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Abstract 

The purpose of this paper is to describe a fuzzy cognitive 
map based on the random neural network model, and to 
illustrate its application in the modeling of process. This 
model is based on the probability of activation of the 
neurons/concepts in the network. Our model carries out 
inferences via numerical calculation instead of symbolic 
deduction. The arcs define dynamic relationships between 
concepts and describe the causal procedures. We show how 
the random f u u y  cognitive map can reveal implications of 
models composed of dynamic processes. The experimental 
evaluation shows that our model provides similar results 
than previous fuzzy cognitive map with less iterations. 

1. Introduction 

Fuzzy Cognitive Maps (FCM) was proposed by Kosko to 
represent the causal relationship between concepts and 
analyze inference patterns [lo, 121. FCM is a hybrid 
method that lies in some sense between fuzzy systems and 
neural networks. So FCM represent knowledge in a 
symbolic manner and relates states, processes, policies, 
events, values and inputs in an analogous manner. FCMs 
are appropriate to explicit the knowledge and experience 
which has been accumulated for years on the operation of a 
complex system. FCM have gained considerable research 
interest and have been applied to many areas [6, 8, 12, 13; 
14, 15, 161. The Random Neural Network (R") has been 
proposed by Gelenbe in 1989 [9]. This model does not use 
a dynamic equation, but uses a scheme of interaction among 
neurons. It calculates the probability of activation of the 
neurons in the network. The RNN has been used to solve 
optimization and pattem recognition problems [l,  2, 3, 41. 
The problem addressed in this paper concerns the 
proposition of a FCM, using the RNN. We describe the 
Random Fuzzy Cognitive Map (RFCM) and illustrate its 
application in the modeling of process. We shall use each 
neuron to model a concept. In our model, each concept is 
defined by a probability of activation, the relationships 
between the concepts are defined by positive or negative 

interrelation probabilities, and the procedure of how the 
cause takes effect is modeled by a dynamic system 

2. Theoretical Aspects 

2.1. The Random Neural Network Model 
The R" model consists of a network of n neurons in 
which positive and negative signals circulate [9]. Each 
neuron accumulates signals as they arrive, and can fire if its 
total signal count at a given instant of time is positive. 
Firing then occurs at random according to an exponential 
distribution of constant rate, and signals are sent out to 
other neurons or to the outside of the network. Each neuron 
i of the network is represented at any time t by its input 
signal potential ki(t). Positive and negative signals have 
different roles in the network. A negative signal reduces by 
1 the potential of the neuron to which it arrives (inhibition) 
or has no effect on the signal potential if it is already zero; 
while an arriving positive signal adds 1 to the neuron 
potential. Signals can either arrive to a neuron from the 
outside of the network or from other neurons. Each time a 
neuron fires, a signal leaves it depleting the total input 
potential of the neuron. A signal which leaves neuron i 
heads for neuron j with probability p+(i,j) as a positive 
signal (excitation), or as negative signal with probability p- 
( i j )  (inhibition), or it departs from the network with 
probability d(i). External positive signals arrive to the ith 
neuron according to a Poisson process of rate A(i). Extemal 
negative signals arrive to the ith neuron according to a 
Poisson process of rate h(i). The rate at which neuron i fires 
is r(i). The main property of this model is the excitation 
probability of a neuron i ,  q(i). where: 
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The synaptic weights for positive (w+(i,j)) and negative (w- 
(i,j)) signals are defined as: 

w+(ij) = r(i)p+(i,j) 
w-(ij) = r(i)p-(ij) 

r(i) = Cnj=l [w+(i,j) + w-(i,j)~ and 

2.2. Fuzzy Cognitive Maps 
FCMs combine the robust properties of fuzzy logic and 
neural networks. At first, R. Axelord used cognitive maps 
as a formal way of representing social scientific knowledge 
and modeling decision making in social and political 
systems [5]. Then, B. Kosko enhanced cognitive maps 
considering fuzzy values for them [lo,  121. A FCM 
describes the behavior of a system in terms of concepts, 
each concept represents a state or a characteristic of the 
system. A FCM illustrates the whole system by a graph 
showing the cause and effect along concepts. Variable 
concepts are represented by nodes in a directed graph. The 
graph's edges are the casual influences between the 
concepts. The value of a node reflects the degree to which 
the concept is active in the system at a particular time. This 
value is a function of the sum of all incoming edges 
multiplied and the value of the originating concept at the 
immediately preceding state. The threshold function applied 
to the weighted sums can be fuzzy in nature. The causal 
relationships are expressed by either positive or negative 
signs and different weights. 

In general, a FCM functions like associative neural 
networks. A FCM describes a system in a one-layer 
network which is used in unsupervised mode, whose 
neurons are assigned concept meanings and the 
interconnection weights represent relationships between 
these concepts. The fuzzy indicates that FCMs are often 
comprised of concepts that can be represented as fuzzy sets 
and the causal relations between the concepts can be fuzzy 
implications, conditional probabilities, etc. A directed edge 
E!, from concept C, to concept C, measures how much C, 
causes Cl. In simple FCMs, directional influences take on 
trivalent values {-1, 0, +l}, where -1 indicates a negative 
relationship, 0 no causality relationship, and +1 a positive 
relationship. In general, the edges E,, can take values in the 
fuzzy causal interval [-1,1] allowing degrees of causality to 
be represented: EJk>O indicates direct (positive) causality 
between concepts C, and C,. $CO indicates inverse 
(negative) causality between concepts C, and C,. E,,=O 
indicates no relationship between C, and C,. 

Because the directional influences are presented as all-or- 
none relationships, FCMs provide qualitative as opposed to 
quantitative information about relationships. In FCM 
nomenclature, model implications are revealed by clamping 
variables and using an iterative vector-matrix multiplication 
procedure to assess the effects of these perturbations on the 
state of a model. A model implication converges to a global 

stability, an equilibrium in the state of the system. During 
the inference process, the sequence of patterns reveals the 
inference model. The simplicity of the FCM model consists 
in its mathematical representation and operation. So a FCM 
which consists of n concepts, is represented mathematically 
by a n state vector A, which gathers the values of the n 
concepts, and by a n*n weighted matrix E. Each element E,, 
of the matrix indicates the value of the weight between 
concepts Ca and C,. The activation level A! for each concept 
C, is calculated by the following rule: 

A, is the activation level of concept C, at time t+l, A, is the 
activation level of Concept C, at time t, is the activation 
level of concept C, at time t, andfis a threshold function. A 
FCM can be used to answer a "what-if' question based on 
an initial scenario that is represented by a vector So= (s,}, 
for i=l ... n, where sa=l indicates that concept C, holds 
completely in the initial state, and sI=O indicates that C, 
does not hold in the initial state. Then, beginning with k=l 
and A=S, we repeatedly compute A,. This process continues 
until the system convergence (for example, when 
AlneW=Ato'd). This is the resulting equilibrium vector, which 
provides the answer to the "what i f '  question. 

The development of a FCM often occurs within a group 
context. That is, each expert provides its individual FCM 
matrix, which is then synthesized into a group FCM matrix. 
The group matrix (E') could be computed as: 

EG =maxb!.} 
J1 1 1  ' 

or (3) 

V t=l to number of experts (NE). 

NE 

E; = b, Efi 
1=1 

Where Efi is the opinion of the expert t about the causal 

relationship among Cj and Ci, and b, is the expert's opinion 
credibility weight. 
FCM have been used for decision analysis, for modeling 
and processing political knowledge, etc. [6, 7, 12, 161. [ 14, 
151 investigate the implementation of the FCM in 
distributed and control problems. A novel approach is the 
use of FCMs as a computationally inexpensive way to 
"program" the actors in a virtual world [7, 8, 11, 161. 

3. Our Random Fuzzy Cognitive Maps (RFCM) 

Our RFCM improves the conventional FCM by quantifying 
the probability of activation of the concepts and introducing 
a nonlinear dynamic function to the inference process. 
Similar to a FCM, concepts in RFCM can be causes or 
effects that collectively represent the system's state. The 
value of WLJ indicates how strongly concept C, influences 
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concept C,. W+,J >O and WI,=O if the relationship between 
the concepts C, and C, is direct, W,, >O and w*,,=O if the 
relationship is inverse, or W~,=W,,=O if doesn't exist a 
relationship among them. The quantitative concepts enable 
the inference of RFCM to be carried out via numeric 
calculations instead of symbol deduction. Quantitative 
concepts can also help to make the feedback mechanism 
realistic. A feedback is a very important mechanism that 
must be included in a causal model. For example, an army 
needs several battles to know the strength of its enemy 
before a decisive battle. 

Much 

To calculate the state of a neuron on the RFCM (the 
probability of activation of a given concept C,), the 
following expression is used: 

0.8 

where, I.+ (i) = maxbin(q(i),W+(i, j)}] 

~-(i) = maxbin(q(i) ,w-(i ,  j)]} 

i=l,n 

i=l,n 

Direct 

Such as, A(i)=h(i)=O. In addition, the fire rate is 

r(i) = m a x b +  (i, j),W-(i, j)) 

The general procedure of the RFCM is the following: 

( 5 )  
i=l,n 

1 

1. Design the configuration of the FCM. Experts 

2. Initialize the number of neurons. The number of 

3. Call the Learning phase 
4. Call the Simulation phase. 

determine the concepts and causality. 

neurons is equal to the number of concepts. 

3.1 The learning Procedure 
In this phase we must define the weights. The weights are 
defined andlor update according to the next procedures: 

- Based on expert's opinion: each expert defines its 
FCM and the global FCM is determined according to 
the equation (3). The next algorithm determines the 
weight from a group of experts. 

no relationshi 

Low 0.4 

- Based on measured data: In this case we have a set of 
measures about the system. This information is the 
input pattern: 

M={D,, . . ., D,,,} = { [d,', d,', . . ., d,"], . . ., [d,', dm2, . . ., d,"]} 

Where d,' is the value of the concept C, measured at 
time t. In this case, our learning algorithm follows the 
next mechanism: 

and q is the learning rate. On this way we guarantee 
the values of W,, in the interval [0, 11, where W,J can be 
w+,, or w-,,. 

3.2 The Simulation phase 
Once constructed the RFCM of a specific system, we can 
perform qualitative simulations of the system. The RFCM 
can be used like an auto-associative memory. In this way, 
when we present a pattern to the network, the network will 
iterate until generate an output close to the information 
keeps. This phase consists on the iteration of the system 
until the system convergence. The input is an initial state 
So= {sl, , s,}, such as qo(l)=sl, ..., qO(n)=s and s,E[O, 11 
(set of initial values of the concepts (S,,=Q$). The output 
Q"={q"( l), . . ., q"(n)}is the prediction of the RFCM such as 
m is the number of the iteration when the system converge. 
The algorithm of this phase is: 

1. Read input state Qo 
2. Calculate the fire rate r(i) according to the equation (5) 
3. Until system convergence 

1. If i#j and if Eu>O then W i  = max 5 } and Wii = 0 

2. If i#j and if E,,c0 then W; = max b;} and W i  = 0 

3. If i=j or if E,,=O then W; = W i  = 0 

t=l,NE 

3.1 Calculate q(i) according to the equation (4) 
t=l,NE 

4. Experiments 

The causal relationship (Eu) is caught from each expert 
using the next table: 

In this section we illustrate the RFCM application. A RFCM 
of a particular system consists of a graph representing the 
relevant causal relationships. A discrete time simulation is 
performed by iteratively applying the equation (4) to the 
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state vector of the graph. At the beginning, we must define 
an initial vector of concept states, and the simulation halts if 
an equilibrium state is reached. To test the quality of our 
approach, we compare it with the Kozko binary FCM [8, 9, 
15, 16,221. 

4.1 First Experiment: model of property theft in a 
community 
Consider the RFCM shown in figure 1. This map attempts 
to model property theft in a community [16]. The concepts 
chosen are: 

- Opportunity (C,): physical access to property, 
availability of burglary tools, etc. 
Community involvement ((2,): town watch, 
communication between neighbors, crime reports in 
local news. 
Police presence (C3): the visible presence of uniformed 
officers on a regular basis. 

- 

- 

- Punishment (Q): a measure of the reliability and 
certainty of punishment for crimes. 
Criminal intent (Cs): the presence of persons intending 
to commit theft. 
Presence of property (C6): the visible presence of goods 
desired by thieves. 
Theft (C,): actual taking of property. 

- 

- 

- 

Note the first two concepts are abstractions of a variety of 
lesser entities in the domain of interest. The presence of 
property strongly influences criminal intent, theft, and 
opportunity. Police presence and community involvement 
deter theft, and sure punishment deters the formation of 
criminal intent. Property owners respond to theft by 
forgoing purchases and hiding goods (i.e., the negative 
causal link between theft and opportunity), and calling for 
additional police patrols (i.e., the positive causal link 
between theft and police presence). 

Opqnrtuni I -. t y 

Involvement 

W 

Figure 1: Crime and Punishment RFCM 

The table 2 presents the results for the initial states (0 0 1 0 0 1 0). 

Input 
0 0  100.1 0 

KoskoFCM I RFCM I Iteration 
0 0  1 0  0 1 0  1 0 0.2 0.6 0.2 0.8 0.2 I 1 
1 0 0 0 1  10  
1 0 0 0  10  1 
0 1 1 0 0 0 1  
0 1 1 1 0 1 0  
1 0 1  1 0 1 0  
1 0 0 0 0 1  1 
0 1 1 0 1 0 1  

0 0.6 0.6 0 0.8 0.8 0.4 
0.8 0 0 0.2 0.2 1 0.8 
0.2 I 0.8 0 0.8 0.2 1 

Table 2: The results for the second experiment. 
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We define the starting state So=(O, 0, 1, 0, 0, 1, 0) i.e., 
police and valuable property are present, but all other 
concepts are inactive. We then obtain the discrete time 
series show on the second and third columns of the table 3. 
The system stabilizes to the state S7 (Kozko model) or state 
S4 (RFCM). We can interpret this state (0 1 1 0 1 0 1) as 
follows: the community responds to the increase in theft by 
removing opportunity, calling for increased police patrols, 
and taking mutual aid measures, but criminal intent is 
increasing and theft continues. The previous state (1 0 0 0 0 
1 1) to the equilibrium state can be interpreted as (S6 on the 
Kozko model and S3 on the RFCM): theft occurs, but 
declining interest has led to diminished prosecution and 
police activity. The criminal intent conceptual node may be 
interpreted as the wide-spread formation of criminal intent. 
Early incidents encourage additional thieves. 

4.3 Second experiment: Virtual Worlds 
Dickerson and Kosko proposed a novel use for FCMs [8, 
11, 12, 161. They employed a system of three interacting 
FCMs to create a virtual reality environment populated by 
dolphins, fish, and sharks. The use of FCMs proved to be a 
computationally inexpensive means of encoding behavior. 
This sparked the idea of using FCMs in training 
environments. [ 161 refines the Dickerson and Kosko’s 

Cluster 

approach to be used the FCM to model the “soft” elements 
of an environment in concert with an expert system 
capturing the procedural or doctrinal - “hard” elements of 
the environment. In their paper, they present a FCM 
modeling a squad of soldiers in combat. This map is shown 
in Figure 2. The concepts in this map are: 

Cluster (Cl): the tendency of individual soldiers to 
close with their peers for support. 
Proximity of enemy (C2): the observed presence of 
hostile forces within firing range. 
Receive fire (C3): taking fire from hostile forces. 
Presence of authority (C4): command and control inputs 
from the squad leader. 
Fire weapons (C,): the state in which the squad fires on 
the enemy. 
Peer visibility (C6): the ability of any given soldier to 
observe his peers. 
Spread out (C7): dispersion of the squad. 
Take cover (C,): the squad seeking shelter from hostile 
fire. 
Advance (C9): the squad proceeding in the planned 
direction of travel with the intent of engaging any 
encountered enemy forces. 
Fatigue (Clo): physical weakness of the squad members. 

Figure 2: Virtual squad of soldiers RFCM 

In the hybrid system we suggest, the presence of authority 
concept would be replaced by an input from an expert 
system programmed with the enemy’s small unit infantry 
doctrine and prevailing conditions. Similarly, the proximity 

of the enemy would be an input based on the battlefield map 
and programmed enemy locations. Here, however, we give 
them initial inputs and allow them to vary according to 

1384 



operation of the FCM. The table 3 presents the results for 

Input 
0 0 0  1 0  1 1 0  1 0  

Kosko FCM RCM Iteration 
0 0 0  1 0  1 1 0  1 0  0.8 100.60.2 10.40.2 10.8 1 
1 1  1 1 0 1 0 1 0 1  10.80.80.60.80.200.810.8 2 
1 0 1 1 0 1 0 1 1 0  3 
1 1 0 1 0 1 0 0 1 1  4 
0 1 1 0 1 1 0 0 1 1  5 
1 1 1 1 1 0 0 1 1 1  6 

Table 3: results for the virtual word experiment. 

In the case of the RFCM, the state (0.8, 1,0,0.6,0.2, 1,0.4, 
0.2, 1, 0.8) indicates they lose contact and cease firing, but 
their protective measures have emboldened them to leave 
cover and resume the advance. Next (the equilibrium state 
(1, 0.8, 0.8, 0.6, 0.8, 0.2, 0, 0.8, 1, 0.8)), the squad leader 
reasserts his authority and restores order to the advance. 
This is reasonable system operation and suggests the 
feasibility of FCMs as simple mechanisms for modeling 
inexact behavior that is difficult to capture with formal 
methods. 

5. Conclusions 

In this paper, we have proposed a FCM based on the 
Random Neural Model, the RFCM. We have shown that 
this model can efficiently work as associative memory. This 
model is a useful method in complex system modeling, 
which will help experts get “smarter”. We  do not observe 
any inconsistent behavior of our RFCM with respect to the 
previous FCMs. Our RFCM exhibit a number of desirable 
properties that make it attractive: i) Provide qualitative 
information about the inferences in complex social dynamic 
models. ii) Can represent an unlimited number of reciprocal 
relationships. iii) Has different learning approaches. iv) Can 
model both mediator and moderator relationships. v) 
Facility the modeling of dynamic, time-evolving 
phenomena and process. vi) Has a high adaptability to any 
inference with feedback. 

Another important characteristic is its simplicity, the result 
of each RFCM’s cycles is computed from the equation (4). 
Most of the computations are intrinsically parallel and can 
be implemented on SIMD or MIMD architectures. Further 
on, we will study the utilization of the RFCM in modeling 
the behavior of distributed systems and dynamic systems. In 
addition, we will test an unsupervised learning approach. 
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