Test Environment

 The Middleware Monitor checks the possible security
issues in a proactive way. This module was configured
to run each ten seconds. The Reflector makes decisions
based on both the results that the Monitor gets and the
legacy information (in XML files – Fig. 4) stored by
the Information Manager. Base system information is
updated since the very first time that the middleware
start working. The Reflector will get all available
information in order to make its final decisions
evaluating what is the most successful cryptography
mechanisms for that particular system and what system

components work in the most secure way. As we can
see in Fig. 4 the Management Information stores both,
all actions that the user make with the system and the
tasks that the middleware performs into the system .
This is particularly important for security management,
this is part of the legacy information that will be kept
in to the XML middleware files. Confidentiality,
integrity, and authentication are the aspects that are
being evaluated in this particular test. Some main text
files that belong to the application should be encrypted,
the middleware does it based in the initial
requirements. In order to measure each event that the
middleware finds, three actions are introduced: Alarm:
It is a configurable element in the middleware, can be
an email that the middleware sends to a group of users,
a message on the screen, a line that is written in a log
file, or an action that is done as this is configured in the
middleware, for example disconnect a user, break
network connection or other. Tuning: it is the
intercession that the middleware makes to the
application. In this case the middleware will change
the encryption mechanisms that are used by the base
system that the middleware is reflecting on.
Replacement: When a tuning can not be done due to
the own characteristics of the software component, the
middleware suggests to the system administrator, a
component replacement. This person, who is the
responsible of the base system, will make the decision.
If an upgrade can be done, the middleware will do it.
An upgrade can be done if and only if there is an equal
available component with same interfaces, generally a
newer version of the same component; otherwise, the
programmer team should make the changes. The test
application uses four components; each of them was
given a set of security requirements and a set of attacks
in order to test the middleware. Components had three
types of attacks; (i) Change of the information that the
base component uses. (ii) Delete component files (iii)
And unauthorized access to the information in the base
application. The following security characteristics are
defined by the base system administrator, and they are
part of the initial middleware configuration:
Component A does not have any security restriction, so
neither alarms nor upgrades nor changes were required.
Component B had some secure requirements, some
alarms will be required when it is under attack..
Component C had high secure requirements, alarms,
tunings, upgrades, and suggestion of changes were
done, and the middleware has to maintain a highly
secure environment for it. Component D had different
levels of security, automatically; all levels were set up
to the highest security level so the middleware could
keep this component under its secure standards.
When two components communicate each other in a
common environment, the security level of the weakest

Monitor
Observation of
information user
accesses,
information
changes and
cryptographic
changes.

Reflector

•Reasoning, analyzes
the learning experiences

•Taking Decisions
related to what
encryption algorithm to
choose and when to
change it.

Information
Management:

•Learning from
the Reflector
decisions and
from what
Monitor finds
wrong in the
system..

•Keeping
Experiences to
make possible
indirect
communication
.

 “Knowledge”
XML shared files. Environment

BASE SYSTEM

Information related to
users – accesses –
permissions –
information changes

Modify
Modify

Specialized
Agents

506

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

component should rise to the highest security level of
the other component in order to keep secure all the
system.

Fig. 3: Example of one base system component

configuration XML for the Middleware

Fig. 4 Information Management Files.

In this case, our test application will have security level
2, and configuration of components A and B should
change to 2 so the system security can be kept. Then,
the middleware needs to assure that the main
application will keep the following security aspects
during its entire life (Table 2).

Component Confidentiality
Level

Integrity
Level

Authentication
Level

A 0 0 0

B 1 1 1

C 2 2 2

D 2 1 0

Table 2: Initial request security level description for
testing purposes

4.5 Results:

During the test, the alarms generated by the
middleware for each component when security issues
were found were the following (Table 3):
Component Number of Alarms

related to
Confidentiality

Number of
Alarms related
to Integrity
Level

Number of Alarms
related to
Authentication
Level

A 0 0 0

B 3 3 3

C 3 3 3
D 3 3 3
Table 3: Alarms generated by the middleware – All
components communicate each other.

The number of alarms means the number of times that
the middleware sends a message (email, log file or
screen report) to the system administrator, or warning
about a weird behavior. In this case, the alarms related
to confidentiality, integrity and authentication were
sent when no encryption was found in files that should
have some, or when the modification date of some
encrypted files was modified out of the middleware
rules (see Fig 5). In this case, because all components
communicate each other, if the security of one is lower
the acceptable level, the other components are under
risk too, because they all can be accessed using any
other component of the system. Because components A
and D do not communicate with components B and C,
when B and C have security problems, the Middleware
only sends an alarm related to them. In this case, if
component D is under security levels, alarms for the
rest of components are not required because it does not
compromise their securities.
When components communicate each other, their
dependencies are monitored by the middleware, and
the security levels will increase to the most secure
component security level. Table 5 shows results when
simulation of confidentiality, Integrity and
Authentication problems were done for each
component, the simulation was created changing
confidential information, access of no authorized users
and information modification. In this particular
implementation, the tuning is related to the encryption
mechanism. If an alarm is activated, the encryption
mechanism is automatically changed by the
middleware (intercession) in order to keep the
information protected, if a non authorized user is in, it
would be logged off automatically and the network
connection can be break too. The software components
can have available new versions that are used to update
them when it is necessary, that is when the component
is not working properly. The upgrades that the
middleware made per each component were (Table. 6),
where it is seen that only component C had available
new versions and it was updated when its security level
decreases under the acceptable value. If a new version
is not available of a software component when we need
to update it because the component is not working
properly, a change of component is required which
should be done by the system administrator. The
number of replacements suggested by the middleware
per component are in Table 7:

<Application>
<AppName>Reflective Architecture Test<AppName>
<SoftwareComponent>
 <Name>Geometry</Name>
 <Path>c:/componentloc/geom</Path>
 <Security>
 <User>BLANCA ABRAHAM</User>
 <Rights>777</Rights>
 <Levels>

 <Confidenciality>0</Confidenciality>
 <Integrity>0</Integrity>

 <Authentication>0</Authentication>
 </Levels>
 </Security>
 <Performance>
 </Performance>
</SoftwareComponent>

<MIDDLEWARE CONFIGURATION>03-03-08</MIDDLEWARE
CONFIGURATION>

<Date>08-03-03:16:15:05</Date>
<User>BLANCA ABRAHAM</User>
<Access >1</Access >
<Alarm>1<\Alarm>
<Action>RP<\Action>

<Date>08-03-03:16:20:13</Date>
<User>BLANCA ABRAHAM</User>
<Access>0</Access >
<Alarm>0<\Alarm>
A ti RP \A ti

507

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

Fig.5: Middleware monitoring and generating alarms

because of unusual behavior in the application.

Component Number of Alarms

related to
Confidentiality

Number of
Alarms related
to Integrity
Level

Number of Alarms
related to
Authentication
Level

A 0 0 0

B 2 3 2
C 2 3 2
D 1 0 1
Table 4: Alarms generated by the middleware – In this

case no all components communicate each other.

Component Number of Tunings

related to
Confidentiality

Number of
Tunings
related to
Integrity
Level

Number of Tunings
related to
Authentication
Level

A 0 0 0

B 1 3 2
C 2 2 1
D 3 1 3
Table 5: Tunings that were done for each component

Component Number of

Alarms
related to
Confidenti

ality

Number of
Alarms

related to
Integrity

Level

Number of Alarms
related to

Authentication Level

A 0 0 0

B 0 0 0
C 1 1 1
D 1 1 1

Table.6: Upgrades made for each component
As can be seen in Table 6 and 7, even when a
component B replacement was suggested it could not
be done automatically because a new version was not
found, for components C and D the update was done.
The change of component should be done by the
system administrator, because this task implies extra
configuration or programming in order to make the
new component work well in the environment. The
component selection is done using an algorithm
developed in [25], Fig. 6
The implementation of tuning was done by changing or
incorporating different encryption methods. The
decision of what method to use was made based on the
information management knowledge by the
middleware.

Component Number of

Replacements
Number of

Replacements
Number of

Replacements

related to
Confidentiality

related to
Integrity Level

related to
Authentication

Level
A 0 0 0

B 1 1 0
C 1 1 1
D 1 1 1
Table. 7: Suggested replacements for each component.

Fig.6: Middleware looking for new components that

can replace the application components if needed

5. Conclusions

This middleware not only audits automatically the
security of a system that can be composed by several
software components, but also make changes, related
to component replacement, component tunings and
component updates to those components that does not
pass the security test, this is particularly important for
big systems that have many software components,
some of them developed as black boxes. This
middleware needs only an initial configuration that will
be the base for monitoring the secure levels. This
middleware has many advantages, among them are:
• It can be used for any type of application.
• It works for a given base application over any

Operating System.
• It is very easy to configure using only XML files
• It has a knowledge base that can be used for other

similar systems.
• It is general enough to be implemented in different

types of applications.
• It is flexible so specialized agents can be

implemented for special needs.
Even when this test was based only for security aspects
in an application, we are working to implement it in
monitoring performance.
Other researches can be focused in resource
management, web services or others activities, this can
be done because the middleware can be configured to
monitor, change and warn about any process, area or
resource that can be checked in running time. Many
other interested works can be derived from this initial
approach, they are:
• Grids and how their resources are located and load

balanced.

508

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

• Data warehouses and their security, memory and
hard disk management which are some of the main
concerns for this type of systems

• Internet services and how to allocate faster and
more efficient services,

• Auto-organized systems
• Knowledge Bases that improve the learning

mechanisms of the Middleware. Among others.

6. Acknowledge

This work was realized with the support of CDCHT-
ULA (Grant I-820-05-02-AA), and FONACIT (Grant
2005000170).

7. References
�
[1] D. Caromel and J. Vayssiere Reflections on MOPs,
Components, and Java Security. European Conference on
Object-Oriented Programming, Lectures Notes in Computer
Science (LNCS) Budapest, Hungary, June 18-22, pp 256-
274, Springer Verlag No 2072,.
[2] M. Adorni, S. Bandini, et al. Model Requirements:
Architectural Model, Functional Model, Context Model,
Metamode. MAIS Technical Report R1.3.1.,May 2003
3] M. Parashar, S. Harir. Autonomic Computing, Concepts,
Infrastructure and Applications. CRC Press, 2007 by Taylor
and Francis Group.
[4] F. Stajano. Security for Ubiquitous Computing. Wiley
Series in Communications Networking & Distributed
Systems. 2002.
[5]http://www.03.ibm.com/autonomic/pdfs/AC_Blueprint_W
hite_Paper_4th.pdf
[6] W. Cazzola, et al. Architectural Reflection: Concepts,
Designs and Evaluation. 1999.
[7] I. Forman, N. Forman. Java Reflection in Action.
Manning 2005.
[8]S. Russell, P. Norvig, Artificial Intelligence, A modern
Approach. Prentice Hall International. 1995.
[9] P. Grace, et al. GRIDKIT: Pluggable Overlay Networks
for Grid Computing. Symposium on Distributed Objects and
Applications (DOA), Cyprus, 2004
[10]Objectweb.FRACTALProject.fractal.objectweb.org/
2008
[11] E. Bruneton, T. Coupave, JB Stefani. Recursive and
Dynamic Software Composition with Sharing.
[12] P. Rogers and A. J. Wellings. OpenAda: A Metaobject
Protocol for Ada 95. Department of Computer Science.
University of York, York, YO1 5DD, UK. 1995
[13] M. Tatsubori, S. Chiba, M Killijian, and K. Itano.
OpenJava: A Class-based Macro System for Java. Doctoral
Program in Engineering, University of Tsukuba, Tennohdai
[14] J. Itoh and Y. Yokote, "Concurrent Object-Oriented
Device Driver Programming in Apertos Operating System",
Sony Computer Science Laboratories Technical Memo
SCSL-TM-94-005, June 1994.
[15] S. Rusell & P. Norvig, Peter, Artificial Intelligence: A
Modern Approach (2nd ed.), Upper Saddle River, NJ:
Prentice Hall 2003.

[16] Y. Yokote, "The Apertos Reflective Operating System:
The Concept and Its Implementation", OOPSLA'92
Proceedings, ACM, 1992 pp.414--434.
[17] Fractal-Programming-Manual Final Release March 10,
2004 INRIA – Nice France.
[18] Open C++. Web Page. http://opencxx.sourceforge.net/
2008.
[19]Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte, H.
Tezuka, H. Konaka, M. Maeda, K. Kubota. Design and
Implementation of Metalevel Architecture in C++ – MPC++
Approach – Real World Computing Partnership. Proceedings
of Reflection'96, pp. 141-154, 1996.
[20] F. Ortin Soler, J. Cueva Lovelle. Building a Completely
Adaptable Reflective System. Campun Llamaquique, C
Calvo Sotelo s/n. 33007 Oviedo Spain.
[21] H. Masuhara, A. Yonezawa. An Object-Oriented
Concurrent Reflective Language ABCL/R3 Its Meta-level
Design and Efficient Implementation Techniques.
Department of Graphics and Computer Science, Graduate
School of Arts and Sciences, University of Tokyo Tokyo,
153-8902 Department of Information Science, University of
JAPAN.
[22] Proactive Web Page: http://proactive.inria.fr/
[23] Smalltalk: a Reflective Language Fred Rivard Object
Technology International Inc. Ottawa – Ontario.
[24] P. Sewell and J. Vitek. Secure composition of insecure
components. In Proceedings of the Computer Security
Foundations Workshop, CSFW-12, 1999.
[25] B. Abraham. J. Aguilar. J. Batista. "Selection
Algorithm Using Artificial Ant Colonies", WSEA
Transactions on Computers, Vol. 5, No. 10, 2006. pp. 2197-
2203,
[26] P. Herrmann: Formal Security Policy Verification of
Distributed Component-Structured Software. In: Springer-
Verlag, Berlin, 2003, pages 257-272.
[28] M. Roman, F. Ubicore and R. Campbell. Reflective
Middleware: From Your Desk to Your Hand. IEEE
Distributed Systems Online. Vol. 2, No. 5, 2001.

509

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 4, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

