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Abstract; Gelenbe has proposed a neural network, called a Random Neural Network, which calculates the probability of activation of 
the neurons in the network. In this paper, we propose to solve the patterns recognition problem using a hybrid Genetic/Random Neural 
Network learning algorithm. The hybrid algorithm trains the Random Neural Network by integrating a genetic algorithm with the gradient 
descent rule-based learning algorithm of the Random Neural Network. This hybrid learning algorithm optimises the Random Neural 
Network on the basis of its topology and its weights distribution. We apply the hybrid Genetic/Random Neural Network learning algorithm 
to two pattern recognition problems. The first one recognises or categorises alphabetic characters, and the second recognises geometric 
figures. We show that this model can efficiently work as associative memory. We can recognise pattern arbitrary images with this algorithm, 
but the processing time increases rapidly. 
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I .  INTRODUCTION 

In its complete form, neural network induction entails 
both parametric and structural learning, i.e. learning 
both weight values and an appropriate topology of 
nodes and links. Current connectionist methods to 
solve this task fall into two broad categories. Construc- 
tive algorithms initially assume a simple network and 
add nodes and links as warranted, while destructive 
methods start with a large network and prune off 
superfluous components [1,2]. As a consequence, these 
algorithms tend to force a task into an assumed archi- 
tectural class, rather than fitting an appropriate archi- 
tecture to the task. 

Thus, how to improve the learning performance of 
an ANN is currently an important research problem. 
One approach, inspired by human brain neurons per- 
forming many operations simultaneously, is the devel- 
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opment of learning algorithms on general-purpose par- 
allel computers, with the objective of reducing the 
overall computing time [3]. Another approach is the 
development of more effective neural network learning 
algorithms, with the objective of reducing the learning 
time [1,4,5]. A third approach is the development of 
hybrid learning algorithms by integrating a Genetic 
Algorithm (GA) with neural network learning algor- 
ithms [2,3,6-8]. GAs have recently been applied to 
ANNs in two main ways: there have been attempts 
to use genetic search instead of learning to find appro- 
priate connection weights in fixed architectures [6,8]; 
alternatively, GAs have been used to find network 
architecture themselves, which are then trained and 
evaluated using some learning procedure [2,3,7]. 

The RNN was proposed by Gelenbe in 1989 [9,10]. 
This model does not use a dynamic equation, but a 
scheme of interaction among neurons. It calculates the 
probability of activation of the neurons in the network. 
Signals in this model take the form of impulses which 
mimic what is presently known of inter-neural signals 
in biophysical neural networks. The ability of the 
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RNN model to act as associative memories has been 
shown elsewhere [11]. The RNN has been used to 
solve optimisation [8,12-14] and pattern recognition 
problems [5,15]. A supervised learning procedure has 
been proposed [4] for the recurrent RNN model, which 
is mainly based on the minimisation of a quadratic 
error function. We [13,14,16] have explored the 
relationship between the RNN applied to optimisation 
and network learning. We have also applied the evol- 
utionary learning on the RNN model to solve optimis- 
ation problems [8]. 

The problem addressed in this paper concerns the 
proposition of a hybrid learning approach based on 
the RNN and G A  to solve the recognition problem. 
This new algorithm is presented for training the RNN 
by integrating a G A  with the gradient descent rule- 
based learning algorithm of the RNN. The algorithm 
simultaneously acquires both network topology and 
weight values while making minimal architectural 
restrictions and avoiding structural hill climbing. We 
introduce two elements in the standard G A  to help 
the exploration/exploitation abilities provided by the 
search space evolution: a cooperative local optimising 
genetic operator, and a coding granularity parameter 
to use different length strings (individuals). 

This work is organised as follows. In Section 2, the 
theoretical bases of tl~e RNN are reviewed. Then, we 
present an introduction to evolutionary learning and 
our hybrid algorithm. In Section 4, we present appli- 
cations. Remarks concerning future work and con- 
clusions are provided in Section 5. 

2. RANDOM NEURAL NETWORKS 

2.1. Model 

The Random Neural Model was introduced by Gelenbe 
in 1989 [9,10]. The model consists of a network of n 
neurons in which positive (excitatory) and negative 
(inhibitory) signals circulate. Each neuron i of the 
network accumulates signals as they arrive, and is 
represented at any time t by its input signal potential 
k,(t). The arrival of a negative signal reduces k,(t) by 
1 (inhibition) or has no effect on k,(t) if it is already 
zero, while an arriving positive signal adds 1 to ki(t) 
(excitation). Signals can either arrive at a neuron from 
the outside of the network or from other neurons. 
Each neuron can fire if its total signal count at a 
given instant of time is positive (ki(t) > 0). Firing 
then occurs at random according to an exponential 
distribution of constant rate r(i), and signals are sent 
out to other neurons or to the output of the network. 
Each time a neuron fires, a signal leaves it, depleting 

the total input potential of the neuron. A signal which 
leaves neuron i heads for neuron j with probability 
p+(i,j) as a positive signal (excitation), or as negative 
signal with probability p-(i, j)  (inhibition), or it departs 
from the network with probability d(i). Clearly, we 
shall have 

• [p+(i,j) + p-(i,j)] + d ( i )=  l f o r l - < i < - n  
j=i 

Positive signals arrive at the ith neuron according 
to a Poisson process of rate A(i) (external excitation 
signals). Negative signals arrive at the ith neuron 
according to a Poisson process of rate a(i) (external 
inhibition signals). The main property of this model 
is the excitation probability of a neuron i, q(i), which 
satisfy a non-linear equation 

q(i) = ,~+(i)/(r(i) + a-(i)) (1) 

where 

/~+(i) = ~ ,  q(j)r(j)p+(j,i) + A(i) 
j=f 

a-(i)  = ~ q(j)r(j)p-(j,i) + a(i) 
]=1 

The synaptic weights for positive (w+(i,j)) and nega- 
tive (w-( i , j ) )  signals are defined as: 

w+(i,j) = r(i)p+(i,j) w-( i , j )  = r(i)p-(i,j) 

and 

r(i) = ~ ,  [w+(i,j) + w-(i,j)] 
1'=1 

Let k(t) be the vector of neuron potentials at time 
t, and k = (k> ..., k~) be a particular value of the 
vector. It has been proved [9,10] that, if all the steady 
state excitation probabilities q(i) are such that 0 <- q(i) 
- 1, the stationary probability distribution of the 
network's state given by 

p(k) = lim t ---+ ~ prob [k(t) = 

exists, and can be expressed by the product form 

n 

P(~) = 17[ (1 - q(i))q(i)ki 
i=l 

To guarantee the stability of the RNN, the following 
is a sufficient condition for the existence and unique- 
ness of the solution in Eq. (1) 

,~+(i) < [r(i) + ~-( i )1  
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2.2. Recognition Procedure 

The recognition procedure is based on an heteroassoci- 
ative memory technique [5,11,15]. An heteroassoci- 
ative memory is a system in which an arbitrary set of 
input patterns is paired with another arbitrary set of 
output patterns. To design such a memory, we have 
used a single-layer random neural of n fully intercon- 
nected neurons. For every neuron i, the probability 
that emitting signals depart from the network is d(i) = 
0, because we are not interested in emitting external 
signals. 

2.2.1. Learning Phase. Synaptic weights and firing 
rates are determined during the learning phase. 
Gelenbe has proposed an algorithm [4] for choosing 
the set of network parameters w-(i,j) and w+(i,j) in 
order to learn a given set of m input-output pairs (X, 
Y), where the set of successive inputs is denoted by 

X = {X1, ..., X~} where Xk = (xl> ..., x~k) 

and 

x,k = {Ak(i), Xk(i)} 

The successive desired outputs are the vector Y = 
{Y1, ..., Ym}, where Yk = (Y~k, ..., Y~k) and yik E [0,1] 
correspond to the desired output vectors. The learning 
algorithm is a gradient descent rule-based neural net- 
work algorithm. The network approximates the set of 
desired output vectors in a manner which minimises 
an error function Ek: 

1 (qk(i) - y j Z  Ek = 
i=1 

The algorithm lets the network learn both n by n 
weight matrices W~ = w~(i,j)} and W~ = {w~(i,j)} by 
computing for each input-output pair (Xk, Yk), a new 
value W~ and Wfi-, using gradient descent. Let us 
denote by the generic term w(u,v) either w(u,v) -- 
w-(u,v), or w(u,v) = w+(u,v). The rule to update the 
weights may be written as 

- I~ ~ (q~(i) - Y~k) 
i=l 

w~(u,v) = wk-l(u,v) (2) 

Oq(i) ] 
aw(u,v) l~ 

where b~ > 0 is the learning rate (some constant), 
qk(i) is calculated using Xk and wk(u,v) = %_1(u,v) in 
Eq. (1), and, [aq(i)/c~w(u,v)]k is evaluated of the values 
q(i) = qk(i) and w(u,v) = wk_,(u,v) in Eq. (2). 

The complete learning algorithm for the network is: 

�9 Initiate the matrices W3 and Wo in some appropri- 
ate manner. Choose a value of > in Eq. (2). 

�9 For each successive value of m: 
- Set the input-output pair (x~, Yk) 
- R e p e a t  until the change in the new values of 

the weights is smaller than some predetermined 
valued. 

- Solve Eq. (1) with these values 
- U s i n g  Eq. (2) and the previous results, update 

the matrices W~ and W/~-. 

Every input information is represent by a binary 
vector Xk = (xlk, ..., x~k), where xik is associated with 
neuron i. Hence, we can translate each input vector 
Xk in terms of the arrival rates of exogenous signals 
as follows: 

Yik = 1 --+ (Ak(i), ak(i)) = (A, 0) {3) 
Yik = 0 ---+ (Ak(i), ak(i)) = (0, a) 

where the values A and )~ provide the network stability 
for every case. Considering Eq. (1) and the vector 
encoding Eq. (3), the network stability condition 
becomes for each vector Xk: 

ifyik = 1 ~ A < rO(i) + 
j -1 

wO (i,j) - ~ wO+(i,j) 
j=l 

if Yik = 0 + a > ~ wO+(i,j) 
j=l 

Let 

- rO(i) - ~ wO-(i,j) 
j=l 

F 
kk = mini, Yik = 1 [r0(i) 

+ ~ wO-( i , j ) -  ~ wO+(i,j)] 
j=l j=t 

Ak=Inaxi 'Yik=OIj_~ 1, 

wO li,,, 1 
j=l 

To have the network damped for all the m training 
vectors, we choose the common values A --- minktakl 
and .~ -> maxkrxkl. This condition is sufficient, but not 
necessary to provide the network with stability. We 
must first initialise the connection weight matrices 
W+O = [w+O(i,j)] and W-O = [w-O(i,j)] either by small 
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positive random variables which are uniformly distrib- 
uted between 0 and V . . . .  or according to some more 
appropriate rule. Simulations have lead us to initialise 
W~ referring to the Hebbian law: 

t 

j ~  (2yik - i) (2yik - 1) ifw+O(i,j) > 0 
w+O(i,j) 

101 otherwise 

On the other hand, W0 is initialized with small 
positive random variables, uniformly distributed 
between [0, 0.2]. 

2.2.2. Retrieval Phase. Once the learning phase is 
completed, the network must perform the completion 
of noisy versions of the training vectors as well as 
possible. In principle, for the retrieval process we do 
not have to modify the values of the arrival rates of 
exogenous signals A and a which we have used to 
provide the network with stability during the learning 
procedure. If learning is perfect, the global error is 
practically zero. Thus, the steady-state probability q(i) 
that each neuron i is excited is such that 0 < q(i) < 1 
for i = 1, ..., n and the network remains damped. 

Let X' = (X'l, ..., x'~) be any binary input vector. 
To determine the corresponding output vector Y = 
(Yl, ..., y,~), we first compute the vector of probabilities 
Q = (q(1), ..., q(n)) from the non-linear Eq. (1). This 
is a fixed-point equation which can be solved iterat- 
ively after initialising every probability q(i) to 0.5. 
Theoretically, the real value of q(i) is very close to 1 
(or 0) if the ith component of the target output vector 
is equal to 1 (or 0). However, when the distortion 
rate applied on the training data is important, the q(i) 
of certain neurons can be around 0.5. The state of 
these neurons is then considered doubtful. We can 
then consider that the q(i) values such that 1 - b < 
q(i) < b with, for instance, b = 0.6, belong to the 
uncertainty interval Z. When  the network stabilises to 
an attractor state, the number of neurons (NB_Z) 
whose q(i) ~ Z, is equal to 0. Hence, we first treat 
the neurons whose state is considered certain to obtain 
the output vector y(i) = (y~l~, ..., y~,)), with 

I !  ifq(i) >- b 

y(1)~ = Fz(q(i))= ifq(i) -< 1 - b 

LX i otherwise 

where Fz is the thresholding function by intervals. If 
NB_Z = 0, this phase is terminated and the output 
vector is Y = y(l~ Otherwise, Y is obtained after 
applying the thresholding function f~ as follows: 

10 ifq(i) > er 
Yi = f~(q(i) ) = otherwise 

where o~ is the selected threshold. Eventually, Z can 
be reduced by decreasing b (for b > 0.5). Each value 
q(i) E Z, and also the lower bound 1 - b are 
considered as potential thresholds. For each potential 
value of c~, we present to the network the vector 
X'(1)(o~)= f~(Q). Then, we compute the new vector of 
probab i l i t i e s  Q(1){oz) and the output vector y(z)(~) = 
Fz(Q~ We keep the cases where NB_Z = 0 and 
X'(1}(~) = Y(ZY(a). If these two conditions are never 
satisfied, the initial X' is considered as too different 
to any training vector, and c~ is set to 0.5. On the 
other hand, if several thresholds are candidate, we 
choose the one which provides the minimal error (oe') 
according to Eq. (4), and the output vector of this 
phase is Y = Y(2)(oz'): 

1 ~ y!2)(a))2 (4) Er(a) = ~ (q(i)(1)(a) - 
i=l 

3. EVOLUTIONARY LEARNING 

3.1. Introduction 

Genetic Algorithm (GA), invented by J. H. Holland, 
emulates biological evolution in the computer and 
tries to build programs that can adapt by themselves 
to perform a given function [17,18]. A G A  follows an 
'intelligent evolution' process for individuals based on 
the utilisation of evolution operators such as mutation, 
inversion, selection and crossover. Optimisation is a 
major field of GA's applicability. They belong to the 
class of probabilistic algorithms, yet they are very 
different from random algorithms as they combine 
elements of directed and stochastic search. Because of 
this, GAs are also more robust than existing directed 
search methods. Another important property of such 
genetic-based search methods is that they maintain a 
population of potential solutions; all other methods 
process a single point of the search space. The popu- 
lation undergoes a simulated evolution: at each gener- 
ation the 'good' solutions reproduce, while the 'bad' 
solutions die. To distinguish between different sol- 
utions we use a cost function. 

Recently, there has been a good deal of interest in 
using GAs for machine learning problems. The variety 
and complexity of learning systems make it difficult to 
formulate a universally accepted definition of learning. 
However, a common denominator of most learning 
systems is their capability for making structural changes 
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to themselves over time, with the intention of improv- 
ing performance on tasks defined by their environment, 
discovering and subsequently exploiting interesting 
concepts, or improving the consistency and generality 
of internal knowledge structures. Given this perspec- 
tive, one of the most important means for understand- 
ing the strengths and limitations of a particular learn- 
ing system is a precise characterisation of the structural 
changes that are permitted, and how such changes are 
made. This perspective also lets one state more pre- 
cisely the goat of the research in applying GAs to 
learning, namely, to understand when and how GAs 
can be used to explore spaces of legal structural 
changes in a goal-directed manner. 

The idea is to define a space of admissible structures 
to be explored via GAs. The learning strategy involves 
maintaining a population of tested structures, and using 
GAs to generate new structures with better perform- 
ance expectations. In considering the kinds of struc- 
tural changes that might be made to the system, there 
are a variety of approaches of increasing sophistication 
and complexity. The simplest and most straightforward 
approach is for the GAs to alter a set of parameters 
that control the behaviour of a system. A second 
approach involves changing more complex data struc- 
tures that control the behaviour of the system. A third 
approach involves changing the system itself. 

The use of evolutionary learning based on a GA 
for ANNs has received much attention recently [2,3,6- 
8]. Most of the applications regard the use of evol- 
utionary algorithms as a means to learn connection 
weights; some applications also consider a learning of 
the network topology; and only a few use evolutionary 
algorithms to define the parameters of a learning algor- 
ithm that wi]] be used in the training phase. Some 
studies attempt to co-evolve both the topology and 
weigh~ values within the GA framework, but as in 
connectionist systems, the network architectures are 
restricted. 

3.2, Our Approach 

In this paper, we propose to use a GA to design both 
the network's topology and the associated weighted 
connections of the RNN. In this way, we propose a 
hybrid learning algorithm by integrating a GA wiEh 
the gradient descent rule-based neural network learn- 
ing algorithm proposed by Gelenbe. Our hybrid algor- 
ithm consists of two learning stages using M RNNs. 
The backpropagation algorithm performs the first 
learning process until the terminal condition (error 
minimisation) is satisfied on each RNN. Then, the 
second learning stage is used to optimist the topology 
(connections, weights) of the networks (evolving the 

network's topology) by using a GA. The GA performs 
a global search and seeks a near-optimal initial point 
(connection and weight vectors) for the first stage. In 
this stage, each individual is used to encode the top- 
ology of one of the M RNNs used in the first stage. 
The fitness (objective) function for the GA is defined 
as the average squared system error of the correspond- 
ing neural network. After performing several iterations 
and meeting one of the stopping criteria (a predefined 
number of consecutive iterations, homogeneous 
individuaIs), the second learning stage is terminated 
and the individuals are considered as the new initial 
topologies of the M RNNs in the next iteration. If 
one of the next stopping criteria is met, the hybrid 
algorithm is terminated (system convergence): the new 
initial topologies of the M RNNs are the same as the 
initial topologies of the previous iteration, or a given 
number of consecutive iterations, or if the initial indi- 
viduals used for the GA do not change in consecutive 
iterations. The general hybrid algorithm is the follow- 
ing: 

�9 Initiate the parameters, for the M RNNs 
(W;, W~, A, a). 

�9 Repeat until hybrid algorithm convergence 
- for i = 1 to M concurrently 
- Perform the gradient descent rule based neu- 

ral network learning algorithm. 
- Generate individuals using every RNN, 
-Opt imise  the individuals (network's topology: 

connections, weights) using GA. 

The main computational advantage of evolving the 
network's topology is the possibility to autonomously 
identify minimal search spaces containing reachable 
solutions to the problem. The dimension of search 
spaces can be affected by a net coding feature: the bit 
length of weight coding, he. the coding granularity 
[2]. In our work, coding granularity is a parameter that 
evolves concurrently to the net structure. 

An extended direct encoding scheme is used, where 
each connection is represented directly by its binary 
definition. The representation chosen uses network 
nodes as basic functional units, and encodes all the 
information relevant for a node in nearby positions, 
including its input connectivity patterns and the rela- 
tive weight distribution. Connectivity is coded by the 
presence/absence bits (connectivity bits). When con- 
nection is present, inmediately after each connectivity 
bit there is the binary encoding of the relative weight 
(defined in scientific notation). The first byte of the 
string specifies the number of bits (the granularity) 
according to which the weights of the present connec- 
tions have been codified (i.e. mantissa and exponent 
parts). Thus, coding granularity is a control parameter 
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-1"10-2 
connectivity bits weight encoding bits 3"10-1 -1"10-2 

0010 0 0 101 101001 1 11000 0 111101 0 0 101110 
N W+(3,1) W+(l,2) W-(1,2) W+(3,2) W+(I,3) W-(2,3) 

granularity bits 

0010001010000110000101001111000011110100101001 ~ actual string, as seen by the GA 

Fig. 1. Network encoding of a complete topology" graph. 

whose value is coded within the string where it is 
used. It gives the possibility of having strings of differ- 
ent length. New links are initialised randomly. For 
example, Fig. 1 presents a simple network and its 
coding. 

We use the commonly used genetic operators 
(crossover and mutation) and a cooperative local 
optimising genetic operator. These operators make two 
types of learning: parametric modifications alter the 
value of parameters (link weights) currently in the 
network; whereas structural modifications alter the 
presence of links in the network. The crossover used 
is standard, a single cutting point chosen with uniform 
probability over the string length and a swap of the 
genetic material following it. Our' implementation 
allows the mating of networks with different con- 
nectivity and/or different granularity, with no modifi- 
cation of the operator according to the following ideas 
(Fig. 2): (a) coded networks are implemented using 
fixed-length arrays (bit strings), defined with the 
maximum possible length (all connection present and 
maximal granularity); (b) crossover is applied to those 
strings, and therefore it has no problems in application. 

Note that the invisible bits do not affect the search 
process; the only moments when they are important 

for the search are when they become visible, following 
an increment of granularity. In this case, the new bits 
are randomly initialised. The mutation operator is the 
standard, which negates each bit with probability Pm" 

The cooperative local optimising genetic operator is 
a classical optimisation method for local optimisation 
of the GA individuals. In our case, local search is 
performed in two ways: by applying our gradient 
descent rule-based learning algorithm; and by using 
the cooperative local optimising operator. The latter 
is a ternary operator (three parents strings a, b and c) 
that tries to exploit the fitness landscape identified by 
the extant solutions. The algorithm for this operator is: 

�9 Rank the three parents by fitness value (suppose 
fitness(a)>fitness(b)>fitness(c)) 

�9 for each ith bit of the strings 
- if al~ = bl~ then 

- offspring1, = % 
else 

- offspring1, =negate (c,i) 

Thus, we have introduced two elements in the 
standard GA to help the exploration/exploitation abili- 
ties provided by the search space evolution: a coding 

Parents 

10 0 1 01 000 0 1 10000 
11 0 0 1 011 0 0 0 1  1001  1011  

Data Structure cutting point 

10 0 " * * * * * *  1 *01 0 " 0 0 1 0  "** * *** 
11 0 " * * * * * *  0 " * * * * * * ]  1 0 1 1 0 0 0 1  

Offspring 

I0 0 1 01 000 1 11 001 1 01 1 11 
11 0 0 0 1 " 1 0 0 " 0 0  

1 "10 0 *00 
1 001 1 O11 

Fig. 2. Two individuals with different length undergo crossover (*can be randomly initialised, or they can be zero or one). 
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A B C D E F 

Fig. 3. Alphabetic characters. 

G H 

granularity parameter and a cooperative local optimis- 
ing genetic operator. 

4.  P E R F O R M A N C E  E V A L U A T I O N  

We apply the hybrid genetic/random neural network 
learning algorithm to two pattern recognition prob- 
lems. The first one recognises or categorises alphabetic 
characters and the second one recognises geometric 
figures. We compare the performance of our hybrid 
learning algorithm (re_ev) with the gradient descent 
learning algorithm (re_rnn) [5,15] for different learning 
sets SL = {image 1, ... image L} composed of L different 
images chosen among those of Figs 3 and 8. That is, 
during testing operations we considered an increasing 
number of training images (S1, S> ..., Ss) which were 
chosen from among the eight black and white images 
of Figs 3 and 8. We have used processors of the SP2- 
IBM of CeCalCULA (High Performance Computing 
Center of Venezuela) to test the algorithms. 

4.1. Recognition of Alphabetic Characters 

The problem that is presented in this section is to 
recognise or categorise alphabetic characters (Fig. 3). 
We will input various alphabetic characters to a RNN 
and train the network to recognise these as separate 
categories. 

Each character is represented by a 5*7 grid of pixels. 
For example, to represent the letter A we must use 
the pattern show in Fig. 4. Here the blackened boxes 
represent value 1, while empty boxes represent a zero. 
We can represent all characters this way, with a binary 
map (Y) of 35 pixel values. Thus, we used a single- 
layer network of n = 35 neurons. The working para- 
meters for the first learning stage are as follows: /, = 
0.6, number of iterations = 15, weights error rate = 
0.01. The working parameters for the second learning 
stage are as follows: population size (M) = 10, number 

0 1 1 1 0  
1 0 0 0 1  
1 0 0 0 1  
1 0 0 0 1  
1 1 1 1 1  
1 0 0 0 1  
1 0 0 0 1  

Fig. 4. Representation of the letter A with a 5*7 pattern. 

of iterations = 20, mutation rate = 0.6, crossover rate 
-- 0.3. The total number of iterations for the learning 
phase (hybrid algorithm) is 10. 

To evaluate the performance of the learning algor- 
ithms, we show the minimal errors reached during the 
learning phase and their execution times (Fig. 5). 
These values represent the average of 8-(i-1) processes 
for each set S~. The learning of the sets S1, $2 and 
$4 remains good for the hybrid learning algorithm. 
This algorithm provides a better error convergence of 
the learning phase. Concerning $7, $8 error costs are 
important for the gradient descent learning algorithm. 
In general, the hybrid learning algorithm appears to 
give the best results, but with a substantially large 
execution time. That is because the evolutionary algor- 
ithm is very slow to converge (Fig. 5). 

The system errors (Ek) during the learning phase 
for a group of six images, using the gradient descent 
learning algorithm and the hybrid learning algorithm, 
are shown in Fig. 6. After a total of eight iterations 
of the learning process, the system error in the hybrid 
learning algorithm converges to a value of 0.006118. 
After the same number of iterations of the learning 
process, the gradient descent learning algorithm con- 
verges to a value of 3.183351. 

To test heteroassociative memories, we have evalu- 
ated the recognition rates of distorted versions of the 
training patterns. We generated 20 noisy images used 
as inputs, for each training image and for a given 
distortion rate. The result of the learning stage is used 
as the initial neural network of this second phase 
(retrieval stage). We have corrupted them by reason- 
able noise rates equal to 0%, 13%, 22% and 30% 
distortion by modifying bit values at random. A pattern 
is recognised if the residual error rate is less than 3%. 
The results we have obtained are presented in Fig. 7. 

The progressive retrieval process with an adaptive 
threshold value that we proposed [5,15] provides satis- 
factory recognition rates. The performance results 
obtained are lower when the noise rate is important 
(memories are then more discriminant). Recognition 
performances have considerably improved with re ev 
in comparison with those obtained by re_rnn. 

4.2. Recognition of Geometric Figures 

In this example we recognise six by six binary images 
of geometric figures (Fig. 8). Thus, we used a single- 
layer network of n = 36 neurons. The working para- 
meters for the first learning stage are as follows: p~ = 
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0.8, number of iterations = t0, weights error rate = 
0.01. The working parameters for the second learning 
stage are as follows: population size (M) = 10, number 
of iterations = 20, mutation rate = 1.6, crossover rate 
= 0.3. The total number of iterations for the learning 
phase (hybrid algorithm) is 8. 

Figure 9 shows the minimal errors reached during 
the learning phase and their execution times. The 
learning of the sets $2, $3, $5, $6, $7 remains good 
for the hybrid learning algorithm. In general, the 
hybrid learning algorithm gives the best results, but 
with a large execution time. 

To evaluate the exact recognition rates, we follow 
the-same procedure proposed in the previous example. 
In general, rec_ev appears to give the best recognition 
performances (Fig. 10). 

5. CONCLUSIONS 

This paper presents an evolution learning algorithm 
that optimises a neural network on the basis of its 
topology and its weights distribution. This algorithm 
is based on the gradient descent rule-based learning 
algorithm of the RNN and on GA. Different length 
strings (individuals) are used in connection with codi- 
lying a control parameter, the coding granularity. A 
cooperative locally optimising operator was also used. 

We have shown that this model can efficiently 
work as associative memory. We can recognise pattern 
arbitrary images with this algorithm, but the processing 
time increases rapidly. With this approach, the follow- 
ing advantages, scope and limitations are observed: 

(a) The results of neural network learning are sensi- 
tive to the initial topology (connections and 
weights). A GA is employed to perform a global 
search, and to seek a good starting topology for 
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the neural network learning algorithm. The result 
is an improvement in the error minimisation of 
the algorithm. 

(b) Our hybrid algorithm requires a substantial com- 
puting processing time in order to converge to an 
acceptably small system error value. That is, 
because during the first learning phase, which 
mainly consists of the minimisation of a quadratic 
error function, we have met the classical problem 
of the large execution time to converge to a 
minimal error for every RNN; and during the 
second learning phase, the evolutionary algorithm 
is very slow to converge, because generation cal- 
culations take a relatively large execution time. 
In this case, it is necessary to determine the 
better combination of genetics operators so as to 
decrease the number of necessary generations to 
reach suboptimal solutions. 

(c) In the hybrid algorithm, the problem of entrap- 
ment in a local minimum encountered in gradient 
descent-based learning algorithms is circumvented 
by using a G A  which is guided by the fitness 
function of a population. The simultaneous struc- 

tural and parametric modifications based on fitness 
allows the algorithm to discover appropriate net- 
works quickly, and investigate several differing 
architectures in parallel while avoiding over-com- 
mitment to a particular network topology. 

(d) Complete network induction is approached with 
respect to the complex interaction between net- 
work topology, parametric values and task per- 
formance. By fixing topology, gradient descent 
methods can be used to discover appropriate sol- 
utions. But the relationship between network 
structure and task performance is not well under- 
stood, and there is no backpropagation through 
the space of network architectures. Instead, the 
network induction problem is approached with 
heuristics that often restrict the available architec- 
tures, the dynamics of the search mechanisms, or 
both. Our hybrid algorithm strikes a middle 
ground between these two extremes, allowing the 
network's complexity and behaviour to emerge in 
response to the requirements of the task. 

(e) Most of the computations are intrinsically parallel. 
That is, this hybrid algorithm is easy to implement 
on a parallel machine, which will reduce the 
execution time and improve the results. By 
developing an efficient parallel version of our 
algorithm, we can increase the computational 
speedup. 

(f) In general, the results of the hybrid learning 
algorithm are better than the results obtained for 
the algorithm presented earlier [5], but with a 
substantially large execution time. The number of 
iterations of our approach to obtain a minimal 
system error is smaller than the number of iter- 
ations for the approaches presented earlier [3,5]. 

(g) Future work will examine other recognition prob- 
lems where the number of patterns to be stored 
is orders of magnitudes higher than the problems 
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discussed in this work (voluminous  data) .  Prior  
to that ,  we will  deve lop  paral le l  versions of our 

approach.  
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