
A Processors Management System for P V M

Jose Aguilar Tania Jimenez

CEMISID, Dpto. de Computacidn
Fac. Ingenierfa, Universidad de Los Andes

5101 Mfrida, Venezuela.
e-mail : {aguilar,tania}@ing.ula.ve

Abs t r ac t . Currently, PVM constitutes a widely used software for devel-
oping parallel applications in workstation and parallel environments. In
this paper we propose a processors management system for PVM which
allows to a~sign the PVM tasks over a computers system. The Processors
Management System uses two task assigument heuristics. These heuris-
tics are based on Neural Networks and Genetic Algorithms.

1 I n t r o d u c t i o n

PVM [5] is a widely used, public-domain software system tha t allows an heteroge-
neous network of parallel/serial computers to be used as a single computa t ional
resource. PVM allows the computing power of widely available, general-purpose
computer networks to be harnessed for parallel processing. Nevertheless, PVM
requires more support for intelligent allocation, resource/file management , etc.

The integration of allocation systems to PVM is a well studied subject[2]:
DynamicPVM, MPVM, CoCheck, UPVM, etc. In this paper, we propose a Pro-
cessors Management System (PMS) for PVM. The PMS is responsible for al-
locating processors among all parallel programs submit ted to the system using
PVM. The static task allocation decision will be obtained using Task Assignment
Heuristics (TAHs) based on the Random Neural Model of Gelenbe [1, 3] and the
Genetic Algori thms [1, 4]. All requests related to host addition, or deletion, and
queries about the state of the system should be in the domain of PVM.

2 D e s i g n I s s u e s

Submit t ing a parallel program into PVM can be described as follows. Usually,
a task of PVM acts as the master and creates other tasks dynamically. A PVM
master task has p v m - s p a w n calls creating successors tasks which are added to
the tasks list controlled by the PVM daemon. These can also create new tasks.

In our context, we use a Tasks Graph (TG) to model the creation and
execution of PVM tasks, tha t is a program is modeled as a directed acyctic
s e r i e s - p a r a l l e l TG. The decomposit ion of the parallel programs into several
cooperating PVM tasks by means of primitives provided by PVM are using to
build the TG. In this way, a parallel program is represented as a collection of
tasks which correspond to nodes in a graph. The arcs of the graph represent

159

communication between tasks and precedence relations. We denote the TG by
G = (N ,A) , where N = {1, . . ,n} is the set of n tasks of the program and
A = {aij} is the adjacency matr ix (precedence order between tasks).

The static task assignment is then formulated as a graph partit ioning prob-
lem. The problem consists of the assignment of the n tasks to K processors in
such a way that the communication times between different processors of the
system must be kept to a minimum and the load at different processors must be
balanced. These goals are represented in the following cost function:

F(az) -~- E Tij ÷ b EzI~-'=l (NG~ -- n//~) 2
K (1)

i,jED

where,
~:ij = communication cost between task i and j
D = {i E G,~ & j E Gl & 1 7 ~ m & a i j -~ 1}
Na~ = number of tasks assigned to processor z (in parti t ion Gz)
b = factor of load balancing. In our case, b = 1.

In general, this problem is well known to be NP complete, that is the reason
of using heuristics to obtain an optimal solution. Our PMS is constituted by the
next phases:

2.1 Task Graph Generation

It is initiated by an allocation condition (demanding to execute a new parallel
program to PVM). Then, the PMS generates the TG of the program, saves the
required information about the system to allocate the new tasks, and disconnects
PVM master task from its pvmd.

2.2 Task A l l o c a t i o n

In this phase is made a distribution of the tasks over the host machines in
the system based on the actual system state. The new TG is submitted to the
TAHs, which assign the corresponding tasks to the processors. We have used the
following TAHs for solving the static task assignment problem:

- The Random Neural Model (RNM): The RNM has been developed by Ge-
lenbe [3] to represent a dynamic behavior inspired by natural neural systems.
The basic descriptor of a RNM is the i-th neuron's probability of being ex-
cited q(i), which satisfy the following set of non-linear equations:

~ = 1 q(j)r(J) P+ (J, i) + A(i)
q(i) = ~ ' = 1 q (j) r (j) P - (j, i) +)~(i) (2)

where:
• A(i) is the rate at which external excitation signals arrive to the i-th

neuron,

160

• A(i) is the rate at which external inhibition signals arrive to the i-th
neuron,

• r(i) is the rate at which neuron i fires when it is excited,
• P+(i , j) and P - (i , j) , a r e the probabilities that neuron i (when is ex-

cited) will send an excitation or an inhibition signal to neuron j.

Using this approach [1], we have constructed a RNM composed of n K + K
neurons. For each pair (i, u) (task, processor) we will have a neuron #(i, u)
(there are n K neurons of this type). We will denote by q(#(i, u)) the prob-
ability that neuron #(i, u) is excited, if this probabil i ty is close to 1 then
task i should be assigned to processor u. For each processor u there will
be a neuron ¢r(u). Hence, there are K neurons of this type whose role is to
indicate whether processor u is heavily loaded.

- The Genetic Algorithms (GA): This heuristic is based in the concept of re-
production of individuals and their evolution. The GA allows an "intelligent
evolution" of the individuals using evolution operators such as mutat ion,
inversion, selection and crossover [4]. We describe next the GA heuristic ap-
plied to the task assignment problem [1]: Let define a space of research of
n vectors where each one represents an individual, and each individual rep-
resents a possible solution. Each vector has n elements, each element takes
one value in the set {1...K}, depending on the part i t ion of the T G to which
it belongs. In this vector the ith component corresponds to task i, and if
its final value is u, that means that task i will be executed in processor u.
Furthermore, we use the cost function F(G~) to determine the cost of each
solution. The algorithm starts with an initial population of individuals ran-
domly defined and the individuals yielding the minimal cost are chosen to
generate new individuals, using the genetic operators. Since the populat ion
is constant, we substi tute the worst individuals of initial solution by the best
individuals generated. The procedure stops if a given number of generations
is exceeded without finding a better solution.

2.3 T a s k R e s t a r t

This phase restarts the master tasks and saves the allocation decision in a vector.
Then, for every new execution condition (demanding to spawn new PVM tasks)
it allocates these tasks of the program according to the allocation decision.

3 E v a l u a t i o n of P e r f o r m a n c e of t h e P M S

In this section we summarize the results we have obtained for our PMS, which we
compare with PVM without RM and MPVM[2]. Comparisons are carried out for
two parallel programs: the first one is the standard mat r ix (n . n) multiplication
parallel algori thm (table 1), the second one calculates the Fast Fourier Transform
(n coefficients) (table 2). The simulations were made in a network of 6 SUN

161

workstations (Sparc V). In these tables, for PMS, the first value represents the
execution t ime of the parallel program, and the second one of the TAHs. I t is
also quite clear that when n > 20 our PMS versions are very t ime consuming
in program execution t ime (it is due to our TAHs). On the other hand, our
heuristics give good results if we do not include the execution t ime of our TAHs.
Interestingly enough, the GA generally provides results which are substantially
bet ter than the RNM.

- Table 1. Execution Time for Matrix Multiplication Algori thm
n PMS with GA PMS with RNM MPVM PVM
20 4.6/0.8 4.4/0.8 3.7 3.3
50 15.4/8 19.1/11.2 7.5 6.8
i00 29.6/19.2 34.4/23.3 10.5 12.4
500 39.2/25 50.1/34 14.3 18

- Table 2. Execution Time for FTT algorithm
n PMS with GA PMS with RNM MPVM PVM
10 5.9/1.3 6/1.5 4.3 4.4
20 9.3/2 11.7/3.5 7.8 7.8
50 22.4/13.1 24.3/14.2 9.8 10.2

4 C o n c l u s i o n s

Our PMS generally gives good execution t ime for the parallel programs, but with
a substantially larger execution t ime to solve the static task allocation problem.
This is because the computat ions of our TAHs are t ime consuming. The GA and
the RNM based heuristics could be easy to implement on a parallel machine,
and this can considerably improve the speed with which our PMS obtain the
task allocation.

R e f e r e n c e s

[1] Aguilar, J. : L'Allocation de t£ches, l'~quilibrage de charge et l'optimisation com-
binatoire. PhD thesis, Ren~ Descartes University 1995.

[2] Casas, J. et al. : MPVM: a migration transparent version of PVM. Technical
Report. Dept. of Computer Science and Engineering, Oregon Graduate Institute
of Science and technology.

[3] Gelenbe, E. : Random neural networks with positive and negative signals and
product form solution. Neural Computation I (1989) 502-511.

[4] Goldberg D. : Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, 1989.

[5] Sunderam, V. : PVM: a framework for parallel distributed computing. Concur-
rency: Practice and Experience, 2 (1990) 315-339.

