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Abstract. In on-line applications, reinforcement learning based algo-
rithms allow to take into account the environment information in order
to propose an action policy for the overall optimization objectives. In this
work, it is presented a learning algorithm based on reinforcement learn-
ing and temporal differences allowing the on-line parameters adjustment
for identification tasks. As a consequence, the reinforcement signal is
generically defined in order to minimize the temporal difference.

1 Introduction

The Reinforcement Learning (RL) problem has been widely researched an ap-
plied in several areas [1, 2, 3, 4, 5, 6, 7, 8]. In dynamical environments, the learn-
ing agent gets rewards or penalties, according to its performance for learn-
ing good actions. In identification problems, information from the environment
is needed in order to propose an approximate model, thus, RL can be used
for the on-line information taking. Off-line learning algorithms have reported
suitable results in system identification, however these results are bounded on
the available data, their quality and quantity. In this way, the development
of on-line learning algorithms for system identification in an important
contribution.

In this work, it is presented an on-line learning algorithm based on RL us-
ing the Temporal Difference (TD) method, for identification purposes. Here, the
basic propositions of RL with TD are used and, as a consequence, the linear
TD(λ) algorithm proposed in [1] is modified and adapted for systems identifica-
tion and the reinforcement signal is generically defined according to the temporal
difference and the identification error. Thus, the main contribution of this pa-
per is the proposition of a generic on-line identification algorithm based on RL.
The proposed algorithm is applied in the parameters adjustment of a Dynamical
Adaptive Fuzzy Model (DAFM) [9], and an illustrative example for time-varying
non-linear identification is presented.
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2 Theoretical Background

2.1 Reinforcement Learning and Temporal Differences

RL deals with the problem of learning based on trial and error in order to achieve
the overall objective [1]. RL are related to problems where the learning agent do
not know what it must do. At time t, (t = 0, 1, 2, ...), the agent receives the state
St and based on this information it choice an action at. As a consequence, the
agent receives a reinforcement signal or reward rt+1. In case of the infinite time
domain, a discount weights the received reward and the discounted expected gain
is defined as:

Rt = rt+1 + μrt+2 + μ2rt+3 + ... =
∞∑

k=0

μkrt+k+1 (1)

where μ, 0 ≤ μ ≤ 1, is the discount rate, and it determines the current value of
the futures rewards.

On the other hand, TD method permits to solve the prediction problem taking
into account the difference (error) between two prediction values at successive
instants t given by a function P . According to the TD method, the adjustment
law for the parameter vector θ of the prediction function P (θ) in given by the
following equation [2]:

θt+1 = θt + η(P (xt+1, θt) − P (xt, θt))
∂P (xt, θt)

∂θ
(2)

where xt is a vector of available data at time t and η, 0 ≤ η ≤ 1, is the learning
rate. The term between parenthesis is the temporal difference and the equation
(2) is the TD algorithm and it can be used on-line in a incremental way.

RL problem can be viewed as a prediction problem where the objective is
the estimation of the discounted gain defined by equation (1), by using the
TD algorithm. Let R̂t be the prediction of Rt, then, from equation (1) and by
replacing the real value of Rt+1 by its estimated value R̂t+1, the prediction error
between Rt and R̂t is defined by the equation (3), which describe a temporal
difference:

Δ = Rt − R̂t = rt+1 + μR̂t+1 − R̂t (3)

By denoting R̂ as P and by replacing the temporal difference in (2) by that
one defined by the equation (3), the parameters adjustment law is [1]:

θt+1 = θt + η(rt+1 + μP (xt+1, θt) − P (xt, θt))
∂P (xt, θt)

∂θ
(4)

2.2 Dynamical Adaptive Fuzzy Models

Without loss of generality, a fuzzy logic model MISO (Multiple Inputs-Single
Output), is a linguistic model defined by the following M fuzzy rules:

R(l) : IF x1 is F l
1 AND... AND xn is F l

nTHEN y is Gl (5)
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where xi is a vector of linguistic input on the domain of discourse Ui; y is the
linguistic output variable on the domain of discourse V ; F l

i and Gl are fuzzy
sets on Ui and V , respectively, (i = 1, ..., n) y (l = 1, ..., M), each one defined by
their membership functions.

The DAFM is obtained from the previous rule base (5), by supposing input
values defined by fuzzy singleton, gaussian membership functions of the fuzzy
sets defined for the fuzzy output variables and the defuzzification method given
by center-average method. Then, the inference mechanism provides the following
model [9]:

y(X, t) =

∑M
l=1 γl(ul, t)

(∏n
i=1 exp

[
− (xi − αl

i(v
l
i,t))

2

βl
i (wl

i,t)

])

∑M
l=1

(∏n
i=1 exp

[
− (xi − αl

i(v
l
i,t))

2

βl
i (wl

i,t)

]) (6)

where X = (x1 x2 ... xn)T is a vector of linguistic input variables xi at time t;
α(v, tj), β(w, tj) and γ(u, tj) are time-depending functions; vl

i y wl
i are param-

eters associated to the variable xi in the rule l; ul is a parameter associated to
the center of the output fuzzy set in the rule l.

Definition 1. Let xi(tj) be the value of the input variable xi to the DAFM
at time tj to obtain the output y(tj). The generic structure of the functions
αl

i(v
l
i, tj), βl

i(w
l
i, tj) and γl(ul, tj) in equation (6), are defined by the following

equations [9]:

αl
i(v

l
i, xi(tj)) = vl

i

∑j
k=j−δ1

(xi(tk))
δ1 + 1

; δ1 ∈ ℵ (7)

βl
i(w

l
i, σ

2
i (tj)) = wl

i ∗ (

∑j
k=j−δ1

(xi(tk) − xi(tk))2

δ1 + 1
+ ε); ε ∈ � (8)

γl(ul, y(tj)) = ul

∑j−1
k=j−δ2

y(tk)
δ2

; δ2 ∈ ℵ (9)

3 RL-Based Identification Algorithm for DAFM

In this work, the fuzzy identification problem is solved by using the weighted
identification error as a prediction function in the RL problem, and by suit-
ably defining the reinforcement value according to the identification error. Thus,
the minimization of the prediction error (3) drives to the minimization of the
identification error. The critic (learning agent) is used in order to predict the
performance on the identification as an approximator of the system’s behav-
ior. The prediction function is defined as a function of the identification error
e(t, θt) = y(t) − ye(t, θt), where y(t) denotes the real value of the system output
at time t and ye(t, θt) denotes the estimated value given by the identification
model by using the available values of θ at time t.
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Let Pt be the proposed non-linear prediction function in equation (10):

P (xt, θt) =
1
2

t∑

k=t−K

(μλ)t−ke2(k, θt) (10)

where e(t, θt) = y(t) − ye(t, θt) defines the identification error and K defines the
size of the time interval. Then:

∂P (xt, θt)
∂θ

=
t∑

k=t−K

(μλ)t−ke(k, θt)
∂e(k, θt)

∂θ
(11)

By replacing (11) into (4), the following learning algorithm for the parameters
adjustment is obtained:

θt+1 = θt+η(rt+1+μP (xt+1, θt)−P (xt, θt))
t∑

k=t−K

(μλ)t−ke(k, θt)
∂e(k, θt)

∂θ
(12)

The function P (xt+1, θt) in equation (13) is obtained from (10) and, finally,
by replacing (13) into (12), the proposed learning algorithm is given.

P (xt+1, θt) =
1
2
e2(t + 1, θt) + μλP (xt, θt) (13)

In the prediction problem of the discounted expected gain Rt, a good es-
timation of Rt given by R̂t is expected; that implies P (xt, θt) goes to rt+1 +
μP (xt+1, θt). This condition is obtained from equation (3). Given that the pre-
diction function is the weighted sum of the square identification error e2(t), then
it is expected that:

0 ≤ rt+1 + μP (xt+1, θt) < P (xt, θt) (14)

On the other hand, a suitable adjustment of identification model means that
the following condition is accomplished:

0 < P (xt+1, θt) < P (xt, θt) (15)

The reinforcement rt+1 is defined in order to accomplish the expected condi-
tion (14) and taking into account the condition (15). Then, by using equations
(10) and (13):

rt+1 = 0 if P (xt+1, θt) ≤ P (xt, θt)

rt+1 = −1
2
μe2(t + 1, θt) if P (xt+1, θt) > P (xt, θt) (16)

In this way, the identification error into the prediction function P (xt+1, θt),
according to the equation (13), is rejected by using the reinforcement in equation
(16). The learning rate η in (12) is defined by the equation (17). Parameters μ
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and λ can depend on the system dynamic: small values in case of slow dynamical
systems, and values around 1 in case of fast dynamical systems.

η(t) =
η(t − 1)

ρ + η(t − 1)
, 0 < ρ < 1 (17)

The proposed identification learning algorithm can be studied like a descent-
gradient method with respect to the parametric predictive function P . In the
descent-gradient method, the objective is to find the minimal value of the er-
ror measure on the parameters space, denoted by J(θ), by using the following
algorithm for the parameters adjustment:

θt+1 = θt + Δθt = θt + 2α(E{z|xt} − P (xt, θ))∇θP (xt, θ) (18)

In this case, an error measure is defined as:

J(θ, x) = (E{z|x} − P (x, θ))2 (19)

where E{z|x} is the expected value of the real value z, from the knowledge of
the available data x. In this work, the learning algorithm (12) is like a learning
algorithm (18), based on the descent-gradient method, where rt+1+μP (xt+1, θt)
is the expected value E{z|x} in (19). By appropriate selecting rt+1 according to
(16), the expected value in the learning problem is defined in two ways:

E{z|x} = μP (xt+1, θt) ifP (xt+1, θt) ≤ P (xt, θt) (20)

or
E{z|x} = μ2λP (xt, θt) ifP (xt+1, θt) > P (xt, θt) (21)

Then, the parameters adjustment is made on each iteration in order to attain
the expected value of the prediction function P according to the predicted value
of P (xt+1, θt) and the real value P (xt, θt). In both of cases, the expected value
is minor than the obtained real value P (xt, θt) and the selected value of rt+1
defines the magnitude of the defined error measure.

4 Illustrative Example

This section shows an illustrative example applied to fuzzy identification of time-
varying non-linear systems by using the proposed on-line RL-based identification
algorithm in order to adjust the parameters vl

i, wl
i and ul of the DAFM described

in section 2.2. The performance of the fuzzy identification is evaluated according
to the identification relative error (er = y(t)−ye(t)

y(t) ) normalized on [0, 1].
The system is described by the following difference equation:

y(t + 1) =
y(t)y(t − 1)y(t − 2)u(t − 1)(y(t − 2) − 1) + u(t)

a(t) + y(t − 2)2 + y(t − 1)2
= g[.] (22)



628 M. Cerrada, J. Aguilar, and A. Titli

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

time (sec)

re
la

tiv
e 

er
ro

r

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

time (sec)

re
al

 o
ut

pu
t(

−
),

 e
st

im
at

ed
 o

ut
pu

t (
−

 −
)

Fig. 1. Fuzzy identification using off-line tuning algorithm

where a(t) = 1 + 0.1 sin(2πt/100). In this case, the unknown function g = [.]
is estimated by using the DAFM and, additionally, a sudden change on a(t) is
proposed by setting a(t) = 5, t > 450.

Figure 1 shows the performance of the DAFM using the off-line gradient-based
tuning algorithm with initial conditions on the interval [0, 1] and using the input
signal (23). After an extensive training phase, the fuzzy model with M = 8 is
chosen.

u(t) =
{

1.5 + (0.8 sin(2πt/250) + 0.2 sin(2πt/25)) if 301 < t < 550
sin(2πt/250) if otherwise

(23)

In the following, fuzzy identification performance by using the proposed
RL-based tuning algorithm is presented. Here, λ = μ = 0.9, K = 5 and
the learning rate is set up by the equation (17) with η(0) = 0.01. After ex-
perimental proofs, the performance approaching the accuracy obtained from
off-line adjustment is obtained with M = 20, figure 2 shows the tuning algo-
rithm performance. However, a good performance is also obtained with M = 8.
Table 1 shows the comparative values related to the RMSE. Figure 3, shows
the algorithm sensibility according to the initial conditions and figure 4 shows
the algorithm performance under changes on the internal dynamics by taking
a(t) = 1 + 0.3 sin(2πt/10).

Table 1. Comparison between the on-line proposed algorithm and off-line tuning

M RMSE on-line RMSE off-line
8 0.0323 0.0156
10 0.0339 0.0837
15 0.0339 0.0308
20 0.0205 0.1209



Reinforcement Learning-Based Tuning Algorithm 629

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

time index

re
la

tiv
e 

er
ro

r

0 100 200 300 400 500 600 700 800
−2

−1.5

−1

−0.5

0

0.5

1

time index

re
al

 o
ut

pu
t(

−
),

 e
st

im
at

ed
 o

ut
pu

t (
−

 −
)

Fig. 2. Fuzzy identification using RL-based tuning algorithm. Initial conditions on
[0.5, 1.5].
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Fig. 3. Fuzzy identification using RL-based tuning algorithm. Initial conditions on
[0, 1].
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Fig. 4. Fuzzy identification using RL-based tuning algorithm



630 M. Cerrada, J. Aguilar, and A. Titli

The previous tests show the performance and the sensibility of the proposed
on-line algorithm is adequate in terms of the initial conditions of the DAFM
parameters, changes on the internal dynamic and changes on the inputs signal.
Table 1 also shows the number of rules M do not strongly determines the global
performance of the proposed on-line algorithm.

5 Conclusions

In this work, an on-line tuning algorithm based on reinforcement learning for
identification problem has been proposed. Both the prediction function and the
reinforcement signal have been defined by taking into account the identification
error and the obtained algorithm can be studied like a descend-gradient-based
method. In order to show the algorithm performance, an illustrative example
related to time-varying non-linear system identification using a DAFM has been
developed. The performance of the on-line algorithm is adequate in terms of
the main aspects to be taken into account in on-line identification: the initial
conditions of the model parameters, the changes on the internal dynamic and the
changes on the input signal. This one highlights the use of the on-line learning
algorithms and the proposed RL-based on-line tuning algorithm could be an
important contribution for the system identification in dynamical environments
with perturbations, for example, in process control area.
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