
Parallel Processing Letters, Vol. 15, Nos. 1 & 2 (2005) 131-152 ^ f e W Id S " f f
© World Scientific Publishing Company I B ' r;—:——
w ° ^ J H I www.worldscientitic.com

PARALLEL LOOP SCHEDULING APPROACHES FOR DISTRIBUTED AND
SHARED MEMORY SYSTEMS

JOSE AGUILAR
CEMISID, Dpto. de Computation, Facultad de Ingenieria,

Universidad de Los Andes, Merida 5101, Venezuela
aguilar® ing. ula. ve

ERNST LEISS2

Department of Computer Science, University of Houston,
Houston, TX 77204-3475, USA

coscel@ cs. uh. edu

Received January 2005
Revised March 2005

Accepted by Selim Akl

Abstract

In this paper, we propose different approaches for the parallel loop scheduling problem on
distributed as well as shared memory systems. Specifically, we propose adaptive loop scheduling
models in order to achieve load balancing, low runtime scheduling, low synchronization overhead
and low communication overhead. Our models are based on an adaptive determination of the chunk
size and an exploitation of the processor affinity property, and consider different situations (central
or local queues, and dynamic or static loop partition).

Keywords: Loop Scheduling, Parallel Loops, Parallel Systems, Distributed Memory Systems, Shared
Memory Systems.

1. Introduction

In this paper, we are concerned with the scheduling of parallel loops on shared-memory
and distributed-memory systems [1, 2, 3, 7, 8, 12, 13, 15]. A loop is called a parallel loop
if there is no data dependency among all iterations; i.e., iterations can be executed in any
order or even simultaneously. They are widely used in scientific application programs.
We propose a family of adaptive loop scheduling models based on an adaptive
determination of the chunk size and an exploitation of the processor affinity property.
Our adaptive chunk size mechanism initially assigns a large number of iterations; then, it
increases/decreases the chunk size until all iterations are exhausted, to dynamically
allocate loop iterations to processors, based on runtime information to reduce
synchronization overhead and balance load more evenly. By exploiting processor affinity,

131

http://www.worldscientitic.com

132 J. Aguilar & E. Leiss

we reduce the amount of communication required to execute a parallel loop in shared and
distributed memory systems, and thereby improve the performance. Our approaches also
substantially reduce the number of mutually exclusive accesses avoiding small chunk
sizes and predicting the next chunk size. Our approaches make decisions that match the
current situation at runtime. In this way, we can handle loops with a wide range of load
distributions when no prior knowledge of the execution is available. The organization of
this paper is as follows: Section 2 presents the parallel loop-scheduling problem. Section
3 presents the main ideas of our models. Section 4 shows our experiments. Then, we
present our conclusions and further work.

2. The Parallel Loop Scheduling Problem

In general, a loop can be defined as parallel when there are not data dependencies
between any pair of iterations in it. In this loop all of the calculations are completely
independent, so they could be performed in any order and the results would be
equivalent. One way to exploit this parallelism is by executing the loop iterations in
parallel on different processors. Parallel loops can be uniform, in which case the
scheduler can assign an equal number of iterations to each processor, or they can be non
uniform, in which case iterations have different execution times [5, 6, 9, 10, 11]. In
general, an efficient loop scheduling algorithm should optimize its performance by
trading off adaptively scheduling overhead (synchronization overhead, loop allocation
overhead, and scheduler execution time overhead), load imbalance overhead, and data
communication overhead.

Loop scheduling algorithms fall into two distinct classes [1, 2, 13, 15]: i) Central queue
based: In this approach, iterations of a parallel loop are all stored in a shared central
queue and each processor exclusively grabs some iterations from the central queue to
execute, ii) Distributed queue based: In order to exploit processor affinity inherent in the
parallel execution of many iterations and to eliminate the central bottleneck, these
approaches distribute the central queue over the processors.

There are two basic loop scheduling methods used to assign iterations of a loop to
processors [1, 2, 13, 15]: i) Static Scheduling: Static policies depend on the average
behavior of the system and not on its current state; they are usually applied to uniformly
distributed loops. They assign iterations to processors statically, minimizing run-time
synchronization overhead but do not balance the load, ii) Dynamic scheduling: Dynamic
methods defer the assignment of iterations to processors until run-time. They should not
assume any prior knowledge of the execution time of the loop iterations.

Many approaches have been proposed for the parallel loop scheduling problem [1, 2, 3,
7, 8, 12, 13, 14, 15]. All of these loop scheduling algorithms attempt to achieve the
minimum completion time by distributing the workload as evenly as possible and/or
minimizing the number of synchronization operations required and/or minimizing
communication overhead caused by access to non-local data. Each one of the algorithms
assumes mainly that we work on a shared-memory system.

Parallel Loop Scheduling Approaches 133

The classic optimization criteria are [2, 7, 12, 13, 15]: i) Minimize loop imbalance, ii)
Minimize communication cost: We can minimize this cost by exploiting the processor
affinity that favors the allocation of loop iterations close to their data, iii) Minimize
synchronization problems: In this case, the idea is to reduce the number of mutually
exclusive accesses, iv) Minimize scheduling overhead: This is the time to allocate the
remaining iterations.

There is much recent work on parallel loop-scheduling for shared-memory machines.
For example, [8, 15] propose adaptive scheduling algorithms for different control
mechanisms. The proposed algorithms apply different degrees of aggressiveness to adjust
loop-scheduling granularities, aiming at improving the execution performance of parallel
loops by making scheduling decisions that match the real workload distributions at
runtime. These approaches are interesting when the initial loop partition is not balanced.
In this case, processors should be able to increase or decrease dynamically their
allocation granularity based on runtime information. Bull [2] introduces two algorithms
for dynamic loop scheduling, which implement a feedback guidance mechanism. The
feedback guidance mechanism is designed to utilize knowledge about the workload
derived from the measured execution time of previous occurrences of the loop with the
aim of reducing the incurred overhead. [12] presents a new methodology for statically
scheduling a cyclic data-flow graph whose node computation times can be represented by
random variables. Communication cost is also considered as factor: every node in the
graph can produce a different amount of data depending on the probability of its
computation time. Since such communication costs rely on the amount of transferred
data, this overhead becomes uncertain as well. [14] proposes an algorithm to take
advantage of the parallelism across a loop iteration while hiding the communication
overhead. Results show that the proposed framework performs better that a traditional
algorithm running on an input which assumes fixed average timing information. In [3],
Cieniak, Javeed, and Li study the problem of scheduling loop at compile time for a
heterogeneous network of workstation. They propose a simple model for use in
compiling for a network of processors, and develop compiler algorithms for generating
optimal and near-optimal schedules of loops for load balancing, communication
optimizations, network contention and memory heterogeneity. In [7] Markatos and
LeBlanc propose a loop scheduling algorithm for shared-memory multiprocessors in
considering communication overhead caused by accesses to non-local data. They show
that traditional algorithms for loop scheduling, which ignore the location of data when
assigning iterations to processors, incur a significant performance penalty. They propose
a scheduling algorithm that attempts to balance the workload, minimize synchronization,
and co-locate loop iterations with the necessary data simultaneously. Finally, Tzen and Ni
propose a processor self-scheduling scheme, called Trapezoid Self-Scheduling, for
arbitrary parallel nested loops in shared-memory multiprocessors [13]. This approach
starts the execution of a loop by assigning a large number of iterations and linearly
decreases the number of iterations until all iterations are exhausted. In this way, they
obtain the best tradeoff between small overhead and load balancing for both uniformly or
non-uniformly distributed parallel loops.

134 J. Aguilar & E. Leiss

3. Our Approach

We consider parallel systems consisting of P processors. Arbitrary nested parallel and
serial loops are allowed, and the bound of loops may not be known at compile time. We
consider two types of load: uniform and non-uniform, and we propose two versions of
our approach: with local queues or with a central queue. The symbols used in our
approach are defined as follows:

N: number of chunks. CS(t): global chunk size at time t.
LCSi(t): chunk size at time t on processor i. k: number of iterations.
L: load of the parallel loops P: number of processors.

(assumed to be larger than k/P).
LW;(t): workload at time t on processor i. 1: final chunk size.
LCFj(t): cost function at time t on processor i. W(t): global workload at time t.
Clij(t) load imbalance at time t on processor j . base: is a constant
CF(CS(t), W(t)): chunk function that is based on the chunk size and workload at time t.
Loop-Pattern: is the ratio between the shortest and the largest iteration.
AP: factor that describes the application characteristics (uniform or non-uniform loops,

etc.).
queues number of iterations allocated to processor i.
Cc(i, j): communication cost which is defined as the distance between processor i and j .
a: factor that describes the importance of the communication cost. It can have the

following values: small, large or medium (small may be [0-0.3], medium [0.3-0.7]
and large [0.7-1]).

(3: factor that describes the importance of the load imbalance cost It can have the
following values: small, large or medium.

NRI(t): number of remaining iterations at time t in the case of a central queue. It can have
the following values: small, large or medium. The possible values for small is fewer
than 30% of the total number of iterations, medium is between 30% and 70% of the
total number of iterations, and large is more than 70% of the total number of
iterations.

statej(t): state of the workload at time t on processor i. It can have the following values:
heavy (LW;(t) > (W(t)/P)*1.5), light (LWt(t) < (W(t)/P)*0.5) or normal
((W(t)/P)*0.5 < LWj(t) < (W(t)/P)*1.5).

3.1. General Algorithm

Instead of relying on prior knowledge about a loop's execution, our model exploits the
potential of using runtime information in order to adjust iteration chunk size adaptively to
reduce synchronization scheduling and communication overhead, and dynamically
balance the workload. We define a chunk as a unit of work to be assigned to a processor.
In our parallel loop scheduling approach, a chunk is a group of m iterations where m is
defined dynamically. The general procedure of our approach is the following:

Parallel Loop Scheduling Approaches 135

Initial Partition phase. In this phase, a loop with k iterations is partitioned into
chunks over P processors.

In the case of distributed queues, we will partition a parallel loop statically into
the local queue of each processor. A deterministic initial assignment policy is
used to divide iterations of a parallel loop into local queues of processors, which
ensures that an iteration is always assigned to the same processor at the start
(improve processor affinity). With this assignment scheme, if a parallel loop
executes repeatedly and each parallel iteration accesses the same data set in
different executions, the first execution of the parallel loop will bring data
locally to the processor so that the subsequent execution of the parallel loop only
involves local data access.
In the case of a central queue, we define the initial chunk size so as to avoid a
load imbalance at the beginning (see Section 3.2.1). In general, the partitions are
defined dynamically to match the current situation at runtime (see Section 3.3).

Scheduling phase: In this phase, according to the chunk size, each processor executes
a part of the remaining iterations. In the case of local queues, each processor
allocates a part of the remaining iterations (according to its local chunk size) from its
local queue until the local queue is empty. In the case of a central queue, each
processor allocates a part of the remaining iterations (according to the global chunk
size) from it. Because all processors share a central queue, a critical section is used.
This introduces a synchronization overhead.
Remote scheduling phase: This is used only in the case of distributed queues. When
a processor finishes the execution of all the iterations in its local queue, it remotely
allocates a portion of the iterations from one of the most loaded processor in the
system according to certain criteria. The remote data access introduces
communication overhead as well as synchronization overhead (local queues are
shared by different processors during the remote access).

The phase of scheduling parallel loops (which includes the remote scheduling phase for
the local queue case) involves finding the appropriate decomposition of a loop into
parallel tasks by finding the appropriate granularity of parallelism, so that the overhead of
parallelism is kept small, while the workload is evenly balanced among the available
processors. The general procedure of this phase is the following:

1. Until loop is exhausted
1.1 Plan
1.2 Compute

2. Wait

That is, during the scheduling phase we distinguish three states in handling a parallel loop
for each processor: planning state, computing state, and waiting state. In the planning
state a processor tries to acquire a chunk from the remaining iterations (scheduling

136 J. Aguilar & E. Leiss

overhead). The planning state is decomposed into the following two processes: Chunk
Size Determination and Chunk Assignment. The scheduling overhead is caused by
waiting for the availability of a critical section (synchronization overhead) and the
scheduler execution time. The synchronization overhead is determined by the
implementation of mutually exclusive accesses to shared variables (for example, a central
queue). Whenever a processor acquires a chunk, it enters the computing state and starts
execution. After finishing the computation, it goes back to the planning state. The total
time each processor stays in the computing state is very likely greater than the total load
of the parallel loop due to network and memory contention. An approach which generates
much network and memory traffic will affect the time the processor stays in the
computing state (synchronization and communication overhead). A processor repeats
planning and computing until the loop is exhausted. Then, the processor goes to the
waiting state and waits for the completion of the remaining executing chunk. Every
processor, except the processor with the last chunk to execute, has to stay in the waiting
state due to the synchronization barrier (load balance overhead).

In our approach the main phase is this phase. We must optimize the next criteria during
the scheduling phase: i) Load balancing cost. Minimize the waiting time for the
completion of the last chunk due to the synchronization barrier, ii) Synchronization cost:
Minimize the number of mutual exclusive accesses, iii) Communication cost: Minimize
accesses to no-local and far iterations.

3.2. Criteria Optimization

3.2.1. Load Balance overhead

We solve the load balance problem by assigning iterations dynamically. We avoid the
load imbalance problem due to a large initial chunk size (CS(O)), especially when the
workload is not uniformly distributed, because we define a good value for CS(0), and
then we increase or decrease the load according to the current situation on the system. In
order to provide appropriate load balancing, we choose CS(0) initially to be equal to k/2P.

Observations: If CS(O) is equal to or larger than L/P, then CS(0) likely becomes the last
chunk of this loop (load imbalance). If CS(0) is always less than L/P then the
workload of the rest of the iterations is still adequate to keep other processors busy
(k/2P < L/P). For example, if we suppose a linearly decreasing chunk size and the
number of chunks is N=2k/(CS(0) + CS(l)), then the range of the last chunk of this
loop is between 1 and k/2P, and the range of the number of chunks is from 4P to 2P.

We use this idea in both approaches, local and central queue, to define the initial value of
the chunk sizes. In the case of local queue approach, we consider each processor
individually to calculate its LCSt(0) value. That is, LCSJO) =queue;/2.

Parallel Loop Scheduling Approaches 137

3.2.2. Synchronization Overhead

Too small a value of the lasts chunk size can introduce a large synchronization and
communication overhead. We avoid suffering from excessive synchronization and
communication overhead because we define a minimal chunk size (see Section 3.2.3).
Also, synchronization overhead depends on the implementation of chunk dispatching.
Chunk dispatching will degrade significantly if the critical section takes much time and
the number of processors is large. We must define an efficient chunk dispatching
mechanism, which replaces a critical section by a single atomic instruction. We suppose
a given chunk function CF (see Section 3.3.2), which determines the chunk size at the
time t:

CS(t) = CF(W(t),CS(t-l))

Now, we can predict at time t the chunk size of the next chunk at time t+1 (CS(t+l))
using:

CF(W(t), CS(t))*AP (1)

This value can be computed by a processor each time it grabs iterations, and only if
W(t+1) changes a lot with respect to the load used in (1), we must recalculate the chunk
size. If we use the predicted value, then the index of chunks, t, would be the only shared
variable that processors have to access atomically.

In the case of a central queue, we apply (1) over the global chunk size that is shared
between the different processors and which is adaptively adjusted. In this case, the
utilization of our predictable mechanism to reduce the synchronization overhead is
very important.
In our local queue approach, we introduce a synchronization cost associated with
access to a remote work queue. In this case, each chunk size is adaptively and
independently adjusted by a chunk-size function. Under the assumption that an idle
processor grabs a number of iteration according to the remote chunk-size, if we use
the remote predicted chunk-size, then the synchronization operation will be
inexpensive.

3.2.3. Communication Overhead

The communication overhead problem is considered to improve the processor affinity for
both shared and distributed memory systems. The motivation for exploiting processor
affinity in loop scheduling derives from the observation that, for many parallel
applications, the time spent bringing data into the local or cache memory is a significant
source of overhead data (local versus non-local data). That is, loop iterations frequently
have an affinity for a particular processor (the one whose local memory or cache contains

138 J. Aguilar & E. Leiss

the required data). In this way, we try to reduce the communication overhead according
to the next ideas:

In the case of local queues (for both, shared and distributed memory systems) our
approach tries to share the iterations between processors when one of them is
overloaded (processor o) and the other one is not (processor i), according to certain
constraints. To minimize communication overhead, we reassign a chunk only if it is
necessary to balance the load, according to the next procedure:

1) L e t - U ^ 0 0 = m a X j=l, Pandprocessor;overloaded { i j ^ O j (t))

ii) Only if (Loop-Pattern = 0) or (LCS(/queue0 « Loop-Pattern and Loop-Pattern =

1)
ii.l) Send a given number of iterations, according to the current value of LCS0,

from processor o
to processor i.

Observation: In the best case, when the load is uniform, Loop-Pattern is about 1. The
(LCSo/queue0 « Loop-Pattern) condition avoids the thrashing problem and
maximizes the locality property. This condition establishes that there is a large
load that must be shared with other nodes. In general, we don't allow migration
of iterations when there is a low number of iterations that must be executed
again in the current node (we exploit the locality property). In addition, our
system adjusts the chunk size of the destination node after a migration, to avoid
a new migration of the iterations (in this way, we avoid that our system spends
more time migrating iterations that executing them, that is, a global trashing
problem). When the load is non-uniform (the worst case), Loop-Pattern is close
to 0. In this case we must load balance all time.

In the case of a central queue (an application based on the master-slave paradigm)
we don't have this problem because we allocate iterations all time.

3.2.3.1. Communication Overhead on Large Networks

The existence of memory that is not equidistant from all processors (such as cache or
local memory) implies that some processors are closer to the data required by an iteration
than others are. Thus, we can't suppose a binary situation (local and non-local data)
because we have a local network. In this case, the communication cost is important and
must be reduced:

In the case of local queues (for both, shared and distributed memory systems) our
approach tries to share the iterations between closer processors when one of them is
overloaded and the other one is not (we schedule a loop iteration on the processor
closest to the processor that already contains the necessary data). That is, an idle

Parallel Loop Scheduling Approaches 139

processor i examines the work queue of all the other processors and removes
iterations from the work queue of a processor j according to the cost function 2.

LCFj(t) = a Cc(i, j)*LCSj(t) + P Clij(t) (2)

where Clij(t) is:

Clij(t)= L W j C ^ g L W i ^

and if Sj=i LCSj(t)/P is small, then a should be large and P small

/* We try to minimize the communication cost

if Ej=iP LCSj(t)/P is large, then a should be small and P large

/* We try to minimize the load imbalance cost

We use the following procedure to define in which processor j we need to search for
a processor i that has no more iterations in its local queue:

If Ej=iP LCSj(t)/P is small, then select processor o such as

LCF0 = min j= 1, P and processor; overloaded {LCFj(t)}

If Sj=iP LCSj(t)/P is large, then select processor o such as

- L A — l o — r n U X j= i /> and processor) overloaded i -LfV- ' -M\^ / J

In this way, we try to minimize the load from the most heavily loaded processor or
the communication cost, according to the current load on the system. Particularly,
when Sj=i? LCSj(t)/P is small we suppose that there is a low number of iterations to
be executed in each node. In this way, we share the workload only among neighbor
nodes and avoid large communication costs due to the small load imbalance.
In the case of a central queue (an application based on the master-slave paradigm) in
a distributed memory system, we minimize the number of messages and the size of
them, particularly between distant processors, to reduce network contention. We
don't use all slaves, only at the beginning. At the end when slave processors are idle,
the slave processors closer to the master are selected to minimize communication
cost (the load is very low to share with distant processors). We use the next
mechanism to select one processor to receive iterations:

140 J. Aguilar & E. Leiss

If (NRI(t) is large) or (NRI(t) is medium and LWa is large/medium)

assign load to every idle processor

/* We try to minimize the load balancing cost

else

assign load to the processors close to the master processor

/* We try to minimize the communication cost and the load

balancing cost

where LWa is the average load on the processors close to the master processor.

Each node knows its neighbors. In this way, we can know a processor is near to

another because we can implement a procedure to know the neighbor of a neighbor,

and so forth.

leKn
LWj (0

I W =
a [NnT

and Nn is the set of processors that are neighbors of the master processor.

In the last case, we don't send iterations to more remote processors because the

communication cost is high.

3.3. Chunk Size Determination

In this stage, we must determine the chunk size (number of loops to assign to each

processor) in order to minimize the load imbalance and communication costs, and

synchronization overhead. We propose a chunk size adjustment mechanism to increase

and decrease dynamically the chunk size (allocation granularity) according to the current

load on the system. In this way, processors acquire a given set of iterations dynamically.

The difference between our approaches is in the manner in which the chunk is modified:

the central queue approach has a global chunk size, and in the local queue approach each

local queue has its own chunk size.

Our distributed queue approach partitions iterations of a parallel loop statically into

local queues, so that each processor is involved in remote access (migration of the

iteration execution) only when load imbalance occurs. In our approach, a

Parallel Loop Scheduling Approaches 141

deterministic initial assignment policy is used to decompose a parallel loop into local
queues of processors, which improves the processor affinity property. Initially, the
number of iterations in each queue is equal to the bound of the loop divided by the
number of processors.
In our central queue approach, the partitions are defined dynamically (determination
of the chunk size is calculated dynamically) to match the current situation at runtime.

In each case, we can handle loops with a wide range of load distributions when no prior
knowledge of the execution can be used, in order to minimize the load balancing.

3.3.1. Chunk Size Adjustment Mechanism

The chunk size adjustment mechanism must minimize synchronization cost,
communication cost and load imbalance cost. In general, getting large chunks may cause
load unbalancing while getting small chunks will induce too much scheduling and
communication overhead (synchronization overhead, etc.). In order to achieve small
overhead and load balancing, we propose the following method to define the initial chunk
size:

In the central queue approach, our procedure assigns a large number of iterations at
the beginning (CS(O)), and decreases or increases the chunk size according to the
workload until all iterations are exhausted (see section 3.2.1).
In the local queue approach, every local initial chunk size (LCSi(0)) is large. Then,
we decrease or increase each local chunk size according to its workload. When a
processor i grabs iterations from a processor j according to the chunk size LCSj(t),
the new chunk size LCSi(t+l) will be LCSj(t)/2.

In addition, the scheduling algorithm must adapt the number of iterations to execute over
one processor dynamically, in order to balance the workload. In this way, we propose the
following mechanism:

In the case of local queues, if a processor has a heavy load we decrease its chunk
size (Condition 1), so that more iterations remaining in the heavily processor can be
executed by those lightly loaded processors, thereby balancing workload more
efficiently. If a processor has a normal or little load (Condition 2), we increase the
chunk size, so that processor can finish all the iterations in its local work queue as
soon as possible, and then immediately starts to help heavily loaded processors. In
our approach, we must determine the state statelt) of each processor.
In the case of a central queue, if the current load on the system is normal or heavy
(Condition 1), we decrease the chunk size to balance the workload. If the current
load on the system is small (Condition 2), we increase the chunk size to minimize
synchronization and communication overhead.

142 J. Aguilar & E. Leiss

In this way, our mechanism is the following:

1. If Condition 1
1.1 Decrease LCSj (or CS in the case of central queue)

2. If Condition 2
2.1 Increase LCSj (or CS in the case of central queue)

In both cases, we modify LCSj or CS each time that we need to allocate a given number
of iterations for execution. In the local queue case, each time that we grab iterations from
processor i we modify LCS(. In this way, we obtain a good tradeoff between small
overhead and load balancing for both uniformly and non-uniformly distributed parallel
loops.

3.3.2. Chunk Size Functions

We propose different variations to design the chunk-size (decrease or increase) function
based on the work by Yan, Jin and Zhang [15]. Our mechanism uses the current workload
and the current value of the chunk sizes (CS(t) in the case of a central queue, or the chunk
size of processor i (LCSj(t)) in the case of local queues) as its two input parameters, and
adjusts the chunk-size variable as follows:

a) Exponentially: Each processor increases or decreases the value of its chunk-size by a
constant base. The user specifies the constant. This chunk size function can be used in
both approaches, local and central queues (we replace LCSj per CS).

LCSj(t) = LCS;(t-1)/base if we must decrease LCSj
LCSj(t-1) *base if we must increase LCSj

b) Linearly: A processor increases or decreases its chunk size by a constant base. The
linearity can make the chunk function simple enough to induce a small scheduling
overhead. It has less risk of imbalancing the workload than the previous one, but tends to
incur in a larger synchronization overhead. This chunk size function can be used in both
approaches, local and central queues.

LCSj(t) = LCSi(t-l) + base if we must increase LCSj
max {1, LCSi(t-1) - base} if we must decrease LCSj

c) Conservatively: This means by restricting the varying range of the chunk size within
P/2 and 2P to avoid assigning too big or too small a chunk size. This chunk size function
can be used in both approaches, local and central queues.

LCSj(t)= min{2P, LCSi(t-l) + base} if we must increase LCSj
max{P/2, LCSj(t-l) -base} if we must decrease LCSj

Parallel Loop Scheduling Approaches 143

d) Greedily: This employs a two-phase consensus method to greedily enlarge the
chunking size on non-heavily loaded processors. This mechanism records the previous
load state of the processor: if a processor is in a non-heavily loaded state on two
consecutive allocations, it sets the chunk-size equal to the remaining iterations on queue i
(i.e., it grabs all the remaining iterations in the local work queue to execute). Otherwise
the processor increases or decreases the chunking size using one of the previous chunk-
size functions. This chunk size function can be used only in the local queue approach.

3.4. Chunk Assignment

In general, each approach work according to the next procedure:

For distributed queues, initially loop iterations are assigned to a processor's work
queue so as to balance the load statically. Then, a given number of iterations of the
remaining iterations in the local queue are allocated to the local processor for
execution (according to its LCSi(t), Vi=l, P). That is, all processors schedule loop
iterations from their local queues. In this case, only the remaining iterations allocated
on the local queues of the overloaded processors are shared among the processors
when load imbalance occurs. In this way, each processor gets iterations from its own
local work queue in parallel, and each access is local, and therefore cheap. The
remote access phase is aimed at dynamically balancing the workload. For any idle
processor, when the remote access finishes, a new chunk size is calculated (see
Section 3.3.1). In this way, the idle processor can share its iterations if it becomes
overloaded. We define the number of iterations to share according to the chunk size
of each local queue (specific to each processor).
In the case of a central queue, a given number of iterations of the remaining
iterations (according to CS(t)) are allocated to the idle processor.

3.5. Our parallel-loops scheduling approaches

Now, we present our parallel-loops scheduling approaches according to different
platforms:

a) Distributed Queue Approach and Dynamic Partition (for both distributed and shared
memory systems)- DQD

Local Queue procedure:

Repeat as long as there are remain iterations in the local queue of processor i
Lock local queue
Remove LCSj of the remaining iterations (local queue 0
Unlock local queue
Execute these loops in processor i
Modify LCSj size according to Section 3.3

144 J. Aguilar & E. Leiss

Update state

Remote Queue procedure (when processor i completes execution of the loops in its
local queue):

Repeat until all local queues are empty
Select processor,;' to grab iterations according to Section 3.2.3
Lock remote queue on processor j (queuej)
Remove LCSj of the remaining iterations from processor j and send it to

processor i.
Unlock remote queue on processor j
Assign these iterations to queuej
Modify LCSj size according to Section 3.3
Recalculate LCSj according to Section 3.3.1
Update state
Call "Local Queue" procedure

b) Central Queue and Dynamic Partition (for both distributed and shared memory
systems)-CQD

Repeat until central queue is empty
Select idle processor i to receive iterations according to Section 3.2.3
Lock central queue
Remove CS of the remaining iterations and send to processor i.
Unlock central queue
Execute these loops
Modify CS according to Section 3.3
Update state

c) Distributed Queues and Static Partition (for distributed memory systems)-DQS

Initial partition of the loop
Allocation of each partition on each local queue
For each processor i, repeat until its local queue is empty

Execute these iterations in processor i

Our static parallel loop scheduling approach fits in actual parallel compiler, because with
our system the compiler can make the partition of the loops. That is, using our system the
compiler will define the loop partition to be used during the execution of the program.
For the case of our dynamic approaches, it is the operating system at runtime who must
control the different variables that our approaches need (CS, LCSj). But again, using our
system the compiler will define the initial loop partition to be used during the execution
of the program.

Parallel Loop Scheduling Approaches 145

4. Results Analysis

We will test our model on several parallel platforms: the Origin 2000 of Silicon Graphic
with 8 processors (shared memory system) and the SP2 of IBM with 16 processors
(distributed memory system). The performance of our model is measured according to
the optimization criteria defined in Section 2.3 and the execution times of the parallel
loops. More specific, we use the next set of criteria:

Execution times of the parallel loops (ET): It is the execution time of the benchmark.
It measures how differently the scheduling algorithms work. This time is calculated
in seconds.
Degree of communication overhead (Co): It is only calculated for distributed
systems. This is calculated as

ET P P

SEZYiCc(i,j)LCSj(t)
Co=iz2!ziH

ET*P

Where Yy is a state variable equal to 1 if the processor i removes LCSj(t)
iterations from the work queue of the processory at time t, otherwise is equal to 0.
Degree of Load Imbalance (LI): This is calculated as

ET P
isciijd)

u = t = o j = i

ET*P

Degree of synchronization overhead (Sy): Calculated as the number of times a
processor removes iterations from a work queue (number of synchronization
operations required by each algorithm). When we use a central work queue, each
access to the work queue is a global synchronization operation. When we use a
distributed work queue, each operation performed on remote work queues requires a
synchronization operation.

More specific, we use the above criteria because they describe the main characteristic
to be solved during the execution of programs with parallel-loop. ET describes the
execution time of the program, and the other criteria the optimal utilization of the
resources of the system. Co at level of the communication, LI at level of the processors
(to avoid idle processors when we have a large workload) and Sy due to synchronization
operations. This last can imply large wait times for the processes on the system.

We compare our model with the adaptive affinity algorithm (AA) [15], in the case of
shared memory machines, and with the Trapezoid self-scheduling algorithm (TS) for
distributed-memory machines [13]. The kernel application programs used for the

146 J. Aguilar & E. Leiss

performance evaluation were carefully selected for different classes of parallel loops
(kinds of affinities and load distributions). We use the next classes of parallel loops in our
experiments:

Type 1: Loops with potential affinity and balanced workload. We have chosen the
Successive Over-Relaxation (SOR) algorithm. In this case, the entire iterations take about
the same time to execute and each iteration always accesses the same data.

do i= 1,L

do parallel j=l, n

dok=l,n

a[j ,k]=update(a,j ,k)

Tables 1 and 2 show the different results. In the case of shared memory systems and
DQD, we have used the linear function to modify the chunk size. For distributed memory
machines, we have used the greedy function. In the case of CQD and AA, we have used
the exponential function for both systems. They are the functions that give the best results
in each case (see [1] for more details). We have test the different chunk functions for
each algorithm, but for the comparison we have used the best results obtained in each
algorithm.

p

2

4

8

Param.

n=1024
L=500
n=1024
L=250
n=512
L=500
n=1024
L=500
n=1024
L=250
n=512
L=500
n=1024
L=500
n=1024
L=250
n=512
L=500

DQD

LI

0.4

0.3

0.3

0.6

0.6

0.5

0.7

0.6

0.6

Sy

2

2

3

3

5

5

4

8

8

ET

47

43

33

20

14

14

12

9

10

CQD

LI

0.2

0.1

0.1

0.3

0.2

0.2

0.4

0.5

0.4

Sy

10

8

6

15

10

8

21

16

16

ET

50

40

40

20

16

16

15

12

10

AA

LI

0.6

0.4

0.4

0.8

0.8

0.7

0.9

0.8

0.8

Sy

3

2

2

8

6

6

12.

10

10

ET

52

40

42

24

18

18

16

12

12

Table 1. Results for the Origin 2000.

Parallel Loop Scheduling Approaches 147

p

4

8

16

Param.

n=1024
L=500

n=1024
L=250

n=512
L=500

n=1024
L=500

n=1024
L=250

n=512
L=500

n=1024
L=500

n=1024
L=250

n=512
L=500

DQD

LI

0.5

0.3

0.3

0.7

0.5

0.5

0.6

0.4

0.4

Sy

4

3

3

14

10

8

21

16

15

Co

8.1

4.2

5.1

4.8

2.1

1.4

2.1

1.2

1.2

ET

19

13

10

11

9

6

10

6

4

CQD

LI

0.2

0.1

0.1

0.3

0.1

0.1

0.6

0.4

0.4

Sy

15

8

8

38

29

30

68

59

46

Co

15.1

10.2

9.1

9.3

4.4

4.1

4.2

2.0

1.8

ET

21

18

13

15

12

9

15

11

7

DQS

LI

0.1

0.1

0.1

0.2

0.1

0.1

0.3

0.2

0.2

Sy

0

0

0

0

0

0

0

0

0

Co

0

0

0

0

0

0

0

0

0

ET

22

18

14

18

13

10

18

12

8

TS

LI

1.3

1

1

1.6

1.2

4.1

3.8

1.8

2.1

Sy

12

6

7

16

12

10

40

27

24

Co

13.2

9.2

9.4

8.1

5.2

1.2

2

1.7

1.7

ET

20

14

10

11

10

6

12

7

4

Table 2. Results for the SP2.

In general, the synchronization overhead is an important factor in this experiment. As can
be seen in the tables 1 and 2, CQD performs the worst of all, due to its high
synchronization overhead. DQD starts with small chunks of iterations because it uses a
distributed work queue, which results in a smaller synchronization overhead. In the case
of AA, lightly loaded processors need a large time to finish their jobs, and turn to help
heavily loaded processors. In the meantime, the heavily loaded processors have already
taken a large number of iterations to execute and did not leave enough iterations for the
idle processors.

Type 2: Loops with non-affinity and balanced workload. In this case, we have used a
matrix multiplication algorithm. This algorithm doesn't have affinity to exploit (in this
case, iterations don't always access the same data).

for parallel i=l ,n

for parallel j=l,n

for k=l,n

c[i,j]=cl[i,j]+a[i,k]*b[k,j]

148 J. Aguilar & E. Leiss

Tables 3 and 4 show the different results. In the case of DQD, we have used the greedy
function to modify the chunk size for distributed and shared memory systems. In the case
of CQD and AA, we have used the exponential function for both systems. They are the
functions that give the best results in each case (see [1] for more details).

p

2

4

8

n

1024
512
256
1024
512
256
1024
512
256

DQD
LI
0.5
0.2
0.2
0.5
0.3
0.3
0.6
0.4
0.4

Sy
1
0
0
3
1
1
4
2
2

ET
11
8
6
10
5
4
6
4
2

CQD
LI
0.1
0.1
0.1
0.3
0.2
0.2
0.5
0.3
0.3

Sy
3
2
1
3

3
2
4
2
3

ET
13
10
7
11
6
6
8
5
3

AA
LI
0.8
0.6
0.6
1

0.7
0.7
1.3
1.0
1.0

Sy
2
1
1
4
2
2
6
2
2

ET
12
8
6
10
4
4
6
3
2

Table 3. Results for the Origin 2000.

p

4

8

16

n.

1024
512
256
1024
512
256
1024
512
256

DQD
LI
0.6
0.4
0.3
0.8
0.6
0.4
0.7
0.6
0.4

Sy
2
1
1
3
2
1
3
2
2

Co
4.1
2.1
2.4
4

2.2
2

3.6
1.8
1.4

ET
9
3
2
7
3
2
6
2
2

CQD
LI
0.4
0.2
0.2
0.3
0.2
0.2
0.6
0.4
0.4

sy
4
3
2
5
4
3
6
5
5

Co
42.1
24

23.2
25
18.6
19

18.7
10

16.1

ET
14
10
8
13
9
7
10
6
3

DQS
LI
0.1
0

0.1
0.1
0.1
0.1
0.2
0.1
0.1

sy
0
0
0
0
0
0
0
0
0

Co
0
0
0
0
0
0
0
0
0

ET
11
6
5
7
4
4
7
4
3

TS
LI
0.8
0.5
0.4
1

0.8
0.6
1.2
0.8
0.6

sy
3
2
2
4
3
3
5
4
3

Co
40

21.7
22.3
26.1
20.5
19.5
15
7

4.2

ET
10
4
3
7
3
3
6
3
2

Table 4. Results for the SP2.

This application is a good example of the fact that the dominant source of overhead in
many application is communication, not synchronization. According to our results, for
load balanced applications, aggressively adjusting scheduling granularity is an efficient
method to reduce synchronization overhead and execution time. As can be seen in the
tables 3 and 4, DQD performs the best of all, due to its low synchronization overhead.
DQS improve its performance due to its load balancing characteristics.

Type 3: Loops with potential affinity and load imbalance: In this case, we have used the
Transitive Closure algorithm. The distinguishing characteristic of this application is that
each iteration of the parallel loop may take time 0(1) or O(N) depending of the input
data. This application will also benefit of an affinity scheduling, since i"1 iteration of the
parallel loop always accesses the i* row of the matrix.

Parallel Loop Scheduling Approaches 149

For k=l, n

For Parallel j=l ,n

If a[j,k]=True then

For i=l, n

Ifa[k,i]=True

A[j,i]=True

Tables 5 and 6 show the different results. We have used the same chunk size functions
for each case that the first example (see [1] for more details).

p

2

4

8

n.

1024

512

256

1024

512

256

1024

512

256

DQD

LI
3

2.8

2.6

4.1

3.6

3.5
5.2

4.8

4.4

Sy
2

1

1

3

2

2

8

5

5

ET
42

30

13

19

13

7

11

8

6

CQD

LI
2.1

1.6

1.8

2.8

2

2

3.2

3

2.3

Sy
10

6

4

13

10

8

18

10

9

ET
40

20

10

18

12

6
10

7

6

AA

LI
6

5.2

5

8.2

8

7.8

10

7

7.2

Sy
2

1

1

6

4

3

10

7

7

ET
45

20

12

22

14

8

12

8

6

Table 5. Results for the Origin 2000.

p

4

8

16

n

1024

512

256

1024

512

256

1024

512

256

DQD

LI
3.2

2.6

2.4

4.2

4

3.8

6

5.8

4.9

sy
8

6

5

14

7

5

16

10

8

Co
1.6

0.9

0.7

1.7
0.9

0.5

1.4

0.8

0.5

ET
18

11

6

14

9

5

8

6

3

CQD

LI
2.7

2

1.6

2.9

2.5

2.2

4.8

4.2

2.8

sy
11

9

8

17

12

7

21

18

15

Co
23.1

20.4

13.2

19

14.1

9.2

12

6.2

5.4

ET

17

13

8

14

9

5

9

6

4

DQS

LI
7.1

7

7.1

9.6

8.8

8.6

9.8
9.2

8.8

sy
0

0

0

0

0

0

0

0

0

Co
0

0

0

0

0

0

0

0

0

ET
28

18

11

18

11

7

15

10

5

TS

LI
3.8
3.2

2.8

4.9

4.6

4.1

6.8

6.1

5.6

sy
9

9

7

13

9

7

21

22

17

Co
25.1

16.7

14.2

16.1

10.3

9.1

9.6

7.1

5.2

ET

19

12

7

15

9

6

9

5

4

Table 6. Results for the SP2.

This is the first example where there is significant imbalance in the computation across
iterations, which explains why DQS performs poorly. The surprising result in tables 5
and 6 are that AA and TS perform worse than CQD. Although AA assigns only a few
numbers of iterations at the beginning, the remaining iterations do not contain enough
work to balance the load. These experiments show that adjusting scheduling granularity

150 J. Aguilar & E. Leiss

is an efficient way to handle the load imbalance in unpredictable loop applications. Our
models dynamically detect the workload distribution conditions and rapidly modify the
chunk size.

Type 4: Loops with non-affinity and load imbalance: We have chosen the Adjoint
Convolution algorithm. This application exhibits significant load imbalance and there is
no affinity to exploit.

For parallel i=l, n*n

For k=i, n*n

a[i]=a[i]+b[k]*c[i-k]

Tables 7 and 8 show the different results. In the case of DQD, we have used the greedy
function to modify the chunk size for both systems. In the case of CQD and AA, we have
used the conservative function for both systems. They are the functions that give the best
results in each case (see [1] for more details).

p

2

4

8

n

1024
512
256
1024
512
256
1024
512
256

DQD
LI
2.6
2.4
2.2
3.8
3.6
3.4
4.9
4.4
4.2

sy
12
7
3
23
14
10
24
15
10

ET
47

33
17
40
26
18

28
14

7

CQD
LI
4.8
4.4
4.2
7.9
7.2
7.3
8.9
8.6
8.5

sy
20
14
9
31
14
11
38
21
16

ET
51
30
18
40
26
14
28
15
7

AA
LI
4.8
4.2
4

7.2
6.8
6.4
8.4
7.9
7.3

Sy
14
10
7
26
16
10
40
31
24

ET
52
30
68
42
26
14
29
16
8

Table 7. Results for the Origin 2000.

p

4

8

16

n

1024
512
256
1024
512
256
1024
512
256

DQD
LI
3.1
2.4
2.2
4

3.6
3.1
5.1
4.6
4.2

Sy
12
8
6
28
19
12
42
26
18

Co
0.2
0.1
0.9
0.1
.05
.05
.07
.08
.05

ET
38

25
15

24
15
9
18
10
6

CQD
LI
3.4
2.9
2.6
4.6
4.1
3.7
5.8
5.3
5.3

sy
25
19
8
38
19
10
68
59
46

Co
1

0.7
0.4
0.6
0.2
0.4
0.7
0.2
0.3

ET
47
29
20
30
19
13
25
14
10

DQS
LI
8.6
8.4
8.5
9.1
9.1
9

9.8
9.6
9.6

Sy
0
0
0
0
0
0
0
0
0

Co
0
0
0
0
0
0
0
0
0

ET
59
38

24
38
22
14
30
19
11

TS
LI
2.9
2.7
2.6
3.2
3

2.8
4.9
4.6
4.5

Sy
26
18
10
41
22
12
70
61
52

Co
12
8

6.2
12.1
6.6
3.2
2.6
1.4
1.2

ET
40
26
17
25
15
10
20
13
9

Table 8. Results for the SP2.

Parallel Loop Scheduling Approaches 151

There is significant load imbalance across iterations, the first iteration takes time
proportional to 0(N2) while the last iteration take times proportional to O(l). As
expected, loop scheduling algorithms that emphasize load balancing, such as DQD and
AA, perform the best. CQD assigns too much work to the first few processors and suffer
load imbalance as result. In this case, a simple decrease in the chunk size is probably
enough to balance the load nearly all programs. The existence of significant load
imbalance forces our models to override the initial assignment of iterations to processors
instead execute iterations on any available idle processor.

These results show that our approaches can be used like a parallel loop scheduling
algorithm. The main advantages of our approaches are that can take into account the
current workload to distribute the iterations. In the case of DQD, it minimizes the run
time synchronization overhead. In addition, if all iterations do not take the same amount
of time (especially when loops are non-uniformly distributed), then DQD and CQD can
achieve good load balancing.

In general, for the DQD, a shared memory system, and an affinity loop is better to use a
linear function as chunk size adjustment function to exploit the locality property of the
iterations. For the rest of the case is better a greedy function. In the case of the CQD,
when we have loops with non-affinity and load imbalance is better to use a conservative
function because we need to reduce the synchronization and load imbalance problems.
For the rest of the case is better an exponential function.

5. Conclusions

Adaptively changing loop scheduling granularity to minimize load imbalance,
synchronization overhead, and communication overhead, for both shared and distributed
memory systems, are the major characteristics which distinguishes our models from
previous ones. Our approaches attempt to minimize the three sources of overhead for
different situations (uniform and non-uniform loops, central or local queues, etc.). We
have proposed a predictive approach, an adaptive communication approach, and a chunk-
size mechanism to address this problem. Our adaptive approaches can be affected by the
system size (the cost to collect runtime information can be important), but it may be
insignificant in comparison with the performance improvement and flexibility of our
approaches. Our approaches are suitable for a wide range of application programs. For
each case (parallel loop on shared memory and distributed memory systems), we have
compared our approaches with the best algorithms known (AA and TS). Our experiments
demonstrate that our models has load balancing properties comparable to those of the
best known loop scheduling algorithms, while maintaining processor affinity and thereby
significantly reducing communication overhead. The average number of synchronization
operations required by our algorithms are not much larger than the AA or TS algorithms.
As result, on most cases our algorithms perform better than any other known algorithms.
In our models, we have used a fix chunk size function for each experiment. At the
further, we will propose an adaptive chunk-size mechanism.

152 J. Aguilar & E. Leiss

References

[I] J. Aguilar, E. Leiss, "General Adaptive Parallel Loop Scheduling for Distributed and
Shared Memory Systems", Technical Report, Department of Computer Science,
University of Houston, September 2000.

[2] A. Bull, "Feedback Guided Dynamic Loop Scheduling: Algorithms and Experiments",
Lecture Notes on Computer Sciences, Vol. 1470, pp. 377-382, 1998.

[3] M. Cieniak, M. Javeed, W. Li, "Compile-Time Scheduling Algorithm for a
Heterogeneous Network of Workstation", The Computational Journal, Vol. 40, N. 6,
pp. 356-372, 1997.

[4] H. El_Rewini, T. Lewis, H. Ali, "Task Scheduling in Parallel and Distributed
Systems", Prentice Hall, New Jersey, 1994.

[5] H. Le, J. Fortes, "Communication-Minimal Partitioning and Data Alignment for
Affine Nested Loops", The Computational Journal, Vol. 40, N. 6, pp. 303-321, 1997.

[6] C. Lengauer, S. Gorlatch, C. Herrmann "The Static Parallelization of Loops and
Recursions", Journal of Supercomputing, Vol. 11, N. 4, pp. 333-353, 1997.

[7] E. Markatos T. LeBlanc, "Using Processor Affinity in Loop Scheduling on Shared-
Memory Multiprocessors", IEEE Transactions on Parallel and Distributed Systems,
Vol. 5, No. 4, pp. 379-400,1994.

[8] G. Nanliken, G. Belloch, "Space-Efficient Scheduling of Nested Parallelism", ACM
Transactions on Programming Language and Systems, Vol 21, N. 1, pp. 138-169,
January 1999.

[9] F. Rastello , Y. Robert, "Loop Partitioning versus Tiling for Cache-Based
Multiprocessors", Technical Report RR1998-13, Laboratoire de l'lnformatique du
Parallelisme, Ecole Normale Superieure. February 1998.

[10] L. Rauhwerger, D. Padua, "The LRPD Test: Speculative Run-Time Parallelization of
Loops with Privatization and Reduction Parallelization", IEEE Transactions on
Parallel and Distributed Systems, Vol. 10, N. 2, pp. 160-180, February 1999.

[II] Z. Szczerbinski, "Optimal Distribution of Loops Containing no Dependence
Cycles", Lecture Notes on Computer Sciences, Vol. 1595, pp. 1254-1257, 1999.

[12] S. Togsima, C. Chantrapornchai, E. Sha, "Probabilistic Loop Scheduling
Considering Communication Overhead", Lecture Notes on Computer Sciences, Vol.
1459, pp-158-179, 1998.

[13] T. Tzen, L. Ni, "Trapezoidal Self-Scheduling: A Practical Scheduling Scheme for
Parallel Compilers", IEEE Transactions on Parallel and Distributed Systems, Vol. 4,
No. 1, pp. 87-98, 1993.

[14] J. Xue, "Communication-Minimal Tiling of Uniform Dependence Loops", Journal of
Parallel and Distributed Computing, Vol. 42, pp. 42-59,1997.

[15] Y. Yan, C. Jin and X. Zhang, "Adoptively Scheduling Parallel Loops in Distributed
Shared-Memory Systems", IEEE Transactions on Parallel and Distributed Systems,
Vol. 8, No. 1, pp. 70-81, 1997.

