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Abstract

In this paper, we propose a general energy function for a new neural model, the random neural model of Gelenbe. This model proposes a scheme
of interaction between the neurons and not a dynamic equation of the system. We then apply this general energy function on different optimization
problems: the graph partitionning problem and the minimum node covering problem.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Neural network research has been popular since the
1960s. There has been a major resurgence of interest in
artificial neural networks in recent years, primarily because
of improved learning algorithms, theoretical foundations
[due to pioneers such as Grossberg (1988)], computer sys-
tems for simulation studies and technologies that make a
quick and inexpensive implementation possible.

Since the seminal papers of the early 1980s (Hopfield and
Tank, 1985; Grossberg, 1988; Herault and Niez, 1991;
Tagliarini et al., 1991), the study of emergent collective
properties of artificial neural networks has created an
exciting area for research. For instance, it is well known
that for the Hopfield network with symmetric weights, as
well as for other models, each individual state change of the
networks has the effect of reducing an appropriately defined
cost function or energy function (Hopfield and Tank, 1985).
This elementary but subtle observation has spawned a large
body of work on using neural networks to provide heuristic
solutions to computationally intractable or very difficult
optimization problems. This is usually achieved by design-
ing a Hopfield (or other appropriate neural) network whose
energy function mimics a cost function which embodies the
optimization problem to be solved.

In this way, theenergy functionforms the theoretical

basis for the optimization of functions using neural net-
works. The termenergy functionstems from an analogy
between the network’s behavior and that of certain physical
systems. Just as physical systems may evolve towards an
equilibrium state, a network of artificial neurons will evolve
toward a minimum of the energy function. Therefore, the
stable states of a network of neurons correspond to the local
minimal of the energy function.

The basic concept is the encoding of the optimization
problem in terms of states that are discrete variables in a
euclidean space. A real valued global energy is then defined
over the set of all possible states. This energy depends on
very complex interactions between the variables, and has
generally some physical meaning in the context of optimi-
zation. In fact, the optimal solution is the absolute minimum
of this energy, and one or more local minima can be con-
sidered as acceptable solutions to the problem. The neural
methods proposed to minimize such global energy function
differ from the previous heuristic methods by the following
characteristics:

1. noise can be introduced in the searching dynamics in
order to explore any part of the solution space;

2. they are not specific to a particular optimization problem;
3. they can easily be implemented on massively parallel

architectures;
4. they give good results, irrespective of the number of

variables; and
5. one can easily relax the constraints of the problem.

In 1989, Gelenbe (Gelenbe, 1989, 1990) modeled the
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neural network using an analogy with queuing theory. This
model does not use a dynamic equation, but uses an inter-
action scheme between neurons. It calculates the activation
probability of the network neurons. The signals in this
model take the form of impulses that mimic what is pre-
sently known of interneural signals in biophysical neural
networks.

The random neural network (RNN) has been used in
solution optimization (Gelenbe and Batty, 1992; Aguilar,
1992, 1995a; Pekergin, 1992) and recognition problems
(Pekergin, 1992; Aguilar, 1995a). In (Gelenbe 1993) a
supervised learning procedure is proposed for the recurrent
RNN model which is mainly based on the minimization of a
quadratic error function. In (Aguilar 1994, 1995a), the rela-
tionship between the RNN model applied to optimization
and the network learning is explored. Recently, we have
applied the evolutionary learning on the RNN model (Agui-
lar, 1995b).

In this paper, a general energy function for the random
neural network is proposed. Then, this general energy func-
tion is applied to different optimization problems. This work
is organized as follows. In Section 2, the theoretical basis of
the random neural networks is reviewed. Then, our general
energy function is presented. In Section 4 the energy
function for two NP hard problems, graph partitionning
and minimum node (graph) covering, is given. Remarks
concerning future work and conclusions are provided in
Section 5.

2. The random network model

The random network model was introduced by Gelenbe
(Gelenbe, 1989, 1990, 1991) in 1989. This model has a
remarkable property called ‘‘product form’’ which allows
the computation of joint probability distributions of the neu-
rons of the network.

The model consists of a network ofn neurons in which
positive and negative signals circulate. Each neuron accu-
mulates signals as they arrive, and can fire if its total signal
count at a given instant of time is positive. Firing occurs at
random according to an exponential distribution of constant
rate, and signals are sent to other neurons or to the outside of
the network. Each neuroni of the network is represented at
any timet by its input signal potentialki(t).

Positive and negative signals have different roles in the
network. A negative signal reduces by 1 the potential of
the neuron to which it arrives (inhibition) or has no effect
if it is already zero, while a positive signal adds 1 to the
neuron potential.

Signals can either arrive at a neuron from the outside of
the network or from other neurons. Each time a neuron fires,
a signal leaves it, depleting the total input potential of the
neuron. A signal leaving neuroni heads for neuronj with
probability pþ(i,j) as a positive signal (excitation), or as
negative signal with probabilityp¹(i,j) (inhibition), or it

leaves the network with probabilityd(i). Clearly we shall
have:∑

n
j ¼ 1[pþ (i, j) þ p¹ (i, j)] þ d(i) ¼ 1 for 1# i # n: (1)

Positive signals arrive at theith neuron according to a
Poisson process with rateL(i) (external excitation signals).
Negative signals arrive at theith neuron according to a
Poisson process with ratel(i) (external inhibition signals).
The rate at which neuroni fires isr(i). The main property of
this model is the excitation probability of a neuroni, q(i),
which satisfy a non-linear equation:

q(i) ¼ lþ (i)=(r(i) þ l¹ (i)) (2)

where

lþ (i) ¼
∑

n
j ¼ 1q(j)r(j)pþ (j, i) þ L(i)

l¹ (i) ¼
∑

n
j ¼ 1q(j)r(j)p¹ (j, i) þ l(i)

If a unique non-negative solution exists to Eq. (2) such that
eachq(i) # 1, then the stationary probability distribution is

p(k) ¼ Pn
i ¼ 1(1¹ q(i))q(i)ki (3)

wherek(t) ¼ vector of signal potentials at timet andk ¼

(k1,..., kn) ¼ particular value of the vector.
To guarantee the stability of the RNN, the following is a

sufficient condition for the existence and uniqueness of the
solution to Eq. (2):

lþ (i) , [r(i) þ l¹ (i)] (4)

Notice that the model is based on rates, much as natural
neural systems operate. Thus, this is a ‘‘frequency modu-
lated’’ model, which translates rates of signal emission into
excitation probabilities via Eq. (2). For instance,
q(j)r(j)pþ(j,i) denotes the rate at which neuronj excites
neuroni. Eq. (2) can also be translated into a special form
of sigmoid which treats excitation (in the numerator)
asymetrically with respect to inhibition (in the denominator).

3. A general energy function for the random neural
model

In the random neural model,q(i) depends onL(i), l(i),
pþ(j,i), p¹(j,i), rðiÞ and the otherqðjÞ’s. In the optimization,
pþ(j,i), p¹(j,i) andrðiÞ are fixed and depend on the nature of
the combinatorial problem. Besides, in the optimization pro-
blem the relationship between two neurons is competitive or
cooperative, that is, eitherpþ(j,i) or p¹(j,i) is null. Of
course, if there is no interaction between them, both
pþ(j,i) andp¹(j,i) are null. On the other hand, external sig-
nals are not interesting to optimization. It is better to employ
signals to inhibit or to excite the neighbor neurons, that is,
d(i) is null. The fire rater(i) is obtained by the reciprocity of
effect between neurons. When two neuronsi and j are
excited andi emits signals toj, the excitation or inhibition
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that i exerts overj must be the same as the excitation or
inhibition that i receives.

If pþ(j,i), p¹ ðj; iÞ andr(i) are fixed, the only way to lead
the network from one stationary state to another one is by
acting over the inputs. A state of the RNN model is defined
by (q(i),..., q(n)). The use of two externals flows for every
neuron allows for a complex scaling of an external positive
flow to an external negative flow (Pekergin, 1992; Aguilar,
1994, 1995a). In optimization, the use of two flows is not
interesting. We considerl(i) to be null so that the neurons
only receive external positive signals, representing the pre-
ference that the neuron belongs to the solution. By this way,
q(i) andL(i) become the variables of the RNN model. The
general form of the energy function that we propose is:

E¼
∑
i,j

aij q(i)q(j) þ
∑

i
aii q(i)2 þ

∑
i

biq(i) þ c (5)

with i, j [ [1:::n], whereaij, bi, c are parameters of the opti-
mization problem.

It is interesting to see how this energy function definition
differs from the classical approach of Hopfield. Note the
additional terms that are squared in one state variable and
linear in the other. Therefore, the above energy function
corresponds to a quadratic cost function. Our reference to
a quadratic energy function is motivated by the ‘‘usual’’
formulation of optimization problems with neural networks.

Now, we search to define the dynamics of external posi-
tive signals in the RNN model in order to find the state that
gives the minimal energy for the network. Using the gradi-
ent descent technique, the dynamics of external excitation
signals are defined as:

L(u)mþ 1 ¼ L(u)m ¹m[]E=]L(u)]m (6)

in the mth iteration.
Eq. (6) describes the control that is necessary to apply to

the system to minimize the energy function. This method
uses a learning technique in which the network learns to
minimize the energy function (Eq. (5)). The general proce-
dure that we propose with the RNN is (Aguilar, 1995a):

1. initialize ∧ (i) in some appropriate manner
2. repeat

3. solve Eq. (2)
4. using Eq. (6) and the previous results, update∧ (i)
5. if ∧ (i) is outside of [0,r(i)], replace for the nearest

bounds

6. until the change in the new value ofq(i) is smaller than
some predetermined value.

Thus,

]E=]L(u) ¼
∑

iÞj(aij 1[j . i] þ aji 1[j , i])q(j)]q(i)=]L(u)

þ
∑

i(2aii q(i) þ bi)]q(i)=]L(u) ð7Þ

]E=]L(u) ¼
∑

i, j{ (2aii q(i) þ bi)1[i ¼ j] þ (aij 1[j . i]

þ aji 1[j , i])q(j)} ]q(i)=]L(u)

given

Xij ¼ (2aii q(i) þ bi)1[i ¼ j] þ (aij 1[j . i] þ aji 1[j , i])q(j)

then,

]E=]L(u) ¼
∑
iÞj

Xij ]q(i)=]L(u) (8)

Now, we must explain]q(i)=]L(u) using the stationary solu-
tion of the network. Given:

N(i) ¼
∑

jw
þ
ji q(j) þ L(i)

and

D(i) ¼
∑

jw
¹
ji q(j) þ

∑
j(w

þ
ij þ w¹

ij )

where,wþ
ji ¼ rðjÞpþ ðj; iÞ,

w¹
ji ¼ r(j)p¹ (j, i),

r(i) ¼
∑

j(wþ
ij þ w¹

ij )

q(i) ¼ N(i)/D(i) is the stationary probability of excitation of
neuroni, if q(i) , ¼ 1, and

]q(i)=]L(u) ¼ ]N(i)=]L(u)[1=D(i)] ¹ ]D(i)=]L(u)[N(i)=D(i)2]
(9)

]q(i)=]L(u) ¼ [
∑

jw
þ
ji ]q(j)=]L(u) þ 1[i ¼ u]] =D(i)

¹ [
∑

jw
¹
ji ]q(j)=]L(u)]N(i)=D(i)2

Given: Yij ¼ wþ
ji =D(i) ¹ wji

- NðiÞ=DðiÞ2,

]q(i)=]L(u) ¼
∑

jYij ]q(j)=]L(u) þ 1[i ¼ u]=D(u) (10)

That is,

]q=]L(u) ¼ ]q=]L(u):Cþ eu p 1=D(u) (11)

with eui ¼ 1[i ¼ u] and C¼ ðSjYij Þ and, finally,
]q=]L(u) ¼ 1=D(u) p eu:[I ¹ C] ¹ 1.

4. Energy function on different optimization problems

4.1. The graph partitioning problem

The problem consists in dividing a graph in several sub-
graphs, so as to minimize the costs of connections between
them. The problem can be complicate with weighted arcs. In
this case, the sum of the weights between the subsets must
be minimized. Also, we can add a weight to the nodes and
define again what we want to minimize according to the
particular characteristics of problem (Aguilar, 1994). In a
very general way, to place the problem in a mathematical
formulation, the following definition is necessary:P ¼

(N,A) whereP is a directed graph,N is a set ofn nodes

733A. Jose / Neural Networks 11 (1998) 731–737



with which we can associate a weight functionQ:N → R. In
our studiesQ(i) ¼ 1 for i ¼ 1,..,n, A¼ adij , are node pairs
that define the arcs, known as the adjacency matrix, given
by the weights of the arcs ofP.

The problem consists in dividing the graph inK different
subgraphsP ¼ {P1,..., PK}, according to certain con-
straints. The classic constraints are:

1. the subgraphs must have a specify sizeNP1,..., NPK, or
must have a weight sum of nodes less than a given value;
and

2. the arcs with extremities in different subgraphs must be
minimal, or the weight sum of arcs that join nodes which
are in different subgraphs must be mimimal.

The cost function associates a real value to every sub-
graph configuration. We propose the cost function:

F ¼
∑

i, j[D
adij þ b(

∑K
k¼ 1

(NPk
¹

n
K

)2)=K (12)

where

D ¼ { i [ Pk&j [ Pl&l Þ k}

The first term minimizes the weight sum of edges which
belong to the cut. The second summation term will have a
minimum value only when the number of nodes in the
partitions are the same. The balance factor (b) defines
the importance of the interconnection cost with respect to
the imbalanced cost.NPk is the number of nodes inPk;k ¼

1,...,K. The graph partitioning problem is reduced to find a
subgraph configuration with minimum value for the cost
function.

4.1.1. RNN for this problem
In this approach, we will construct a RNN of the type

discussed above composed ofnK þ K neurons, wheren is
the number of nodes andK is the number of subgraphs. For
each (node, subgraph) pair (i,u) we will have a neuronm(i,u)
whose role is to ‘‘decide’’ whether nodei should be
assigned to subgraphu. We will denote byq(m(i,u)) the
probability thatm(i,u) is excited: thus if it is close to 1 we
will be encouraged to assigni to u. In order to reduce con-
nections between subgraphs in the selected partition,m(i,u)
will tend toexciteany neuronm(j,u) if j is connected toi, and
will tend to inhibit m(j,v) if j is connected toi and u Þ v.
Similarly, m(i,u) will inhibit m(j,v),;v¼ 1,..., K, if j is not
connected toi. On the other hand, neuronsm(i,u) and
m(i,v), u Þ v, will inhibit each other so as to indicate that
the same node should not be assigned to different subgraphs.

For each subgraphu we will have a neuronp(u) whose
role is to let us know whetheru is heavily loaded with nodes
or not. If u is very heavily loaded, we will attempt to reduce
the load on subgraphu by inhibiting neuronsm(i,u), and will

attempt to increase the load on subgraphsv Þ u by exciting
neuronsp(v). In the same way,m(i,u) will exciteneuronpðuÞ

to increase the load on subgraphu.
The parameters of the random network model expressing

these intuitive criteria are chosen as follows:

L(m(i,u)) ¼ random,
L(p(u)) ¼ n/K, to express the desirable equal load
sharing property,
l(m(i,u)) ¼ 0, lðpðuÞÞ ¼ 0,
r(m(i,u)) ¼ nK; rðpðuÞÞ ¼ n þ K-1,

r(m(i,u))pþðmði;uÞ;mðj; vÞ ¼ 1 if ðadij ¼ 1 or adji ¼ 1)
andu¼ v,

0 otherwise.

r(m(i,u))p-ðmði;uÞ;mðj; vÞÞ ¼ 1 if (u Þ v andðadij ¼ 1 or
adji ¼ 1 or i ¼ j)), or

if (adij ¼ 0 andadji ¼ 0),
0 otherwise.

r(m(i,u))pþ(mði;uÞ;pðvÞÞ ¼ 1 if u¼ v,

0 otherwise.

rðpðuÞÞp¹ðpðuÞ; mði;uÞ ¼ 1 if qðpðuÞÞ,1;

0 otherwise

r(p(u))pþ(p(u),p(v)) ¼ 1 if q(p(u)),1,

0 otherwise.

The Eq. (2) for this case is:

q(m(i, u)) ¼ {
∑

(adij ¼ 1 or adji ¼ 1)q(m(j,u))r(m(j,u))

3 pþ (m(j,u),m(i,u))} =

{ r(m(i,u)) þ
∑

vÞu

∑
(adij ¼ 1 ∨ adji ¼ 1 ∨ i ¼ j)q(m(j,v))r(m(j,v))

3p(m(j, v),m(i,u)) þ
∑

v

∑
adij ¼ 0 & adji ¼ 0q(m(j,v))

3 r(m(j,v))p¹ (m(j,v),m(i,u)) þ q(p(u))r(p(u))

3 p¹ (p(u),m(i,u)) ð13Þ

q(p(u)) ¼ {L(p(u)) þ
∑

n
j ¼ 1q(m(j, u))r(m(j, u))

3 pþ (m(j, u),p(u)) þ
∑

K
v¼ 1q(p(v))r(p(v))

3 pþ (p(v),p(u))} =r(p(u))

For this problem, using the general energy function (Eq. (5))
and the cost function (Eq. (12)), we propose the following
energy function:

E¼
∑

i, j[D
adij q(m(i,k))q(m(j, l)) þ b(

∑K
k¼ 1

(
∑n

i ¼ 1
q(m(i,k)) ¹

n
K

)2)=K þ
∑n

i ¼ 1

∑K
k¼ 1

q(m(i, k)) ¹ 1

 !2

(14)
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If we developed this function, we obtain the following
value toaij, bi andc:

aij ¼ adij if i , j 0 otherwise

aii ¼ b=kþ 1

bi ¼ ¹ 2(nb=K2 þ 1)

c¼ bn2=K3 þ 1

4.1.2. Performance evaluation
We compare the RNN with the approximate heuristics

proposed by (Aguilar 1995a): genetic algorithms (GA),
simulated annealing (SA) and kernighan’s heuristic
(Kern). The random graphs used are defined for the average
number of nodes (n) and the average degree of the successor
nodes of a node (d). For each graph, the successors of a node
are chosen randomly from a uniform distribution in the
interval [1,d]. The execution time is in seconds.

The parameters of the simulations are the following: the
total number of subgraphs (K), the mean number of nodes per
graph (n), the mean number of successors per node (d) and
the balance factor (b). We generate 50 random graphs for the
set of parameters wheren ¼ {10, 20, 50}, K ¼ 2 andd ¼ 2.

We obtain the optimum solutions using an enumerative
search algorithm. We study the following performance cri-
teria: the execution time of the heuristics (Tl), the maximum
performance (Sopl), the percentage of optimum solutions
(d l) and the relative error (El) of each heuristic, wherel is
the number of times that we execute the heuristic to obtain
these values. These criteria are calculated as follows:

Tl is the mean value of the computation time on a work-
station for each heuristic, forl ¼ 1,..., 10;
Sopl is the mean value of the solutions for a given set of
parameters, forl ¼ 1,..., 10;
d l is the percentage of cases where a heuristic obtains
the optimum solution, forl ¼ 1,..., 10;
El is the mean relative error of the solutions of a
heuristic compared to the optimum solution,
El ¼ Sil ,ðSil ¹ Si

opt)/Si
opt for l ¼ 1,...,10 andi ¼ 1,...,50,

whereSopt
i is the optimum solution of the graphi andSil

is the solution of the heuristic for the graphi.

Due to space limitations, only some results are shown
which are representative of the phenomena studied (see
Table 1).

Sop andd are approximately the same for every heuristic,
but Kernighan’s heuristic gives the worst results. SA is the
heuristic with the least mean relative error, but we also
obtain interesting results with RNN in short execution
times.

4.2. Minimum node covering problem

The formal problem can be stated as follows. LetG be a
graph withn nodesN ¼ { V1,..., Vn} and edges denoted by
(Vi,Vj). A cover ofG is a subsetS of N such that for each
edge (Vi,Vj) in G, eitherVi orVj is in S. A minimum cover of
G is a setS* such that the number of nodes inS* is no larger
than the number of nodes in any coverS of G: |S*| # |S|.

The minimum graph covering problem can also be for-
mulated so that each node of the graphG can carry a weight,
and this weight is included in the ‘‘size’’ of each coverS.
The cost function for this problem is

F ¼
∑

n
i ¼ 1{2nbp

i ¹ [D(i)bp
i

¹ D(i)bi ] ¹
∑

n
j ¼ 1adji b

p
i bj þ bib

p
i } ð15Þ

where,D(i) is the degree of nodei, b i ¼ 1 if node Vi Ó S in
this solution, 0 otherwise;bp

i ¼ 1 if nodeVi [ S in this solu-
tion, 0 otherwise.

The first term states that there should be as few nodes as
possible in the minimum cover, while the second and third
terms state that we should favor nodes which have a large
degree. The fourth term states that we would like to have
only one of each end node of an edge in the cover. In this
way, this term eliminates illegal solutions. The last term
states that we cannot have the same node both in and out
of the cover. Though this cost function is quite elaborated, it
does provide a more detailed representation of the pro-
blem’s constraints. Let us now present a random neural
model for the minimum graph covering problem.

4.2.1. RNN for this problem
Each nodei in the graph is represented by two neurons,

m(i) andp(i). The first of these will be ‘‘on’’ if the network
recommends thati be included in the cover, while the sec-
ond will have the opposite role. The parameters of the ran-
dom network model expressing these intuitive criteria are
chosen as follows:

L(m(i)) ¼ degree of nodei, (D(i)),
l(m(i)) ¼ 0, L(p(i)) ¼ random,
l(p(i)) ¼ 0, r(m(i)) ¼ 2n;

r(p(i)) ¼ degree of nodei, (D(i)),
r(m(i))p¹m(i),pðjÞÞ¼ 2n if ði ¼ jÞ; 0 otherwise.
r(p(i))pþ(p(i),mðjÞÞ ¼ 1 if ðadij ¼ 1) or ðadji ¼ 1),

0 otherwise.
All other weights are set to zero.

Table 1
Performance criteria forl ¼ 10, n ¼ 20, d ¼ 2, b ¼ 1 andK ¼ 2

Method E d T Sop

SA 0.06 0.9 28 2.6
GA 0.12 0.8 19 2.8
RNN 0.12 0.8 9 2.8
Kern 1.06 0.15 3 4.1

Note:
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Eq. (2) for this case is:

q(m(i)) ¼ {L(m(i)) þ
∑

n
j ¼ 1q(p(j))r(p(j))pþ (p(j),m(i))}

=r(m(i))

3 q(p(i)) ¼ L(p(i))={ r(p(i)) þ q(m(i))r(m(i))

3 p¹ (m(i),p(i))} ð16Þ

For this problem, using the general energy function (Eq. (5))
and the cost function (Eq. (15)), we propose the following
energy function:

E¼
∑

n
i ¼ 1{2nq(m(i)) ¹ [D(i)q(m(i)) ¹ D(i)q(p(i))]

¹
∑

n
j ¼ 1adji q(m(i))q(p(j)) þ q(m(i))q(p(i))} ð17Þ

However, if we suppose that

q(m(i)) ¼ 1¹ q(p(j)) (ideal case)

the energy function is:

E¼
∑

n
i ¼ 1

∑
n
j ¼ 1adij q(p(i))q(p(j)) þ

∑
n
i ¼ 1[2D(i) þ 1

¹ 2n¹
∑

n
j ¼ 1adji ]q(p(i)) ¹

∑
iq

2(p(i)) þ 2n¹
∑

iD(i)

If we developed this function, we obtain the following value
to aij, bi andc:

aij ¼ adij if ij Þ 1; ¹ 1 otherwise

bi ¼ 2D(i) þ 1¹ 2n¹
∑

n
j ¼ 1adji

c¼ 2nþ
∑

iD(i)

4.2.2. Performance evaluation
We compare the RNN (RNNwL) with an approximate

heuristic based on RNN without learning (RNNnL) pro-
posed in (Gelenbe and Batty, 1992), and with the exact
solution. The number of nodes in the graphs has been varied
with the following values:n ¼ 20, 50. Once the size of the
graphs is fixed at a value, the random generation is carried
out as follows. A probability valuej is fixed; this is the
probability that for any pair of nodesvi, vj there is an
edge (vi,vj). Different values ofj (0.125, 0.5) were taken.
These results are present in Table 2. For each value (n, j) we
generated 25 graphs at random, and the results are average
values over this set. This heuristics are compared with
respect to the following criteria:

d is the percentage of cases where a heuristic obtains the
minimum cover;
Exc is the average number of nodes in excess of the
minimum for the set of 25 graphs, for a given (n, j)
pair; and
T is the mean value of the computation time on a work-
station for each heuristic.

The results of Table 2 clearly show that the RNNwL gives
the best results in all cases, but with a larger execution time.
This performance improvement is particularly substantial
when the graph is sparse (i.e. smallj).

5. Conclusions

The purpose of this paper has been to consider the
formulation of a general energy function to solve combina-
torial optimization problems using random neural networks.
The major advantage of this model is that it has a purely
numerical and computationally fast solution, which
removes the need for complex search techniques and other
Monte Carlo simulations based optimization methods. The
definition of a general energy function for the RNN allows
the description of a dynamic to search an optimum solution
for a combinatorial optimization problem.

Then, we have illustrated the utilization of our general
energy function on two optimization problems: the graph
partitioning and the minimum node covering. Further work
will study this energy function applied to other optimization
problems.
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