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Abstract. Since Hopfield’s seminal work on energy functions for neural networks and their con- 
sequence for the approximate solution of optimization problems, much attention has been devoted 
to neural heuristics for combinatorial optimization. These heuristics are often very time-consuming 
because of the need for randomization or Monte Carlo simulation during the search for solutions. In 
this paper, we propose a general energy function for a new neural model, the random neural model 
of Gelenbe. This model proposes a scheme of interaction between the neurons and not a dynam- 
ic equation of the system. Then, we apply this general energy function to different optimization 
problems. 

1. Introduction 

Since the seminal papers of the early eighties [ 1,2], the study of emergent collective 
properties of artificial neural networks has created an exciting area for research. For 
instance, it is well known that for the Hopfield network with symmetric weights, as 
well as for other models, each individual state change of the networks has the effect 
of reducing an appropriately defined energy function [ 11. This elementary but subtle 
observation has spawned a large body of work on using neural networks to provide 
heuristic solutions to computationally intractable or very difficult optimization 
problems. This is usually achieved by designing a Hopfield (or other appropriate 
neural) network whose energy function mimics a cost function which embodies 
the optimization problem to be solved. 

In 1989, Gelenbe modeled the neural network using an analogy with queuing 
theory [2-4]. This model does not use a dynamic equation, but rather a scheme of 
interaction among neurons. It calculates the probability of activation of the neurons 
in the network. Signals in this model take the form of impulses which mimic what 
is presently known of interneural signals in biophysical neural networks. 

The random neural network (RNN) has been used in solution optimization [5, 
61 and recognition problems [6]. In [7] a supervised learning procedure for the 
recurrent RNN model is proposed which is mainly based on the minimization of 
a quadratic error function. In [6, 81, we have explored the relationship between 



18 JOSE AGUILAR C. 

the RNN model applied to optimization and network learning. Recently, we have 
applied the evolutionary learning the RNN model [9]. 

In this paper, we propose a general energy function for the RNN. Then, this 
general energy function on different optimization problems. This work is organized 
as follows: in Section 2, the theoretical basis of the RNN is reviewed. Then, we 
present the general energy function. In section 4 we present the energy function 
for two NP-hard problems (Graph Partitioning and Minimum Node Covering). 
Remarks concerning future work and conclusion are provided in Section 5. 

2. The Random Neural Network Model 

The RNN model consists of a network of II neurons in which positive and negative 
signals circulate. Each neuron accumulates signals as they arrive, and can fire if its 
total signal count at a given instant of time is positive. Firing then occurs at random 
according to an exponential distribution of constant rate, and signals are sent out 
to other neurons or to the outside of the network. Each neuron i of the network is 
represented at any time t by its input signal potential Ici (t) . 

Positive and negative signals have different roles in the network. A negative 
signal reduces by 1 the potential of the neuron at which it arrives (inhibition) or 
has no effect on the signal potential if it is already zero; while an arriving positive 
signal adds 1 to the neuron potential. 

Signals can either arrive at a neuron from the outside of the network or from 
other neurons. Each time a neuron fires, a signal leaves it, depleting the total input 
potential of the neuron. A signal which leaves neuron i heads for neuron j with 
probability p+(i, j) as a positive signal (excitation), or as negative signal with 
probability p-(i, j) (inhibition), or it departs from the network with probability 
d(i). Clearly we shall have: 

C,“,,b+(i,j) +p-(i,j) +d(i) = 1 for1 2 i 5 n. 

External positive signals arrive to the ith neuron according to a Poisson process of 
rate A(i). External negative signals arrive to the ith neuron according to a Poisson 
process of rate X(i). The rate at which neuron i fires is r(i). The main property 
of this model is the excitation probability of a neuron i, q(i), which satisfies a 
non-linear equation: 

q(i) = x+(i)/(r(i) + X-(i)) (1) 

where, 
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3. A General Energy Function for the Random Neural Network 

In the RNN, q(i) depends on R(i), X(i), p+(j, i), P-(jr i), r(i) and the other 
q(j)‘s. In the optimization, p+(j, i), p-(j, i) and r(i) are fixed and depend on 
the nature of the combinatorial problem. Besides, in the optimization problem 
the relationship between two neurons is competitive or cooperative, that is either 
p+(j, i) or p- (j, i) is null. Of course, if there is no interaction between them, then 
both p+ (j, i) and p- (j, i) are null. On the other hand, emission of external signals 
is not interesting for optimization, it is better to employ the signals to inhibit or to 
excite the neighbor neurons, that is, d(i) is null. The firing rate 7(i) is obtained by 
the reciprocity of effect between neurons. When two neurons i and j are excited 
and i emits signals to j, the excitation or inhibition that i exerts over j must be the 
same as the excitation or inhibition that i receives. 

Ifp+(j, 4x(i ‘) d (I z an T z are fixed, the only way to lead the network from 
one stationary state to another one is to act over the inputs. This state of the RNN 
model is defined by (q(i), . . . . q(n)). The use of two external flows to every neuron 
permits a complex scaling of an external positive flow to an external negative 
flow [6, 81. In optimization, the use of two flows is not interesting. We consider 
X(i) as null so that the neurons only receive external positive signals, representing 
the preference that the neuron belongs to the solution. In this way, q(i) and R(i) 
become the variables of the RNN model. The general form of the energy function 
proposed is: 

E = cz<3 aijq(i)q(j) + c, G,q(i)2 + ci hq(i) + c 
Vi,j = 1, . . . . n (2) 

where ai3, b, and c are the parameters of the optimization problem. It is interesting 
to see how this energy function definition differs from the classical approach of 
Hopfield. Note the additional terms which are squared in one state variable and 
linear in the other. Therefore, the above energy function can correspond to a 
quadratic cost function. Our reference to a quadratic energy function is motivated 
by the ‘usual’ formulation of optimization problems with neural networks. 

Now, we search to define a dynamic of external positive signals in the RNN 
model, in order to find the state that gives the minimal energy in the network. Using 
the technique of gradient descent, the dynamic of the external excitation signal is 
defined as: 

Am+’ = Am - p [CVS/CJA(ZJ)]~ 
in the mth iteration (3) 

Equation (3) describes the control that must be applied to the system to minimize 
the energy function. The general procedure that we propose for the RNN is [6]: 

- Initialize A(i) in some appropriate manner 
- Repeat 
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- Solve Equation (1) 
Using (3) and the previous results, update h(i). 

I Ifh(‘). z is outside of [0, r(i)], replace for the nearest bounds until the change 
in the new value of q(i) is smaller than some predetermined value. 

Thus, 

Given, 

x,j = (2aiiq(i) + b,)l[i = j] + (Uijl[j > i] + c+l [j < i]) q(j) 

then, 

kJ+I(u) = xifJ xijaq(i)/8A(u) 

Now, we must explain d(i)/dA( u using the stationary solution of the network. ) 
Given: 

IV(~) = c, w;q(j) + A(i) 

D(i) = c, q&(j) + C,bJ$ + “j> 

where, 

then, 

Mww = c [ 3 w,+iaq(j)/aA(u) + l[i = IL]] /D(i) 
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Given: 

Y$ = w,+ilD(i) - w,N(i)/D(i)2 
aq(i)/an(u) = -& Y&aq(j)/aA(u) + l[i = qqu> 

That is, 

cYq/aA(u) = dq/dA(u) . C + e,,l/D(u) 
withe,i = 1 [i = u]andC = (Cjyig) 

finally, 

aq/aA(u) = l/D(u),e,.[l- Cl-’ 

4. Our Energy Function on Different Optimization Problems 

4.1. THE GRAPH PARTITIONING PROBLEM 

The problem consists in dividing a graph into several subgraphs, so as to minimize 
a given cost function [l]. In a very general way, to place the problem on a math- 
ematical formulation, the following definition is necessary: n = (N, A) where n 
is a directed graph, N is a set of n nodes, A = nd,, are node pairs that define the 
arcs (it is known as the adjacency matrix). 

The problem consists in dividing the graph into K different subgraphs n = 

{II t , . . . , &}, according to a certain cost function, The cost function associates a 
real value to every subgraph configuration. We propose the cost function: 

(4) 

where D = {i f nk &j E ni 8~1 #k} 

The first term minimizes the edges which belong to the cut. The second summation 
term will have a minimum value only when the number of nodes in the partitions 
are the same. The balance factor (b) defines the importance of the interconnection 
cost with respect to the imbalance cost, and Nnk is the number of nodes in 
I~II, V k = 1, . . . , K. The graph partitioning problem is reduced to finding a subgraph 
configuration with the minimum value for the cost function. 

4.1.1. Our RNNfor This Problem 

In this approach, we will construct an RNN composed of nK + K neurons. For each 
(node, subgraph) pair (i, U) we will have a neuron ~(i, U) whose role is to ‘decide’ 
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whether node i should be assigned to subgraph u. We will denote by q(p(i, u)) the 
probability that ~(i, u) is excited: thus, if it is close to 1, we will be encouraged 
to assign i to u. In order to reduce connections between subgraphs in the selected 
partition, ~(i, u) will tend to excite any neuron ~(j, u) if j is connected to i, and 
will tend to inhibit ~(j, U) if j is connected to i and u # w. Similarly, ~(i, u) will 
inhibit p(j, w), kl, . ..) K, if j is not connected to i. On the other hand, neurons 
p(i, u) and ~(6 u>, u # ~1, will inhibit each other so as to indicate that the same 
node should not be assigned to different subgraphs. 

For each subgraph u we will have a neuron X(U) whose role is to let us know 
whether u is heavily loaded with node or not. If u is very heavily loaded, it will 
attempt to reduce the load on subgraph u by inhibiting neurons p(Z, u), and it will 
attempt to increase the load on subgraphs v # u by exciting neurons K(W). In 
the same way, ~(i, u) will excite neuron X(U) to increase the load on subgraph u. 
The parameters of the RNN expressing these intuitive criteria are chosen as follows: 

- h(p(i, u)) = random, - G4i, 4) = 0, 
-h(r(u)) = n/K, t o ex p ress the desirable equal load sharing property, 
- X(7r(u)> = 0, -r&(i, u)) = nK 
-r(rr(u)) = n + K - 1 
-r(p(i, u))p+(p(i, u), ~(j, v)) = 1 if (a+= 1 or ad+ = 1) and u = U, 0 otherwise. 
- rCp(C u))P-(~(~, u), p(j, u)) = 1 if (u # v and (adtl, = 1 or ad+ = 1 or i = j)), 

or (adi, = 0 and ad,i = 0), 0 otherwise. 
- r(p(i, u))p+(p(i, u), T(U)) = 1 if u = V, 0 otherwise. 
- r(r(u))p-(r(u), ~(i, u)) = 1 if q(n(u)) - 1,0 otherwise. 
- r(rr(u))p+(T(u), X(W)) = 1 if q(r(u)) N 1,0 otherwise. 

Equation (1) for this case is: 

(5) 
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For this problem, using the general energy function (2) and the cost function (4), 
we propose the following energy function: 

If we develop this function, we obtain the following values for a,j, b, and c: 

aiJ = adi, ifi < j 
b/k + 1 ifi = j 

0 otherwise 
b, = -2(nb/K2 + 1) 
c = bn2/K3 + 1 

4.1.2. Performance Evaluation 

We compare the RNN with the approximate heuristics proposed in [6]: genetic 
algorithms (GA), simulated annealing (SA) and Kernighan’s heuristic (Kern). The 
random graphs used are defined for the average number of nodes (n) and the average 
degree of the successor nodes of a node (6). For each graph, the successors of a 
node are chosen randomly from a uniform distribution in the interval [I, 4. The 
execution time is in seconds. 

The parameters of the simulations are the following: the total number of sub- 
graphs (K), the mean number of nodes per graph (n), the mean number of suc- 
cessors per node (d) and the balance factor (b). We generate 50 random graphs for 
the set of parameters where n = 10, 20, 50, K = 2 and d = 2. 

We obtain the optimum solutions using an enumerative search algorithm. We 
study the following performance criteria: 

- Ti, the mean value of the computation time on a workstation for each heuristic. 
- Sopt, the mean value of the solutions for a given set of parameters. 
- 81, the percentage of cases where a heuristic obtains the optimum solution. 
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Table I. Performance criteria for I = 10, 
n=20,d=2,b=landK=2. 

Method E b T SOP 

SA 0.06 0.9 28 2.6 
GA 0.12 0.8 19 2.8 
RNN 0.12 0.8 9 2.8 
Kern 1.06 0.15 3 4.1 

- Et, the mean relative error of the solutions of a heuristic compared to the 
optimum solution, 

El = c; ,(SiZ - s,“““)/S?” 
where I (I = 1 “‘” , . . . . 10) is the number of times that we execute the heuristic to 
obtain these values on the graph i (i = 1 , . ...50), ST@ is the optimum solution of 
the graph i and ,S’il is the solution of the heuristic for the graph i. Due to space 
limitations, the results presented in this section were chosen because they are 
representative of the phenomena studied. 

Sop and 6 are approximately the same for every heuristic, but Kemighan’s 
heuristic gives the worst results. SA is the heuristic with the least mean relative 
error, but we obtain interesting results with RNN with a short execution time. 

4.2. MINIMUM NODE COVERING PROBLEM 

The formal problem can be stated as follows. Let G be a graph with y1 nodes N = 
{VI, *.., Vn} and edges denoted by (V,, I$). A cover of G is a subset S of N such 
that for each edge (Vi, VJ) in G, either V, or V, are in S. A minimum cover of G is 
a set S* such that the number of nodes in S* is no larger than the number of nodes 
inanycoverSofG: (S* 1 < (S (.Th e cost function for this problem is: 

where, D(i) is the degree of node i. 

pi = 1 if nodex E Sin this solution 
0 otherwise. 

,0: = 1 if nodeV, E Sin this solution 

0 otherwise. 

The first term states that there should be as few nodes as possible in the minimum 
cover. while the second and third terms state that we should favour nodes which 
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have a large degree. The fourth term states that we would like to have only one 
of each end node of an edge in the cover. In this way, this term eliminates illegal 
solutions. The last term states that we cannot have the same node both in and out 
of the cover. Though this cost function is quite elaborate, it does provide a more 
detailed representation of the problem’s constraints. Let us now present a RNN for 
the minimum graph covering problem. 

4.2.1. Our RNNfor This Problem 

Each node i in the graph is represented by two neurons, p(i) and n(i). The first of 
these will be ‘on ’ if the network recommends that i be included in the cover, while 
the second will have the opposite role. The parameters of the FUW expressing these 
intuitive criteria are chosen as follows: 

- h(p(i)) = degree of node i (D(i)), 
- Wi)> = 0, - R(r(i)) = random, 
- X(7+)) = 0, - r@(i)) = 2n 
- r(r(i)) = degree of node i (D(i)), 
- r(p(i)) p-(p(i), r(j)) = 2n if (i = j), 0 otherwise. 
- r(r(i)) p+(n(i), p(j)) = 1 if (a&j = 1) or (a$ = l), 0 otherwise. 
- All other weights are set to zero. 

Equation (1) for this case is: 

For this problem, using the general energy function (2) and the cost function (6), 
we propose the following energy function: 

but, if we suppose that, 

q(p(i)) = 1 - q(n(j)) (ideal case) 

the energy function is: 

E = X:x”=, Cj”=, adi&(i))q(n(j)) + C:x”=, [20(i) + l- 
2n - )& ad+]q(7r(i)) - Xi q2(r(i>) + 2n - Ci D(i) 



26 JOSE AGUILAR C. 

Table II. Performance criteria. 

Method ~ Exc T 

n=20 cr +0.5 

Heur 72 0.3 2 
RNN 100 0 6 

n = 50 ~ = 0.125 

Heur 12 1.5 1 
RNN 80 0.2 12 

If  we develop this function, we obtain the following values for aij ,  bi and c: 

aij = adi j  if/ ¢ j 
- 1 otherwise 

bi = 2D(i)  + 1 - 2n  - 2jn=l adj i  

c = 2n  + ~ i  D ( i )  

4.2.2. Performance  Evaluat ion  

We compare the RNN with an approximate heuristic (Heur) proposed in [5] and 
with the exact solution. The number of nodes in the graphs has been varied with 
the following values: n = 20, 50. Once the size of the graphs is fixed at a value, the 
random generation is carried out as follows. A probability value s is fixed; this is 
the probability that for any pair of nodes 17/, Vj there is an edge (1~, Vj). We have 
taken different values of s = 0.125, 0.5 and of  n. These results are present in Table 
II. For each value (n, or) we generated 25 graphs at random in this manner, and the 
results which are tabulated below are average values over this set. These heuristics 
are compared with respect to the following criteria: 

- c~ is the percentage of  cases where a heuristic obtains the minimum cover. 
- Exc is the average number of nodes in excess of the minimum for the set of 

25 graphs, for a given (n, cT) pair. 
- T is the mean value of the computation time on a workstation for each heuristic. 

The results clearly show that the RNN heuristic easily outperforms the greedy 
heuristic in all cases, and that this performance improvement is particularly sub- 
stantial when the graph is sparse (i.e., small or). 

5 .  C o n c l u s i o n  

The purpose of this paper has been to consider the formulation of a general energy 
function to solve combinatorial optimization problems using the RNN. The major 
advantage of this model is that it has a purely numerical and computationally fast 
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solution, which removes the need for complex search techniques and other Monte 
Carlo simulation-based optimization methods. The definition of a general energy 
function for the RNN permits us to define a dynamic to search for an optimum 
solution of a combinatorial optimization problem. 

Then, we have illustrated the utilization of our general energy function on two 
optimization problems: the Graph Partitioning and the Minimum Node Covering. 
Further work will examine the results proved for this model using this energy 
function in other optimization problems. 
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