
Pattern Analysis & Applic. (1998)1:52-61
�9 1998 Springer-Verlag London Limited

Resolution of Pattern Recognition
Problems using a Hybrid Genetic/Random
Neural Network Learning Algorithm
j. Aguilar and A. Colmenares
CEMISID, Dpto. de Computacidn, Facultad de Ingenieria, Universidad de los Andes, M&ida, Venezuela

Abstract; Gelenbe has proposed a neural network, called a Random Neural Network, which calculates the probability of activation of
the neurons in the network. In this paper, we propose to solve the patterns recognition problem using a hybrid Genetic/Random Neural
Network learning algorithm. The hybrid algorithm trains the Random Neural Network by integrating a genetic algorithm with the gradient
descent rule-based learning algorithm of the Random Neural Network. This hybrid learning algorithm optimises the Random Neural
Network on the basis of its topology and its weights distribution. We apply the hybrid Genetic/Random Neural Network learning algorithm
to two pattern recognition problems. The first one recognises or categorises alphabetic characters, and the second recognises geometric
figures. We show that this model can efficiently work as associative memory. We can recognise pattern arbitrary images with this algorithm,
but the processing time increases rapidly.

Keywords: Associative memory; Evolutionary learning; Genetic algorithm; Gradient descent rule; Pattern recognition; Random Neural
Network

I . INTRODUCTION

In its complete form, neural network induction entails
both parametric and structural learning, i.e. learning
both weight values and an appropriate topology of
nodes and links. Current connectionist methods to
solve this task fall into two broad categories. Construc-
tive algorithms initially assume a simple network and
add nodes and links as warranted, while destructive
methods start with a large network and prune off
superfluous components [1,2]. As a consequence, these
algorithms tend to force a task into an assumed archi-
tectural class, rather than fitting an appropriate archi-
tecture to the task.

Thus, how to improve the learning performance of
an ANN is currently an important research problem.
One approach, inspired by human brain neurons per-
forming many operations simultaneously, is the devel-

Received: 29 September 1997
Received in revised form: 7 February 1998
Accepted: 3 March 1998

opment of learning algorithms on general-purpose par-
allel computers, with the objective of reducing the
overall computing time [3]. Another approach is the
development of more effective neural network learning
algorithms, with the objective of reducing the learning
time [1,4,5]. A third approach is the development of
hybrid learning algorithms by integrating a Genetic
Algorithm (GA) with neural network learning algor-
ithms [2,3,6-8]. GAs have recently been applied to
ANNs in two main ways: there have been attempts
to use genetic search instead of learning to find appro-
priate connection weights in fixed architectures [6,8];
alternatively, GAs have been used to find network
architecture themselves, which are then trained and
evaluated using some learning procedure [2,3,7].

The RNN was proposed by Gelenbe in 1989 [9,10].
This model does not use a dynamic equation, but a
scheme of interaction among neurons. It calculates the
probability of activation of the neurons in the network.
Signals in this model take the form of impulses which
mimic what is presently known of inter-neural signals
in biophysical neural networks. The ability of the

Resolution of Pattern Recognition Problems 53

RNN model to act as associative memories has been
shown elsewhere [11]. The RNN has been used to
solve optimisation [8,12-14] and pattern recognition
problems [5,15]. A supervised learning procedure has
been proposed [4] for the recurrent RNN model, which
is mainly based on the minimisation of a quadratic
error function. We [13,14,16] have explored the
relationship between the RNN applied to optimisation
and network learning. We have also applied the evol-
utionary learning on the RNN model to solve optimis-
ation problems [8].

The problem addressed in this paper concerns the
proposition of a hybrid learning approach based on
the RNN and G A to solve the recognition problem.
This new algorithm is presented for training the RNN
by integrating a G A with the gradient descent rule-
based learning algorithm of the RNN. The algorithm
simultaneously acquires both network topology and
weight values while making minimal architectural
restrictions and avoiding structural hill climbing. We
introduce two elements in the standard G A to help
the exploration/exploitation abilities provided by the
search space evolution: a cooperative local optimising
genetic operator, and a coding granularity parameter
to use different length strings (individuals).

This work is organised as follows. In Section 2, the
theoretical bases of tl~e RNN are reviewed. Then, we
present an introduction to evolutionary learning and
our hybrid algorithm. In Section 4, we present appli-
cations. Remarks concerning future work and con-
clusions are provided in Section 5.

2. RANDOM NEURAL NETWORKS

2.1. Model

The Random Neural Model was introduced by Gelenbe
in 1989 [9,10]. The model consists of a network of n
neurons in which positive (excitatory) and negative
(inhibitory) signals circulate. Each neuron i of the
network accumulates signals as they arrive, and is
represented at any time t by its input signal potential
k,(t). The arrival of a negative signal reduces k,(t) by
1 (inhibition) or has no effect on k,(t) if it is already
zero, while an arriving positive signal adds 1 to ki(t)
(excitation). Signals can either arrive at a neuron from
the outside of the network or from other neurons.
Each neuron can fire if its total signal count at a
given instant of time is positive (ki(t) > 0). Firing
then occurs at random according to an exponential
distribution of constant rate r(i), and signals are sent
out to other neurons or to the output of the network.
Each time a neuron fires, a signal leaves it, depleting

the total input potential of the neuron. A signal which
leaves neuron i heads for neuron j with probability
p+(i,j) as a positive signal (excitation), or as negative
signal with probability p-(i, j) (inhibition), or it departs
from the network with probability d(i). Clearly, we
shall have

• [p+(i,j) + p-(i,j)] + d (i)= l f o r l - < i < - n
j=i

Positive signals arrive at the ith neuron according
to a Poisson process of rate A(i) (external excitation
signals). Negative signals arrive at the ith neuron
according to a Poisson process of rate a(i) (external
inhibition signals). The main property of this model
is the excitation probability of a neuron i, q(i), which
satisfy a non-linear equation

q(i) = ,~+(i)/(r(i) + a-(i)) (1)

where

/~+(i) = ~ , q(j)r(j)p+(j,i) + A(i)
j=f

a-(i) = ~ q(j)r(j)p-(j,i) + a(i)
]=1

The synaptic weights for positive (w+(i,j)) and nega-
tive (w-(i , j)) signals are defined as:

w+(i,j) = r(i)p+(i,j) w-(i , j) = r(i)p-(i,j)

and

r(i) = ~ , [w+(i,j) + w-(i,j)]
1'=1

Let k(t) be the vector of neuron potentials at time
t, and k = (k> ..., k~) be a particular value of the
vector. It has been proved [9,10] that, if all the steady
state excitation probabilities q(i) are such that 0 <- q(i)
- 1, the stationary probability distribution of the
network's state given by

p(k) = lim t ---+ ~ prob [k(t) =

exists, and can be expressed by the product form

n

P(~) = 17[(1 - q(i))q(i)ki
i=l

To guarantee the stability of the RNN, the following
is a sufficient condition for the existence and unique-
ness of the solution in Eq. (1)

,~+(i) < [r(i) + ~-(i)1

54 J. Aguilar and A. Colmenares

2.2. Recognition Procedure

The recognition procedure is based on an heteroassoci-
ative memory technique [5,11,15]. An heteroassoci-
ative memory is a system in which an arbitrary set of
input patterns is paired with another arbitrary set of
output patterns. To design such a memory, we have
used a single-layer random neural of n fully intercon-
nected neurons. For every neuron i, the probability
that emitting signals depart from the network is d(i) =
0, because we are not interested in emitting external
signals.

2.2.1. Learning Phase. Synaptic weights and firing
rates are determined during the learning phase.
Gelenbe has proposed an algorithm [4] for choosing
the set of network parameters w-(i,j) and w+(i,j) in
order to learn a given set of m input-output pairs (X,
Y), where the set of successive inputs is denoted by

X = {X1, ..., X~} where Xk = (xl> ..., x~k)

and

x,k = {Ak(i), Xk(i)}

The successive desired outputs are the vector Y =
{Y1, ..., Ym}, where Yk = (Y~k, ..., Y~k) and yik E [0,1]
correspond to the desired output vectors. The learning
algorithm is a gradient descent rule-based neural net-
work algorithm. The network approximates the set of
desired output vectors in a manner which minimises
an error function Ek:

1 (qk(i) - y j Z Ek =
i=1

The algorithm lets the network learn both n by n
weight matrices W~ = w~(i,j)} and W~ = {w~(i,j)} by
computing for each input-output pair (Xk, Yk), a new
value W~ and Wfi-, using gradient descent. Let us
denote by the generic term w(u,v) either w(u,v) --
w-(u,v), or w(u,v) = w+(u,v). The rule to update the
weights may be written as

- I~ ~ (q~(i) - Y~k)
i=l

w~(u,v) = wk-l(u,v) (2)

Oq(i)]
aw(u,v) l~

where b~ > 0 is the learning rate (some constant),
qk(i) is calculated using Xk and wk(u,v) = %_1(u,v) in
Eq. (1), and, [aq(i)/c~w(u,v)]k is evaluated of the values
q(i) = qk(i) and w(u,v) = wk_,(u,v) in Eq. (2).

The complete learning algorithm for the network is:

�9 Initiate the matrices W3 and Wo in some appropri-
ate manner. Choose a value of > in Eq. (2).

�9 For each successive value of m:
- Set the input-output pair (x~, Yk)
- R e p e a t until the change in the new values of

the weights is smaller than some predetermined
valued.

- Solve Eq. (1) with these values
- U s i n g Eq. (2) and the previous results, update

the matrices W~ and W/~-.

Every input information is represent by a binary
vector Xk = (xlk, ..., x~k), where xik is associated with
neuron i. Hence, we can translate each input vector
Xk in terms of the arrival rates of exogenous signals
as follows:

Yik = 1 --+ (Ak(i), ak(i)) = (A, 0) {3)
Yik = 0 ---+ (Ak(i), ak(i)) = (0, a)

where the values A and)~ provide the network stability
for every case. Considering Eq. (1) and the vector
encoding Eq. (3), the network stability condition
becomes for each vector Xk:

ifyik = 1 ~ A < rO(i) +
j -1

wO (i,j) - ~ wO+(i,j)
j=l

if Yik = 0 + a > ~ wO+(i,j)
j=l

Let

- rO(i) - ~ wO-(i,j)
j=l

F
kk = mini, Yik = 1 [r0(i)

+ ~ wO-(i , j) - ~ wO+(i,j)]
j=l j=t

Ak=Inaxi 'Yik=OIj_~ 1,

wO li,,, 1
j=l

To have the network damped for all the m training
vectors, we choose the common values A --- minktakl
and .~ -> maxkrxkl. This condition is sufficient, but not
necessary to provide the network with stability. We
must first initialise the connection weight matrices
W+O = [w+O(i,j)] and W-O = [w-O(i,j)] either by small

Resolution of Pattern Recognition Problems 55

positive random variables which are uniformly distrib-
uted between 0 and V or according to some more
appropriate rule. Simulations have lead us to initialise
W~ referring to the Hebbian law:

t

j ~ (2yik - i) (2yik - 1) ifw+O(i,j) > 0
w+O(i,j)

101 otherwise

On the other hand, W0 is initialized with small
positive random variables, uniformly distributed
between [0, 0.2].

2.2.2. Retrieval Phase. Once the learning phase is
completed, the network must perform the completion
of noisy versions of the training vectors as well as
possible. In principle, for the retrieval process we do
not have to modify the values of the arrival rates of
exogenous signals A and a which we have used to
provide the network with stability during the learning
procedure. If learning is perfect, the global error is
practically zero. Thus, the steady-state probability q(i)
that each neuron i is excited is such that 0 < q(i) < 1
for i = 1, ..., n and the network remains damped.

Let X' = (X'l, ..., x'~) be any binary input vector.
To determine the corresponding output vector Y =
(Yl, ..., y,~), we first compute the vector of probabilities
Q = (q(1), ..., q(n)) from the non-linear Eq. (1). This
is a fixed-point equation which can be solved iterat-
ively after initialising every probability q(i) to 0.5.
Theoretically, the real value of q(i) is very close to 1
(or 0) if the ith component of the target output vector
is equal to 1 (or 0). However, when the distortion
rate applied on the training data is important, the q(i)
of certain neurons can be around 0.5. The state of
these neurons is then considered doubtful. We can
then consider that the q(i) values such that 1 - b <
q(i) < b with, for instance, b = 0.6, belong to the
uncertainty interval Z. When the network stabilises to
an attractor state, the number of neurons (NB_Z)
whose q(i) ~ Z, is equal to 0. Hence, we first treat
the neurons whose state is considered certain to obtain
the output vector y(i) = (y~l~, ..., y~,)), with

I ! ifq(i) >- b

y(1)~ = Fz(q(i))= ifq(i) -< 1 - b

LX i otherwise

where Fz is the thresholding function by intervals. If
NB_Z = 0, this phase is terminated and the output
vector is Y = y(l~ Otherwise, Y is obtained after
applying the thresholding function f~ as follows:

10 ifq(i) > er
Yi = f~(q(i)) = otherwise

where o~ is the selected threshold. Eventually, Z can
be reduced by decreasing b (for b > 0.5). Each value
q(i) E Z, and also the lower bound 1 - b are
considered as potential thresholds. For each potential
value of c~, we present to the network the vector
X'(1)(o~)= f~(Q). Then, we compute the new vector of
probab i l i t i e s Q(1){oz) and the output vector y(z)(~) =
Fz(Q~ We keep the cases where NB_Z = 0 and
X'(1}(~) = Y(ZY(a). If these two conditions are never
satisfied, the initial X' is considered as too different
to any training vector, and c~ is set to 0.5. On the
other hand, if several thresholds are candidate, we
choose the one which provides the minimal error (oe')
according to Eq. (4), and the output vector of this
phase is Y = Y(2)(oz'):

1 ~ y!2)(a))2 (4) Er(a) = ~ (q(i)(1)(a) -
i=l

3. EVOLUTIONARY LEARNING

3.1. Introduction

Genetic Algorithm (GA), invented by J. H. Holland,
emulates biological evolution in the computer and
tries to build programs that can adapt by themselves
to perform a given function [17,18]. A G A follows an
'intelligent evolution' process for individuals based on
the utilisation of evolution operators such as mutation,
inversion, selection and crossover. Optimisation is a
major field of GA's applicability. They belong to the
class of probabilistic algorithms, yet they are very
different from random algorithms as they combine
elements of directed and stochastic search. Because of
this, GAs are also more robust than existing directed
search methods. Another important property of such
genetic-based search methods is that they maintain a
population of potential solutions; all other methods
process a single point of the search space. The popu-
lation undergoes a simulated evolution: at each gener-
ation the 'good' solutions reproduce, while the 'bad'
solutions die. To distinguish between different sol-
utions we use a cost function.

Recently, there has been a good deal of interest in
using GAs for machine learning problems. The variety
and complexity of learning systems make it difficult to
formulate a universally accepted definition of learning.
However, a common denominator of most learning
systems is their capability for making structural changes

56 J. Aguilar and A. Colmenares

to themselves over time, with the intention of improv-
ing performance on tasks defined by their environment,
discovering and subsequently exploiting interesting
concepts, or improving the consistency and generality
of internal knowledge structures. Given this perspec-
tive, one of the most important means for understand-
ing the strengths and limitations of a particular learn-
ing system is a precise characterisation of the structural
changes that are permitted, and how such changes are
made. This perspective also lets one state more pre-
cisely the goat of the research in applying GAs to
learning, namely, to understand when and how GAs
can be used to explore spaces of legal structural
changes in a goal-directed manner.

The idea is to define a space of admissible structures
to be explored via GAs. The learning strategy involves
maintaining a population of tested structures, and using
GAs to generate new structures with better perform-
ance expectations. In considering the kinds of struc-
tural changes that might be made to the system, there
are a variety of approaches of increasing sophistication
and complexity. The simplest and most straightforward
approach is for the GAs to alter a set of parameters
that control the behaviour of a system. A second
approach involves changing more complex data struc-
tures that control the behaviour of the system. A third
approach involves changing the system itself.

The use of evolutionary learning based on a GA
for ANNs has received much attention recently [2,3,6-
8]. Most of the applications regard the use of evol-
utionary algorithms as a means to learn connection
weights; some applications also consider a learning of
the network topology; and only a few use evolutionary
algorithms to define the parameters of a learning algor-
ithm that wi]] be used in the training phase. Some
studies attempt to co-evolve both the topology and
weigh~ values within the GA framework, but as in
connectionist systems, the network architectures are
restricted.

3.2, Our Approach

In this paper, we propose to use a GA to design both
the network's topology and the associated weighted
connections of the RNN. In this way, we propose a
hybrid learning algorithm by integrating a GA wiEh
the gradient descent rule-based neural network learn-
ing algorithm proposed by Gelenbe. Our hybrid algor-
ithm consists of two learning stages using M RNNs.
The backpropagation algorithm performs the first
learning process until the terminal condition (error
minimisation) is satisfied on each RNN. Then, the
second learning stage is used to optimist the topology
(connections, weights) of the networks (evolving the

network's topology) by using a GA. The GA performs
a global search and seeks a near-optimal initial point
(connection and weight vectors) for the first stage. In
this stage, each individual is used to encode the top-
ology of one of the M RNNs used in the first stage.
The fitness (objective) function for the GA is defined
as the average squared system error of the correspond-
ing neural network. After performing several iterations
and meeting one of the stopping criteria (a predefined
number of consecutive iterations, homogeneous
individuaIs), the second learning stage is terminated
and the individuals are considered as the new initial
topologies of the M RNNs in the next iteration. If
one of the next stopping criteria is met, the hybrid
algorithm is terminated (system convergence): the new
initial topologies of the M RNNs are the same as the
initial topologies of the previous iteration, or a given
number of consecutive iterations, or if the initial indi-
viduals used for the GA do not change in consecutive
iterations. The general hybrid algorithm is the follow-
ing:

�9 Initiate the parameters, for the M RNNs
(W;, W~, A, a).

�9 Repeat until hybrid algorithm convergence
- for i = 1 to M concurrently
- Perform the gradient descent rule based neu-

ral network learning algorithm.
- Generate individuals using every RNN,
-Opt imise the individuals (network's topology:

connections, weights) using GA.

The main computational advantage of evolving the
network's topology is the possibility to autonomously
identify minimal search spaces containing reachable
solutions to the problem. The dimension of search
spaces can be affected by a net coding feature: the bit
length of weight coding, he. the coding granularity
[2]. In our work, coding granularity is a parameter that
evolves concurrently to the net structure.

An extended direct encoding scheme is used, where
each connection is represented directly by its binary
definition. The representation chosen uses network
nodes as basic functional units, and encodes all the
information relevant for a node in nearby positions,
including its input connectivity patterns and the rela-
tive weight distribution. Connectivity is coded by the
presence/absence bits (connectivity bits). When con-
nection is present, inmediately after each connectivity
bit there is the binary encoding of the relative weight
(defined in scientific notation). The first byte of the
string specifies the number of bits (the granularity)
according to which the weights of the present connec-
tions have been codified (i.e. mantissa and exponent
parts). Thus, coding granularity is a control parameter

Resolution of Pattern Recognition Problems 57

-1"10-2
connectivity bits weight encoding bits 3"10-1 -1"10-2

0010 0 0 101 101001 1 11000 0 111101 0 0 101110
N W+(3,1) W+(l,2) W-(1,2) W+(3,2) W+(I,3) W-(2,3)

granularity bits

0010001010000110000101001111000011110100101001 ~ actual string, as seen by the GA

Fig. 1. Network encoding of a complete topology" graph.

whose value is coded within the string where it is
used. It gives the possibility of having strings of differ-
ent length. New links are initialised randomly. For
example, Fig. 1 presents a simple network and its
coding.

We use the commonly used genetic operators
(crossover and mutation) and a cooperative local
optimising genetic operator. These operators make two
types of learning: parametric modifications alter the
value of parameters (link weights) currently in the
network; whereas structural modifications alter the
presence of links in the network. The crossover used
is standard, a single cutting point chosen with uniform
probability over the string length and a swap of the
genetic material following it. Our' implementation
allows the mating of networks with different con-
nectivity and/or different granularity, with no modifi-
cation of the operator according to the following ideas
(Fig. 2): (a) coded networks are implemented using
fixed-length arrays (bit strings), defined with the
maximum possible length (all connection present and
maximal granularity); (b) crossover is applied to those
strings, and therefore it has no problems in application.

Note that the invisible bits do not affect the search
process; the only moments when they are important

for the search are when they become visible, following
an increment of granularity. In this case, the new bits
are randomly initialised. The mutation operator is the
standard, which negates each bit with probability Pm"

The cooperative local optimising genetic operator is
a classical optimisation method for local optimisation
of the GA individuals. In our case, local search is
performed in two ways: by applying our gradient
descent rule-based learning algorithm; and by using
the cooperative local optimising operator. The latter
is a ternary operator (three parents strings a, b and c)
that tries to exploit the fitness landscape identified by
the extant solutions. The algorithm for this operator is:

�9 Rank the three parents by fitness value (suppose
fitness(a)>fitness(b)>fitness(c))

�9 for each ith bit of the strings
- if al~ = bl~ then

- offspring1, = %
else

- offspring1, =negate (c,i)

Thus, we have introduced two elements in the
standard GA to help the exploration/exploitation abili-
ties provided by the search space evolution: a coding

Parents

10 0 1 01 000 0 1 10000
11 0 0 1 011 0 0 0 1 1001 1011

Data Structure cutting point

10 0 " * * * * * * 1 *01 0 " 0 0 1 0 "** * ***
11 0 " * * * * * * 0 " * * * * * *] 1 0 1 1 0 0 0 1

Offspring

I0 0 1 01 000 1 11 001 1 01 1 11
11 0 0 0 1 " 1 0 0 " 0 0

1 "10 0 *00
1 001 1 O11

Fig. 2. Two individuals with different length undergo crossover (*can be randomly initialised, or they can be zero or one).

58 J. Aguilar and A. Colmenares

A B C D E F

Fig. 3. Alphabetic characters.

G H

granularity parameter and a cooperative local optimis-
ing genetic operator.

4. P E R F O R M A N C E E V A L U A T I O N

We apply the hybrid genetic/random neural network
learning algorithm to two pattern recognition prob-
lems. The first one recognises or categorises alphabetic
characters and the second one recognises geometric
figures. We compare the performance of our hybrid
learning algorithm (re_ev) with the gradient descent
learning algorithm (re_rnn) [5,15] for different learning
sets SL = {image 1, ... image L} composed of L different
images chosen among those of Figs 3 and 8. That is,
during testing operations we considered an increasing
number of training images (S1, S> ..., Ss) which were
chosen from among the eight black and white images
of Figs 3 and 8. We have used processors of the SP2-
IBM of CeCalCULA (High Performance Computing
Center of Venezuela) to test the algorithms.

4.1. Recognition of Alphabetic Characters

The problem that is presented in this section is to
recognise or categorise alphabetic characters (Fig. 3).
We will input various alphabetic characters to a RNN
and train the network to recognise these as separate
categories.

Each character is represented by a 5*7 grid of pixels.
For example, to represent the letter A we must use
the pattern show in Fig. 4. Here the blackened boxes
represent value 1, while empty boxes represent a zero.
We can represent all characters this way, with a binary
map (Y) of 35 pixel values. Thus, we used a single-
layer network of n = 35 neurons. The working para-
meters for the first learning stage are as follows: /, =
0.6, number of iterations = 15, weights error rate =
0.01. The working parameters for the second learning
stage are as follows: population size (M) = 10, number

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1

Fig. 4. Representation of the letter A with a 5*7 pattern.

of iterations = 20, mutation rate = 0.6, crossover rate
-- 0.3. The total number of iterations for the learning
phase (hybrid algorithm) is 10.

To evaluate the performance of the learning algor-
ithms, we show the minimal errors reached during the
learning phase and their execution times (Fig. 5).
These values represent the average of 8-(i-1) processes
for each set S~. The learning of the sets S1, $2 and
$4 remains good for the hybrid learning algorithm.
This algorithm provides a better error convergence of
the learning phase. Concerning $7, $8 error costs are
important for the gradient descent learning algorithm.
In general, the hybrid learning algorithm appears to
give the best results, but with a substantially large
execution time. That is because the evolutionary algor-
ithm is very slow to converge (Fig. 5).

The system errors (Ek) during the learning phase
for a group of six images, using the gradient descent
learning algorithm and the hybrid learning algorithm,
are shown in Fig. 6. After a total of eight iterations
of the learning process, the system error in the hybrid
learning algorithm converges to a value of 0.006118.
After the same number of iterations of the learning
process, the gradient descent learning algorithm con-
verges to a value of 3.183351.

To test heteroassociative memories, we have evalu-
ated the recognition rates of distorted versions of the
training patterns. We generated 20 noisy images used
as inputs, for each training image and for a given
distortion rate. The result of the learning stage is used
as the initial neural network of this second phase
(retrieval stage). We have corrupted them by reason-
able noise rates equal to 0%, 13%, 22% and 30%
distortion by modifying bit values at random. A pattern
is recognised if the residual error rate is less than 3%.
The results we have obtained are presented in Fig. 7.

The progressive retrieval process with an adaptive
threshold value that we proposed [5,15] provides satis-
factory recognition rates. The performance results
obtained are lower when the noise rate is important
(memories are then more discriminant). Recognition
performances have considerably improved with re ev
in comparison with those obtained by re_rnn.

4.2. Recognition of Geometric Figures

In this example we recognise six by six binary images
of geometric figures (Fig. 8). Thus, we used a single-
layer network of n = 36 neurons. The working para-
meters for the first learning stage are as follows: p~ =

Resolution of Pattern Recognition Problems 59

System
Error E

10 2 .

1 0 0 -

- 2
10

10-4

~d 6

Execution
Time (sec)

15-

~ l Learning Algorithm]

" I rr2-re;n 10-

: i ?

5

2 3 4 5 6 7 8 No Of Training
Characters

i! !
]

i!:

2 3 4 5 6 7 8 No Of Training
Characters

Fig. 5. Sys tem error and execu t ion t ime of the learn ing a lgor i thms for a different set of images.

System
Error E k

H "i

Leai-ning Algorithm

re_rnn

re_ev

i,.w~

o i - " ' J
0 ~ '~ 6 u 8 10 12 NoOf

Iterations

Fig. 6. System error for a set of six alphabetic characters.

Recognition
Rate (~

100-'

80-

60.

40-

20-

0
i v i i i i i 7 I

2 3 4 5 6 8

Noisy Rates
~ 0 % re_rnn

0 % re ev
1 3 % re_rnn

........ 13 % re ev
- - 22 % re_rnn

. . . . 22 % re_ev
30 % re_rnn

�9 ' 30% re_ev

No Of training
Characters

Fig. 7. Recognition rate of noisy versions of characters.

1 2 3 4 5 6 7 8

Fig. 8. Geomet r i c figures.

0.8, number of iterations = t0, weights error rate =
0.01. The working parameters for the second learning
stage are as follows: population size (M) = 10, number
of iterations = 20, mutation rate = 1.6, crossover rate
= 0.3. The total number of iterations for the learning
phase (hybrid algorithm) is 8.

Figure 9 shows the minimal errors reached during
the learning phase and their execution times. The
learning of the sets $2, $3, $5, $6, $7 remains good
for the hybrid learning algorithm. In general, the
hybrid learning algorithm gives the best results, but
with a large execution time.

To evaluate the exact recognition rates, we follow
the-same procedure proposed in the previous example.
In general, rec_ev appears to give the best recognition
performances (Fig. 10).

5. CONCLUSIONS

This paper presents an evolution learning algorithm
that optimises a neural network on the basis of its
topology and its weights distribution. This algorithm
is based on the gradient descent rule-based learning
algorithm of the RNN and on GA. Different length
strings (individuals) are used in connection with codi-
lying a control parameter, the coding granularity. A
cooperative locally optimising operator was also used.

We have shown that this model can efficiently
work as associative memory. We can recognise pattern
arbitrary images with this algorithm, but the processing
time increases rapidly. With this approach, the follow-
ing advantages, scope and limitations are observed:

(a) The results of neural network learning are sensi-
tive to the initial topology (connections and
weights). A GA is employed to perform a global
search, and to seek a good starting topology for

60 J. Aguilar and A. Colmenares

System
Error E k

1 0 1 '

l g - ~

-1
10

- 2
10 . ,~

- 3
1 0

-4
10 ~ I

2 3 ~ 41

Execution
Time (sec)

" ~1 Learning Algorithm
I r ~ re rnn

/ I re-e~

1 0 -

8

6

4

2

)ii

/

I I I I ~'- 0 I I 41 51 I I I ""
5 6 7 8 No Of training 1 3 6 7 8 No Of training

Gemetric Figures Gemetric Figures

Fig. 9. System error and execu t ion t ime of the learning a lgor i thms for different set of images.

Recognition
Rate (%)

1o01

8 0 -

60.

40,

20'

Noisy Rates

0 % re rnn
0 % r e _ e v

13 % re_rnn

.......... 13 % r e _ e v

. . . . 22 % re_rnn

.. . . . 22 % r e _ e v

- 30 % re_rnn
" " 30% re_ev

3~ 4~ 5~ 6 7 ~ 81 v No Of training
Gemetric Figures

Fig. 10. Recogn i t i on rate of noisy versions of characters .

the neural network learning algorithm. The result
is an improvement in the error minimisation of
the algorithm.

(b) Our hybrid algorithm requires a substantial com-
puting processing time in order to converge to an
acceptably small system error value. That is,
because during the first learning phase, which
mainly consists of the minimisation of a quadratic
error function, we have met the classical problem
of the large execution time to converge to a
minimal error for every RNN; and during the
second learning phase, the evolutionary algorithm
is very slow to converge, because generation cal-
culations take a relatively large execution time.
In this case, it is necessary to determine the
better combination of genetics operators so as to
decrease the number of necessary generations to
reach suboptimal solutions.

(c) In the hybrid algorithm, the problem of entrap-
ment in a local minimum encountered in gradient
descent-based learning algorithms is circumvented
by using a G A which is guided by the fitness
function of a population. The simultaneous struc-

tural and parametric modifications based on fitness
allows the algorithm to discover appropriate net-
works quickly, and investigate several differing
architectures in parallel while avoiding over-com-
mitment to a particular network topology.

(d) Complete network induction is approached with
respect to the complex interaction between net-
work topology, parametric values and task per-
formance. By fixing topology, gradient descent
methods can be used to discover appropriate sol-
utions. But the relationship between network
structure and task performance is not well under-
stood, and there is no backpropagation through
the space of network architectures. Instead, the
network induction problem is approached with
heuristics that often restrict the available architec-
tures, the dynamics of the search mechanisms, or
both. Our hybrid algorithm strikes a middle
ground between these two extremes, allowing the
network's complexity and behaviour to emerge in
response to the requirements of the task.

(e) Most of the computations are intrinsically parallel.
That is, this hybrid algorithm is easy to implement
on a parallel machine, which will reduce the
execution time and improve the results. By
developing an efficient parallel version of our
algorithm, we can increase the computational
speedup.

(f) In general, the results of the hybrid learning
algorithm are better than the results obtained for
the algorithm presented earlier [5], but with a
substantially large execution time. The number of
iterations of our approach to obtain a minimal
system error is smaller than the number of iter-
ations for the approaches presented earlier [3,5].

(g) Future work will examine other recognition prob-
lems where the number of patterns to be stored
is orders of magnitudes higher than the problems

Resolution of Pattern Recognition Problems 61

discussed in this work (voluminous data) . Prior
to that , we will deve lop paral le l versions of our

approach.

References

1. Chen D, Giles C, Sun S, Chen H, Less Y, Goudreau M.
Constructive learning of recurrent neural network. Proceedings
IEEE International Conference Neural Networks 1993; 1196-
120l

2. Maniezzo V. Genetic evolution of the topology and weight
distribution of neural networks. IEEE Transactions Neural Net-
works 1994; 5(1): 39-53

3. Hung S, Adeli H. A parallel genetic/neural network learning
algorithm for MIMD shared memory machines. IEEE Trans-
actions Neural Networks 1994; 5(6): 900-909

4. Gelenbe E. Learning in the recurrent Random Neural Network.
Neural Computation 1993; 5(5): 584-596

5. Aguilar J. A recognition algorithm using the Random Neural
Network. Proceedings 3rd International Congress on Computer
Science Research 1996; 16-20

6. Fogel D, Fogel L, Porto V. Evolving neural networks. Biological
Cybernetics 1990; 63:487493

7. Angeline P, Saunders G, Pollack J. An evolutionary algorithm
that constructs recurrent neural network. IEEE Transactions
Neural Network 1994; 5(1): 54-64

8. Aguilar J. Evolutionary learning on Recurrent Random Neural
Network. Proceedings World Congress on Neural Networks
1995; 232-236

9. Gelenbe E. Random neural networks with positive and negative
signals and product form solution. Neural Computation 1989;
1(4): 502-510

10. Gelenbe E. Stable random neural networks. Neural Computation
1990; 2(2): 239-247

11. Gelenbe E, Stafylopatis A, Likas A. Associative memory oper-
ation of the Random Network Model. Proceedings International
Conference Artificial Neural Networks (ICANN 91) 1991;
307-315

12. Aguilar J. Using the general energy function of the Random
Neural Networks to solve the graph partitioning problem. Pro-

ceedings IEEE International Conference Neural Networks 1996;
2130-2135

13. Aguilar J. A general method to solve combinatorial optimization
problems with the Random Neural Networks. In: Cerrolaza M,
Gajardo C, Brebbia C. (eds), Numerical Methods in Engineering
Simulation. Computational Mechanics Publications, 1996;
349-356

14. Aguilar J. An energy function for the Random Neural Networks.
Neural Processing Letters 1996; 4:17-27

15. Aguilar J, Cohnenares A. Recognition algorithm using evol-
utionary learning on the Random Neural Networks. Proceedings
IEEE International Conference Neural Networks 1997; 1023-
1028

16. Aguilar J. An approach for combinatorial optimization problem
based on learning in the recurrent random neural network.
Proceedings World Congress on Neural Networks 1994; 420425

17. Mulhenbein H, Georges-Schleuter M, Kramer O. Evolution
algorithms in combinatorial optimization. Parallel Computing
1988; 7(1): 65-88

18. Golberg D. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989

Jose Aguilar was born in Valera, Venezuela, in i964. He received
the computer science engineering degree from the University de los
Andes, M&ida, Venezuela, in 1987. He received his Masters in
computer science (DEA) from the University Paul Sabatier, Toul-
ouse, France, in 1991. He received his PhD from the University
Rene Descartes, Paris, France, in 1995. Dr Aguilar is a Professor of
Computer Science at the University de los Andes. His research
interests include parallel processing, evolutionary techniques, arti-
ficial life and artificial neural networks. Dr Aguilar is a member
of the Venezuelan Association for Artificial Intelligence and the
ACM society.

Adriana Cohnenares was born in Maturin, Venezuela, in 1969. He
received the computer science engineering degree from the Univer-
sity de los Andes, M4rida, Venezuela, in 1996. She currently works
at Honeywell de Venezuela. Her current research interests are
in the fields of genetic algorithms, artificial neural networks and
automatic control.

Correspondence and offprint requests to: J. Aguilar, CEMISID, Dpto.
de Computaci6n, Facultad de Ingenierfa, Universidad de los Andes,
Av. Tulio Febres, Mdrida, Venezuela

