
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Aguilar, José]
On: 1 September 2010
Access details: Access Details: [subscription number 926499853]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

A MULTIAGENTS SYSTEM TO CREATE CONTROL AGENTS
J. Aguilara; W. Zayasa

a CEMISID, Dpto. de Computación, Facultad de Ingeniería, Universidad de Los Andes, Mérida,
Venezuela

Online publication date: 31 August 2010

To cite this Article Aguilar, J. and Zayas, W.(2010) 'A MULTIAGENTS SYSTEM TO CREATE CONTROL AGENTS',
Applied Artificial Intelligence, 24: 8, 785 — 806
To link to this Article: DOI: 10.1080/08839514.2010.499498
URL: http://dx.doi.org/10.1080/08839514.2010.499498

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/08839514.2010.499498
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Applied Artificial Intelligence, 24:785–806
Copyright © 2010 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839514.2010.499498

A MULTIAGENTS SYSTEM TO CREATE CONTROL AGENTS

J. Aguilar and W. Zayas
CEMISID, Dpto. de Computación, Facultad de Ingeniería, Universidad de Los Andes,
Mérida, Venezuela

� The main goal of this work is the development of a multiagents system that would allow the
creation of control agents for the intelligent distributed control system based on agents (SCDIA),
including the creation of an agent’s source code, its compilation, and incorporation to the
SCDIA. The SCDIA has a control agents community consisting of five agents that resemble the
elements of a closed control loop: coordinator agent, controller agent, measurement agent, acting
agent, and specialized agent. Agent development platform JADE was used for developing this
system. The system has three main agents: central agent, code generator agent, and behavior
agent. These agents communicate with each other to generate the control agents of the SCDIA
through the use of a code generation ontology.

INTRODUCTION

Agents arise as a response to the need of counting on software
applications to solve complex problems by minimizing the external
intervention, by applying principles that would emulate human reasoning.
The agents allow the creation of software systems with a higher adaptation
capacity. The agent can be a proactive and autonomous entity. These
characteristics are crucial today when it is necessary to manage and process
huge quantities of unstructured information. A system in which two or
more agents interact is called a multiagents system (MAS).

Taking the theory MAS as a principle, a reference model was created
for the development of an intelligent distributed control system based on
agents (SCDIA). The SCDIA counts on two main components: control
agents community and service management agents community. The agents
that structure the control agents community help each other to perform
supervision and control tasks, related to industrial automation. Such
community is composed by five agents that resemble the elements of a
closed control loop: coordinator agent, controller agent, measurement

Address correspondence to J. Aguilar, CEMISID, Dpto. de Computación, Facultad de
Ingeniería, Universidad de Los Andes, Núcleo La Hechicera, Mérida 5101, Venezuela. E-mail:
aguilar@ula.ve

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



786 J. Aguilar and W. Zayas

agent, acting agent, and specialized agent. The service management
agents community is formed by an agents administrator agent, a data
management agent, an applications management agent, a resources
management agent, and a communication control agent.

In this work the creation system of control agents of the SCDIA is
developed, including the agent’s source code generation, its compilation,
and incorporation to SCDIA. For the development of this system, the
JADE Agent Development Platform (http://jade.tilab.com/), which follows
the FIPA (http://www.fipa.org/) MAS Standards, was used. The developed
system has three main agents: main agent, code generator agent, and
behavior agent. Additionally, a code generation ontology is proposed,
which is necessary for these three agents. The control agents generation
system (SIGECO) of SCDIA simplifies the creation process of a new control
agent, establishing the generic characteristics for agents, their behavior
types, methods, and their respective codes, apart from the use of external
applications for specialized tasks. This allows the user to reuse the code
and reduce the code writing for the creation of an agent. It should
be highlighted that this component follows an open design to facilitate
adding new functions.

The organization of this task is as follows. The next section contains
the theoretical aspects enclosing this task. Then, Section illustrates
the SIGECO design using the MASINA methodology, which is a MAS
specification methodology. Section presents the implementation of
SIGECO. A study case is exposed where the SIGECO functionalities are
shown. Finally, conclusions and recommendations are presented.

THEORETICAL ASPECTS

MAS and Agents

An agent is a software system placed in a certain environment that
operates in a continuous cycle of perception-reasoning-actuation. The
agent perceives the changes in its environment, applies the reasoning
provided by already known and new available information, and selects a
plan of action in response. There are many classifications of agent types
(Wooldridge 2002):

• Reactive: Acts in the event-condition-action form. It answers only to
external stimulus using the environment information available.

• Deliberative: Hold knowledge about the domain in which they interact
and the necessary planning capacity to accomplish a sequence of actions
to finish up with a fixed task.

• Collaborative: In general, in these cases the agents work together to solve
a problem.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 787

On the other hand, the MAS are characterized by the interaction of many
agents in the same physical or virtual environment. One of the main
concepts of the MAS is the interaction and coordination between agents.
This is not limited only to the communication or message exchange but
also includes the way in which an agent relates to other agents (Shoham
and Leyton-Brown 2009). The following characteristics occur in all MAS:

• Design: The agents that structure a MAS could have different hardware
or software natures used for their functioning.

• Environment: The environment in which an agent interacts can be static
or dynamic. In a MAS the presence of various agents adds complexity
to the environment as each agent influences it, and the effects of these
actions should be perceived by the rest of the agents. This enables the
environment of a MAS to be dynamic in many cases.

• Perception: In a MAS the environment information perceived by the
agents is distributed, so the agents can collect data that can alter
depending on its location, can be perceived in different moments by the
agents, or can be interpreted in a different way. This makes the state of
the environments partially observable for each agent, which affects the
decision making of each agent.

• Control: A MAS control is typically distributed. There is not a central
system that collects information from the environment and decides the
action for each agent to accomplish. The decision making depends on
each agent.

• Communication: In a MAS the communication between agents is crucial.
Generally, this communication is thought in terms of sending and
receiving messages from one agent to another. The communication is
the base for agent’s interaction in a MAS.

MASINA

MASINA is a methodology created for designing MAS for specific
problems (Aguilar et al. 2008). It is based on the MAS-common-KADS
methodology. The specification of the agents using this methodology is
based on the construction of the different models. The models have the
following characteristics:

• Organization model: Permits analyzing the organization where the MAS
will be incorporated. Allows identification of the organization actors and
their use cases.

• Agent model: Describes the agents’ characteristics, their abilities,
services, etc.

• Task model: Describes the tasks that will be carried out by the MAS,
so that they can be distributed among the different agents that take

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



788 J. Aguilar and W. Zayas

part in it. Some of these tasks can be achieved by the use of intelligent
techniques, such as neuronal networks, genetic algorithms, etc.

• Intelligence model: Shapes the capacity of generating an intelligent
behavior on an agent. For that, it characterizes the capacity of storing
knowledge, reasoning, and learning.

• Coordination model: Describes all the coordination mechanisms
between agents, though which collective work, negotiations, and other
processes are established.

• Designing model: Describes the architecture of the MAS, before
implementation.

• Communication model: Selects the information exchange between the
different agents.

Each model has different schemes that characterize them.

Intelligent Distributed Control System
Based on Agents (SCDIA)

SCDIA is a multiagent platform designed for industrial automation
systems (Aguilar et al. 2005a,b, 2007, 2009a,b). It proposes a series
of agents that represent the elements present in a control loop with
the intention of establishing a generic mechanism for the organization
management related to industrial automation.

This model describes five types of agents configured for high level
tasks, associated to the coordination, measurement, control, and other
specialized tasks in automation platforms. These are grouped as control
agents community. Furthermore, the model proposes another agents
community to provide the control agents community with services and
particularly, to administer the agents system and the computational
platform where the system will come to life (Aguilar et al. 2005a,b).

SCDIA’s Control Agents Community
The design of the SCDIA proposes a control agents community that

represents the components of a generic process control loop, in which the
activities of each agent are related and consolidated for the achievement of
a common purpose. The architecture of the platform proposes five types
of control agents (Aguilar et al. 2005b, 2007, 2009a,b):

1. Measuring agent: It is in charge of obtaining the necessary information
to determine the state of the process. Acts as a data collector,
consolidator, and processor. It also combines data from different
sources so it can provide information about the state of the process.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 789

2. Controller agent: It evaluates the information of the process and makes
decisions that would allow keeping it in ideal state, productivity, quality,
and security conditions. As well, provides information to the MAS about
the conditions and happenings of the process.

3. Acting agent: Converts the decisions taken by the controller,
coordinator, or specialized agents in actions that bring up the necessary
changes in the process for reaching the established tasks.

4. Coordinator agent: Supervises the control loop, plans the control
schemes and decision making, and produces changes in the controllers
commands and even changes in the behavior of the control loop agents
under its supervision. Coordinates the activities of the control agents
community.

5. Specialized agent: It is an agent that carries out specific functions for
system support, for example, pattern recognition, statistic calculations,
failure diagnosis, etc.

Service Management Agents Community (SMAC)
As a support for the control agents community of the SCDIA, there

is a group of management agents constituted by software components in
a distributed and mixed environment. Each component can act as an
access way for processing a determined application, as a bridge between
remote clients and data sources, or as an access interface to resources and
information systems. SMAC is the heart of the distributed agents system,
because it contains the agents that manage the communication services
and establishes characteristics to the system such as security, transparency,
labeling, migration, and interoperability. It is composed of three layers
(Aguilar et al. 2005a):

1. Interface: Here the interaction between the users and the agents is
established, because it is where the service requests are received from
the human agents and the software agents. At this level the “wrappers”
that permit the communication of systems from different platforms are
established within the SCDIA.

2. Medium: It is the heart of the SMAC, where the functions in charge of
the system distribution such as transparency, transactions management,
security, interoperability between applications and resources, agents
migration, activation, labeling, suspension, and so on are carried out.

3. Access to resources: Accesses the data sources managed by SCDIA.
It manages the necessary protocols and data accessing standards such
as ODBC, JDBC, SOAP, and OPC. It also manages the communication
protocols with hardware elements, for example, control network
protocols, drivers, etc.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



790 J. Aguilar and W. Zayas

SMAC is composed by five agents, described as follows (Aguilar et al.
2005a,b):

1. Agents administrator agent: It is in charge of managing, integrating, and
supervising the state of the SCDIA. This agent knows the location and
state of all existing agents in the system.

2. Resources management agent: Distributes the elements necessary for
the execution of any process, as for example processors, access/exit
hardware, storage hardware, and so on. This agent can be accessed by
any SCDIA agent. The resources can be distributed and be accessed in
a remote way.

3. Applications management agent: This agent is in charge of locating
the applications that could be required by an executing process, for
example, numeric or symbolic calculus programs, artificial intelligence
applications, and so on. Such applications could be in any accessible
server.

4. Data manager agent: This agent is in charge of establishing the link
with sites where interest data for the executing process is found, coming
from SCADAS, databases, or any other hardware or application that
could store data. Also, the agent should allow the data transfer between
the different hardware and applications in a transparent way.

5. Communication control agent: Maintains and controls the communi-
cation between MAS. It is in charge of translate and manipulate
ontologies and maintaining a trustful state of the communication
channel.

SIGECO DESIGN

As was pointed out before, in this work there is a proposal for a
creation system of control agents for SCDIA, called SIGECO. For this, the
SCDIA gets a new community, called the code creation agents community
(CGC), that build up the SIGECO agents, which allow the generation of
the source code of the control agents of SCDIA based on the control
agents specification showed in (Aguilar et al. 2007, 2009a,b).

The agents design of SIGECO was carried out following the
specifications for MAS proposed by FIPA (http://www.fipa.org/) and
the MASINA methodology (Aguilar et al. 2008). SIGECO is made of
three agents that collaborate with each other to carry out the creation,
compilation, and incorporation of the control agents for the SCDIA agents
platform:

1. Main agent
2. Code generation agent
3. Behavior agent

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 791

These agents allow the creation of new agents from the data provided by
the user. The data processing produces the source code of the control
agents. This is compiled, and once the object code is produced the
new agent is incorporated to the SCDIA platform. One code generation
ontology is used by the CGC for communication. This ontology allows the
agents to manage concepts related to the make up of the source code of
an agent, as well as its compilation and incorporation to the computational
platform of SCDIA.

CGC Agents Description

• Central agent (AC): Collects information provided by the user
concerning the agent to be created. These data include information
about attributes, methods, and behavior of the new agent. The AC
has a graphic interface for capturing the user’s information. This
information is used by the AC to generate the agent concept that is
later transmitted to the AGC for creating the source code of the SCDIA.
The code generation ontology defines the agent concept as the grouped
attributes, links to libraries, methods, initiation codes, and behaviors
that also represent concepts. The source code of the creating agent
comes from this information. This agent performs the creation request
for the behavior source code to the AGS and the creation request of the
agent source code to the AGC. The behaviors generated by the ACS are
incorporated to the agent concept by the AC. The services that it offers
are adding links to code libraries, add agent attribute, add a method to
an agent, provide behavior to an agent, adding agent initiation code,
creation request for the source code of an agent.

• Code generation agent (AGC): Its task is to generate the source and
object codes of the agent of the SCDIA. The AGC manages code patterns
to generate the source code of an agent. Taking an agent concept as an
input parameter, the AGC incorporates the information code that comes
from the agent concept and generates the source code of an agent from
the control agents community of SCDIA. The communication between
the CGC agents is based on the code generation ontology of the SCDIA.
This agent generates the source code of an agent, obtains its object
code, and takes it into the agents platform. The source code is submitted
to the AC to show it to the user. The offered services are source code
generation of the agent, object code generation of the agent, and new
agent incorporation to the SCDIA.

• Behavior agent (ACS): Generates the source code of the actions that
an agent should take in a given moment. The ACS generates behavior
source code from behavior patterns associated to the SCDIA control
agents (each member of the agents community of the SCDIA has typical
behaviors associated to their roles). Once the behavior source code is

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



792 J. Aguilar and W. Zayas

generated, it is showed to the user so that the necessary code lines are
added up to adjust it to particular needs of the agent to be created. The
service it provides is the creation of the behavior source code.

Tasks Model

Table 1 presents the services and tasks of SIGECO.

Coordination Model

The conversations of the agents of the CGC are shown in Table 2.
Here, we explain a conversation (see Aguilar et al. 2009c for the rest).

The conversation “request for the creation of a control agent” is composed
by the following (Figure 1). The AGC receives a message, in this case
containing a request for the creation of a control agent, coming from
the central agent. This request is answered once the agent is generated
and incorporated to the platform of the SCDIA. This request contains the
source code, created by the new agent.

Communication Model

Here we describe one of the speech acts presented in the previous
section (see Aguilar et al. 2009c for the rest). The conversation is “create
agent source code”:

• Objective: Receive the agent creation request from the AC
• Type: Directive
• Communication: Direct

TABLE 1 Tasks of the SIGECO Agents

• Agent concept building tasks
◦ Attribute adding
◦ Adding links to libraries
◦ Adding method
◦ Adding of parameters
◦ Adding initiation code
◦ Adding behavior
◦ Create behavior source code

• Code creation tasks
◦ Creation of agent source code
◦ Creation of agent object code
◦ Incorporation of agents to SCDIA

• Communication tasks
◦ Request receiving
◦ Transmission

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 793

TABLE 2 Exchange Between the CGC Agents

Initiation
agent Involved agents Exchange Service

AC AC-AGC Control agent
creation request

Creation of control
agent source code
(AGC)

AC AC-ACS Behavior code
creation request

Creation of source
code of the
behavior model
(ACS)

AC AC-AGC Verifies if the agent
was successfully
created

Creation source
code of the control
agent (AGC)

• Participating agents: AC and AGC
• Source: AC
• Service: Control agent creation
• Exchanged data: Agent concept
• Description: T AGC receives the agent concept, necessary for the

creation of the new control agent
• Precondition: AGC requires receiving the agent concept for generating

the new control agent
• Termination condition: The agent concept is received by AGC
• Performative: Request
• Communication media: Computer network

FIGURE 1 Request conversation of the creation of a control agent.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



794 J. Aguilar and W. Zayas

Code Creation Ontology of SCDIA

This ontology defines the concepts, actions, and predicates used for
the CGC to carry out the tasks related to the code creation. The source
code of an agent oriented to the platform for MAS JADE can be divided in
code fragments with well-defined functional characteristics, as in Figure 2.
The conjunction of functional elements of an agent gives as result the agent
concept. At the same time, each functional element has been defined as a
concept, so that the agent concept is composed by attribute concepts, links
to libraries, initialization code, behavior, and methods. The code creation
ontology is composed by the following concepts, actions, and predicates:

• Concepts: Represent entities with complex structures that are part of
the agent knowledge base; for example, an attribute is a complex entity
that forms part of the source code of an agent. In the following each of
them is detailed:

• Attribute concept: Represents an attribute of the agent kind.
• Links to libraries concept: Permits the reference of certain packages
external to the agent.

• Input parameters concept: Represents a parameter for entering a
method of the agent and takes part in the method concept.

• Method concept: Represents the statement of a method that will be
involved by the agent that will assign tasks to be accomplished.

• Behavior concept: Represents one of the most important concepts as
the agent’s behavior defines its nature. The behaviors in the JADE
platform define the agent’s nature. All actions that an agent should
execute will be contained in the behavior codification.

• Agent concept: The agent concept represents the union of all the
above concepts. This concept contains the information that AGC
requires for creating the source code of the agent. So, an equivalence
is established between the source code of an agent, in each one of its
elements, and the attributes contained by this concept.

• Predicates: Expressions that give an idea about the world’s state. The
predicates can be used to get to know the result of any action that has
been requested by an agent to another.

• Actions: It is an activity that can be executed by an performing system,
in this case, an agent. In our case, the actions are considered as
equivalent to the services offered by each agent, which were presented
in Section .

The code creation ontology can be nourished with additional functions
as the SCDIA implementations grow. These functions can include
certification of the agent concept when compared and distinguished from

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 795

FIGURE 2 Functional composition of the source code of an agent.

precharged processes models in the CGC, or heuristics that would allow
to proof if effectively the concept satisfies the end that the user has
commanded, among other things.

DEVELOPMENT OF SIGECO

The implementation process of SIGECO is presented below.

Implementation of the CGC of the SCDIA

SIGECO was developed on the multiagents platform JADE
(http://jade.tilab.com/). The SIGECO agents are incorporated to the
platform and interact through it with the purpose of generating the source
code of the control agents of the SCDIA. Afterward, from this source
code the object code is obtained, and the new agent is incorporated to
the agents container of the SCDIA; this container could be local (in the
same machine where the agent has been created) or remote (in another
machine). The CGC is part of the SCDIA kernel. For this reason Java
packages were created in which the different elements of the CGC are
contained. Figure 3 shows the packages hierarchy of the SCDIA.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



796 J. Aguilar and W. Zayas

FIGURE 3 Packages hierarchy of the SCDIA.

The kernel and ontology packages structure the kernel of the system.
The kernel package contains the different sections containing SCDIA
agents, including the agents of the CGC. The ontology package assembles
different sections that structure the ontology used by the CGC agents (and
any other SCDIA agents) to achieve common objectives, in our case for
the creation of the control agent and its incorporation to SCDIA. The
packages description follows:

• Agent: Contains the SCDIA agents, which means the agents of the
control agents community of the SCDIA, the agents of the CGC, and the
agents of the service management agents community.

• General: Contains the graphic presentation sections of the central and
behavior agents.

• Guy: Contains the graphic interface sections of the CGC through which
information is shown or required to the user.

• Util: Contains utility method sections that carry out repetitive tasks
which are executed throughout the whole application.

• Code generation: Assembles the sections and packages that form the
code generation ontology.

• Action: Contains the actions that can be requested to the CGC agents.
• Concept: Contains the code generation ontology concepts.
• Predicate: Contains the predicates managed by the code generation
ontology.

The main interface of SIGECO is given by the central agent (Figure 4).
The behavior generator agent has also an interface (Figure 5), whereas the
code generator agent does not have a graphic interface.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 797

FIGURE 4 Central agent interface of the CGC.

SIGECO Main Options

Here we describe some of the most important options of SIGECO (for
more information see Aguilar et al. 2009c).

FIGURE 5 Graphic interface of the behavior generator agent.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



798 J. Aguilar and W. Zayas

Agent Concept Creation
The creation of a new agent requires the user to provide basic

information as the agent name, attributes, and methods. Afterward, the
agent nature is defined through the incorporation of the agent behavior.
The information provided by the user allows the creation of the agent
concept, with which the source code and the object of the new agent will be
created. For the creation of the agent concept the following are necessary:

• Add/edit links to libraries: The links to libraries allow access to external
sections to the package in which the agent will be created. For entering
a new link to libraries, click in the “Add” button of the links to libraries
list (Figure 6).

• Add/edit agent methods: The methods provide the processing capacity
to the agents and are able to carry out tasks such as the call of
methods from other sections that execute specific tasks that would serve
the agents ends. The methods are part of the source code of every
agent. The methods can be added through the label “Methods” of the
graphic interface of the central agent. For the methods, the following
information should be provided: name of the method, type of return,
input parameters, and method code body. Figure 7 shows the add/edit
methods screen.

• Add behavior to the agent: In JADE an agent provides services through
the behavior execution and defines its nature. The agents generator
component has an interface to add behaviors to agents in the design
stage (Figure 8).

In the dialog screen of Figure 8 the user writes the source code of
the behavior that the agent should have. SIGECO has a behavior creator
based on the control agents types. The creator has predefined behaviors
related to the tasks that the agents should execute according to their
types. Figure 5 presents the graphic interface of the behavior creator.
For using it, selecting the type of agent for which the behavior is going
to be designed and the type of behavior to be created is enough. Once
generated, this could be edited in the dialog screen shown in Figure 9.

FIGURE 6 Dialog frame for add/edit links to libraries.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 799

FIGURE 7 Dialog screen for add/edit methods.

FIGURE 8 Dialog screen for add/edit behaviors.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



800 J. Aguilar and W. Zayas

FIGURE 9 Source code of an agent.

Creation of a New Agent
The creation of the new agent is an easy process. To generate the new

agent, indicate the agent information and press the “Create Agent” button
of the central agent interface. Once the process is finished the interface
will show the created agent’s source code (Figure 9). The source code is
stored in a Java folder in the root directory of the agents creator.

STUDY CASE: CONTROL SYSTEM FOR A SUGAR
REFINING PROCESS

The process units shown in Figure 10 are part of the sugar refining
process. The process is nourished pure sugar through a transporting band.
The sugar is irrigated with water to make sugar syrup. This syrup is heated
in a dilution tank. From there, the syrup flows to a preparation tank where

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 801

FIGURE 10 Sugar refining process (Smith and Corripio 2006).

it is heated again and mixed with other chemical components. From the
preparation tank the syrup flows to a mixing tank. As the syrup flows to
the mixing tank, phosphoric acid and lime are added.

For this case the following variables are considered:

• Diluting tank temperature
• Preparation tank temperature
• Mixing tank temperature

System Modeling

Temperature Measurement in the Diluting, Mixing, and Preparation Tanks
According to the SCDIA specification, the measuring agent is in charge

of acquiring the necessary information to get to know the state of the
process. The study case requires knowing the temperatures in the diluting,
preparation, and mixing tanks; this information is measured by sensors
placed in the tanks. Once the process is completed, the information is
stored in format folders with XML format that contain the temperature
values (in ◦C) and the exact time when the value was registered. The data

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



802 J. Aguilar and W. Zayas

obtained from the process are analyzed by the measurement agent, which
releases an alarm signal if the measured value exceeds the previously
established limit. If this is the case, a notification message is sent to the
controller agent, indicating the temperature value that has produced the
signal.

Establishment of Measurement Parameters and Control of the Process
The controller agent ensures the required conditions are met during

the whole process. For that, the controller agent should know the state
of the process and should react to any change in the system conditions.
The controller agent receives information on the process through the
measurement agent, which sends an alarm signal to the controller agent
to inform that the system variables exceeded the acceptable behavior rank.

The result of receiving this signal is the execution of a new control
action, which, in this study case, regulates the observation patterns
of the measurement agent, establishing a new values rank that would
be acceptable for measurement. The controller agent should provide
information about the process to the coordinator agent, as requested by
the agent. This information includes the data of the received alarm signals,
such as alarm signal transmitter, temperature value, instant in which the
signal was received, and the total of alarm signals received.

Agents Development Using the CGC

Measurement Agents
The CGC can generate typical behaviors for the measurement agent,

such as variables measurement, changes in the measurement patterns,
and sending alarm signals. To achieve the communication with agents
of a higher level, such as the controller agent, the measurement agent
incorporates a behavior of controller agents search. For each of the
measurement agents four behaviors were created:

1. MeasureBehaviour: This behavior represents the measurement process
of the variables. The temperature measurement of the diluting,
preparation, and mixing tanks is completed once in a certain time span
and are compared with the acceptable temperature range. This is a
cyclical behavior, so it is executed continuously during the time the
agent is active, making measurements of 5 seconds time spans for the
diluting tank, 1 second for the preparation tank, and 2.5 seconds for
the mixing tank.

2. SetMinMaxValueBehaviour: This behavior allows the establishment of
the permitted values rank for a variable. In our study case the variable
is the temperature.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 803

3. ReceiveMessagesBehaviour: This is a cyclical behavior that receives
messages coming from other agents. This behavior receives the
commands for changing the measurement patterns.

4. SendAlarmBehaviour: This behavior is of the atomic type (executed
only once). The measurement agent executes it when the measured
value has come from the permitted values rank. An alarm signal is
sent that contains the name of the submitting agent, the value of
the temperature, and the instant in which the measurement has been
taken.

Controller Agent
The controller agent in this study case receives the alarm signals

coming from the measurement agents, establishes the new temperature
acceptable rank as measured in the tanks, and processes information
requests from the coordinator agent. The behaviors generated by the
controller agent are as follows:

• ReceiveMessagesBehaviour: This is a cyclical behavior that allows the
reception of messages sent from other agents of the control system. In
this agent’s particular case, the information requests that come from
the coordinator agent and the alarm signals submitted by the measuring
agents.

• SetMeasureParametersBehaviour: This behavior sends to the
measurement agent, a command of changing the measuring patterns.

• SendProcessInformationBehaviour: This process sends a report of the
state of the process. This report contains all the received alarm signals,
as well as the details of these, such as submitting agent and instant in
which the alarm was registered.

Coordinator Agent
This coordinator agent has a higher hierarchy in the control process;

it requests information about the state of the process. In this study case
the controller agent was in charge of the information request. Every 15
seconds, the coordinator agent sends an information request that the
controller agent should respond to. The behaviors incorporated to the
coordinator agent are as follows:

• ReceiveMessagesBehaviour: This cyclical behavior receives the messages
submitted by the controller agents of the control system.

• RequestInformationBehaviour: This periodical behavior requests
information every 15 seconds about the process to the controller
agent. This request is processed by the agent and an answer is sent in
response.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



804 J. Aguilar and W. Zayas

FIGURE 11 Messages exchanged between the agents of the study case.

Analysis of Results

It has been proved that the agents created through CGC accomplished
the established tasks in the behaviors established for each agent. Figure 11
was obtained thanks to a utilitarian agent called Sniffer coming from JADE,
which permits checking the messages sending between the JADE active
agents in a given moment. As Figure 11 shows, the messages exchange
between the control agents can be proved in this study case.

One of the most powerful characteristics of the JADE platform is
the dynamic incorporation of behaviors. Thanks to this characteristic
it is possible to incorporate behaviors to the agent according to
the environment conditions among others. This characteristic allows
the modification, at running time of the acceptable values for each
measurement agent.

CONCLUSIONS

The work resulted in the specification of three new agents for the
SCDIA: central agent, code generator agent, and behaviors generator
agent. These agents are part of a new agents community of the SCDIA
named code generation community (CGC) of the SCDIA. These agents

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



A Multiagents System to Create Control Agents 805

help to create the agents of the control agents community of the SCDIA.
That is, the agents of the CGC permit the creation of the required agents
to carry out control tasks in a process. Now, the source code of the created
agents should be personalized, but the time for its execution gets reduced
as the CGC contains the classic basic behaviors for each agent.

The code generation ontology coming from this investigation manages
the basic concepts for the control agents creation as well as the actions
and relations that relate these concepts to each other. This ontology can
be enriched by adding continuous production related concepts and the
relationships between its different components. Part of the future work
with CGC agents creation is related to the incorporation of new predicates
that would allow the checking of vital proprieties inherent to the SCDIA
that is being created.

On the other hand, JADE is a platform for agents development based
on the emphasis on behaviors associated to the agent that is being created.
This allows us to define the nature of an agent concerning designing time
and its modification by adding or eliminating agent behaviors at running
time. In our case, SIGECO has predefined behaviors according to the
control agent type that should get extended to make a better use of the
creating agents. The refining process of the CGC should be continued.
Other characteristics should be added to simplify its usage. One of these
characteristics is the code editors incorporation to help the user in the
composition of the source code of the agent.

The B2MML standard proposed by the World Batch Forum
(https://www.wbf.org/catalog/b2mml.php) constitutes an important leap
toward the criterion unification about the basic information that would be
more representative of the production processes and that management by
the CGC agents and the rest of the SCDIA agents will give to the creator
agents a better capacity to integrate with other systems of a similar nature
so they can share information.

The code generation ontology of the SCDIA can be nourished from
standards such as the B2MML to incorporate information about the
processes to the CGC agents and the agents they create. This way we
can create control agents that are more integrated and conscious of the
industrial process in which they will interact at running time.

REFERENCES

Aguilar, J., F. Hidrobo, A. Ríos, and L. León. 2005a. An architecture for industrial automation
based on intelligent agents. WSEAS Transactions on Computers 12:1808–1815.

Aguilar, J., M. Cerrada, F. Hidrobo, G. Mousalli, and F. Rivas. 2005b. A multiagent model for
intelligent distributed control systems. Lecture Notes in Artificial Intelligence 3681:191–197.

Aguilar, J., C. Cerrada, J. Cardillo, and R. Faneite. 2007. Agents-based design for fault management
systems in industrial processes. Computer in Industry 58:313–328.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



806 J. Aguilar and W. Zayas

Aguilar, J., I. Besembel, M. Cerrada, F. Hidrobo, and F. Narciso. 2008. Una Metodología para el
Modelado de Sistemas de Ingeniería Orientado a Agentes. Revista Iberoamericana de Inteligencia
Artificial 12:39–60.

Aguilar, J., J. Chacal, and C. Bravo. 2009a. A multiagents systems for planning and management of
the production factors. International Journal of Computer Systems Science and Engineering 24:29–36.

Aguilar, J., F. Prato, C. Bravo, and F. Rivas. 2009b. A multi-agent system for the management of
abnormal situations in an artificially gas-lifted well. Applied Artificial Intelligence 23:406–426.

Aguilar, J., and W. Zayas. 2009c. Desarrollo de un Componente de Software para los Agentes
de Control del SCDIA. Technical report: Postgrado en Modelado y Simulación de Sistema.
Facultad de Ingeniería, Universidad de los Andes, Mérida, Venezuela.

Shoham, Y., and K. Leyton-Brown. 2009. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge, UK: Cambridge University Press.

Smith, C., and A. Corripio. 2006. Principles and Practice of Automatic Process Control (3rd ed.).
New York: John Wiley & Sons.

Wooldridge, M. 2002. An Introduction to Multiagent Systems. New York: John Wiley & Sons.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
g
u
i
l
a
r
,
 
J
o
s
é
]
 
A
t
:
 
0
9
:
2
1
 
1
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0


