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Abstract 

In this paper, we propose different approaches for the parallel loop scheduling problem on 
distributed as well as shared memory systems. Specifically, we propose adaptive loop scheduling 
models in order to achieve load balancing, low runtime scheduling, low synchronization overhead 
and low communication overhead. Our models are based on an adaptive determination of the chunk 
size and an exploitation of the processor affinity property, and consider different situations (central 
or local queues, and dynamic or static loop partition). 

Keywords: Loop Scheduling, Parallel Loops, Parallel Systems, Distributed Memory Systems, Shared 
Memory Systems. 

1. Introduction 

In this paper, we are concerned with the scheduling of parallel loops on shared-memory 
and distributed-memory systems [1, 2, 3, 7, 8, 12, 13, 15]. A loop is called a parallel loop 
if there is no data dependency among all iterations; i.e., iterations can be executed in any 
order or even simultaneously. They are widely used in scientific application programs. 
We propose a family of adaptive loop scheduling models based on an adaptive 
determination of the chunk size and an exploitation of the processor affinity property. 
Our adaptive chunk size mechanism initially assigns a large number of iterations; then, it 
increases/decreases the chunk size until all iterations are exhausted, to dynamically 
allocate loop iterations to processors, based on runtime information to reduce 
synchronization overhead and balance load more evenly. By exploiting processor affinity, 
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we reduce the amount of communication required to execute a parallel loop in shared and 
distributed memory systems, and thereby improve the performance. Our approaches also 
substantially reduce the number of mutually exclusive accesses avoiding small chunk 
sizes and predicting the next chunk size. Our approaches make decisions that match the 
current situation at runtime. In this way, we can handle loops with a wide range of load 
distributions when no prior knowledge of the execution is available. The organization of 
this paper is as follows: Section 2 presents the parallel loop-scheduling problem. Section 
3 presents the main ideas of our models. Section 4 shows our experiments. Then, we 
present our conclusions and further work. 

2. The Parallel Loop Scheduling Problem 

In general, a loop can be defined as parallel when there are not data dependencies 
between any pair of iterations in it. In this loop all of the calculations are completely 
independent, so they could be performed in any order and the results would be 
equivalent. One way to exploit this parallelism is by executing the loop iterations in 
parallel on different processors. Parallel loops can be uniform, in which case the 
scheduler can assign an equal number of iterations to each processor, or they can be non
uniform, in which case iterations have different execution times [5, 6, 9, 10, 11]. In 
general, an efficient loop scheduling algorithm should optimize its performance by 
trading off adaptively scheduling overhead (synchronization overhead, loop allocation 
overhead, and scheduler execution time overhead), load imbalance overhead, and data 
communication overhead. 

Loop scheduling algorithms fall into two distinct classes [1, 2, 13, 15]: i) Central queue 
based: In this approach, iterations of a parallel loop are all stored in a shared central 
queue and each processor exclusively grabs some iterations from the central queue to 
execute, ii) Distributed queue based: In order to exploit processor affinity inherent in the 
parallel execution of many iterations and to eliminate the central bottleneck, these 
approaches distribute the central queue over the processors. 

There are two basic loop scheduling methods used to assign iterations of a loop to 
processors [1, 2, 13, 15]: i) Static Scheduling: Static policies depend on the average 
behavior of the system and not on its current state; they are usually applied to uniformly 
distributed loops. They assign iterations to processors statically, minimizing run-time 
synchronization overhead but do not balance the load, ii) Dynamic scheduling: Dynamic 
methods defer the assignment of iterations to processors until run-time. They should not 
assume any prior knowledge of the execution time of the loop iterations. 

Many approaches have been proposed for the parallel loop scheduling problem [1, 2, 3, 
7, 8, 12, 13, 14, 15]. All of these loop scheduling algorithms attempt to achieve the 
minimum completion time by distributing the workload as evenly as possible and/or 
minimizing the number of synchronization operations required and/or minimizing 
communication overhead caused by access to non-local data. Each one of the algorithms 
assumes mainly that we work on a shared-memory system. 
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The classic optimization criteria are [2, 7, 12, 13, 15]: i) Minimize loop imbalance, ii) 
Minimize communication cost: We can minimize this cost by exploiting the processor 
affinity that favors the allocation of loop iterations close to their data, iii) Minimize 
synchronization problems: In this case, the idea is to reduce the number of mutually 
exclusive accesses, iv) Minimize scheduling overhead: This is the time to allocate the 
remaining iterations. 

There is much recent work on parallel loop-scheduling for shared-memory machines. 
For example, [8, 15] propose adaptive scheduling algorithms for different control 
mechanisms. The proposed algorithms apply different degrees of aggressiveness to adjust 
loop-scheduling granularities, aiming at improving the execution performance of parallel 
loops by making scheduling decisions that match the real workload distributions at 
runtime. These approaches are interesting when the initial loop partition is not balanced. 
In this case, processors should be able to increase or decrease dynamically their 
allocation granularity based on runtime information. Bull [2] introduces two algorithms 
for dynamic loop scheduling, which implement a feedback guidance mechanism. The 
feedback guidance mechanism is designed to utilize knowledge about the workload 
derived from the measured execution time of previous occurrences of the loop with the 
aim of reducing the incurred overhead. [12] presents a new methodology for statically 
scheduling a cyclic data-flow graph whose node computation times can be represented by 
random variables. Communication cost is also considered as factor: every node in the 
graph can produce a different amount of data depending on the probability of its 
computation time. Since such communication costs rely on the amount of transferred 
data, this overhead becomes uncertain as well. [14] proposes an algorithm to take 
advantage of the parallelism across a loop iteration while hiding the communication 
overhead. Results show that the proposed framework performs better that a traditional 
algorithm running on an input which assumes fixed average timing information. In [3], 
Cieniak, Javeed, and Li study the problem of scheduling loop at compile time for a 
heterogeneous network of workstation. They propose a simple model for use in 
compiling for a network of processors, and develop compiler algorithms for generating 
optimal and near-optimal schedules of loops for load balancing, communication 
optimizations, network contention and memory heterogeneity. In [7] Markatos and 
LeBlanc propose a loop scheduling algorithm for shared-memory multiprocessors in 
considering communication overhead caused by accesses to non-local data. They show 
that traditional algorithms for loop scheduling, which ignore the location of data when 
assigning iterations to processors, incur a significant performance penalty. They propose 
a scheduling algorithm that attempts to balance the workload, minimize synchronization, 
and co-locate loop iterations with the necessary data simultaneously. Finally, Tzen and Ni 
propose a processor self-scheduling scheme, called Trapezoid Self-Scheduling, for 
arbitrary parallel nested loops in shared-memory multiprocessors [13]. This approach 
starts the execution of a loop by assigning a large number of iterations and linearly 
decreases the number of iterations until all iterations are exhausted. In this way, they 
obtain the best tradeoff between small overhead and load balancing for both uniformly or 
non-uniformly distributed parallel loops. 
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3. Our Approach 

We consider parallel systems consisting of P processors. Arbitrary nested parallel and 
serial loops are allowed, and the bound of loops may not be known at compile time. We 
consider two types of load: uniform and non-uniform, and we propose two versions of 
our approach: with local queues or with a central queue. The symbols used in our 
approach are defined as follows: 

N: number of chunks. CS(t): global chunk size at time t. 
LCSi(t): chunk size at time t on processor i. k: number of iterations. 
L: load of the parallel loops P: number of processors. 

(assumed to be larger than k/P). 
LW;(t): workload at time t on processor i. 1: final chunk size. 
LCFj(t): cost function at time t on processor i. W(t): global workload at time t. 
Clij(t) load imbalance at time t on processor j . base: is a constant 
CF(CS(t), W(t)): chunk function that is based on the chunk size and workload at time t. 
Loop-Pattern: is the ratio between the shortest and the largest iteration. 
AP: factor that describes the application characteristics (uniform or non-uniform loops, 

etc.). 
queues number of iterations allocated to processor i. 
Cc(i, j): communication cost which is defined as the distance between processor i and j . 
a: factor that describes the importance of the communication cost. It can have the 

following values: small, large or medium (small may be [0-0.3], medium [0.3-0.7] 
and large [0.7-1]). 

(3: factor that describes the importance of the load imbalance cost It can have the 
following values: small, large or medium. 

NRI(t): number of remaining iterations at time t in the case of a central queue. It can have 
the following values: small, large or medium. The possible values for small is fewer 
than 30% of the total number of iterations, medium is between 30% and 70% of the 
total number of iterations, and large is more than 70% of the total number of 
iterations. 

statej(t): state of the workload at time t on processor i. It can have the following values: 
heavy (LW;(t) > (W(t)/P)*1.5), light (LWt(t) < (W(t)/P)*0.5) or normal 
((W(t)/P)*0.5 < LWj(t) < (W(t)/P)*1.5). 

3.1. General Algorithm 

Instead of relying on prior knowledge about a loop's execution, our model exploits the 
potential of using runtime information in order to adjust iteration chunk size adaptively to 
reduce synchronization scheduling and communication overhead, and dynamically 
balance the workload. We define a chunk as a unit of work to be assigned to a processor. 
In our parallel loop scheduling approach, a chunk is a group of m iterations where m is 
defined dynamically. The general procedure of our approach is the following: 
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Initial Partition phase. In this phase, a loop with k iterations is partitioned into 
chunks over P processors. 

In the case of distributed queues, we will partition a parallel loop statically into 
the local queue of each processor. A deterministic initial assignment policy is 
used to divide iterations of a parallel loop into local queues of processors, which 
ensures that an iteration is always assigned to the same processor at the start 
(improve processor affinity). With this assignment scheme, if a parallel loop 
executes repeatedly and each parallel iteration accesses the same data set in 
different executions, the first execution of the parallel loop will bring data 
locally to the processor so that the subsequent execution of the parallel loop only 
involves local data access. 
In the case of a central queue, we define the initial chunk size so as to avoid a 
load imbalance at the beginning (see Section 3.2.1). In general, the partitions are 
defined dynamically to match the current situation at runtime (see Section 3.3). 

Scheduling phase: In this phase, according to the chunk size, each processor executes 
a part of the remaining iterations. In the case of local queues, each processor 
allocates a part of the remaining iterations (according to its local chunk size) from its 
local queue until the local queue is empty. In the case of a central queue, each 
processor allocates a part of the remaining iterations (according to the global chunk 
size) from it. Because all processors share a central queue, a critical section is used. 
This introduces a synchronization overhead. 
Remote scheduling phase: This is used only in the case of distributed queues. When 
a processor finishes the execution of all the iterations in its local queue, it remotely 
allocates a portion of the iterations from one of the most loaded processor in the 
system according to certain criteria. The remote data access introduces 
communication overhead as well as synchronization overhead (local queues are 
shared by different processors during the remote access). 

The phase of scheduling parallel loops (which includes the remote scheduling phase for 
the local queue case) involves finding the appropriate decomposition of a loop into 
parallel tasks by finding the appropriate granularity of parallelism, so that the overhead of 
parallelism is kept small, while the workload is evenly balanced among the available 
processors. The general procedure of this phase is the following: 

1. Until loop is exhausted 
1.1 Plan 
1.2 Compute 

2. Wait 

That is, during the scheduling phase we distinguish three states in handling a parallel loop 
for each processor: planning state, computing state, and waiting state. In the planning 
state a processor tries to acquire a chunk from the remaining iterations (scheduling 
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overhead). The planning state is decomposed into the following two processes: Chunk 
Size Determination and Chunk Assignment. The scheduling overhead is caused by 
waiting for the availability of a critical section (synchronization overhead) and the 
scheduler execution time. The synchronization overhead is determined by the 
implementation of mutually exclusive accesses to shared variables (for example, a central 
queue). Whenever a processor acquires a chunk, it enters the computing state and starts 
execution. After finishing the computation, it goes back to the planning state. The total 
time each processor stays in the computing state is very likely greater than the total load 
of the parallel loop due to network and memory contention. An approach which generates 
much network and memory traffic will affect the time the processor stays in the 
computing state (synchronization and communication overhead). A processor repeats 
planning and computing until the loop is exhausted. Then, the processor goes to the 
waiting state and waits for the completion of the remaining executing chunk. Every 
processor, except the processor with the last chunk to execute, has to stay in the waiting 
state due to the synchronization barrier (load balance overhead). 

In our approach the main phase is this phase. We must optimize the next criteria during 
the scheduling phase: i) Load balancing cost. Minimize the waiting time for the 
completion of the last chunk due to the synchronization barrier, ii) Synchronization cost: 
Minimize the number of mutual exclusive accesses, iii) Communication cost: Minimize 
accesses to no-local and far iterations. 

3.2. Criteria Optimization 

3.2.1. Load Balance overhead 

We solve the load balance problem by assigning iterations dynamically. We avoid the 
load imbalance problem due to a large initial chunk size (CS(O)), especially when the 
workload is not uniformly distributed, because we define a good value for CS(0), and 
then we increase or decrease the load according to the current situation on the system. In 
order to provide appropriate load balancing, we choose CS(0) initially to be equal to k/2P. 

Observations: If CS(O) is equal to or larger than L/P, then CS(0) likely becomes the last 
chunk of this loop (load imbalance). If CS(0) is always less than L/P then the 
workload of the rest of the iterations is still adequate to keep other processors busy 
(k/2P < L/P). For example, if we suppose a linearly decreasing chunk size and the 
number of chunks is N=2k/(CS(0) + CS(l)), then the range of the last chunk of this 
loop is between 1 and k/2P, and the range of the number of chunks is from 4P to 2P. 

We use this idea in both approaches, local and central queue, to define the initial value of 
the chunk sizes. In the case of local queue approach, we consider each processor 
individually to calculate its LCSt(0) value. That is, LCSJO) =queue;/2. 
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3.2.2. Synchronization Overhead 

Too small a value of the lasts chunk size can introduce a large synchronization and 
communication overhead. We avoid suffering from excessive synchronization and 
communication overhead because we define a minimal chunk size (see Section 3.2.3). 
Also, synchronization overhead depends on the implementation of chunk dispatching. 
Chunk dispatching will degrade significantly if the critical section takes much time and 
the number of processors is large. We must define an efficient chunk dispatching 
mechanism, which replaces a critical section by a single atomic instruction. We suppose 
a given chunk function CF (see Section 3.3.2), which determines the chunk size at the 
time t: 

CS(t) = CF(W(t),CS(t-l)) 

Now, we can predict at time t the chunk size of the next chunk at time t+1 (CS(t+l)) 
using: 

CF(W(t), CS(t))*AP (1) 

This value can be computed by a processor each time it grabs iterations, and only if 
W(t+1) changes a lot with respect to the load used in (1), we must recalculate the chunk 
size. If we use the predicted value, then the index of chunks, t, would be the only shared 
variable that processors have to access atomically. 

In the case of a central queue, we apply (1) over the global chunk size that is shared 
between the different processors and which is adaptively adjusted. In this case, the 
utilization of our predictable mechanism to reduce the synchronization overhead is 
very important. 
In our local queue approach, we introduce a synchronization cost associated with 
access to a remote work queue. In this case, each chunk size is adaptively and 
independently adjusted by a chunk-size function. Under the assumption that an idle 
processor grabs a number of iteration according to the remote chunk-size, if we use 
the remote predicted chunk-size, then the synchronization operation will be 
inexpensive. 

3.2.3. Communication Overhead 

The communication overhead problem is considered to improve the processor affinity for 
both shared and distributed memory systems. The motivation for exploiting processor 
affinity in loop scheduling derives from the observation that, for many parallel 
applications, the time spent bringing data into the local or cache memory is a significant 
source of overhead data (local versus non-local data). That is, loop iterations frequently 
have an affinity for a particular processor (the one whose local memory or cache contains 
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the required data). In this way, we try to reduce the communication overhead according 
to the next ideas: 

In the case of local queues (for both, shared and distributed memory systems) our 
approach tries to share the iterations between processors when one of them is 
overloaded (processor o) and the other one is not (processor i), according to certain 
constraints. To minimize communication overhead, we reassign a chunk only if it is 
necessary to balance the load, according to the next procedure: 

1) L e t - U ^ 0 0 = m a X j=l, Pandprocessor;overloaded { i j ^ O j ( t ) ) 

ii) Only if (Loop-Pattern = 0) or (LCS(/queue0 « Loop-Pattern and Loop-Pattern = 

1) 
ii.l) Send a given number of iterations, according to the current value of LCS0, 

from processor o 
to processor i. 

Observation: In the best case, when the load is uniform, Loop-Pattern is about 1. The 
(LCSo/queue0 « Loop-Pattern) condition avoids the thrashing problem and 
maximizes the locality property. This condition establishes that there is a large 
load that must be shared with other nodes. In general, we don't allow migration 
of iterations when there is a low number of iterations that must be executed 
again in the current node (we exploit the locality property). In addition, our 
system adjusts the chunk size of the destination node after a migration, to avoid 
a new migration of the iterations (in this way, we avoid that our system spends 
more time migrating iterations that executing them, that is, a global trashing 
problem). When the load is non-uniform (the worst case), Loop-Pattern is close 
to 0. In this case we must load balance all time. 

In the case of a central queue (an application based on the master-slave paradigm) 
we don't have this problem because we allocate iterations all time. 

3.2.3.1. Communication Overhead on Large Networks 

The existence of memory that is not equidistant from all processors (such as cache or 
local memory) implies that some processors are closer to the data required by an iteration 
than others are. Thus, we can't suppose a binary situation (local and non-local data) 
because we have a local network. In this case, the communication cost is important and 
must be reduced: 

In the case of local queues (for both, shared and distributed memory systems) our 
approach tries to share the iterations between closer processors when one of them is 
overloaded and the other one is not (we schedule a loop iteration on the processor 
closest to the processor that already contains the necessary data). That is, an idle 
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processor i examines the work queue of all the other processors and removes 
iterations from the work queue of a processor j according to the cost function 2. 

LCFj(t) = a Cc(i, j)*LCSj(t) + P Clij(t) (2) 

where Clij(t) is: 

Clij(t)= L W j C ^ g L W i ^ 

and if Sj=i LCSj(t)/P is small, then a should be large and P small 

/* We try to minimize the communication cost 

if Ej=iP LCSj(t)/P is large, then a should be small and P large 

/* We try to minimize the load imbalance cost 

We use the following procedure to define in which processor j we need to search for 
a processor i that has no more iterations in its local queue: 

If Ej=iP LCSj(t)/P is small, then select processor o such as 

LCF0 = min j= 1, P and processor; overloaded {LCFj(t)} 

If Sj=iP LCSj(t)/P is large, then select processor o such as 

- L A — l o — r n U X j= i /> and processor) overloaded i -LfV- ' -M\^ / J 

In this way, we try to minimize the load from the most heavily loaded processor or 
the communication cost, according to the current load on the system. Particularly, 
when Sj=i? LCSj(t)/P is small we suppose that there is a low number of iterations to 
be executed in each node. In this way, we share the workload only among neighbor 
nodes and avoid large communication costs due to the small load imbalance. 
In the case of a central queue (an application based on the master-slave paradigm) in 
a distributed memory system, we minimize the number of messages and the size of 
them, particularly between distant processors, to reduce network contention. We 
don't use all slaves, only at the beginning. At the end when slave processors are idle, 
the slave processors closer to the master are selected to minimize communication 
cost (the load is very low to share with distant processors). We use the next 
mechanism to select one processor to receive iterations: 
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If (NRI(t) is large) or (NRI(t) is medium and LWa is large/medium) 

assign load to every idle processor 

/* We try to minimize the load balancing cost 

else 

assign load to the processors close to the master processor 

/* We try to minimize the communication cost and the load 

balancing cost 

where LWa is the average load on the processors close to the master processor. 

Each node knows its neighbors. In this way, we can know a processor is near to 

another because we can implement a procedure to know the neighbor of a neighbor, 

and so forth. 

leKn 
LWj (0 

I W = 
a [NnT 

and Nn is the set of processors that are neighbors of the master processor. 

In the last case, we don't send iterations to more remote processors because the 

communication cost is high. 

3.3. Chunk Size Determination 

In this stage, we must determine the chunk size (number of loops to assign to each 

processor) in order to minimize the load imbalance and communication costs, and 

synchronization overhead. We propose a chunk size adjustment mechanism to increase 

and decrease dynamically the chunk size (allocation granularity) according to the current 

load on the system. In this way, processors acquire a given set of iterations dynamically. 

The difference between our approaches is in the manner in which the chunk is modified: 

the central queue approach has a global chunk size, and in the local queue approach each 

local queue has its own chunk size. 

Our distributed queue approach partitions iterations of a parallel loop statically into 

local queues, so that each processor is involved in remote access (migration of the 

iteration execution) only when load imbalance occurs. In our approach, a 
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deterministic initial assignment policy is used to decompose a parallel loop into local 
queues of processors, which improves the processor affinity property. Initially, the 
number of iterations in each queue is equal to the bound of the loop divided by the 
number of processors. 
In our central queue approach, the partitions are defined dynamically (determination 
of the chunk size is calculated dynamically) to match the current situation at runtime. 

In each case, we can handle loops with a wide range of load distributions when no prior 
knowledge of the execution can be used, in order to minimize the load balancing. 

3.3.1. Chunk Size Adjustment Mechanism 

The chunk size adjustment mechanism must minimize synchronization cost, 
communication cost and load imbalance cost. In general, getting large chunks may cause 
load unbalancing while getting small chunks will induce too much scheduling and 
communication overhead (synchronization overhead, etc.). In order to achieve small 
overhead and load balancing, we propose the following method to define the initial chunk 
size: 

In the central queue approach, our procedure assigns a large number of iterations at 
the beginning (CS(O)), and decreases or increases the chunk size according to the 
workload until all iterations are exhausted (see section 3.2.1). 
In the local queue approach, every local initial chunk size (LCSi(0)) is large. Then, 
we decrease or increase each local chunk size according to its workload. When a 
processor i grabs iterations from a processor j according to the chunk size LCSj(t), 
the new chunk size LCSi(t+l) will be LCSj(t)/2. 

In addition, the scheduling algorithm must adapt the number of iterations to execute over 
one processor dynamically, in order to balance the workload. In this way, we propose the 
following mechanism: 

In the case of local queues, if a processor has a heavy load we decrease its chunk 
size (Condition 1), so that more iterations remaining in the heavily processor can be 
executed by those lightly loaded processors, thereby balancing workload more 
efficiently. If a processor has a normal or little load (Condition 2), we increase the 
chunk size, so that processor can finish all the iterations in its local work queue as 
soon as possible, and then immediately starts to help heavily loaded processors. In 
our approach, we must determine the state statelt) of each processor. 
In the case of a central queue, if the current load on the system is normal or heavy 
(Condition 1), we decrease the chunk size to balance the workload. If the current 
load on the system is small (Condition 2), we increase the chunk size to minimize 
synchronization and communication overhead. 
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In this way, our mechanism is the following: 

1. If Condition 1 
1.1 Decrease LCSj (or CS in the case of central queue) 

2. If Condition 2 
2.1 Increase LCSj (or CS in the case of central queue) 

In both cases, we modify LCSj or CS each time that we need to allocate a given number 
of iterations for execution. In the local queue case, each time that we grab iterations from 
processor i we modify LCS(. In this way, we obtain a good tradeoff between small 
overhead and load balancing for both uniformly and non-uniformly distributed parallel 
loops. 

3.3.2. Chunk Size Functions 

We propose different variations to design the chunk-size (decrease or increase) function 
based on the work by Yan, Jin and Zhang [15]. Our mechanism uses the current workload 
and the current value of the chunk sizes (CS(t) in the case of a central queue, or the chunk 
size of processor i (LCSj(t)) in the case of local queues) as its two input parameters, and 
adjusts the chunk-size variable as follows: 

a) Exponentially: Each processor increases or decreases the value of its chunk-size by a 
constant base. The user specifies the constant. This chunk size function can be used in 
both approaches, local and central queues (we replace LCSj per CS). 

LCSj(t) = LCS;(t-1 )/base if we must decrease LCSj 
LCSj(t-1) *base if we must increase LCSj 

b) Linearly: A processor increases or decreases its chunk size by a constant base. The 
linearity can make the chunk function simple enough to induce a small scheduling 
overhead. It has less risk of imbalancing the workload than the previous one, but tends to 
incur in a larger synchronization overhead. This chunk size function can be used in both 
approaches, local and central queues. 

LCSj(t) = LCSi(t-l) + base if we must increase LCSj 
max {1, LCSi(t-1) - base} if we must decrease LCSj 

c) Conservatively: This means by restricting the varying range of the chunk size within 
P/2 and 2P to avoid assigning too big or too small a chunk size. This chunk size function 
can be used in both approaches, local and central queues. 

LCSj(t)= min{2P, LCSi(t-l) + base} if we must increase LCSj 
max{P/2, LCSj(t-l) -base} if we must decrease LCSj 
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d) Greedily: This employs a two-phase consensus method to greedily enlarge the 
chunking size on non-heavily loaded processors. This mechanism records the previous 
load state of the processor: if a processor is in a non-heavily loaded state on two 
consecutive allocations, it sets the chunk-size equal to the remaining iterations on queue i 
(i.e., it grabs all the remaining iterations in the local work queue to execute). Otherwise 
the processor increases or decreases the chunking size using one of the previous chunk-
size functions. This chunk size function can be used only in the local queue approach. 

3.4. Chunk Assignment 

In general, each approach work according to the next procedure: 

For distributed queues, initially loop iterations are assigned to a processor's work 
queue so as to balance the load statically. Then, a given number of iterations of the 
remaining iterations in the local queue are allocated to the local processor for 
execution (according to its LCSi(t), Vi=l, P). That is, all processors schedule loop 
iterations from their local queues. In this case, only the remaining iterations allocated 
on the local queues of the overloaded processors are shared among the processors 
when load imbalance occurs. In this way, each processor gets iterations from its own 
local work queue in parallel, and each access is local, and therefore cheap. The 
remote access phase is aimed at dynamically balancing the workload. For any idle 
processor, when the remote access finishes, a new chunk size is calculated (see 
Section 3.3.1). In this way, the idle processor can share its iterations if it becomes 
overloaded. We define the number of iterations to share according to the chunk size 
of each local queue (specific to each processor). 
In the case of a central queue, a given number of iterations of the remaining 
iterations (according to CS(t)) are allocated to the idle processor. 

3.5. Our parallel-loops scheduling approaches 

Now, we present our parallel-loops scheduling approaches according to different 
platforms: 

a) Distributed Queue Approach and Dynamic Partition (for both distributed and shared 
memory systems)- DQD 

Local Queue procedure: 

Repeat as long as there are remain iterations in the local queue of processor i 
Lock local queue 
Remove LCSj of the remaining iterations (local queue 0 
Unlock local queue 
Execute these loops in processor i 
Modify LCSj size according to Section 3.3 



144 J. Aguilar & E. Leiss 

Update state 

Remote Queue procedure (when processor i completes execution of the loops in its 
local queue): 

Repeat until all local queues are empty 
Select processor,;' to grab iterations according to Section 3.2.3 
Lock remote queue on processor j (queuej) 
Remove LCSj of the remaining iterations from processor j and send it to 

processor i. 
Unlock remote queue on processor j 
Assign these iterations to queuej 
Modify LCSj size according to Section 3.3 
Recalculate LCSj according to Section 3.3.1 
Update state 
Call "Local Queue" procedure 

b) Central Queue and Dynamic Partition (for both distributed and shared memory 
systems )-CQD 

Repeat until central queue is empty 
Select idle processor i to receive iterations according to Section 3.2.3 
Lock central queue 
Remove CS of the remaining iterations and send to processor i. 
Unlock central queue 
Execute these loops 
Modify CS according to Section 3.3 
Update state 

c) Distributed Queues and Static Partition (for distributed memory systems)-DQS 

Initial partition of the loop 
Allocation of each partition on each local queue 
For each processor i, repeat until its local queue is empty 

Execute these iterations in processor i 

Our static parallel loop scheduling approach fits in actual parallel compiler, because with 
our system the compiler can make the partition of the loops. That is, using our system the 
compiler will define the loop partition to be used during the execution of the program. 
For the case of our dynamic approaches, it is the operating system at runtime who must 
control the different variables that our approaches need (CS, LCSj). But again, using our 
system the compiler will define the initial loop partition to be used during the execution 
of the program. 
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4. Results Analysis 

We will test our model on several parallel platforms: the Origin 2000 of Silicon Graphic 
with 8 processors (shared memory system) and the SP2 of IBM with 16 processors 
(distributed memory system). The performance of our model is measured according to 
the optimization criteria defined in Section 2.3 and the execution times of the parallel 
loops. More specific, we use the next set of criteria: 

Execution times of the parallel loops (ET): It is the execution time of the benchmark. 
It measures how differently the scheduling algorithms work. This time is calculated 
in seconds. 
Degree of communication overhead (Co): It is only calculated for distributed 
systems. This is calculated as 

ET P P 

SEZYiCc(i,j)LCSj(t) 
Co=iz2!ziH 

ET*P 

Where Yy is a state variable equal to 1 if the processor i removes LCSj(t) 
iterations from the work queue of the processory at time t, otherwise is equal to 0. 
Degree of Load Imbalance (LI): This is calculated as 

ET P 
isciijd) 

u = t = o j = i 

ET*P 

Degree of synchronization overhead (Sy): Calculated as the number of times a 
processor removes iterations from a work queue (number of synchronization 
operations required by each algorithm). When we use a central work queue, each 
access to the work queue is a global synchronization operation. When we use a 
distributed work queue, each operation performed on remote work queues requires a 
synchronization operation. 

More specific, we use the above criteria because they describe the main characteristic 
to be solved during the execution of programs with parallel-loop. ET describes the 
execution time of the program, and the other criteria the optimal utilization of the 
resources of the system. Co at level of the communication, LI at level of the processors 
(to avoid idle processors when we have a large workload) and Sy due to synchronization 
operations. This last can imply large wait times for the processes on the system. 

We compare our model with the adaptive affinity algorithm (AA) [15], in the case of 
shared memory machines, and with the Trapezoid self-scheduling algorithm (TS) for 
distributed-memory machines [13]. The kernel application programs used for the 
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performance evaluation were carefully selected for different classes of parallel loops 
(kinds of affinities and load distributions). We use the next classes of parallel loops in our 
experiments: 

Type 1: Loops with potential affinity and balanced workload. We have chosen the 
Successive Over-Relaxation (SOR) algorithm. In this case, the entire iterations take about 
the same time to execute and each iteration always accesses the same data. 

do i= 1,L 

do parallel j=l, n 

dok=l,n 

a[j ,k]=update(a,j ,k) 

Tables 1 and 2 show the different results. In the case of shared memory systems and 
DQD, we have used the linear function to modify the chunk size. For distributed memory 
machines, we have used the greedy function. In the case of CQD and AA, we have used 
the exponential function for both systems. They are the functions that give the best results 
in each case (see [1] for more details). We have test the different chunk functions for 
each algorithm, but for the comparison we have used the best results obtained in each 
algorithm. 

p 

2 

4 

8 

Param. 

n=1024 
L=500 
n=1024 
L=250 
n=512 
L=500 
n=1024 
L=500 
n=1024 
L=250 
n=512 
L=500 
n=1024 
L=500 
n=1024 
L=250 
n=512 
L=500 

DQD 

LI 

0.4 

0.3 

0.3 

0.6 

0.6 

0.5 

0.7 

0.6 

0.6 

Sy 

2 

2 

3 

3 

5 

5 

4 

8 

8 

ET 

47 

43 

33 

20 

14 

14 

12 

9 

10 

CQD 

LI 

0.2 

0.1 

0.1 

0.3 

0.2 

0.2 

0.4 

0.5 

0.4 

Sy 

10 

8 

6 

15 

10 

8 

21 

16 

16 

ET 

50 

40 

40 

20 

16 

16 

15 

12 

10 

AA 

LI 

0.6 

0.4 

0.4 

0.8 

0.8 

0.7 

0.9 

0.8 

0.8 

Sy 

3 

2 

2 

8 

6 

6 

12. 

10 

10 

ET 

52 

40 

42 

24 

18 

18 

16 

12 

12 

Table 1. Results for the Origin 2000. 
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p 

4 

8 

16 

Param. 

n=1024 
L=500 

n=1024 
L=250 

n=512 
L=500 

n=1024 
L=500 

n=1024 
L=250 

n=512 
L=500 

n=1024 
L=500 

n=1024 
L=250 

n=512 
L=500 

DQD 

LI 

0.5 

0.3 

0.3 

0.7 

0.5 

0.5 

0.6 

0.4 

0.4 

Sy 

4 

3 

3 

14 

10 

8 

21 

16 

15 

Co 

8.1 

4.2 

5.1 

4.8 

2.1 

1.4 

2.1 

1.2 

1.2 

ET 

19 

13 

10 

11 

9 

6 

10 

6 

4 

CQD 

LI 

0.2 

0.1 

0.1 

0.3 

0.1 

0.1 

0.6 

0.4 

0.4 

Sy 

15 

8 

8 

38 

29 

30 

68 

59 

46 

Co 

15.1 

10.2 

9.1 

9.3 

4.4 

4.1 

4.2 

2.0 

1.8 

ET 

21 

18 

13 

15 

12 

9 

15 

11 

7 

DQS 

LI 

0.1 

0.1 

0.1 

0.2 

0.1 

0.1 

0.3 

0.2 

0.2 

Sy 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Co 

0 

0 

0 

0 

0 

0 

0 

0 

0 

ET 

22 

18 

14 

18 

13 

10 

18 

12 

8 

TS 

LI 

1.3 

1 

1 

1.6 

1.2 

4.1 

3.8 

1.8 

2.1 

Sy 

12 

6 

7 

16 

12 

10 

40 

27 

24 

Co 

13.2 

9.2 

9.4 

8.1 

5.2 

1.2 

2 

1.7 

1.7 

ET 

20 

14 

10 

11 

10 

6 

12 

7 

4 

Table 2. Results for the SP2. 

In general, the synchronization overhead is an important factor in this experiment. As can 
be seen in the tables 1 and 2, CQD performs the worst of all, due to its high 
synchronization overhead. DQD starts with small chunks of iterations because it uses a 
distributed work queue, which results in a smaller synchronization overhead. In the case 
of AA, lightly loaded processors need a large time to finish their jobs, and turn to help 
heavily loaded processors. In the meantime, the heavily loaded processors have already 
taken a large number of iterations to execute and did not leave enough iterations for the 
idle processors. 

Type 2: Loops with non-affinity and balanced workload. In this case, we have used a 
matrix multiplication algorithm. This algorithm doesn't have affinity to exploit (in this 
case, iterations don't always access the same data). 

for parallel i=l ,n 

for parallel j=l,n 

for k=l,n 

c[i,j]=cl[i,j]+a[i,k]*b[k,j] 
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Tables 3 and 4 show the different results. In the case of DQD, we have used the greedy 
function to modify the chunk size for distributed and shared memory systems. In the case 
of CQD and AA, we have used the exponential function for both systems. They are the 
functions that give the best results in each case (see [1] for more details). 

p 

2 

4 

8 

n 

1024 
512 
256 
1024 
512 
256 
1024 
512 
256 

DQD 
LI 
0.5 
0.2 
0.2 
0.5 
0.3 
0.3 
0.6 
0.4 
0.4 

Sy 
1 
0 
0 
3 
1 
1 
4 
2 
2 

ET 
11 
8 
6 
10 
5 
4 
6 
4 
2 

CQD 
LI 
0.1 
0.1 
0.1 
0.3 
0.2 
0.2 
0.5 
0.3 
0.3 

Sy 
3 
2 
1 
3 

3 
2 
4 
2 
3 

ET 
13 
10 
7 
11 
6 
6 
8 
5 
3 

AA 
LI 
0.8 
0.6 
0.6 
1 

0.7 
0.7 
1.3 
1.0 
1.0 

Sy 
2 
1 
1 
4 
2 
2 
6 
2 
2 

ET 
12 
8 
6 
10 
4 
4 
6 
3 
2 

Table 3. Results for the Origin 2000. 

p 

4 

8 

16 

n. 

1024 
512 
256 
1024 
512 
256 
1024 
512 
256 

DQD 
LI 
0.6 
0.4 
0.3 
0.8 
0.6 
0.4 
0.7 
0.6 
0.4 

Sy 
2 
1 
1 
3 
2 
1 
3 
2 
2 

Co 
4.1 
2.1 
2.4 
4 

2.2 
2 

3.6 
1.8 
1.4 

ET 
9 
3 
2 
7 
3 
2 
6 
2 
2 

CQD 
LI 
0.4 
0.2 
0.2 
0.3 
0.2 
0.2 
0.6 
0.4 
0.4 

sy 
4 
3 
2 
5 
4 
3 
6 
5 
5 

Co 
42.1 
24 

23.2 
25 
18.6 
19 

18.7 
10 

16.1 

ET 
14 
10 
8 
13 
9 
7 
10 
6 
3 

DQS 
LI 
0.1 
0 

0.1 
0.1 
0.1 
0.1 
0.2 
0.1 
0.1 

sy 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Co 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ET 
11 
6 
5 
7 
4 
4 
7 
4 
3 

TS 
LI 
0.8 
0.5 
0.4 
1 

0.8 
0.6 
1.2 
0.8 
0.6 

sy 
3 
2 
2 
4 
3 
3 
5 
4 
3 

Co 
40 

21.7 
22.3 
26.1 
20.5 
19.5 
15 
7 

4.2 

ET 
10 
4 
3 
7 
3 
3 
6 
3 
2 

Table 4. Results for the SP2. 

This application is a good example of the fact that the dominant source of overhead in 
many application is communication, not synchronization. According to our results, for 
load balanced applications, aggressively adjusting scheduling granularity is an efficient 
method to reduce synchronization overhead and execution time. As can be seen in the 
tables 3 and 4, DQD performs the best of all, due to its low synchronization overhead. 
DQS improve its performance due to its load balancing characteristics. 

Type 3: Loops with potential affinity and load imbalance: In this case, we have used the 
Transitive Closure algorithm. The distinguishing characteristic of this application is that 
each iteration of the parallel loop may take time 0(1) or O(N) depending of the input 
data. This application will also benefit of an affinity scheduling, since i"1 iteration of the 
parallel loop always accesses the i* row of the matrix. 
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For k=l, n 

For Parallel j=l ,n 

If a[j,k]=True then 

For i=l, n 

Ifa[k,i]=True 

A[j,i]=True 

Tables 5 and 6 show the different results. We have used the same chunk size functions 
for each case that the first example (see [1] for more details). 

p 

2 

4 

8 

n. 

1024 

512 

256 

1024 

512 

256 

1024 

512 

256 

DQD 

LI 
3 

2.8 

2.6 

4.1 

3.6 

3.5 
5.2 

4.8 

4.4 

Sy 
2 

1 

1 

3 

2 

2 

8 

5 

5 

ET 
42 

30 

13 

19 

13 

7 

11 

8 

6 

CQD 

LI 
2.1 

1.6 

1.8 

2.8 

2 

2 

3.2 

3 

2.3 

Sy 
10 

6 

4 

13 

10 

8 

18 

10 

9 

ET 
40 

20 

10 

18 

12 

6 
10 

7 

6 

AA 

LI 
6 

5.2 

5 

8.2 

8 

7.8 

10 

7 

7.2 

Sy 
2 

1 

1 

6 

4 

3 

10 

7 

7 

ET 
45 

20 

12 

22 

14 

8 

12 

8 

6 

Table 5. Results for the Origin 2000. 

p 

4 

8 

16 

n 

1024 

512 

256 

1024 

512 

256 

1024 

512 

256 

DQD 

LI 
3.2 

2.6 

2.4 

4.2 

4 

3.8 

6 

5.8 

4.9 

sy 
8 

6 

5 

14 

7 

5 

16 

10 

8 

Co 
1.6 

0.9 

0.7 

1.7 
0.9 

0.5 

1.4 

0.8 

0.5 

ET 
18 

11 

6 

14 

9 

5 

8 

6 

3 

CQD 

LI 
2.7 

2 

1.6 

2.9 

2.5 

2.2 

4.8 

4.2 

2.8 

sy 
11 

9 

8 

17 

12 

7 

21 

18 

15 

Co 
23.1 

20.4 

13.2 

19 

14.1 

9.2 

12 

6.2 

5.4 

ET 

17 

13 

8 

14 

9 

5 

9 

6 

4 

DQS 

LI 
7.1 

7 

7.1 

9.6 

8.8 

8.6 

9.8 
9.2 

8.8 

sy 
0 

0 

0 

0 

0 

0 

0 

0 

0 

Co 
0 

0 

0 

0 

0 

0 

0 

0 

0 

ET 
28 

18 

11 

18 

11 

7 

15 

10 

5 

TS 

LI 
3.8 
3.2 

2.8 

4.9 

4.6 

4.1 

6.8 

6.1 

5.6 

sy 
9 

9 

7 

13 

9 

7 

21 

22 

17 

Co 
25.1 

16.7 

14.2 

16.1 

10.3 

9.1 

9.6 

7.1 

5.2 

ET 

19 

12 

7 

15 

9 

6 

9 

5 

4 

Table 6. Results for the SP2. 

This is the first example where there is significant imbalance in the computation across 
iterations, which explains why DQS performs poorly. The surprising result in tables 5 
and 6 are that AA and TS perform worse than CQD. Although AA assigns only a few 
numbers of iterations at the beginning, the remaining iterations do not contain enough 
work to balance the load. These experiments show that adjusting scheduling granularity 
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is an efficient way to handle the load imbalance in unpredictable loop applications. Our 
models dynamically detect the workload distribution conditions and rapidly modify the 
chunk size. 

Type 4: Loops with non-affinity and load imbalance: We have chosen the Adjoint 
Convolution algorithm. This application exhibits significant load imbalance and there is 
no affinity to exploit. 

For parallel i=l, n*n 

For k=i, n*n 

a[i]=a[i]+b[k]*c[i-k] 

Tables 7 and 8 show the different results. In the case of DQD, we have used the greedy 
function to modify the chunk size for both systems. In the case of CQD and AA, we have 
used the conservative function for both systems. They are the functions that give the best 
results in each case (see [1] for more details). 

p 

2 

4 

8 

n 

1024 
512 
256 
1024 
512 
256 
1024 
512 
256 

DQD 
LI 
2.6 
2.4 
2.2 
3.8 
3.6 
3.4 
4.9 
4.4 
4.2 

sy 
12 
7 
3 
23 
14 
10 
24 
15 
10 

ET 
47 

33 
17 
40 
26 
18 

28 
14 

7 

CQD 
LI 
4.8 
4.4 
4.2 
7.9 
7.2 
7.3 
8.9 
8.6 
8.5 

sy 
20 
14 
9 
31 
14 
11 
38 
21 
16 

ET 
51 
30 
18 
40 
26 
14 
28 
15 
7 

AA 
LI 
4.8 
4.2 
4 

7.2 
6.8 
6.4 
8.4 
7.9 
7.3 

Sy 
14 
10 
7 
26 
16 
10 
40 
31 
24 

ET 
52 
30 
68 
42 
26 
14 
29 
16 
8 

Table 7. Results for the Origin 2000. 

p 

4 

8 

16 

n 

1024 
512 
256 
1024 
512 
256 
1024 
512 
256 

DQD 
LI 
3.1 
2.4 
2.2 
4 

3.6 
3.1 
5.1 
4.6 
4.2 

Sy 
12 
8 
6 
28 
19 
12 
42 
26 
18 

Co 
0.2 
0.1 
0.9 
0.1 
.05 
.05 
.07 
.08 
.05 

ET 
38 

25 
15 

24 
15 
9 
18 
10 
6 

CQD 
LI 
3.4 
2.9 
2.6 
4.6 
4.1 
3.7 
5.8 
5.3 
5.3 

sy 
25 
19 
8 
38 
19 
10 
68 
59 
46 

Co 
1 

0.7 
0.4 
0.6 
0.2 
0.4 
0.7 
0.2 
0.3 

ET 
47 
29 
20 
30 
19 
13 
25 
14 
10 

DQS 
LI 
8.6 
8.4 
8.5 
9.1 
9.1 
9 

9.8 
9.6 
9.6 

Sy 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Co 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ET 
59 
38 

24 
38 
22 
14 
30 
19 
11 

TS 
LI 
2.9 
2.7 
2.6 
3.2 
3 

2.8 
4.9 
4.6 
4.5 

Sy 
26 
18 
10 
41 
22 
12 
70 
61 
52 

Co 
12 
8 

6.2 
12.1 
6.6 
3.2 
2.6 
1.4 
1.2 

ET 
40 
26 
17 
25 
15 
10 
20 
13 
9 

Table 8. Results for the SP2. 
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There is significant load imbalance across iterations, the first iteration takes time 
proportional to 0(N2) while the last iteration take times proportional to O(l). As 
expected, loop scheduling algorithms that emphasize load balancing, such as DQD and 
AA, perform the best. CQD assigns too much work to the first few processors and suffer 
load imbalance as result. In this case, a simple decrease in the chunk size is probably 
enough to balance the load nearly all programs. The existence of significant load 
imbalance forces our models to override the initial assignment of iterations to processors 
instead execute iterations on any available idle processor. 

These results show that our approaches can be used like a parallel loop scheduling 
algorithm. The main advantages of our approaches are that can take into account the 
current workload to distribute the iterations. In the case of DQD, it minimizes the run
time synchronization overhead. In addition, if all iterations do not take the same amount 
of time (especially when loops are non-uniformly distributed), then DQD and CQD can 
achieve good load balancing. 

In general, for the DQD, a shared memory system, and an affinity loop is better to use a 
linear function as chunk size adjustment function to exploit the locality property of the 
iterations. For the rest of the case is better a greedy function. In the case of the CQD, 
when we have loops with non-affinity and load imbalance is better to use a conservative 
function because we need to reduce the synchronization and load imbalance problems. 
For the rest of the case is better an exponential function. 

5. Conclusions 

Adaptively changing loop scheduling granularity to minimize load imbalance, 
synchronization overhead, and communication overhead, for both shared and distributed 
memory systems, are the major characteristics which distinguishes our models from 
previous ones. Our approaches attempt to minimize the three sources of overhead for 
different situations (uniform and non-uniform loops, central or local queues, etc.). We 
have proposed a predictive approach, an adaptive communication approach, and a chunk-
size mechanism to address this problem. Our adaptive approaches can be affected by the 
system size (the cost to collect runtime information can be important), but it may be 
insignificant in comparison with the performance improvement and flexibility of our 
approaches. Our approaches are suitable for a wide range of application programs. For 
each case (parallel loop on shared memory and distributed memory systems), we have 
compared our approaches with the best algorithms known (AA and TS). Our experiments 
demonstrate that our models has load balancing properties comparable to those of the 
best known loop scheduling algorithms, while maintaining processor affinity and thereby 
significantly reducing communication overhead. The average number of synchronization 
operations required by our algorithms are not much larger than the AA or TS algorithms. 
As result, on most cases our algorithms perform better than any other known algorithms. 
In our models, we have used a fix chunk size function for each experiment. At the 
further, we will propose an adaptive chunk-size mechanism. 
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