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Abstract. In this paper, a general Combinatorial Ant System-based fault 
tolerant distributed routing algorithm modeled like a dynamic combinatorial 
optimization problem is presented. In the proposed algorithm, the solution 
space of the dynamic combinatorial optimization problem is mapped into the 
space where the ants will walk, and the transition probability and the 
pheromone update formula of the Ant System is defined according to the 
objective function of the communication problem. 

1   Introduction 

The problem to be solved by any routing system is to direct traffic from sources to 
destinations while maximizing some network performance metric of interest. 
Depending on the type of network, common performance metrics are call rejection 
rate, throughput, delay, distance, and energy, among the most important ones. Routing 
in communication networks is necessary because in real systems not all nodes are 
directly connected. Currently, routing algorithms face important challenges due to the 
increased complexity found in modern networks. The routing function is particularly 
challenging in modern networks because traffic conditions, the structure of the 
network, and the network resources are limited and constantly changing. The lack of 
adaptability of routing algorithms to frequent topological changes, node capacities, 
traffic patterns, load changes, energy availability, and others, reduces the throughput 
of the network. This problem can be defined as a distributed time-variant dynamic 
combinatorial optimization problem [2, 11]. 

Artificial Ant Systems provide a promising alternative to develop routing 
algorithms for modern communication networks. Inherent properties of ant systems 
include massive system scalability, emergent behavior and intelligence from low 
complexity local interactions, autonomy, and stigmergy or communication through 
the environment, which are very desirable features for many types of networks. In 
general, real ants are capable of finding the shortest path from a food source to their 
nest by exploiting pheromone information [1, 3, 4, 5, 6]. While walking, ants deposit 
pheromone trails on the ground and follow pheromone previously deposited by other 
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ants. The above behavior of real ants has inspired the Ants System (AS), an algorithm 
in which a set of artificial ants cooperate to the solution of a problem by exchanging 
information via pheromone deposited on a graph. 

Ants systems have been used in the past to solve other combinatorial optimization 
problems such as the traveling salesman problem and the quadratic assignment 
problem, among others [3, 4, 5, 6, 7]. We have proposed a distributed algorithm based 
on AS concepts, called the Combinatorial Ant System (CAS), to solve static discrete-
state and dynamic combinatorial optimization problems [1,2]. The main novel idea 
introduced by our model is the definition of a general procedure to solve 
combinatorial optimization problems using AS. In our approach, the graph that 
describes the solution space of the combinatorial optimization problem is mapped on 
the AS graph, and the transition function and the pheromone update formula of the 
AS are built according to the objective function of the combinatorial optimization 
problem. In this paper, we present a routing algorithm based on CAS. Our scheme 
provides a model for distributed network data flow organization, which can be used to 
solve difficult problems in today’s communication networks. The remaining of the 
paper is organized as follows. Section 2 presents the Combinatorial Ant System and 
the Routing Problem. Section 3 presents the general distributed routing algorithm 
based on the CAS. Then, Section 4 presents and evaluates the utilization of this 
algorithm on communication networks. Finally, conclusions are presented. 

2   Theoretical Aspects 

2.1   The Combinatorial Ant System (CAS) 

Swarm intelligence appears in biological swarms of certain insect species. It gives rise 
to complex and often intelligent behavior through complex interaction of thousands of 
autonomous swarm members. Interaction is based on primitive instincts with no 
supervision. The end result is the accomplishment of very complex forms of social 
behavior or optimization tasks [1,3,4,5,7]. The main principle behind these 
interactions is the autocatalytic reaction like in the case of Ant Systems where the ants 
attracted by the pheromone will lay more of the same on the same trail, causing even 
more ants to be attracted. 

The Ant System (AS) is the progenitor of all research efforts with ant algorithms, 
and it was first applied to the Traveling Salesman Problem (TSP) [5, 6]. Algorithms 
inspired by AS have manifested as heuristic methods to solve combinatorial 
optimization problems. These algorithms mainly rely on their versatility, robustness 
and operations based on populations. The procedure is based on the search of agents 
called "ants", i.e. agents with very simple capabilities that try to simulate the behavior 
of the ants. 

AS utilizes a graph representation (AS graph) where each edge (r,s) has a 
desirability measure γrs, called pheromone, which is updated at run time by artificial 
ants. Informally, the following procedure illustrates how the AS works. Each ant 
generates a complete tour by choosing the nodes according to a probabilistic state 
transition rule; ants prefer to move to nodes that are connected by short edges, which 
have a high pheromone presence. Once all ants have completed their tours, a global 
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pheromone updating rule is applied. First, a fraction of the pheromone evaporates on 
all edges, and then each ant deposits an amount of pheromone on the edges that 
belong to its tour in proportion to how short this tour was. At his point, we continue 
with a new iteration of the process. 

There are two reasons for using AS on the TSP. First, the TSP graph can be 
directly mapped on the AS graph. Second, the transition function has similar goals to 
the TSP. This is not the case for other combinatorial optimization problems. In [1, 2], 
we proposed a distributed algorithm based on AS concepts, called the CAS, to solve 
any type of combinatorial optimization problems. In this approach, each ant builds a 
solution walking through the AS graph using a transition rule and a pheromone update 
formula defined according to the objective function of the combinatorial optimization 
problem. This approach involves the following steps: 

1. Definition of the graph that describes the solution space of the combinatorial 
optimization problem (COP graph). The solution space is defined by a graph 
where the nodes represent partial possible solutions to the problem, and the 
edges the relationship between the partial solutions.  

2. Building the AS graph. The COP graph is used to define the AS graph, the 
graph where the ants will finally walk through. 

3. Definition of the transition function and the pheromone update formula of 
the CAS. These are built according to the objective function of the 
combinatorial optimization problem.  

4. Executing the AS procedure described before.  

2.1.1   Building the AS Graph 
The first step is to build the COP graph, then we define the AS graph with the same 
structure of the COP graph. The AS graph has two weight matrices. The first matrix is 
defined according to the COP graph and registers the relationship between the 
elements of the solution space (COP matrix). The second one registers the pheromone 
trail accumulated on each edge (pheromone matrix). This weight matrix is 
calculated/updated according to the pheromone update formula. When the incoming 
edge weights of the pheromone matrix for a given node become high, this node has a 
high probability to be visited. On the other hand, if an edge between two nodes of the 
COP matrix is low, then it means that, ideally, if one of these nodes belongs to the 
final solution then the other one must belong too. If the edge is equal to infinite then it 
means that the nodes are incompatible, and therefore, they don't belong to at the same 
final solution. 

We define a data structure to store the solution that every ant k is building. This 
data structure is a vector (Ak) with a length equal to the length of the solution, which 
is given by n, the number of nodes that an ant must visit. For a given ant, the vector 
keeps each node of the AS graph that it visits. 

2.1.2   Defining the Transition Function and the Pheromone Update Formula 
The state transition rule and the pheromone update formula are built using the 
objective function of the combinatorial optimization problem. The transition function 
between nodes is given by: 
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where k
rJ  is the set of nodes connected to r that remain to be visited by ant k 

positioned at node r. When β=0 we exploit previous solutions (only trail intensity is 
used), and when α=0 we explore the solution space (a stochastic greedy algorithm is 
obtained). A tradeoff between quality of partial solutions and trail intensity is 
necessary. Once all ants have built their tours, pheromone, i.e. the trail intensity in the 
pheromone matrix, is updated on all edges according to Equation 2 [1, 2, 3, 4, 5, 6]: 
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where ρ is a coefficient such that (1 – ρ) represents the trail evaporation in one 
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where )(tC k
f is the value of the cost function (objective function) of the solution 

proposed by ant k at iteration t. The general procedure of our approach is summarized 
as follows: 

1. Generation of the AS graph.  
2. Definition of the state transition rule and the pheromone update formula, 

according to the combinatorial optimization problem. 
3. Repeat until system reaches a stable solution 

3.1. Place m ants on different nodes of the AS graph. 
3.2. For i=1, n 
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3.2.1.   For j=1, m 
3.2.1.1. Choose node s to move to, according to the transition 

probability (Equation 1). 
3.2.1.2. Move ant m to the node s. 

3.3. Update the pheromone using the pheromone update formula (Equations 
2 and 3). 

2.2   The Routing Problem 

Routing is the function that allows information to be transmitted over a network from 
a source to a destination through a sequence of intermediate switching/buffering 
stations or nodes. Routing is necessary because in real systems not all nodes are 
directly connected. Routing algorithms can be classified as static or dynamic, and 
centralized or distributed [10]. Centralized algorithms usually have scalability 
problems, and single point of failure problems, or the inability of the network to 
recover in case of a failure in the central controlling station. Static routing assumes 
that network conditions are time-invariant, which is an unrealistic assumption in most 
of the cases. Adaptive routing schemes also have problems, including inconsistencies 
arising from node failures and potential oscillations that lead to circular paths and 
instability. Routing algorithms can also be classified as minimal or non-minimal [10]. 
Minimal routing allows packets to follow only minimal cost paths, while non-minimal 
routing allows more flexibility in choosing the path by utilizing other heuristics. 
Another class of routing algorithms is one where the routing scheme guarantees 
specified QoS requirements pertaining to delay and bandwidth [10].   

Commonly, modern networks utilize dynamic routing schemes in order to cope 
with constant changes in the traffic conditions and the structure or topology of the 
network. This is particularly the case of wireless ad hoc networks where node 
mobility and failures produce frequent unpredictable node/link failures that result in 
topology changes. A vast literature of special routing algorithms for these types of 
networks exist [13, 14], all of them with the main goal of making the network layer 
more reliable and the network fault tolerant and efficient. However, maximizing 
throughput for time-variant load conditions and network topology is a NP-complete 
problem. A routing algorithm for communication networks with these characteristics 
can be defined as a dynamic combinatorial optimization problem, that is, like a 
distributed time-variant problem. In this paper, we are going to use our model to 
propose a routing algorithm for these networks, which support multiple node and link 
failures. 

3   The General CAS-Based Distributed Routing Algorithm 

There are a number of proposed ant-based routing algorithms [3, 9, 12, 13, 14]. The 
most celebrated one is AntNet, an adaptive agent-based routing algorithm that has 
outperformed the best-known routing algorithms on several packet-switched 
communication networks. Ant systems have also been applied to telephone networks. 
The Ant-Based Control (ABC) scheme is an example of a successful application. We 
are going to propose a new routing algorithm based on our CAS that can be used in 



 A Fault Tolerant Distributed Routing Algorithm Based on Combinatorial Ant Systems 519 

 

different networking scenarios, such as networks with static topologies, networks with 
constant topology changes, and network with energy constraints. 

We can use our approach for point to point or point to multipoint requests. In the 
case of point to point, one ant is launched to look for the best path to the destination. 
For a multipoint request with m destinations, m ants are launched. The route where 
intermediate nodes have large pheromone quantities is selected. For this, we use the 
local routing tables of each node like a transition function to its neighbours. Thus, 
according to the destination of the message, the node with highest probability to be 
visited corresponds to the entry in the table with the larger amount of pheromone. 
Then, the local routing table is updated according the route selected. Our algorithm 
can work in combinatorial stable networks (networks where the changes are 
sufficiently slow for the routing updates to be propagate to all the nodes) or not, 
because our approach works with local routing tables and the changes only must be 
propagated to the neighbours.  

3.1   Building the AS Graph 

We use the pheromone matrix of our AS graph like the routing table of each node of 
the network. Remember that this matrix is where the pheromone trail is deposited. 
Particularly, each node i has ki neighbors, is characterized by a capacity Ci, a spare 
capacity Si, and by a routing table Ri=[ri

n,d(t)]ki,N-1. Each row of the routing table 
corresponds to a neighbor node and each column to a destination node. The 
information at each row of node i is stored in the respective place of the pheromone 
matrix (e.g., in position i, j if ki neighbor = j). The value ri

n,d(t) is used as a 
probability. That is, the probability that a given ant, where the destination is node d, 
be routed from node i to neighbor node n. We use the COP matrix of our AS graph to 
describe the network structure. If there are link or node failures, then the COP graph 
is modified to show that. In addition, in each arc of the COP graph, the estimation of 
the trip time from the current node i to its neighbor node j, denoted Γi={µi->j, σ2

i->j} is 
stored, where µi->j is the average estimated trip time from node i to node j, and σ2

i->j is 
its associated variance. Γi provides a local idea of the global network's status at node i. 
Finally, we define a cost function for every node, called Cij(t), that is the cost 
associated with this link. It is a dynamic variable that depends on the link's load, and 
is calculated at time t using Γi. 

3.2   Defining the Transition Function and the Pheromone Update Formula 

We have explained that in our decentralized model each node maintains a routing 
table indicating where the message must go in order to reach the final destination. 
Artificial ants adjust the table entries continually affecting the current network state. 
Thus, routing tables are represented like a pheromone table having the likelihood of 
each path to be followed by artificial ants. Pheromone tables contain the address of 
the destination based on the probabilities for each destination from a source. In our 
network, each ant launched influences the pheromone table by increasing or reducing 
the entry for the proper destination.  

In our model, each node of the network is represented as a class structure 
containing various parameters (identification of the node, adjacent nodes, spare 
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capacity, number of links), and Equation 3 has the following meaning: )(tC k
f is the 

cost of kth ant's route, ∆γis
k(t) is the amount of pheromone deposited by ant k if edge (i, 

s) belongs to the kth ant's route (it is used to update the routing table Ri in each node), 
and ( )tP k

ij  is the probability that ant k chooses to hop from node i to node j (it is 
calculated from the routing table Ri). In this way, ants walk according to the 
probabilities given in the pheromone tables and they visit one node every time. Ant k 
updates its route cost each time it traverses a link )(tC k

f = )(tC k
f + Cij(t) if i,j∈ path 

followed by ant k. In this way, an ant collects the experienced queues and traffic load 
that allows it to define information about the state of the network. Once it has reached 
the destination node d, ant k goes all the way back to its source node through all the 
nodes visited during the forward path, and updates the routing tables (pheromone 
concentration) and the set of estimations of trip times of the nodes that belong to its 
path (COP graph), as follows: 

- The times elapsed of the path i->d (Ti->d) in the current kth ant's route is used to 
update the mean and variance values of Γi of the nodes that belong to the route. 
Ti->d gives an idea about the goodness of the followed route because it is 
proportional to its length from a traffic or congestion point of view. 

- The routing table Ri is changed by incrementing the probability ri
j,d(t) associated 

with the neighbor node j that belongs to the kth ant's route and the destination 
node d, and decreasing the probabilities ri

n,d(t) associated with other neighbor 
nodes n, where n ≠ j for the same destination (like a pheromone trail).  

The values stored in Γi are used to score the trip times so that they can be 
transformed in a reinforcement signal r=1/µi>j, r∈[0,1]. r is used by the current node i 
as a positive reinforcement for the node j: 

ri
i-1,d(t+1) = ri

i-1,d(t) (1-r)+r 

and the probabilities ri
n,d(t) for destination d of other neighboring nodes n receive a 

negative reinforcement 

ri
n,d(t+1) = ri

n,d(t) (1-r)   for n ≠j 

In this way, artificial ants are able to follow paths and avoid congestion while 
balancing the network load. Finally, Cij(t) is updated using Γi and considering the 
congestion problem (we must avoid congested nodes): 

2
ji

ji)t(ds
ij

jCe)1t(C
→
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µ
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where C and d are constants, and sj(t) is the spare capacity of the node j at time t. The 

incorporation of delay (
)t(ds jCe

−
) reduces the ant flow rate to congested nodes, 

permitting other pheromone table entries to be updated and increased rapidly 
(negative backpropagation). In the case of link failures, the algorithm avoid those 
nodes according to the following formula: 

Cij(t+1)= ∞ (node j with failures) (5) 
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4   Performance Evaluation of the CAS Algorithm 

In this section we test our approach considering three cases, networks with static 
topologies (no failures), networks with constant topology changes due to node and 
link failures, and networks with energy constraints with and without failures. 

In this experiment, we evaluate our algorithm in networks with constant topology 
changes introducing link and node failures. Here, if a link failure occurs and the 
node has more than one linkage, then the node can be reached via other path. If the 
node has no other link to any node in the network then a node failure occurs. We 
assume that link failures follow a uniform distribution and do not exceed 10% of 
the total number of links in the network. In the presence of a link failure, the cost of 
a call from source node i to destination node j will be defined as infinite (see Eqn. 
5), and the probability in the proper column and row in the pheromone table is set to 
zero.  

As in [8], we also consider the incorporation of additive noise in order to handle 
the so-called shortcut and blocking problems. The shortcut problem occurs when a 
shorter route becomes suddenly available while the blocking problem occurs when an 
older route becomes unavailable. In both situations, artificial ants have difficulties 
finding new routes, as they work guided by the pheromone tables and don’t have an 
adequate dynamic reaction. With the inclusion of the noise factor f, ants select a 
purely random path with probability f and a path guided by the pheromone table with 
probability (1-f). As shown in [8, 9, 12], the noise factor must not exceed 5%, because 
a noise factor greater that 5% makes the system unstable, reducing the network 
throughput and the performance of the routing method. 

We performed simulations and compared our algorithm with the approach 
presented in [8] using the same partially meshed Synchronous Digital Hierarchy 
(SDH) network. The network has 25 nodes partially connected and all links have a 
capacity of 40 calls. We make random selection of call probabilities, link failure 
random generations, and collect data to evaluate the performance of the schemes in 
terms of throughput and mean delay per node. Figures 1 and 2 show these results. 

In Figure 1, we show that our approach provides better performance than [8] in the 
presence of link failures. The mean delay per node is considerably better because we 
consider the congested node problem. Similarly, Figure 2 shows that the throughput 
response of the proposed system is better, as it handles the incoming call variations 
and simultaneous link failures better than [8]. Link failures essentially form a 
constantly changing network topology to which our agent-based algorithm seems to 
adapt particularly well. This actually means that the proposed routing algorithm is a 
good candidate for networks with constant topology changes such as mobile wireless 
ad hoc networks, where node mobility causes constant link failures. 

We also compared our model with the traditional Link State routing scheme 
described in [10] and the Ant-Based approach proposed in [9] using the same 
network. In Figure 3, it is shown that our CAS scheme provides substantially better 
throughput performance in the presence of multiple link/node failures. 



522 J. Aguilar and M. Labrador 

 

    CASMean delay per node

Simul.  
Time (sec)0                             7000                        14000 

  18 
 
    
    9 
  
     
    0 

       [8]

 

    CAS Served Incoming Calls

Simul.  
Time (sec)0                               7000                     14000 

 5
 
  
 
 2
   
0 

       [8] 

 

Fig. 1. Mean delay per node Fig. 2. Throughput response 

Number of Calls

     CAS                   [9]                   [10]

 5

2

0
 

Fig. 3. Throughput response 

5   Conclusions 

In this work we propose a General Combinatorial Ant System-based Distributed 
Routing Algorithm for wired, wireless ad hoc and wireless sensor networks based on 
the Combinatorial Ant System. This work shows the versatility of our routing 
algorithm exemplified by the possibility of using the same model to solve different 
telecommunication problems, like dynamic combinatorial optimization problems of 
various sizes. Our approach can be applied to any routing problem by defining an 
appropriate graph representation of the solution space of the problem considered, the 
dynamic procedure to update that representation, and an objective function that guides 
our heuristic to build feasible solutions. In our approach, the dynamic environment of 
the combinatorial optimization problem is defined through the Combinatorial 
Optimization Problem matrix that forms part of the space through which the ants will 
walk (AS graph). Ants walk through this space according to a set of probabilities 
updated by a state transition and a pheromone update rule defined according to the 
objective function of the combinatorial optimization problem considered. Messages 
between nodes are replaced by ants simultaneously biasing the network parameters by 
laying pheromone on route from source to destination. The results show that our 
approach obtains good performance in the presence of multiple failures (links, nodes), 
contributes to congestion avoidance (load balancing), and keeps the network 
throughput stable.  
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