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Abstract. Gelenbe has modeled neural networks using an analogy with queuing theory. This
model (called Random Neural Network) calculates the probability of activation of the neurons
in the network. Recently, Fourneau andGelenbehave proposed an extension of this model, called
multiple classes random neural networkmodel.The purpose of this paper is to describe the use of
the multiple classes random neural network model to learn patterns having different colors.We
propose a learning algorithm for the recognition of color patterns based upon non-linear
equations of the multiple classes random neural network model using gradient descent of a
quadratic error function. In addition, we propose a progressive retrieval process with adaptive
threshold values. The experimental evaluation shows that the learning algorithm provides good
results.
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1. Introduction

Coming up with effective learning algorithms for recurrent networks is a major
objective in neural network theory [7]. There are numerous examples where recurrent
networks constitute a natural approach to problems: image processing, pattern
analysis and recognition, etc., where local interactions between picture elements lead
to mutual interactions between neighboring neurons which are naturally represented
by recurrent networks. In such cases, it is clear that effective learning algorithms
enhance the value of the neural network methodology.

The Random Neural Network (RNN) has been proposed by Gelenbe in 1989
[8^11]. This model does not use a dynamic equation, but uses a scheme of interaction
among neurons. It calculates the probability of activation of the neurons in the
network. Signals in this model take the form of impulses that mimic what is known
of inter-neural signals in biophysical neural networks. The RNN has been used
to solve optimization [1, 2, 4] and pattern recognition problems [3, 5, 6]. Gelenbe
has considered a learning algorithm for the recurrent RNN model [11]. We have
proposed modi¢cations of this algorithm for combinatorial optimization problems
[3, 4] and evolutionary learning for combinatorial optimization and recognition
problems [1, 5]. Fourneau and Gelenbe have proposed an extension of the RNN,
called multiple classes RNN model [12].
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In this paper, we propose a learning algorithm and a retrieval procedure for the
multiple classes RNN on color pattern recognition problems. We shall use each class
to model a color. We present a backpropagation type learning algorithm for the
recurrent multiple classes RNN model using gradient descent of a quadratic error
function when a set of input^output pairs is presented to the network. Our model
is de¢ned for nC parameters for the whole network, where C is the number of
primary colors, n is the number of pixels of the image, and each neuron is used
to obtain the color value of each pixel in the bit map plane. Combinations of primary
colors create different colors according to the RGB model. Thus, our learning
algorithm requires the solution of a system of nC non-linear equations each time
the n-neuron network learns a new input^output pair (n-pixel image with C primary
colors). In addition, we propose a progressive retrieval process with adaptive
threshold values. This work is organized as follows: in Section 2 we present the
multiple classes RNN. Sections 3 and 4 present our learning algorithm and retrieval
process for multiple classes RNN. In Section 5, we present applications. Remarks
concerning future work and conclusions are provided in Section 6.

2. The Multiple Classes Random Network Model

We describe the multiple classes random network model introduced in [12]. The
network is composed of n neurons and receives exogenous positive (excitatory)
and negative (inhibitory) signals as well as endogenous signals exchanged by the
neurons. As in the classical model, excitatory and inhibitory signals are sent by
neurons, when they ¢re, to other neurons in the network or to outside world. In
this model, positive signals may belong to several classes and the potential at a
neuron is represented by the vector Ki � �Ki1; . . . ;KiC�, where Kic is the value of
the `class c potential' of neuron i, or its `excitation level in terms of class c signals',
and negative signals only belong to a single class. The total potential of neuron
i is Ki � Sc�1CKic. The arrival of an excitatory signal of some class increases the
corresponding potential of a neuron by 1, while an inhibitory signal's arrival
decreases it by 1. That is, when a positive signal of class c arrives at a neuron,
it merely increases Kic by 1, and when a negative signal arrives at it, if Ki > 0,
the potential is reduced by 1, and the class of the potential to be reduced is chosen
randomly with probability Kic/Ki for any c � 1; . . . ;C. A negative signal arriving
at a neuron whose potential is zero has no effect on its potential.

Exogenous positive signals of class c arrive at neuron i in a Poisson stream of rate
L�i; c�, while exogenous negative signals arrive at it according to a Poisson process of
rate l�i�. A neuron is excited if its potential is positive. It then ¢res at exponentially
distributed intervals, so it sends excitatory signals of different classes or inhibitory
signals to other neurons or to the outside of the network. That is, the neuron i
can ¢re when its potential is positive (Ki > 0). The neuron i sends excitatory signals
of class c at rate r�i; c� > 0, with probability Kic/Ki. When the neuron ¢res at rate
r�i; c�, it deletes by 1 its class c potential and sends to neuron j a class j positive
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signal with probability p��i; c; j;j), or a negative signal with probability pÿ�i; c; j).
On the other hand, the probability that the deleted signal is sent out of the network,
or that it is `lost', is d�i; c�. Thus,

S�j;j� p��i; c; j;j� � Sj pÿ�i; c; j� � d�i; c� � 1 for 8 i � 1; n and c � 1;C;

The complete state of the network is represented by the vector (of vectors)
K�K1; . . . ;Kn), and we shall denote by p�K; t� � P�K�t� � K � the probability
distribution of its state. Let K�t� be the vector representing the state of the neural
network at time t, and q�i; c� and 0 < q�i; c� < 1 be the solution of the system of
non-linear equations:

q�i; c� � l��i; c�=�r�i; c� � lÿ�i��; �1�
where l��i; c� � S�j;j�q�j;j�r�j;j�p��j;j; i; c� � L�i; c�

lÿ�i� � S�j;j�q�j;j�r�j;j�pÿ�j;j; i� � l�i�:
The synaptic weights for positive (w��j;j; i; c�) and negative (wÿ�j;j; i�) signals are
de¢ned as:

w��j;j; i; c� � r�j;j�p��j;j; i; c� wÿ�j;j; i� � r�j;j�pÿ�j;j; i�
and

r�j;j� � �S�i;c�w��j;j; i; c� � S�i;c�wÿ�j;j; i��:

3. Learning Algorithm

Now, we de¢ne a learning algorithm for the multiple classes RNN model [11]. We
assume values equal to 0, 0.5 or 1, for each class on every neuron. We propose
a gradient descent algorithm for choosing the set of network parameters
w��j; z; i; c� and wÿ�j; z; i� in order to learn a given set of m input^output pairs
(X ;Y ) where the set of successive inputs is denoted by:

X � fX1; . . . ;Xmg where Xk � fXk�1; 1�; . . . ;Xk�n;C�g;
and Xk�i; c� is the cth class on the neuron i

for the pattern k

Xk�i; c� � fLk�i; c�; lk�i�g
and the successive desired outputs are the vector

Y � fY1; . . . ;Ymg where Yk � fYk�1; 1�; . . . ;Yk�n;C�g;
and Yk�1; 1� � f0; 0:5; 1g:

The values Lk�i; c� and _Lk�i� provide network stability. In our model, Lk�i; c� and
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Lk�i� are initialized as they have been de¢ned previously. Normally, arrival rates of
exogenous signals are chosen as follows:

Yk�i; c� > 0 �> Xk�i; c� � �Lk�i; c�; lk�i�� � �Kc; 0�;
Yik�i; c� > 0 �> �Lk�i; c�; lk�i�� � �0; 0�:

The network approximates the set of desired output vectors in a manner that
minimizes a cost function Ek:

Ek � 1=2 Sn
i�1S

C
c�1�qk�i; c� ÿ Yk�i; c��2:

The rule to update the weights may be written as:

w�k �u; p; v; z� � w�kÿ1�u; p; v; c� ÿ mSn
i�1S

C
c�1�qk�i; c�

ÿ yk�i; c���dq�i; c�=dw��u; p; v; z��k
wÿk �u; p; v� � wÿkÿ1�u; p; v� ÿ mSn

i�1S
C
c�1�qk�i; c�

ÿ yk�i; c���dq�i; c�=dwÿ�u; p; v��k;

�2�

where m > 0 is the learning rate (some constant).

qk�i� is calculated using Xk;w�k �u; p; v; z� � w�kÿ1�u; p; v; z�
and wÿk �u; p; v� � wÿkÿ1�u; p; v� in �1�
�dq�i; c�=dw��u; p; v; z��k and �dq�i; c�=dwÿ�u; p; v��k are evaluated using the
values q�i; c� � qk�i; c�;w�k �u; p; v; z� � w�kÿ1�u; p; v; z�
and wÿk �u; p; v� � wÿkÿ1�u; p; v� in �2�

The complete learning algorithm for the network is:

. Initiate the matricesW�
0 andWÿ

0 in some appropriate manner. Choose a value of
m in (2).

. For each successive value of m:
Set the input-output pair �Xk;Yk�
Repeat

Solve Equation (1) with these values
Using (2) and the previous results
update the matrices W�

k and Wÿ
k

Until the change in the new values of the weights is smaller than some predeter-
mined value.

4. Retrieval Procedure

Once the learning phase is completed, the network must perform as well as possible
the completion of noisy versions of the training vectors. In this case, we propose
a progressive retrieval process with adaptive threshold values. Let X 0 �
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fX 0�1; 1�; . . . ;X 0�n;C�g be any input vector with values equal to 0, 0.5 or 1, for each
X 0�i; c�; i � 1; . . . ; n and c � 1; . . . ;C. In order to determine the corresponding
output vector Y � fY �1; 1�; . . . ;Y �n;C�g, we ¢rst compute the vector of
probabilities Q � �q�1; 1�; . . . ; q�n;C��. We consider that q�i; c� whose values are
between 1ÿ T < q�i; c� < T=2 or 1ÿ T=2 < q�i; c� < T , for T � 0:8, belong to
the uncertainty interval Z. When the network stabilizes in an attractor state, the
number of neurons (NBÿZ) whose q�i; c� 2 Z is equal to 0. Hence, we ¢rst treat
the neurons whose state is considered certain to obtain the output vector
Y �1� � �Y �1��1;1�; . . . ;Y �1��n;C��:

Y �1��i;c� � Fz�q�i; c�� �
1 if q�i; c� > T
0 if q�i; c� < 1ÿ T
0:5 if T=2W q�i; c�W 1ÿ T=2
X 0�i; c� otherwise

8>><>>:
where Fz is the thresholding function by intervals. If NBÿZ � 0, this phase is
terminated and the output vector is Y � Y �1�. Otherwise, Y is obtained after
applying the thresholding function fb as follows:

Y �i; c� � fb�q�i; c�� �
1 if q�i; c� > b
0:5 if b=2 < q�i; c� < b
0 otherwise

8<:
where b is the selected threshold. Each value q�i; c� 2 Z is considered as a potential
threshold. That is, for each q�i; c� 2 Z:

b � q�i; c� if q�i; c� > 0:666
1ÿ q�i; c� otherwise

�
Eventually, Z can be reduced by decreasing T (for T > 0:666�. For each potential
value of b, we present to the network the vector X 0�1��b� � fb�Q�. Then, we compute
the new vector of probabilities Q�1��b� and the output vector Y �2��b� �
Fz�Q�1��b��. We keep the cases where NBÿZ � 0 and X 0�1��b� � Y �2��b�. If these
two conditions are never satis¢ed, the initial X 0 is considered too much different
from any training vector. If several thresholds are candidates, we choose the one
which provides the minimal error (difference between q�i; c� and Y �i; c�, for
i � 1, n and c � 1; . . .C):

E�b� � 1=2 Sn
i�1�q�i; c��1��b� ÿ Y �1�i;c �a��2:

5. Experimental Results

We show how the multiple classes RNN can be used to solve the Color Pattern
Recognition problem. A `signal class' represents each color. The recognition
procedure is based on an associative memory technique [3]. To design such a
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memory, we have used a single-layer RNN of n fully interconnected neurons. For
every neuron i the probability that emitting signals depart from the network is
d�i; c� � 0. We assume a pattern composed of n points �j; k� in the plane (for
j � 1; . . . ; J and k � 1; . . . ;K). We associate a neuron N�i� to each point �j; k� in
the plane (for i � 1; . . . ; n; j � 1; . . . ; J and k � 1; . . . ;K), such as n � J�K . The
state of N�i� can be interpreted as the color intensity value of the pixel �j; k�. That
is, each pixel is represented by a neuron. On the other hand, we assume three classes
to represent the primary colors (red, green, and blue) according to the RGB model.
This model allows us to create different colors with the combination of different
intensities of the primary colors. For example, to represent a pixel with red color
the neuron value is (1, 0, 0), the black color is (1, 1, 1), the pink color is (0.5, 0, 0),
and so forth. We assume values equal to 0, 0.5 and 1 for each class on every neuron.
In this way, we can represent geometric ¢gures with different combinations of colors.
The parameters of the neural network will be chosen as follows:

(a) p��j;j; i; c� � p��i; c; j;j�; pÿ�i; c; j� � pÿ�j; c; i� for any i; j � 1; . . . ; n and
c;j � 1; . . . ;C.

(b) L�i; c� � Lic and l�i� � 0, where Lic is a constant for the class c of the neuron i.

5.1. PROBLEM DEFINITION

In this section, we present several examples to compare the quality of our learning
algorithm for different pattern types. We will input various geometric ¢gures to
a Multiple Classes RNN and train the network to recognize these as separate
categories. We test three types of examples: the ¢rst and second groups represent
color patterns and the last group binary images (black and white). That is, to
evaluate our learning algorithm, we use three ¢gure groups: the ¢rst set of ¢gures
(group A) is composed by the ¢gures shown in Figure 1, where black boxes represent
red colors and white boxes represent blue colors. For the second set (group B), we use
the set of ¢gures shown in Figure 2, where black boxes represent blue colors, gray
boxes represent green colors and white boxes represent red colors. The last group
(group C) is composed of the same black and white ¢gures used in [3] to compare
our learning approach with the results obtained with the learning algorithm based
on RNN proposed in [3], and the evolutionary learning approach proposed in [5].
Each pixel is represented by a neuron and we assume three classes to represent
the primary colors (red, green, and blue) according to the RGB model.

Each ¢gure is represented by a 6*6 grid of pixels. For example, to represent the
seventh geometric ¢gure of Figure 1 as a black and white ¢gure, we must use
the pattern shown in Figure 3. According to the RGB model, the black boxes
are represented as (1,1,1), while white boxes are represented as (0, 0, 0). In this way,
we can represent geometric ¢gures with different combinations of colors (for
example, in Figure 3, if we suppose black boxes correspond to red colors, and white
boxes to blue colors, neurons for black boxes are equal to (1, 0, 0) and for white
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boxes to (0, 0, 1)). Thus, we use a single-layer multiple classes RNN composed of 36
neurons (n � 36) and 3 classes (C � 3).

5.2. RESULTS ANALYSIS

The results for the ¢rst group are presented in Figure 4. To evaluate the performance
of the learning algorithms, we show the minimal errors reached during the learning
phase and their execution times (Figure 4). These values represent the average
of 8 processes for each set Si of images. This algorithm provides a good error
convergence for the learning phase. Particularly, the learning of the sets S4 and
S6 remains good for our learning algorithm. Concerning S2 and S8, the error cost
increases.

Figure 1. Geometric Figures with two colors (Group A).

Figure 2. Geometric Figures with three colors (Group B).

Figure 3. Representation of a geometric ¢gure with a 6*6 pattern.
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The results for the group B are presented in Figure 5. The learning of the sets S1
and S4 remains good for our learning algorithm. For the group B, we obtain a similar
error convergence and execution time as for the previous group. That is, the number
of colors does not imply more learning error.

Figure 6 shows the system errors during the learning phase for the last group of
images (Group C), using the classical gradient decent learning algorithm (Cl),
the evolutionary learning algorithm (Evol) and our Multiple Classes learning
algorithm (Mult). In general, Evol appears to give the best results, but with a
substantially larger execution time. That is because Evol is very slow to converge.
The learning error remains good for our learning algorithm (Mult). This algorithm
provides a better error convergence of the learning phase than Cl. Concerning
Cl, error costs are important.

Figure 4. Learning error and execution time of the learning algorithms for Group A.

Figure 5. Learning error and execution time of the learning algorithms for Group B.
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In order to test associative memories, we have evaluated recognition rates of
distorted versions of the training patterns (Tables I and II). These values represent
the average of 8 processes for each set Si of images. We generated 20 noisy images
used as inputs, for each training image and for a given distortion rate. The result
of the learning stage is used as the initial neural network of this second phase
(retrieval stage). We have corrupted them according to reasonable noise rates equal
to 0%, 10%, 20% and 30%. They are distorted by modifying bit values randomly.
A pattern is recognized if the residual error rate is less than 3. The performance
results obtained are lower when the noise rate is large (memories are then more
discriminating). The results for the ¢rst and second groups are presented in
Table I. Our algorithm provides a good recognition rate. Particularly, the recog-
nition rate for the sets S4 and S6 remains good for our approach. For S10 and
30% of noise, the recognition rate decreases.

Table II shows the recognition rate for the last group of images (Group C), using
the classical gradient recognition algorithm (Cl), the hybrid Genetic/RNN learning
algorithm (Evol) and our Multiple Classes learning algorithm (Mult). In general,
Evol continues to give the best results. That is because Evol has a small learning
error. The recognition rate remains good for our algorithm (Mult). This algorithm
provides a better recognition rate than Cl. The recognition rate of Cl is bad.

6. Conclusions

In this paper, we have propose a learning algorithm and a retrieval algorithm based
on the Multiple Classes Random Neural Model. We have shown that our approach
can work ef¢ciently as associative memory. We can learn arbitrary color images
with this algorithm, but the processing time will increase rapidly according to

Figure 6. Learning error and execution time of the learning algorithms for Group C.
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the number of pixels and colors used. The number of neurons is dictated by the image
resolution (in our case, we test for 6*6 pixels). During the learning phase, we have
encountered classical problems like the existence of local minimal and large learning
times. At the level of the retrieval algorithm, we have obtained good performance but
with a large execution time. However, most of the computations are intrinsically
parallel and can be implemented on SIMD or MIMD architectures.
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