
Software Process
Improvement for Small
and Medium Enterprises:
Techniques and Case Studies

Hanna Oktaba
Nacional Autonomous University of Mexico, Mexico

Mario Piattini
University of Castilla-La Mancha, Spain

Hershey • New York
InformatIon scIence reference

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Copy Editor: April Schmidt
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Software process improvement for small and medium enterprises : techniques and case studies / Hanna Oktaba and Mario Piattini, editors.
 p. cm.
 Summary: "This book offers practical and useful guidelines, models, and techniques for improving software processes and products for
small and medium enterprises, utilizing the authoritative, demonstrative tools of case studies and lessons learned to provide academics,
scholars, and practitioners with an invaluable research source,"--Provided by publisher.
 ISBN 978-1-59904-906-9 (hbk.) -- ISBN 978-1-59904-908-3 (e-book)
 1. Computer software--Development--Management. 2. Computer software industry--Management--Case studies. 3. Small business--Data
processing--Case studies. I. Oktaba, Hanna. II. Piattini, Mario, 1966-
 QA76.76.D47S66354 2008
 005.1--dc22
 2008001869

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/reference/assets/IGR-eAccess-agreement.pdf
for information on activating the library's complimentary electronic access to this publication.

���

Chapter XIII
An Incremental

Functionality-Oriented Free
Software Development

Methodology
Oswaldo Terán

ENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos and Centro de Simulación y Mod-
elos, Universidad de los Andes, Venezuela

Johanna Alvarez
CENDITEL, Venezuela

Blanca Abraham
CEMISID Universidad de los Andes, Venezuela

Jose Aguilar
CENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos, Universidad de los Andes, Venezuela

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter presents a methodology used as reference model for a free software factory that is part of
the National Centre for Free Technologies in Venezuela. This centre is oriented at promoting free soft-
ware development for serving mostly the public sector in order to promote endogenous development and
technologic autonomy. Under this strategy, strengthening the software small and medium size enterprises
and	cooperatives,	by	allowing	them	to	participate	in	different	projects	(improving	their	know-how)	and	
providing them with a methodology for increasing their capabilities and software quality, is necessary
and urgent. This methodology plans the development process incrementally, based on a prioritisation of

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

IntroductIon

The Free Software Factory (FSF) of CENDITEL
(Venezuelan national centre for promoting free
technologies) has been conceived and created as
part of the efforts of the Venezuelan State aim-
ing at increasing endogenous development and
technological sovereignty. In particular, it intends
to strengthen the national software sector, espe-
cially the small and medium software enterprises
(including the cooperatives), by allowing them
to access the technology and participate in the
software market, on one hand, and to increase
their capabilities and software quality, on the
other hand.

Two styles exist for developing free software:
the cathedral style and the bazaar style. In the
cathedral mode, software is developed from a
unified a priori project that prescribes all the
functions and the features to be incorporated in
the final product. Programmers’ work is centrally
coordinated and supervised in order to assure the
integration of various components. On the other
hand, in the bazaar style, software emerges from
an unstructured evolutionary process. Starting
from a minimal code, groups of programmers
add features and introduce modifications and
patches to the code. There is no central allocation
of different tasks; developers are free to develop
a given program in directions they favor.

This chapter presents an attempt at building a
free software development methodology having
many characteristics of the cathedral style but
keeping certain principle of the bazaar mode.
The methodology has been developed at a public
organisation which responds to public sector free

software necessities and requirements that must
be satisfied in a limited time period. Because of
this, it is necessary to adopt the cathedral mode of
work while taking key advantages of the bazaar
style. For instance, it is allowed that developers
from outside the organisation contributes with
software coding, testing, and so forth; these exter-
nal developers do not follow a centrally controlled
process; and the software code is made public as
soon as it is tested.

This methodology assumes an organisational
structure oriented towards specific processes.
The processes dedicated to software develop-
ment are:

Process # 1: Free Software Project Manage-
ment
Process # 2: Specific Project Administra-
tion
Process # 3: Free Software Application De-
velopment

Actions to be carried out in these processes are
classified in steps and activities. In particular, steps
and activities in the third process are implemented
by the following six phases. This methodology
has taken ideas from diverse software develop-
ment methodologies, methods, and models such
as the extreme programming method (Beck,
2004), the rational unified process (Kruchten,
2000; Pollice, 2001; Probasco, 2000), the watch
method (Montilva, 2004; Montilva, Hamzan, &
Ghatrawi, 2000), and the model of processes for
software development (MoProSoft) (Oktaba et
al., 2005). Due to the fact that these models and
methods, except extreme programming, have

•

•

•

the software functionalities development in accordance to the functionalities risks, development urgency,
and dependencies. It combines aspects of the two styles of free software development, namely cathedral
and bazaar. The development process is centralised, in essence collaborative, and continuously allows
source code release.

���

An Incremental Functionality-Oriented Free Software Development Methodology

been proposed proprietary software development,
it has been necessary to adapt the hints, ideas, or
procedures taken from them to the free software
development needs.

The methodology to be proposed has been
validated at the FSF of the Foundation for Science
and Technology of the Mérida State in Venezuela
(FUNDACITE-Mérida). This factory has permit-
ted us to understand better, empirically, the real
needs of a free software development process and
has also been a source of interesting ideas. The
proposed structure will allow planning and control
activities which are required in the management
and administration of software projects. In addi-
tion, the free software application development
process is iterative and incremental, in terms of
the software application functionalities. On the
other hand, the design of the application is based
on component architecture, which allows software
reuse. Each process will be explained in detail
in the main body of this chapter. For facilitating
each process, some free software tools will be
suggested.

free softwAre develoPMent
Methodology

Process # 1: free software Project
Management (fsPM)

This process is responsible for managing all
projects being carried out by the organisation,
that is, both internal projects (projects for the
organisation) and external projects (projects for
other organisations) are managed. Specifically,
in this process, a “service offer” for the project
to be developed is generated. This offer must
include a conceptualisation, a description, and
a (general) development plan for the project, as
well as the definition of the free software license.
Figure 1 shows the steps as a workflow for the
FSMP process. Subsequently, these steps will
be described.

a. Conceptualisation
Description: Specific user needs and/or
problems must be identified in order to define
the scope of the project. In case of a high
complexity of the project, for instance, the
scope of the problem goes beyond a software
need and involves organisational issues,
methodologies such as technologic prospec-
tive and strategic planning, and/or tools such
as fish bone (a technique commonly used in
operation research and in quality control) are
recommended. In this case, the study would
suggest a set of solutions and organisational
changes, of which software needs would be
only part of the whole answer.
People Responsible: According to free soft-
ware philosophy, all people associated with
the project (project manager, project admin-
istrator, developers, users, and so forth) must

Figure 1. Free software project management
process

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

be involved from the very early stages of it,
even when new actors can be incorporated
to any phase of the project.
Techniques: Prospective analysis, strategic
planning, or any other useful technique.
Products: (1) Client/user’s needs and/or prob-
lems; (2) scope of the project.

b. Project Description
The main point in this phase is to achieve a
detailed description of the project. Each actor
must analyse the client’s need and problem,
as well as the project’s scope, in order to con-
tribute to the description of the project.
People Responsible: Clients, users, project
manager, project administrator, developers,
assessors and other people interested in the
project participation.
Products: Project description document.

c. Free Software License Definition
Description: In this step, the free software
license to be adopted for the development is
defined. It might be the case that a license
from the market satisfies the client require-
ments and then is chosen or, in case that there
is not an existent license matching the user’s
requirements, a new license is defined.
People Responsible: Clients, users, project
manager, project administrator, assessors.
Products: Project license.

d. Software Main Functionalities Prioritisa-
tion
Description: In this step, the goal is to describe
and classify the software functionalities in
accordance with the implementation urgency
required by the client.
People Responsible: Clients.
Products: Functionalities prioritised.

e. Risk Prioritisation
Description: To identify, prioritise, and
associate the risks to software application
functionalities. The risks are prioritised in

accordance to their impact on the application
development.
People Responsible: Clients, users, project
manager, project administrator, developers,
assessors, and other people interested in the
project.
Products: Risks prioritised.

f. Software Development Plan
Description: To build the development plan,
the implementation order of the functional-
ities of the application must be established,
in accordance to the functionality priorities
defined by the client, and the risks prioritised
associated to the functionalities. This must
allow determining the number of cycles or
iterations required for the development of
the application. A cycle is responsible for
developing a certain number of functionalities
(taken into account their priority order). A
development plan can be modified after an
iteration, as a result of work reorganisation,
in line with the dynamic of the project.
People Responsible: Project manager, project
administrator, and developers.
Products: Development plan.

g. Generation of the Service Offer
Description: The service offer is completed in
this step. It specifies all important issues of the
project, such as the goal, scope, and descrip-
tion of the project; the development plan; the
due dates for deliverables; the work team; the
project cost; and the operation platform.
People Responsible: Project manager, cli-
ents.
Techniques and Tools: Service offer forms.

Note: In accordance to the chosen software
license, the products achieved in this process
must be published in a collaborative develop-
ment platform. This will facilitate the interested
people access to the software products and their
documentation.

���

An Incremental Functionality-Oriented Free Software Development Methodology

Process #2: Administration of
Specific Projects (ASP)

The administration of specific projects leads the
developer team of a software application (it is
assumed that a software application development
corresponds to a software project). In this sense,
each software project must have at least one
project administrator. The project administrator
is responsible for organising and planning the
activities corresponding to each iteration defined
in the development plan. Additionally, the project
administrator must assure the software quality,
manage the system configuration, and the col-
laborative technical platform, as well as supervise
and control the project development and the ad-
ministration of subcontracts. Figure 2 shows the
main steps as a workflow for the ASP process.
Subsequently, these steps will be described.

a. Administration of the Development Col-
laborative Platform
Description: The processes related to the ASP
phase are facilitated by using a collaborative
platform. A software developing team has its
own necessities; accordingly it is important to
select the correct tool for collaborative soft-
ware management considering such necessi-
ties. In this phase, the collaborative platform is
set up. The collaborative platform permits any
interested person to collaborate with and share
ideas, source code, documentation, testing,
and so forth. This is a very important aspect
of the free software development. However,
as part of the administration of this platform,
the project administrator must approve and
then publish the software versions and the
associated documentation in accordance with
the free software license assumed.
People Responsible: Project administrator.
Tools: GFORCE, and so forth.
Products: Collaborative development
server.

b. Standard for Software Codification
Description: This step establishes the
standards for code generation and for the
documentation to be used during the software
development. These standards allow a quick
and simple reading of the code, facilitating
the work of the whole group, including the
client, the user, and other actors.
People Responsible: Project administrator.
Products: Coding and documentation stan-
dards.

c. Iterative Planning
Description: The activities of the iteration to
be carried out in accordance with the func-
tionalities to be developed are planned. After
an iteration is performed, the next iteration is
planned and takes into account functionalities
that could not be implemented and problems
found during the previous iteration.
People Responsible: Project administrator.
Techniques: Gantt, Pert/CPM

Figure 2. Process for the Administration of Spe-
cific	Projects

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

Tools: Planner, GFORCE, XPTracker, Source-
Forge, and so forth.
Products: Plan for the iteration to be devel-
oped.

Note: Products accomplished in this process
must be placed at the collaborative platform
in accordance with the adopted free software
license.

Process #3: free software
Application development

The software application is constructed by the
sequence of iterations or cycles in an incremental
and iterative way, allowing that users and clients
can check the advances of the work and give
feedback useful for improving the development
and testing processes. The methodology presents
a general reference framework or structure for the
activities to be planned at each iteration of this
process (see Figure 3). In each cycle, one activ-
ity receives the main attention while the others
are secondary. The whole set of functionalities
is developed during the cycles.

Any person can access and execute the source
code stored in the collaborative platform. In
this way, everyone can contribute to the project.
Experiences show that the more people use and
test the software, the more quickly the errors and
bugs will be found and solved.

It is important to mention that during the
software application construction, not only must
the code be published but also all associated
documentation. In this manner, new programmers
and collaborators can be easily incorporated. As
mentioned earlier, the code and associated docu-
mentation publication depends on the software
license established. Next, in Figure 3, the devel-
opment phases carried out during this process
will be presented.

a. Application Domain Analysis
Description: This phase is considered one of
the most important in the software develop-
ment process, since the domain environment
and context where the application will operate
are analysed and understood. Such analysis
is carried out in the first iteration but can be
upgraded in the subsequent iterations. The

Figure 3. Free software development process

���

An Incremental Functionality-Oriented Free Software Development Methodology

activities workflow for this phase is shown
in Figure 4. Following this figure, the main
activities will be described.

° Domain Description
 Description: Establishes and validates

the application domain and its organi-
sational scope.

 People Responsible: System analyst
internal to the developer organisation,
users, clients, programming team. In
this chapter, the phrase “internal to
the organization” means a person who
works for the organization that develops
the software, as opposed to “external
to the organization,” which means a
person who is not actually working for
the developer organization.

 Techniques: Domain engineering, in-
terviews, revision of documents, and
bibliography.

 Products: Domain application defini-
tion.

° Construction of the Processes and
Subprocesses Diagram

 Description: This activity must identify
processes and subprocesses related
to the application domain, as well as
events associated to all these, in order
to generate the domain processes and
subprocesses diagram. Finally, this
diagram must be validated.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: The processes diagram
given by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Domain processes and sub-
process diagram.

° Construction of the Diagram of Activi-
ties for Each Subprocess

 Description: Generates and validates
the activities diagram for each subpro-
cess.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: Activities diagram offered
by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Subprocess activity dia-
grams.

° Identification and Description of the
Domain Rules

 Description: Domain rules regulating
the application domain must be identi-
fied and studied.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: the activities diagram of-
fered by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

Figure	4.	Steps	for	the	application	domain	analy-
sis phase

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

Products: Subprocess activity diagrams.
b. Requirements Specification

Description: In this phase, the functionalities
to be developed in the planned iteration are
specified, and the nonfunctional requirements
are defined or upgraded. Generally, the non-
functional requirements are defined in the
early iterations. The requirement specification
document will be upgraded from iteration to
iteration. It is important to notice that in this
phase the user or the client can modify, change,
include, or eliminate requirements and risks,
which, in turn, might entail updates of the
development plan. The activities workflow
for this phase is shown in Figure 5. Following
this figure, the main activities for this phase
will be described.

° Description of Requirements Related
to the Actual Iteration

 Description: A detailed description
of the functional requirements for the
present iteration is generated, and the
nonfunctional requirements are defined
or upgraded. These will allow gener-
ating and validating the requirements
definition document. It is important
to mention that only the definition

of such requirements related to the
present iteration are validated, since
those requirements related to previous
iterations were validated during the
corresponding iterations.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

° Specification of Requirements Related
to the Actual Iteration:

 Description: To create or upgrade the
requirements specification document,
including the use cases describing the
functional requirements associated
with the actual iteration. In this method-
ology, it is understood that the require-
ments specification is made in terms of
diagrams and textual descriptions of
the use cases. Only the specification
of those requirements associated to
the present or actual iteration must be
verified and validated in this step.

 People Responsible: System analyst
(internal and/or external to the organi-
sation), users, clients.

 Techniques: the use cases diagram
offered by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

c. Analysis and Design
Description: In this phase, the specification
of requirements is translated into a design
specification, based on a set of architectonic
views, which represent the system architec-
ture. In this phase also, the user interfaces
and databases are designed. The application
architecture, like the requirements, is enriched
or upgraded as the subsequent iterations are
carried out, since each iteration add func-
tionalities to the software application been
developed. All this gives flexibility to the
design, permitting that change in the client’s
viewpoint about desired functionalities be
taken into account without great difficulties.

Figure	 5.	 Steps	 for	 the	 requirements	 specifica-
tion

��0

An Incremental Functionality-Oriented Free Software Development Methodology

The activities workflow for this phase is shown
in Figure 6. Afterwards, the main activities
are going to be described.

° Design or Upgrade of the Nonfunc-
tional User Interface Prototype

 Description: Create or update the
nonfunctional user interface prototype.
This design includes the hierarchic dia-
gram of windows, taking into account
the user requirements. This design must
be validated.

 People Responsible: System analyst
(internal or external to the developer
organisation), programmers, users,
clients.

 Tools: UX, DIA.
 Products: Design of the nonfunctional

user interface prototype.
° Design or Upgrade of the Relational

Database:
 Description: The database design

document is generated or upgraded.
This document must contain the dia-
gram entity/relation and the relational
scheme, for the actual iteration. For
these diagrams, the entities of the data-
base and their attributes, as well as the
primary and the foreign keys, must be
defined. The entities of the database are

identified by using the use cases for the
present iteration. Finally, the database
administrative procedures (i.e., backup,
security, recovery, etc.) must be defined,
and the database design document must
be validated.

 People Responsible: System analyst
(internal and external to the organisa-
tion), programmers.

 Techniques: Normalisation formulas.
 Products: Entity relation diagrams.
° Design of the Functionalities Cor-

responding to the Present Iteration
 Description: The architectonic views

must be generated or upgraded. It is
constituted by the logic, the implemen-
tation, the behaviour, and the concep-
tual views. The logic view is defined
by the class diagrams of the software
application. It is created or upgraded by:
(a) deriving from the use cases (associ-
ated to the actual iteration) the objects
of the application, (b) generating the
sequence diagrams for the “methods”
or functions involved in the realisation
of the use cases for the actual iteration.
The implementation view is generated
or upgraded from the components dia-
grams. The behaviour view is created or
upgraded from the interaction relations

Figure 6. Steps for the analysis and design phase

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

among the components. The conceptual
view is defined or upgraded from the
use case diagrams corresponding to
the actual iteration.

 People Responsible: System analyst
(internal or external to the organisa-
tion).

 Techniques: Class, components, and
interaction diagrams

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Architectonic view of the
software application.

d. Construction
Description: For the actual iteration or cycle,
the user interface, the database, and the
functionalities of the application are con-
structed or upgraded in this phase. For that,
the software application source code for the
actual version is developed. The activities
workflow for this phase is shown in Figure 7.
Afterwards, the main activities of this phase
will be described.

° Collecting Reusable Free Software:
 Description: Reusable free software

components, abstract data type, classes,
functions, and whole systems, useful for
the software application, are searched
for and collected.

 People Responsible: Programmers
(internal and/or external to the organi-
sation). This is the first activity where
external programmers participate in
the software development.

 Tools: Some are available at Web
sites such as www.fsl.funmrd,gov.ve,
freshmeat.net, sourceforge.net, and so
forth.

° Construction or Upgrading of the User
Interface U/S

 Description: The reusable user inter-
face components corresponding to the
design of the interface associated to
the actual iteration are adapted and,
when required, those of the previous
iterations are upgraded.

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

° Construction or Upgrading of the
Database

 Description: Build or upgrade the
database using information from the
database design document for the actual
iteration. Additionally, components of
the user interface must be integrated
along the database.

Figure 7. Steps for the construction phase

���

An Incremental Functionality-Oriented Free Software Development Methodology

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

 Techniques and Tools: Web sites like
www.fsl.funmrd,gov.ve, freshmeat.net,
sourceforge.net, and so forth.

° Adaptation, Construction, or Upgrad-
ing of the Components Required for
the Functionalities of the Actual
Iteration

 Description: For the components, ab-
stract data types, classes, and functions
requited for the functionalities of the
actual iteration: (a) adapt those reusable
already collected, (b) construct those
that could not be found, (c) update those
useful from previous iterations.

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

 Tools: Some are available at Web
sites such as www.fsl.funmrd,gov.ve,
freshmeat.net, sourceforge.net, and so
forth.

e. Testing
Description: In this phase, the unitary, inte-
gration, functional, and nonfunctional tests,
for the components corresponding to the
functionalities associated to the actual itera-
tion, are designed or upgraded, and applied.
The nonfunctional tests are applied only in
the last version of the software application,
which is obtained in the last iteration. The in-
stallation tests are also designed in this phase,
but are applied in the implantation phase. It is
important to say that code modified by devel-
opers external to the developer organisation
must also be appropriately tested. Only after
these tests are successfully completed can the
project administrator publish the code. Figure
8 shows the workflow for this phase. Since
this figure sufficiently explains each step, in
the text following the figure, only the people
responsible, techniques, tools, and products

for a test design/upgrade or for a test applica-
tion will be specified.

° Test design/upgrade:
 People Responsible: Tester (internal

and/or external to the organisation).
 Techniques: White and black box

tests.
 Products: Test plans.
° Test application:
 People Responsible: Tester (internal

and/or external to the organisation).
 Tools: Test, Check, Junit, Cppunit.
 Products: Test reports.

Figure 8. Steps for the testing phase

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

f. Implantation
In this phase, the actual iteration version is
released to the client so that the client can
validate this version while other function-
alities are developed in the next iterations.
The migration strategies towards the new
application are defined, the user is trained for
using the delivered version, the actual version
is installed, the installation test is applied,
and the software application manuals are
generated or upgraded, and verified. Finally,
the actual version of the software application
is integrated along with the organisation
activities. Figure 9 shows the workflow for
this phase. Given that the figure sufficiently
explains each step of this phase, a detailed

description for each step will not be given.
However, it is important to mention that: (a)
the people responsible for these steps are
programmers and testers (both internal to
the developer organisation) and (b) the main
products of this phase are the system manuals,
the training material, and the installation test
reports for each installed version.

study cAse

The presented methodology has been shaped and
updated recently and has been implanted partially
only in two projects. The implantation process will
continue during the present year (2007) in order

Figure 9. Steps for the installation phase

���

An Incremental Functionality-Oriented Free Software Development Methodology

to apply the whole methodology to all projects.
The two projects involved in the implantation
process until now are:

1. The Dis-centralised Administrative Sys-
tem.

2. The Automation of the FSF. This means
the automation of the free software project
management, administration of specific
projects, and software application develop-
ment processes.

The Dis-centralised Administrative System

had already been started and was entering the
test phase at the moment the methodology be-
gan implantation. Because of this, until now, the
methodology has been applied in this project
only for part of the software application develop-
ment process, more specifically, for the unitary
tests of the test step. On the other hand, since
the automation of the FSF is still in course, the
methodology has been applied up to the point
the project has reached at present. However, the
methodology has been applied from the begin-
ning of the project. The following processes of
the methodology have been implanted: the free
software project management, administration of
specific projects, and some aspects of the software
application development process. Next, details
about the application of the methodology to both
of these projects will be presented.

case 1: Automation of the free
software factory

Process # �: Free Software Project
Management

a. Conceptualization
Results of carrying out this step are sum-
marised in a set of filled templates, which
are stored in the GForge server (see Alvarez,
2007, sections 1 and 2). These templates show

needs and problems, and scope of the project
of implementation of the FSF. Those problems
and needs include:

° Lack of a database of digitalised tem-
plates for documenting the development
processes.

° The dynamics of the demand requires
urgent development.

° Need of a knowledge base for learned
lessons.

The scope of the project delimitates the system
to be developed in terms of which processes
and which steps will be covered.

b. Project Description
This gives an overview of how the automation
of the FSF project is being carried out.

c. Free Software License Definition
There is not any licence defined for this proj-
ect. All material developed in this project will
be available from the GForge server.

d. Software Main Functionalities Prioritisa-
tion.
All functionalities to be covered by the auto-
mation system of the factory were defined and
prioritised. Results of this phase are presented
in Alvarez (2007, section 3). Among these
functionalities, we have:

° Digitalise the functionalities and the
risks prioritisation templates.

° Select analysis and design tools.
° Choose testing tools.
° Automate the project plan template.
° Integrate templates and design tools.
° Integrate design and programming

phases (generation of automatic
code)

° Develop a knowledge base.
These functionalities received a weight, as
the methodology states.

e. Risk Prioritisation
At this step, the more important development
risks were defined (see Alvarez, 2006, sec-
tion 4 for more details). Among these risks,
we have:

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

° Scarcity of free automation tools and
FSF’s development team’s lack of
knowledge and capacities for building,
design, and test tools for free software
development.

° Few people dedicated at testing and
short experience in testing.

° Low experience in following method-
ologies.

As above, a weight is associated to these
risks.

f. Development Priorities Definition
A prioritisation of the functionalities was
performed (Alvarez, 2006, section 5), by
following this formula:
Total functionality F1 weight = (∑VRi para
F1) * PR + VF1 * PF , where,

° the VRi are the risks for the functional-
ity F1;

° VF1 is the weight for the functionality
F1;

° PR and PF are the relative weights-of-
the-factors, in this case, between the
total sum of risk weights, factor 1, and
the functionality weight, factor 2.

Following this procedure, one of the most
important functionalities resulted to be auto-
mated design and testing facilities. Tools for
these tasks were selected from those available
on the Internet.

g. Software Development Plan
This plan presents the development schedule,
indicating the functionalities to be developed
at each iteration; there were seven defined
iterations after considering the functional-
ity dependencies, size of the development
team, and the functionalities development
prioritisation (for more details, see Alvarez,
2007, section 5).

h. Generation of the Service Offer
The service offer indicates (Alvarez, 2007,
section 6), for instance:

° The offer proposal: to develop a system
to automate the free software develop-
ment processes.

° The project scope: to automate in some
degree, by integrating and digitalising
(and in some cases completely automat-
ing, when the complexity of these tasks
allows it) tools for implementing the
FSF.

° The release schedule (to the client).

Process #�: Administration of
Specific Projects

a. Administration of the Collaborative Plat-
form.
GForce was installed as the collaborative
Platform.

b. Standards for software codification.
The codification standard is being defined
at present.

c. Iterative planning.
This step is performed by using a GForce
scheduling facility (Alvarez, 2007, section
7).

Process #�: Software Application
Development

The software application development process
consists basically on programming on top of
GForge, in order to adapt it and add functionalities,
to permit carrying out the software development
activities required by the FSF processes. Some of
the adaptations already implemented are:

Digitalisation of templates, among which we
have: client’s needs and problems; scope of the
project; service offer; test plan; test reports.
Automation of the project plan.

•

•

���

An Incremental Functionality-Oriented Free Software Development Methodology

case 2: dis-centralised
Administrative system

Process #�: Software Application
Development

As mentioned previously, for this project, the
methodology has been implanted to perform the
unitary test plan (Alvarez, 2007, section 8).

conclusIon

The presented methodology pretends strengthen-
ing the software national sector, especially the
small and medium software enterprises (including
the cooperatives), by allowing them to access the
technology and participate in the software market
through a collaborative development of software
for the public administration (main goal of the
FSF), on one hand, and to increase their capabili-
ties and software quality, on the other hand.

In this sense, the development process presents
certain specific characteristics and numerous
advantages (as it is stated in the methodology).
As said before, a fundamental aspect is the col-
laborative development by iteration: a particular
development group may enter or leave to collabo-
rate at any iteration in accordance to the group
interests. Additionally, the software developments
and upgrades coming from any involved group
are open to the community via a collaborative
platform. Consequently, the development groups
get benefits from a methodological framework,
which establishes the ways and moments for
participation, forms to recovery versions of the
development, development rules and tools, and so
forth. All these practices on the bases of the de-
velopment framework allow any small or medium
enterprise to share/communicate with partners
in the free software development community, in
accordance with the free software development
philosophy. The proposed methodology has been

partially validated at the FSF of the Foundation
for Science and Technology of the Mérida State
in Venezuela (FUNDACITE-Mérida). In addition,
this factory has permitted to understand better,
empirically, the real needs of a free software
development process and has also been a source
of ideas.

AcknowledgMent

This chapter has been developed inside the project:
“Process Improvement for Promoting Iberoameri-
can Software Small and Medium Enterprises
Competitiveness – COMPETISOFT” (506AC287)
financed by CYTED (Programa Iberoamericano
de Ciencia y Tecnología para el Desarrollo)

references

Alvarez, J. (2007). Resumen del avance de la
aplicación de la metodología desarrollada para
la Fábrica de Software Libre (Tech. Rep. No.
001-2007). Fundacite, Merida: Fábrica de Soft-
ware Libre. Retrieved December 17, 2007, from
http://www.funmrd.gov.ve/drupal/files/technic-
alReportJohanna.pdf

Alvarez, J., Aguilar, J., & Teran, O., et al. (2006).
Metodología para el Desarrollo de Software
Libre: Buscando el Compromiso entre Funcio-
nalidad y Riesgos (Tech. Rep. No. 001-2006).
Fundacite, Merida, Venezuela: Fábrica de Soft-
ware Libre.

Beck, K. (2004). Extreme programming ex-
plained: Embrace change (2nd ed.). Addison-
Wesley Professional.

Corredor IIMI. (2006). Evaluación de MoProSoft
como alternativa metodológica de organización
de empresas de desarrollo y mantenimiento de
software. Tesis de Pregrado, Escuela de Ingeniería

 ���

An Incremental Functionality-Oriented Free Software Development Methodology

de Sistemas-Universidad de Los Andes, Mérida,
Venezuela.

Kruchten, P. (2000). The	rational	unified	process:	
An introduction (2nd ed.). Addison-Wesley.

Montilva, J. (2004). Desarrollo de Aplicaciones
Empresariales: El Método WATCH. Mérida,
Venezuela: Jonás Montilva.

Montilva, J., Hamzan, K., & Ghatrawi, M. (2000,
July). The watch model for developing business
software in small and midsize organizatios. In
Proceedings of the IV World Multiconference
on Systemics, Cybernetics and Informatics
(SCI’2000), Orlando, FL.

Oktaba, H., Alquiara, C., Su, A., Martinez, A.,
Quintarilla, A., Ruvalcaba, M. (2005). Modelo de
Procesos para la Industria de Software (MoPro-
Soft, Versión 1.3). México. Retrieved December
16, 2007, from http://www.software.net.mx

Pollice, G. (2001). Using	 the	 rational	 unified	
process for small projects: Expanding upon
eXtreme programming (White Paper TP 183).
Rational Software.

Probasco, L. (2000). The ten essentials of RUP:
The essence of an effective development process
(White Paper TP177). Rational Software.

