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ABSTRACT 
In this paper, a general Combinatorial Ant System-based 
distributed routing algorithm modeled like a dynamic 
combinatorial optimization problem is presented. In the 
proposed algorithm, the solution space of the dynamic 
combinatorial optimization problem is mapped into the space 
where the ants will walk, and the transition probability and the 
pheromone update formula of the Ant System is defined 
according to the objective function of the communication 
problem. The general nature of the approach allows for the 
optimization of the routing function to be applied in different 
types of networks just changing the performance criteria to be 
optimized. In fact, we test and compare the performance of our 
routing algorithm against well-known routing schemes for 
wired and wireless networks, and show its superior 
performance in terms throughput, delay and energy efficiency. 
 
Keywords: Dynamic Combinatorial Optimization, Swarm 
Intelligence, Distributed Intelligent Routing Algorithms and 
Processing, Wireless Ad Hoc and Sensor Networks, Fault 
Tolerant Networks. 
 
 

1. INTRODUCTION 
The problem to be solved by any routing system is to direct 
traffic from sources to destinations while maximizing some 
network performance metric of interest. Depending on the type 
of network, common performance metrics are call rejection 
rate, throughput, delay, distance, and energy, among the most 
important ones. Routing in communication networks is 
necessary because in real systems not all nodes are directly 
connected. Currently, routing algorithms face important 
challenges due to the increased complexity found in modern 
networks. For instance, centralized algorithms have scalability 
problems, static algorithms can’t keep up with constant 
network changes, and distributed and dynamic algorithms have 
oscillation and stability problems. 

The routing function is particularly challenging in modern 
networks because the traffic conditions, the structure of the 
network, and the network resources are limited and constantly 
changing. This is particularly true in recent wireless ad hoc and 
sensor networks where node mobility and device failures 
produce constant changes in the network topology. For these 
networks, distributed and dynamic routing algorithms are the 
only feasible approach. In fact, the lack of adaptability of 
routing algorithms to frequent topological changes, node 
capacities, traffic patterns, load changes, energy availability, 

and others, reduces the throughput of the network. This 
problem can be defined as a distributed time-variant dynamic 
combinatorial optimization problem [2, 26], a real challenge in 
the combinatorial optimization domain.  

Artificial Ant Systems provide a promising alternative to 
develop routing algorithms for modern communication 
networks. Proactive and reactive autonomous mobile software 
agents have the capability to adapt, cooperate and move 
intelligently from one location to the other in the 
communication network. Inherent properties of ant systems 
include massive system scalability, emergent behavior and 
intelligence from low complexity local interactions, autonomy, 
and stigmergy or communication through the environment, 
which are very desirable features for many types of networks. 
In general, real ants are capable of finding the shortest path 
from a food source to their nest by exploiting pheromone 
information [1, 9, 12, 13, 15]. While walking, ants deposit 
pheromone trails on the ground and follow pheromone 
previously deposited by other ants. The above behavior of real 
ants has inspired the Ants System (AS), an algorithm in which 
a set of artificial ants cooperate to the solution of a problem by 
exchanging information via pheromone deposited on a graph.  

Ants systems have been used in the past to solve other 
combinatorial optimization problems such as the traveling 
salesman problem and the quadratic assignment problem, 
among others [9, 12, 13, 14, 15, 23]. We have proposed a 
distributed algorithm based on AS concepts, called the 
Combinatorial Ant System (CAS), to solve static discrete-state 
and dynamic combinatorial optimization problems [1,2]. The 
main novel idea introduced by our model is the definition of a 
general procedure to solve combinatorial optimization 
problems using AS. In our approach, the graph that describes 
the solution space of the combinatorial optimization problem is 
mapped on the AS graph, and the transition function and the 
pheromone update formula of the AS are built according to the 
objective function of the combinatorial optimization problem. 
In this paper, we present a routing algorithm based on CAS 
because this problem can be defined as a dynamic 
combinatorial optimization problem. Our scheme provides a 
model for distributed network data flow organization, which 
can be used to solve difficult problems in today’s 
communication networks.  

We evaluate the performance of the proposed routing 
algorithm in three different types of networks. First, the 
algorithm is applied to static networks, i.e. networks with no 
topology changes due to node and link failures. Then, we 
include networks that present frequent topological changes due 
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to unpredictable node and link failures, such as wireless ad hoc 
networks.  Finally, the proposed algorithm is also applied to 
networks with energy constraints with and without failures, 
such as wireless sensor networks, where nodes are very small 
and cheap, and with limited energy, computation and 
communication capabilities for wireless distributed 
microsensing [24, 28, 31]. The recent interest in sensor 
networks has led to a number of routing schemes that use the 
limited resources available at sensor nodes more efficiently [4]. 
These schemes typically try to find the minimum energy path 
to optimize energy usage at a node. We use our model to 
design a new data dissemination paradigm for wireless sensor 
networks based on the ant system that is scalable, robust and 
energy efficient, and optimizes the performance of the network 
from the network lifetime point of view.  

The remaining of the paper is organized as follows. 
Section 2 presents the Combinatorial Ant System and the 
Routing Problem. Section 3 presents the general distributed 
routing algorithm based on the CAS. Then, Section 4 presents 
and evaluates the utilization of this algorithm on three different 
communication networks. Finally, conclusions are presented in 
Section 5.  

 
 

2. THEORETICAL ASPECTS 
 
2.1 The Combinatorial Ant System 
Swarm intelligence appears in biological swarms of certain 
insect species. It gives rise to complex and often intelligent 
behavior through complex interaction of thousands of 
autonomous swarm members. Interaction is based on primitive 
instincts with no supervision. The end result is the 
accomplishment of very complex forms of social behavior or 
optimization tasks [1, 9, 12, 13, 23]. The main principle behind 
these interactions is the autocatalytic reaction like in the case of 
Ant Systems where the ants attracted by the pheromone will lay 
more of the same on the same trail, causing even more ants to 
be attracted. 

The behavior of ant colonies, in particular, is impressive 
in their objective of survival. It is derived from a process of 
Collective Behavior [9] that, based on the ant communication 
capacities, defines the inter-relations between them. These 
inter-relations permit the transmission of information that each 
ant is processing. The communication among agents (ants) is 
made through a trace, called pheromone. Thus, an ant leaves a 
certain quantity of pheromone trail when it moves. In addition, 
the probability that an ant will follow a path depends on the 
numbers of ants that have taken that path before (a large 
quantity of pheromone in a path means a large probability that 
it will be visited).  

The Ant System (AS) is the progenitor of all research 
efforts with ant algorithms, and it was first applied to the 
Traveling Salesman Problem (TSP) [13, 14, 15]. Algorithms 
inspired by AS have manifested as heuristic methods to solve 
combinatorial optimization problems. These algorithms mainly 
rely on their versatility, robustness and operations based on 
populations. The procedure is based on the search of agents 
called "ants", i.e. agents with very simple capabilities that try to 
simulate the behavior of the ants. 

AS utilizes a graph representation (AS graph) where each 
edge (r,s) has a desirability measure γrs, called pheromone, 
which is updated at run time by artificial ants. Informally, the 
following procedure illustrates how the AS works. Each ant 
generates a complete tour by choosing the nodes according to a 
probabilistic state transition rule; ants prefer to move to nodes 

that are connected by short edges, which have a high 
pheromone presence. Once all ants have completed their tours, 
a global pheromone updating rule is applied. First, a fraction of 
the pheromone evaporates on all edges, and then each ant 
deposits an amount of pheromone on the edges that belong to 
its tour in proportion to how short this tour was. At his point, 
we continue with a new iteration of the process. 

There are two reasons for using AS on the TSP. First, the 
TSP graph can be directly mapped on the AS graph. Second, 
the transition function has similar goals to the TSP, which is 
not the case for other combinatorial optimization problems. In 
[1, 2], we proposed a distributed algorithm based on AS 
concepts, called the CAS, to solve any type of combinatorial 
optimization problems. In this approach, each ant builds a 
solution walking through the AS graph using a transition rule 
and a pheromone update formula defined according to the 
objective function of the combinatorial optimization problem. 
This approach involves the following steps: 

 
1. Definition of the graph that describes the solution 

space of the combinatorial optimization problem 
(COP graph). The solution space is defined by a 
graph where the nodes represent partial possible 
solutions to the problem and the edges the 
relationship between the partial solutions.  

2. Building the AS graph. The COP graph is used to 
define the AS graph, the graph where the ants will 
finally walk through. 

3. Definition of the transition function and the 
pheromone update formula of the CAS. These are 
built according to the objective function of the 
combinatorial optimization problem.  

4. Executing the AS procedure described before.  
 
Building the AS graph 
The first step is to build the COP graph, then we define the AS 
graph with the same structure of the COP graph. The AS graph 
has two weight matrices. The first matrix is defined according 
to the COP graph and registers the relationship between the 
elements of the solution space (COP matrix). The second one 
registers the pheromone trail accumulated on each edge 
(pheromone matrix). This weight matrix is calculated/updated 
according to the pheromone update formula. When the 
incoming edge weights of the pheromone matrix for a given 
node become high, this node has a high probability to be 
visited. On the other hand, if an edge between two nodes of the 
COP matrix is low, then it means that, ideally, if one of these 
nodes belongs to the final solution then the other one must 
belong too. If the edge is equal to infinite then it means that the 
nodes are incompatible, and therefore, they don't belong to at 
the same final solution. 

We define a data structure to store the solution that every 
ant k is building. This data structure is a vector (Ak) with a 
length equal to the length of the solution, which is given by n, 
the number of nodes that an ant must visit. For a given ant, the 
vector keeps each node of the AS graph that it visits. 
 
Defining the transition function and the pheromone update 
formula 
The state transition rule and the pheromone update formula are 
built using the objective function of the combinatorial 
optimization problem. The transition function between nodes is 
given by: 
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where γrs(t) is the pheromone at iteration t, is the 
cost of the partial solution that is being built by ant k when it 
crosses the edge (r, s) if it is in the position r, z-1 is the current 
length of the partial solution (current length of Ak), and, α and 
β are two adjustable parameters that control the relative weight 
of trail intensity (γrs(t)) and the cost function.  
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In the CAS, the transition probability is as follows: an ant 
positioned at node r chooses node s to move to according to a 
probability , which is calculated according to Eq. (1): ( )tPk
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where is the set of nodes connected to r that remain to be 
visited by ant k positioned at node r. When β=0 we exploit 
previous solutions (only trail intensity is used), and when α=0 
we explore the solution space (a stochastic greedy algorithm is 
obtained). A tradeoff between quality of partial solutions and 
trail intensity is necessary. Once all ants have built their tours, 
pheromone, i.e. the trail intensity in the pheromone matrix, is 
updated on all edges according to Eq. (2) [1, 2, 9, 12, 13, 14, 
15]: 
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where ρ is a coefficient such that (1 – ρ) represents the trail 
evaporation in one iteration (tour), m is the number of ants, and 
Δγrs

k(t) is the quantity per unit of length of trail substance laid 
on edge (r, s) by the kth ant in that iteration: 
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Commonly, modern networks utilize dynamic routing 
schemes in order to cope with constant changes in the traffic 
conditions and the structure or topology of the network. This is 
particularly the case of routing algorithms for mobile wireless 
ad hoc networks where node mobility and failures produce 
frequent unpredictable node/link failures that result in topology 
changes. A vast literature of special routing algorithms for 
these types of networks exist [4, 7, 19, 20, 34, 36], all of them 
with the main goal of making th e network more reliable, fault 
tolerant and efficient [26]. However, maximizing throughput 
for time-variant load conditions and network topology is a NP-
complete problem. A routing algorithm for communication 
networks with these characteristics can be defined as a dynamic 
combinatorial optimizat ion problem, i.e. like a distributed time-
variant problem. In this paper, we are going to use our model to 
propose a routing algorithm for these networks, which support 
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where is the value of the cost function (objective 

function) of the solution proposed by ant k at iteration t. The 
general procedure of our approach is summarized as follows: 
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1. Generation of the AS graph.  
2. Definition of the state transition rule and the 

pheromone update formula, according to the 
combinatorial optimization problem. 

3. Repeat until system reaches a stable solution 
3.1. Place m ants on different nodes of the AS 

graph. 

3.2. For i=1, n 
3.2.1. For j=1, m 

3.2.1.1. Choose node s to move to, 
according to the transition 
probability (Eq. (1)). 

3.2.1.2. Move ant j to the node s. 
3.3. Update the pheromone using the pheromone 

update formula (Eq. (2) and Eq. (3)). 
 
2.2 The Routing Problem 
Routing is the function that allows information to be 
transmitted over a network from a source to a destination 
through a sequence of intermediate switching/buffering stations 
or nodes. Routing is necessary because in real systems not all 
nodes are directly connected. Routing algorithms can be 
classified as static or dynamic, and centralized or distributed 
[10, 30, 35]. Centralized algorithms usually have scalability 
problems, and single point of failure problems, or the inability 
of the network to recover in case of a failure in the central 
controlling station. Static routing assumes that network 
conditions are time-invariant, which is an unrealistic 
assumption in most of the cases. Adaptive routing schemes also 
have problems, including inconsistencies arising from node 
failures and potential oscillations that lead to circular paths and 
instability. Routing algorithms can also be classified as 
minimal or non-minimal [10, 30, 35]. Minimal routing allows 
packets to follow only minimal cost paths, while non-minimal 
routing allows more flexibility in choosing the path by utilizing 
other heuristics. Another class of routing algorithms is one 
where the routing scheme guarantees specified QoS 
requirements pertaining to delay and bandwidth [10,30].   

Wireless sensor networks present challenging routing 
problems as well. Typically, these networks consist of 
thousands or even hundreds of thousands of nodes deployed in 
a risky or inaccessible area fo r monitoring and control purposes 
[25, 28, 31, 35]. Unlike wireless ad hoc networks, nodes are 
rather static and periodically transmit highly redundant data at 
low bit rates.  In addition, sensor nodes are constrained in terms 
of resources, having very limited energy, processing and 
communication capabilities. These characteristics imply that 
network protocols and algorithms must be simple and energy-
efficient, and that short-range hop-by-hop communication is 
preferred over direct long ranges. It is well-known that, of all 
these factors, energy conservation is the most important one, as 
it is directly related to the lifetime of the network, and the 
routing scheme must be sensitive to it. The potential problem in 
current protocols for wireless sensor networks is that they find 
the lowest energy route and use that for every communication. 

multiple node and link failures.  If edge (r,s) has been crossed by ant k

0         Otherwise

0                                   Otherwise
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However, that is not the best thing to do for extending the 
network lifetime and avoiding network partitions. Using a low 
energy path frequently leads to energy depletion of the nodes 
along that path and in the worst case may lead to network 
partitions. In order to increase the survivability of the network, 
the energy aware routing protocol is proposed in [35], which 
uses sub-optimal paths occasionally. This ensures that the 
optimal path does not get deleted and the network degrades 
gracefully. We are going to use our model to propose a 
dissemination mechanism for these networks. The protocol will 
be scalable to large number of nodes, resilient to node failures 
and energy efficient. 
 

3. THE GENERAL COMBINATORIAL ANT SYSTEM-
BASED DISTRIBUTED ROUTING ALGORITHM 

There are a number of proposed ant-based routing algorithms 
[26, 27, 29]. The most celebrated one is AntNet [11], an 
adaptive agent-based routing algorithm that has outperformed 
the best-known routing algorithms on several packet-switched 
communication networks [9, 30]. Ant systems have also been 
applied to telephone networks. The Ant-Based Control (ABC) 
scheme is an example of a successful application [9]. Other 
examples of ant-based routing algorithms can be found in the 
literature [16, 26]. We are going to propose a new routing 
algorithm based on our CAS that can be used in different 
networking scenarios, such as networks with static topologies, 
networks with constant topology changes, and network with 
energy constraints. 

We can use our approach for point to point or point to 
multipoint requests. In the case of point to point, one ant is 
launched to look for the best path to the destination. For a 
multipoint request with m destinations, m ants are launched. 
The route where intermediate nodes have large pheromone 
quantities is selected. For this, we use the local routing tables 
of each node like a transition function to its neighbors. Thus, 
according to the destination of the message, the node with 
highest probability to be visited corresponds to the entry in the 
table with the largest amount of pheromone. Then, the local 
routing table is updated according the route selected. Our 
algorithm can work in combinatorial stable networks (networks 
where the changes are sufficiently slow for the routing updates 
to be propagate to all the nodes) or not, because our approach 
works with local routing tables and the changes only must be 
propagated to the neighbors.  
 
3.1 Building the AS graph 
We use the pheromone matrix of our AS graph like the routing 
table of each node of the network. Remember that this matrix is 
where the pheromone trail is deposited. Particularly, each node 
i has ki neighbors, is characterized by a capacity Ci, a spare 
capacity Si, and by a routing table Ri=[ri

n,d(t)]ki,N-1. Each row of 
the routing table corresponds to a neighbor node and each 
column to a destination node. The information at each row of 
node i is stored in the respective place of the pheromone matrix 
(e.g., in position i, j if ki neighbor = j). The value ri

n,d(t) is used 
as a probability. That is, the probability that a given ant, where 
the destination is node d, be routed from node i to neighbor 
node n. We use the COP matrix of our AS graph to describe the 
network structure. If there are link or node failures, then the 
COP graph is modified to show that. In addition, in each arc of 
the COP graph, the estimation of the trip time from the current 
node i to its neighbor node j, denoted Γi={μi->j, σ2

i->j} is stored, 
where μi->j is the average estimated trip time from node i to 
node j, and σ2

i->j is its associated variance. Γi provides a local 
idea of the global network's status at node i. Finally, we define 

a cost function for every node, called Cij(t), that is the cost 
associated with this link. It is a dynamic variable that depends 
on the link's load, and is calculated at time t using Γi. 
 
3.2 Defining the transition function and the pheromone 

update formula 
We have explained that in our decentralized model each node 
maintains a routing table indicating where the message must go 
in order to reach the final destination. Artificial ants adjust the 
table entries continually affecting the current network state. 
Thus, routing tables are represented like a pheromone table 
having the likelihood of each path to be followed by artificial 
ants. Pheromone tables contain the address of the destination 
based on the probabilities for each destination from a source. In 
our network, each ant launched influences the pheromone table 
by increasing or reducing the entry for the proper destination.  

In our model, each node of the network is represented as a 
class structure containing various parameters (identification of 
the node, adjacent nodes, spare capacity, number of links), and 
Eq. (3) has the following meaning: is the cost of kth ant's 

route, Δγrs
k(t) is the amount of pheromone deposited by ant k if 

edge (r, s) belongs to the kth ant's route (it is used to update the 
routing table Ri in each node), and  is the probability that 

ant k chooses to hop from node i to node j (it is calculated from 
the routing table Ri). In this way, ants walk according to the 
probabilities given in the pheromone tables and they visit one 
node every time. Ant k updates its route cost each time it 
traverses a link = + Cij(t) if i,j∈ path followed 

by ant k. In this way, an ant collects the experienced queues 
and traffic load that allows it to define information about the 
state of the network. Once it has reached the destination node 
d, ant k goes all the way back to its source node through all the 
nodes visited during the forward path, and updates the routing 
tables (pheromone concentration) and the set of estimations of 
trip times of the nodes that belong to its path (COP graph), as 
follows: 

)(tC k
f

( )tP k
ij

)(tC k
f )(tC k

f

 
- The times elapsed of the path i->d (Ti->d) in the current kth 

ant's route is used to update the mean and variance values 
of Γi of the nodes that belong to the route. Ti->d gives an 
idea about the goodness of the followed route because it is 
proportional to its length from a traffic or congestion point 
of view. 

- The routing table Ri is changed by incrementing the 
probability ri

j,d(t) associated with the neighbor node j that 
belongs to the kth ant's route and the destination node d, 
and decreasing the probabilities ri

n,d(t) associated with 
other neighbor nodes n, where n ≠ j for the same 
destination (like a pheromone trail).  

 
The values stored in Γi are used to score the trip times so that 
they can be transformed in a reinforcement signal r=1/μi->j, 
r∈[0,1]. r is used by the current node i as a positive 
reinforcement for the node j: 
 
ri

i-1,d(t+1) = ri
i-1,d(t) (1-r)+r 

 
and the probabilities ri

n,d(t) for destination d of other 
neighboring nodes n receive a negative reinforcement 
 
ri

n,d(t+1) = ri
n,d(t) (1-r)   for n ≠j 
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In this way, artificial ants are able to follow paths and avoid 
congestion while balancing the network load. Finally, Cij(t) is 
updated using Γi and considers the congestion problem (we 
must avoid congested nodes): 
 

2
)()1(

ji

jitds
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jCetC
→

→−=+
σ
μ
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where C and d are constants, and sj(t) is the spare capacity of 

the node j at time t. The incorporation of delay ( ) 
reduces the ant flow rate to congested nodes, permitting other 
pheromone table entries to be updated and increased rapidly 
(negative backpropagation). In the case of link failures, the 
algorithm avoids those nodes according to the following 
formula: 

)t(ds jCe−

 
Cij(t+1)= ∞ (node j with failures) (5) 

 
In the case of a sensor network, the ants search for paths that 
maximize the utilization of energy in each node, and the 
following formula is used: 
 
Cij(t+1)= Ce-dg(t)     (6) 
 
where, C and d are constants, and g(t) is the life of the battery 
at time t (this is the negative backpropagation). Nonetheless, 
our metric can include information about the cost of using the 
path, energy available at the nodes along the path, topology of 
the network, etc. For this reason, the following second formula 
can be used in sensor networks [31]: 
 

βα
jijij REtC =+ )1(    (7) 

 
where Eij is the energy used to transmit and receive on the link, 
and Rj is the residual energy at node j normalized to the initial 
energy of the node.  The factors α and β can be chosen in order 
to find the minimum energy path or the path with nodes having 
the most energy or a combination of the above. 
 
4. PERFORMANCE EVALUATION OF THE CAS 
ALGORITHM 
In this section we test our approach considering three cases, 
networks with static topologies (no failures), networks with 
constant topology changes due to node and link failures, and 
networks with energy constraints with and without failures. 
 
4.1. Case 1: Networks with static topologies - No failures 
We employ two well-known networks to evaluate our 
algorithms in networks with stable topologies. The first 
network is the US NSFNET-T1 that consists of 14 nodes and 
21 bidirectional links with a bandwidth of 1.5 Mbps, and 
propagation delays that range from 4 to 20 ms. The second 
network is the Japanese NNTnet that has 57 nodes and 162 
bidirectional links of 6 Mbps, and propagation delays from 1 to 
5 ms [2, 3, 9, 10]. A number of different traffic patterns, both in 
terms of spatial and temporal characteristics, have been 
considered. We consider Poisson (P) and Fixed (F) traffic 
patterns for the temporal distribution of the sessions, and 
Uniform (U) and Random (R) for the spatial distribution. 
General traffic patterns are then obtained by combining the 
above characteristics. The network performance is expressed in 
throughput or delivered bps, and end-to-end delay or delivered 

time from source to destination. Nodes have a capacity of 40 
calls. Thus, every call using a node decreases the node’s spare 
capacity by 2.5%. We compare our algorithm with the AntNET 
approach and the Open Shortest Path First algorithm (SPF), the 
current official Internet routing algorithm [9, 30]. Figures 1 and 
2 show throughput and delay results for a Poisson temporal and 
Random spatial distribution of traffic on NSFNET and NNTnet 
using Eq. (4). Figure 3 is for a Fixed temporal and Uniform 
spatial distribution of traffic. These results are examples of the 
behavior of the algorithms; results obtained utilizing other 
traffic patterns and ant network topology combinations are 
qualitatively equivalent and can be found in [3].  
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Figure 1. Comparison of the algorithms on NSFNET using the PR 
traffic combination with a mean session inter-arrival time of 2.4 sec. 
 

The throughput achieved by the proposed approach is at 
least as good as that of AntNET, and the packet delays are 
much better than that of the others. At the beginning, our 
approach doesn’t have the best performance because it has to 
learn the current network situation, however, it later finds the 
optimum route in an impressive way, providing better 
performance. 
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Figure 2. Comparison of the algorithms on NNTnet using the PR traffic 
combination with a mean session inter-arrival time of 3.1 sec. 
 

Similarly, Figure 2 shows that our algorithm continues to 
give the best performance. In this case, the delay is bigger 
because the number of links in this network is larger. 
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Figure 3. Comparison of the algorithms on NSFNET using the FU 
traffic combination with a mean session inter-arrival time of 3.1 sec.  
 

Figure 3 shows the results utilizing the Fixed and Uniform 
traffic patter combination. As it can be seen, our algorithm 
reduces the packet delay permanently, and still provides the 
overall best throughput. CAS considers the congestion problem 
very well and provides better performance assigning (maybe) 
longer routes, but less congested. 
 
4.2.  Networks with constant topology changes  - Node and 

link failures 
In the last experiments, we assumed a link and node fault-free 
scenario. In this experiment, we evaluate our algorithm in 
networks with constant topology changes introducing link and 
node failures. Here, if a link failure occurs and the node has 
more than one linkage, then the node can be reached via other 
path. If the node has no other link to any node in the network 
then a node failure occurs. We assume that link failures follow 
a uniform distribution and do not exceed 10% of the total 
number of links in the network. In the presence of a link 
failure, the cost of a call from source node i to destination node 
j will be defined as infinite (see Eq. (5)), and the probability in 
the proper column and row in the pheromone table is set to 
zero.  

As in [26], we also consider the incorporation of additive 
noise in order to handle the so-called shortcut and blocking 
problems. The shortcut problem occurs when a shorter route 
becomes suddenly available while the blocking problem occurs 
when an older route becomes unavailable. In both situations, 
artificial ants have difficulties finding new routes, as they work 
guided by the pheromone tables and don’t have an adequate 
dynamic reaction. With the inclusion of the noise factor f, ants 
select a purely random path with probability f and a path 
guided by the pheromone table with probability (1-f). As shown 
in [30, 35], the noise factor must not exceed 5%, because a 
noise factor greater that 5% makes the system unstable, 
reducing the network throughput and the performance of the 
routing method. 

We performed simulations and compared our algorithm 
with the approach presented in [26] using the same realistic 
partially meshed Synchronous Digital Hierarchy (SDH) 
network. The network has 25 nodes partially connected and all 
links have a capacity of 40 calls. We make random selection of 
call probabilities, link failure random generations, and collect 
data to evaluate the performance of the schemes in terms of 
throughput and mean delay per node. Figures 4 and 5 show 
these results. 
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Figure 4. Mean delay per node. 
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Figure 5. Throughput response. 
 

In Figure 4, we show that our approach provides better 
performance than [26] in the presence of link failures. The 
mean delay per node is considerably better because we 
consider the congested node problem. Similarly, Figure 5 
shows that the throughput response of the proposed system is 
better, as it handles the incoming call variations and 
simultaneous link failures better than [26]. Link failures 
essentially form a constantly changing network topology to 
which our agent-based algorithm seems to adapt particularly 
well. This actually means that the proposed routing algorithm is 
a good candidate for networks with constant topology changes 
such as mobile wireless ad hoc networks, where node mobility 
causes constant link failures. 

We also compared our model with the traditional Link 
State routing scheme described in [8] and the Ant-Based 
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approach proposed in [26] using the same network. In Figure 6, 
it is shown that our CAS scheme provides substantially better 
throughput performance in the presence of multiple link/node 
failures.  
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Figure 6. Throughput response. 
 
 
4.3.  Networks with energy constraints – With and without 

failures 
Finally, we also evaluate our CAS algorithm in networks with 
specific constraints such as wireless sensor networks with and 
without topology changes, i.e. link and node failures. The 
problem of routing in wireless sensor networks is challenging 
due to the limited storage, power, processing and 
communications capabilities of the nodes as well as the large 
number of nodes included in most applications. As a result, the 
main aspects routing protocols for wireless sensor networks 
must consider are energy-efficiency and scalability. Many 
routing protocols have been proposed for wireless sensor 
networks [4]. Examples of protocols are Flooding, Gossiping 
[18], Sensor Protocols for Information via Negotiation (SPIN) 
[20,21], Directed Diffusion [24], Sequential Assignment 
Routing (SAR) [33], DREAM [6], Low-Energy Adaptive 
Clustering Hierarchy (LEACH) [22], SELAR [25], and power 
aware routing protocols [17], among the most important ones.  

In our evaluation, we consider the following metrics to 
analyze and compare the performance of the scheme. First, we 
consider the average dissipated energy, which measures the 
ratio of total dissipated energy per node in the network to the 
number of different distinct events seen  (in 
Joules/node/received data packet). This metric computes the 
average work done by a node and indicates the overall lifetime 
of the sensor node. We also measure the average delay, or the 
average one-way latency observed between transmitting an 
event and receiving it at each sink node (in seconds). 
Simulations are carried out in sensor fields with a total number 
of sensors ranging from 50 to 250. The traffic workload is fixed 
and consists of five sources and five sinks. Sources are 
randomly selected from nodes and sinks are uniformly 
scattered across the sensor field. Each source generates two 
events per second. We compare our approach with [24], where 
the Directed Diffusion and the omnoscient multicast techniques 
are proposed.  

Figure 7 shows the average dissipated energy per packet 
as a function of network size using Eq. (6). Our model 
dissipates a little less than the omniscient multicast technique 
but performs considerably better than Directed Diffusion. For 
some sensor fields, our model dissipates only 60% of energy. 
With respect to the average delay observed as function of 
network size (see Figure 8), our model has a delay comparable 
to Direct Diffusion. Thus, our model seems to be finding the 
low delay paths.  
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Figure 7. Average dissipated energy. 
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Figure 8. Average delay. 
 

We also performed simulations including node failures. 
For each sensor field, repeatedly, we turned off a fixed fraction 
of the nodes for 30 seconds. These nodes are uniformly chosen 
from the sensor field. Under this scenario, looking at Figures 9 
and 10, our CAS scheme maintains reasonable event delivery 
while incurring less that 20% additional average delay, 
especially in larger networks. As regards to energy, it can be 
seen that the dissipated energy improves in the presence of 
failures because our model considers directly the formulation 
of the failure problem (see Eq. (5)). 
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Figure 9. Average dissipated energy with network failures. 
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Figure 10. Average delay with network failures. 
 

More simulations were done to demonstrate the increased 
network survivability due to energy aware routing. Like the 
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work done in [31], we simulated a network of 76 nodes, out of 
which 65 were static sensors, 4 were mobile sensors, and 7 
were static controllers. 47 were light sensors and 18 were 
temperature sensors. The controllers sent our requests for data 
to the sensors in their region of interest. These requests 
programmed the light sensors to send data every 10 seconds 
and temperature data every 30 seconds. We compared our 
algorithm with energy aware routing [31] and directed 
diffusion [24]. We use Eq. (7) for path selection with α=1 and 
β=50. The network was simulated until a node ran out of 
energy. For diffusion routing, this occurred after 150 minutes, 
while it took 216 minutes for the energy aware routed network 
to fail, and 250 minutes for our protocol. This is an increase in 
network lifetime of 64 % with respect to 44% of energy aware 
routed protocol.  

 
5. CONCLUSIONS 

In this work we propose a General Combinatorial Ant System-
based Distributed Routing Algorithm for wired, wireless ad hoc 
and wireless sensor networks based on the Combinatorial Ant 
System. This work shows the versatility of our routing 
algorithm exemplified by the possibility of using the same 
model to solve different telecommunication problems, like 
dynamic combinatorial optimization problems of various sizes. 
Our approach can be applied to any routing problem by 
defining an appropriate graph representation of the solution 
space of the problem considered, the dynamic procedure to 
update that representation, and an objective function that 
guides a heuristic to build feasible solutions. In our approach, 
the dynamic environment of the combinatorial optimization 
problem is defined through the Combinatorial Optimization 
Problem matrix that forms part of the space through which the 
ants will walk (AS graph). Ants walk through this space 
according to a set of probabilities updated by a state transition 
and a pheromone update rule defined according to the objective 
function of the combinatorial optimization problem considered. 
Messages between nodes are replaced by ants simultaneously 
biasing the network parameters by laying pheromone on route 
from source to destination. 

The results show that our approach obtains good 
performance in the presence of heavy load and multiple failures 
(links, nodes), contributes to congestion avoidance (load 
balancing), and keeps the network throughput stable. In 
addition, our model can be used as a distributed sensing 
algorithm with the potential of significant energy savings, very 
useful in wireless sensor networks. 
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