
A SUSTAINABLE FRAMEWORK FOR
CYBER-PHYSICAL SYSTEMS

by
Luisa Fernanda Restrepo Gutierrez

A dissertation submitted to The EAFIT University in conformity
with the requirements for the degree of Doctor of Philosophy in Engineering

Medellín,Colombia
2024

© 2024 Luisa Restrepo
All rights reserved

Abstract

Cyber-Physical Systems (CPS) represent a new generation of systems where the cy-

ber and physical layers are strongly interconnected. Developing these types of system

involves two essential aspects. First, design sustainable architectures with a focus on

adaptation to create robust and economically viable products. Second, employ self-

adaptive techniques to adjust CPSs to the evolving circumstances of their operational

context. The aim of this research is to propose a comprehensive framework as the

foundational design for developing sustainable cyber-physical systems. The frame-

work is built on strategies such as microservices and MAPE-K methodologies, with

the aim of achieving sustainability in the proposed system. The suggested frame-

work has been applied to the smart home management system for seniors, specifically

instantiated for patients with stage 1 hypertension , using mining techniques. This

instantiation serves as a guide for incorporating autonomy microservices to achieve

sustainability and also for evaluating the viability and robustness of this proposal.

Keywords: Cyber-physical systems, Design, Sustainability, Framework

Primary reader and thesis advisor:

Dra. Elizabeth Suescún
Professor
Department of Product and Experience Design Area
Universidad EAFIT

Secondary readers:

Dr. Jose Aguilar

ii

Abstract

Professor
Department of Engineering
Universidad EAFIT

iii

Scientific contributions

Several scientific articles were generated and published during the development pro-

cess of this research project.

Published articles:

• Luisa Restrepo, Jose Aguilar, Mauricio Toro, Elizabeth Suescún, A sustainable-

development approach for self-adaptive cyber–physical system’s life cycle: A

systematic mapping study, Journal of Systems and Software, Volume 180, 2021,

111010, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2021.111010.

• Restrepo Gutierrez, Luisa Fernanda, Pablo Bernal Moreno, Elizabeth Suescún

Monsalve, Jose Lisandro Aguilar Castro, and César Jesus Pardo Calvache. 2023.

“Toward a Conceptual Framework for Designing Sustainable Cyber-Physical

System Architectures: A Systematic Mapping Study”. Heritage and Sustainable

Development 5 (2):253-79. https://doi.org/10.37868/hsd.v5i2.226.

Articles submitted to journals:

• Restrepo Gutierrez, Luisa Fernanda, Suescún Monsalve Elizabeth, and Aguilar

Castro Jose Lisandro. 2024. “SinSO: An ontology of Sustainability in Software”.

Artículo bajo revisión en Applied Ontology, Q1.

• Arce Vargas. Cesar Augusto, Restrepo Gutierrez, Luisa Fernanda, Suescún

Monsalve Elizabeth y Aguilar Jose. NFR-Based Framework para el Análisis de

la Sostenibilidad en Sistemas Ciberfísicos. INGE CUC. Artículo aceptado en

iv

Jose
Nota adhesiva
y el articulo

Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments????

Scientific contributions

proceso de revisión.

v

Acknowledgement

I would like to express my deepest gratitude to my partner and sons for their un-

wavering support, understanding, and patience throughout this journey. Their love

and encouragement have been my anchor, enabling me to navigate the challenges of

completing this dissertation. I am also immensely grateful to my advisors, Elizabeth

Suescún and Jose Aguilar, for their invaluable guidance, expertise, and unwavering

belief in me. Their mentorship has been instrumental in shaping this work. Addi-

tionally, I extend my thanks to EAFIT University for the financial support that made

this PhD journey possible.

vi

Table of Contents

Abstract . ii

Scientific contributions . iv

Acknowledgement . vi

Chapter 1 Introduction and research context 1
1.1 Problem statement and motivation 1
1.2 Research Objectives . 4

1.2.1 General objective . 4
1.2.2 Specific objectives . 4

1.3 Contributions and research scope . 4
1.4 Thesis organization . 6

Chapter 2 State of the art on sustainable development for Self-
Adaptive Cyber-Physical System’s 8

2.1 Motivation . 8
2.2 Identification of the article . 8
2.3 Abstract . 8

2.3.1 Link to full paper . 9

Chapter 3 SinSO: An ontology of Sustainability in Software 10
3.1 Motivation . 10
3.2 Identification of the article . 10
3.3 Abstract . 10

3.3.1 Link to full paper . 11

Chapter 4 NFR-Based framework para el análisis de la sostenibili-
dad en sistemas ciberfísicos (CPS) 12

4.1 Motivation . 12
4.2 Identification of the article . 12
4.3 Abstract . 12

vii

Jose
Nota adhesiva
estas haciendo un capitulo por articulo, lo mejor es que agrupes en funcion de sus vinculos

capt 2 ok

4, 5 y 6 no estan muy cerca??, podrian quedar en un capitulo

Jose
Nota adhesiva

Table of Contents

4.3.1 Link to full paper . 13

Chapter 5 Toward a conceptual framework for designing sustain-
able cyber-physical system architectures: A systematic
mapping study . 14

5.1 Motivation . 14
5.2 Identification of the article . 14
5.3 Abstract . 14

5.3.1 Link to full paper . 15

Chapter 6 Towards Sustainable Cyber-Physical Systems: A Com-
prehensive Framework and Case Study for Healthcare
Enviroments . 16

6.1 Motivation . 16
6.2 Identification of the article . 16
6.3 Abstract . 16

6.3.1 Link to full paper . 17

Chapter 7 Conclusions . 18
7.1 Summary . 18
7.2 Limitations and future work . 20

Bibliographic references . 23

Appendix A State of the art on sustainable development for Self-
Adaptive Cyber-Physical System’s 25

Appendix B SinSO: An Ontology of Sustainability in Software 43

Appendix C NFR-Based framework para el análisis de la sostenibili-
dad en sistemas ciberfísicos (CPS) 84

Appendix D Toward a conceptual framework for designing sustain-
able cyber-physical system architectures: A systematic
mapping study . 139

viii

Table of Contents

Appendix E Towards Sustainable Cyber-Physical Systems: A Com-
prehensive Framework and Case Study for Healthcare
Enviroments . 167

ix

Chapter 1

Introduction and research context

1.1 Problem statement and motivation

Cyber-Physical Systems (CPSs) are systems composed of collaborative computational

elements to control physical entities [1]. CPSs integrate (i) Mathematical modeling

of physical systems, (ii) Formal computation models, (iii) Simulation of heteroge-

neous systems, (iv) Software engineering strategies, and (v) Verification and valida-

tion methods [2].

A concept associated with CPSs is the Internet of Things (IoT), where communication

is very important [3], in which systems are interconnected and collaborate. Taken

together, CPSs and IoT will conform to most of the future applications of information

technology [3]. Most CPSs are designed for specific types of requirements [4]. Usually,

these requirements concern both the physical and the cyber parts, and functional

and non-functional software-related aspects. In the physical part, actuators, sensors,

and embedded system processors are used for computer-controlled tasks. In turn,

the physical part must interact with the cyber part, implemented through software

systems, in order (i) to process data from the entire CPS, (ii) to diagnose all types of

system failures, (iii) to make real-time decisions to prevent major failures, and (iv)

to make data-based decisions that exhibit real-world behavior [5].

The use of self-adaptation techniques in CPSs, is considered an effective approach to

deal with changes in its environment and structure. Current challenges include the

1

Chapter 1. Introduction and research context

design and development of effective, energy-efficient, and sustainable self-adaptive

CPSs (SA-CPSs) [6]. According to Koziolek et al. [7], sustainability implies the

development of technically–robust and economically–profitable products. Although

sustainability has been more associated with the environmental context, it is becom-

ing –increasingly– important in the context of engineering, in general, and software

engineering, in particular [8]. In software systems that are part of a CPS, sustainabil-

ity is –strongly– linked to non-functional attributes such as maintainability. Koziolek

et al. define that maintainability is divided in the following non-functional attributes:

(i) analysability, (ii) stability, (iii) testability, (iv) understandability, (v) modifiability,

(vi) portability, and (vii) evolvability [7].

The design of CPSs –both the physical part and the cyber part– should include the de-

sign of their architecture and its sustainability. Additionally to this, their design must

consider issues related to self-adaptation to satisfy requirements in a dynamic envi-

ronment [9]. The concept of architecture has several meanings (and definitions): The

International Organization for Standarization (ISO) defines architectural design as

the "process of conceiving, defining, expressing, documenting, communicating, certify-

ing, maintaining and improving an architecture throughout a system’s life cycle"[10].

The design of architecture is a key process in the System-Development Life-Cycle

(SDLC), and the quality of the architecture of a system –strongly– determines its

sustainability [7, 11].

Understanding and identifying sustainability strategies used at each stage of the

SDLC of SA-CPSs, is important for the success of sustainable systems, and, par-

ticularly, to (i) improve practices; (ii) identify current opportunities, threats, trends;

2

Chapter 1. Introduction and research context

and, also, (iii) serve as an inspiration for the development of future sustainable au-

tonomous systems. Nonetheless, making a system sustainable by adding attributes

such as self-adaptation, increasing evolvability and energy efficiency, may increase

its complexity and maintenance (by humans). The increase in complexity is both

at the level of development and deployment. The first is related to the way the so-

lution is implemented and the second is related to the context where will be used

the solution (domain, process). Also, the maintainability plans allow for establishing

specific practices, as well as resources and relevant sequences of activities, which can

be difficult to be followed/apply by humans. Thus, trade-offs should be taken into ac-

count when using sustainability strategies in CPSs considering the different elements

involved. Previous works do not carry out an analysis of sustainability strategies

used at each stage of the SDLC of the CPSs, based on the above ideas. Lin et al.

[12] point out that existing methods for designing and developing CPSs are usually

limited to specific fields of application or domain. Another problem that this work

found is that some approaches are focused only on the physical part of the CPSs,

ignoring the cyber part, or others only deal with the cyber part, resulting in a lack

of integration. Finally, Lin and Panahi propose a framework for the development of

CPSs, with an emphasis on sustainability and predictability. However, they restrict

the system architecture to Service-Oriented Architecture (SOA), without taking into

account the use of other architectural patterns in the design of the CPSs architecture

[13].

3

Chapter 1. Introduction and research context

1.2 Research Objectives

1.2.1 General objective

Propose a conceptual framework for the architectural design of sustainable cyber-

physical systems.

1.2.2 Specific objectives

• O1: Identify the approaches and challenges used to develop self-adaptive CPSs

(SA-CPSs) at each stage of the System-Development Life-Cycle (SDLC) focused

on sustainability.

• O2: Design a high-level ontology of what is sustainability in software in terms

of economic, technical, environment, social, and individual dimensions.

• O3: Develop a model for the specification, analysis, weighting, and evaluation

of sustainability in CPSs based on the NFR Framework.

• O4: Develop a conceptual framework for the design of sustainable cyber-physical

systems architecture.

• O5: Demonstrate the use of the conceptual framework.

1.3 Contributions and research scope

This research makes several noteworthy contributions to the field of sustainable cyber-

physical systems:

4

Chapter 1. Introduction and research context

• A general overview of the strategies used for the development of self-adaptive

CPSs, gaps found in each stage of the System-Development Life Cycle.

• An ontology called SinSO that contributes to reducing ambiguity and boosting

understanding in sustainability in software domain.

• A methodological tool that allows to analyze aspects related to a central ques-

tion: how to represent the contributions of non-functional requirements and

their possible operationalization within the framework of sustainability in CPSs?.

• A general overview of the models, frameworks, representations, and strategies

used to design software and CPSs architectures.

• Development of a comprehensive framework: We propose a novel framework

for the development of sustainable cyber-physical systems, which integrates

adaptation-centric architectures, microservices, and the MAPE-K paradigm

(Monitor-Analyze-Plan-Execute-Knowledge) to address the challenges posed by

the interconnected nature of CPS.

• Application to real-world scenario: The framework is applied to a practical

scenario, specifically targeting smart home management systems for seniors.

Instantiation for patients with stage 1 hypertension shows the applicability of

the proposed framework in a simulated healthcare setting.

• Utilization of mining techniques: Our research incorporates mining techniques

to tailor the framework to the specific needs of patients with hypertension. This

demonstrates the adaptability of the framework and its potential for customiza-

5

Chapter 1. Introduction and research context

tion to various use cases.

• Guide for autonomy microservices integration: The instantiated framework

serves as a practical guide for the incorporation of autonomy microservices,

providing insights into the achievement of sustainability within the context of

CPSs.

Demonstrating the usability in a real case study is beyond the scope of this work.

Difficulties in time make it difficult to evaluate and validate the results obtained at full

scale. However, the results are evaluated by instantiating the proposal in a simulated

case study.

1.4 Thesis organization

This document is outlined as follows:

This thesis is presented as a collection of articles developed to meet each of the

proposed objectives. Chapter 2 describes the results of our SLR on sustainable devel-

opment for Self-Adaptive Cyber-Physical System’s. This SLR allowed us to identify

trends, challenges, and research opportunities in this field. Chapter 3 shows the

ontology of sustainability in software that achieves the second objective, Chapter 4

presents the methodological tool that represent the contributions of nonfunctional

requirements to sustainability in CPS, Chapter 5 shows a first version of the frame-

work for Sustainable Cyber-Physical Systems achieving fourth objective, Chapter 6

presents the final version of the framework and the experimental context and a sim-

ulated study of monitoring seniors’ health status achieving objectives four and five.

6

Chapter 1. Introduction and research context

Finally, Chapter 7 presents a summary of the conclusions of all the articles presented

in the previous sections. We also show the limitations of our research and possible

future work.

7

Chapter 2

State of the art on sustainable development for
Self-Adaptive Cyber-Physical System’s

2.1 Motivation

In this chapter, we present the results for Objective 1, the main trends and challenges

in sustainable-development for Self-Adpative Cyber-Physycal Systems. Also, we show

the main challenges and research opportunities. Below, we present the title and

abstract of the SLR and then, a link to the full paper. This literature review resolves

objective 1: Identify the approaches and challenges used to develop self-adaptive CPSs

(SA-CPSs) at each stage of the System-Development Life-Cycle (SDLC) focused on

sustainability. The arcticle about the SLR is in Appendix A.

2.2 Identification of the article

Luisa Restrepo, Jose Aguilar, Mauricio Toro, Elizabeth Suescún, A sustainable-

development approach for self-adaptive cyber–physical system’s life cycle: A sys-

tematic mapping study, Journal of Systems and Software, Volume 180, 2021, 111010,

ISSN 0164-1212, https://doi.org/10.1016/j.jss.2021.111010.

2.3 Abstract

Cyber-Physical Systems (CPS) refer to a new generation of systems where the cyber

and physical layers are –strongly– interconnected. The development of these sys-

8

Chapter 2. State of the art on sustainable development for Self-Adaptive
Cyber-Physical System’s
tems requires two fundamental parts. First, the design of sustainable architectures

–centered on adaptation, throughout a System-Development Life-Cycle (SDLC)– to

develop robust and economically profitable products. Second, the use of self-adaptive

techniques to adjust CPSs to the evolving circumstances of their operation context.

This work presents a systematic mapping study (SMS) that discusses different ap-

proaches used to develop self-adaptive CPSs (SA-CPSs) at each stage of the SDLC,

focused on sustainability. The results show trends such as (i) Designs are not lim-

ited to particular application domains, (ii) Performance was the most commonly used

attribute, and (iii) Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-

K) is the predominant feedback loop applied in the cyber layer. The results also

raise challenges such as (i) How to design and evaluate sustainable SA-CPSs, (ii)

How to apply unit and integration testing in the development of SA-CPSs, and (iii)

How to develop feedback loops on SA-CPSs with the integration of machine-learning

techniques.

2.3.1 Link to full paper

Appendix A.

9

Chapter 3

SinSO: An ontology of Sustainability in Software

3.1 Motivation

Software sustainability applies to all types of systems that involve a cyber part, such

as self-adaptive CPSs (SA-CPSs). However, according to the results of the literature

review, it is necessary to understand the sustainability concept since the definitions

of Software Sustainability found in the literature have terminological inconsistencies.

By creating an ontology for Sustainability in Software, we can decrease the inconsis-

tencies and facilitate information sharing in the sustainability domain, thus making

assumptions over this domain explicit. An ontology is also useful for the analysis

of knowledge and relationships in this domain. Also, to achieve objective O2 (De-

sign a high-level ontology of what is sustainability in software in terms of economic,

technical, environment, social and individual dimensions.).

3.2 Identification of the article

In process of publication.

3.3 Abstract

Sustainability in systems refers to applying sustainable principles and practices to

create more resilient, efficient, and equitable systems that promote the well-being of

people and the planet. Sustainability is an essential topic in contemporary software

10

Chapter 3. SinSO: An ontology of Sustainability in Software

engineering, and its relationship with the characteristics and properties of a system

or product called quality attributes is still an open question since each researcher

has established their definition of sustainability in software. This has created di-

verse terms and concepts for distinct application environments and scopes, creating

ambiguity and misconceptions. This work defines a domain ontology of Sustainabil-

ity in Software named SinSO to address these issues. SinSO was implemented in

OWL, using competency-based questions to validate. The findings show that this

proposal satisfies several quality and content requirements. Also, using Protégé and

the Hermit reasoner, we verified that SinSO is consistent since the ontology state-

ments are coherent and do not lead to conflicting or contradictory conclusions. In

addition, competency questions allowed us to demonstrate that SinSO does fulfill its

purpose. FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was

used in two case studies, one about software for senior-citizen smart-home, and the

other, a simulator to develop and test smart-city applications, achieving positive out-

comes. To verify its accuracy, completeness, and maintainability, further evaluations

of SinSO are needed in real case studies. We conclude that SinSO can significantly

contribute to reducing ambiguity and enhancing comprehension in this area. Fur-

thermore, SinSO can be an effective tool for engineers to recognize the concepts and

relationships in the sustainable domain to consider in the systems development life

cycle to build sustainable systems.

3.3.1 Link to full paper

Appendix B.

11

Chapter 4

NFR-Based framework para el análisis de la
sostenibilidad en sistemas ciberfísicos (CPS)

4.1 Motivation

After the creation of the ontology, it is necessary to have a tool to determine and

evaluate sustainability in the CPSs, that’s why this paper focuses on proposing a

methodological tool that allows us to represent the contributions of non-functional

requirements and their possible operationalization within the framework of sustain-

ability in CPSs. The proposed model is a useful and versatile tool in the process of

specification, analysis, weighting, and evaluation of sustainability in CPSs achieving

the third objective.

4.2 Identification of the article

In process of publication.

4.3 Abstract

The analysis of sustainability in cyber-physical systems (CPS) and its relationship

with non-functional requirements has become one of the most critical issues today.

The diversity of contexts, concepts, design criteria and points of view of designers and

researchers can generate ambiguities and make it difficult to determine or measure the

sustainability of systems. To address this problem, this paper proposes a method-

12

Chapter 4. NFR-Based framework para el análisis de la sostenibilidad en sistemas
ciberfísicos (CPS)
ological tool whose main objective is to represent sustainability through the NFR

Framework, and to clarify the attributes that contribute to its future operationaliza-

tion. Through the analysis and enumeration of the non-functional requirements, it is

proposed to formulate a series of questions that, when solved, allow to identify key

aspects in the framework of sustainability and to evaluate them in scales of relevance

defined according to the context. The designer and his team could use this model to

establish metrics that indicate the relationships and contribution levels of each of the

non-functional requirements in favor of sustainability. Although the final weighting

falls again on the designer and his team, the proposed model allows documenting,

standardizing and defining in detail the process carried out and the valuation scale

applied.

4.3.1 Link to full paper

Appendix C.

13

Chapter 5

Toward a conceptual framework for designing
sustainable cyber-physical system architectures: A
systematic mapping study

5.1 Motivation

To achieve the development of a conceptual framework for the design of sustain-

able cyber-physical systems architecture, an SMS is being executed to identify which

strategies, methodologies, and frameworks are used in the design of CPSs archi-

tectures. As a result of this process, an initial version of the proposed conceptual

framework was constructed to be evolved.

5.2 Identification of the article

L. F. Restrepo Gutierrez, P. Bernal Moreno, E. Suescún Monsalve, J. L. Aguilar

Castro, and C. J. Pardo Calvache, “Toward a conceptual framework for designing

sustainable cyber-physical system architectures: A systematic mapping study”, Her-

itage and Sustainable Development, vol. 5, no. 2, pp. 253–279, Sep. 2023.

5.3 Abstract

Cyber-physical systems (CPS) represent devices whose components enable interaction

between machines and processes. One of the biggest challenges of these systems today

is the ability to adjust to changes at the time of execution as they are implemented

14

Chapter 5. Toward a conceptual framework for designing sustainable cyber-physical
system architectures: A systematic mapping study
in environments with a multidimensional complexity, this challenge is currently ad-

dressed from the design of the systems themselves by integrating sustainability. With

this problem in mind, the present document describes a systematic mapping study

of the literature with the goal of demonstrating the current panorama of the frame-

works, designs, and/or models used at the time of initiating the development of a

cyber-physical system. As a result, it has been concluded that there is a lack of

guidelines to construct sustainable, and evolvable cyber-physical systems. To address

these issues, a framework for designing sustainable CPS architectures is outlined.

5.3.1 Link to full paper

Appendix D.

15

Chapter 6

Towards Sustainable Cyber-Physical Systems: A
Comprehensive Framework and Case Study for
Healthcare Enviroments

6.1 Motivation

The previous version of the framework was refined to produce the final proposal.

Demonstrating the usability in a real case study is beyond the scope of this work.

Difficulties in time make it difficult to evaluate and validate the results obtained on a

full scale. However, the results are evaluated by instancing the proposal in real case

studies.

6.2 Identification of the article

In process of making adjustments to be submitted to magazines.

6.3 Abstract

Cyber-Physical Systems (CPS) represent a new generation of systems where the cy-

ber and physical layers are strongly interconnected. Developing these types of system

involves two essential aspects. First, design sustainable architectures with a focus on

adaptation to create robust and economically viable products. Second, employ self-

adaptive techniques to adjust CPSs to the evolving circumstances of their operational

context. The aim of this research is to propose a comprehensive framework as the

16

Chapter 6. Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments
foundational design for developing sustainable cyber-physical systems. The frame-

work is built on strategies such as microservices and MAPE-K methodologies, with

the aim of achieving sustainability in the proposed system. The suggested frame-

work has been applied to the smart home management system for seniors, specifically

instantiated for patients with stage 1 hypertension , using mining techniques. This

instantiation serves as a guide for incorporating autonomy microservices to achieve

sustainability and also for evaluating the viability and robustness of this proposal.

6.3.1 Link to full paper

Appendix E.

17

Chapter 7

Conclusions

This thesis made contributions on the design of sustainable cyber-physical systems

architecture. In this chapter, we present a summary of the results of all of the work

presented above. In addition, we show limitations and research opportunities for the

future.

7.1 Summary

The SMS presented general strategies used to design SA-CPSs, at each stage of the

SDLC. This SMS unveiled several trends in the design of SA-CPSs. First, the de-

signs are not limited to particular application domains. Second, performance was

the most commonly used attribute. Third, MAPE-K is the predominant feedback

loop applied to the cyber layer with the use of complement adaptation strategies.

Fourth, the creation of component-based projects for the development of the designs

and the simulation of these proposed designs. Fifth, sustainability, in SA-CPSs, has

been addressed through self-adaptation, and the use of quality attributes such as

adaptability, scalability, energy-efficiency, vaguely, modularity and reusability. This

SMS identified a crucial challenge such as How to design and evaluate sustainable

SA-CPSs.

To resolve the challenge first it was necessary to understand the sustainability concept

by creating an ontology for Sustainability in Software, to decrease the inconsistencies

and facilitate information sharing in the sustainability domain. That is why the

18

Chapter 7. Conclusions

second work defines a domain ontology of Sustainability in Software named SinSO to

address ambiguity and misconceptions on the diverse terms and concepts for distinct

application environments and scopes. SinSO identify quality attributes relevant to

the sustainable domain and their relationship with sustainability dimensions.

As a continuation of this work, it is defined to clarify the attributes that contribute

to its future operationalization. The model defined on the third work can be used

to establish metrics that indicate the relationships and contribution levels of each of

the non-functional requirements in favor of sustainability. The proposed model is a

highly useful and versatile tool in the process of specification, analysis, weighting and

evaluation of sustainability in CPSs.

After being clear about the trends in CPS design, how sustainability is defined and

its evaluation through quality attributes. It was necessary to carry out another SMS

with the main objective of identifying main models, frameworks, and/or architectures

to additionally propose a framework for designing sustainable CPS architectures that

help to solve the problems raised where sustainability is addressed. With this in

mind, the SMS demostrates the current panorama of the frameworks, designs, and/or

models used at the time of initiating the development of a cyber-physical system. It

was found that there are several practices from various sources, as well as several

types of representations for this kind of system. However, this was not the case

for cyber-physical systems, where fewer representations and design strategies were

found. Since CPS is a relatively new technology since is something that is still being

contributed. Also, it is missing a framework that allows for designing sustainable

CPS architectures. Finally, in the SMS, a preliminary version of the framework was

19

Chapter 7. Conclusions

constructed.

The last work contributed to the creation of the final framework for the development

of sustainable cyber-physical systems which are based on the concept of microservices

architecture allowing to construct of a framework of highly decentralized decreasing

coupling which also promotes the evolvability of the system at a granular level, with

technological independence. Having sustainability as the main non-functional re-

quirement, Also integrates the MAPE-K paradigm (Monitor-Analyze-Plan-Execute-

Knowledge) to address the challenges posed by the interconnected nature of CPS. The

application of the proposed framework to the smart home management system for

seniors, with a focus on patients with stage 1 hypertension , demonstrated its efficacy

in real-world scenarios. Through the utilization of mining techniques, the frame-

work provides a tailored solution, offering a guide for the integration of autonomous

microservices to achieve sustainability.

7.2 Limitations and future work

With the results of the present thesis, we were able to achieve the proposed objectives.

However, this thesis had some limitations in terms of validation, the models, and the

instantiation of the case study which are summarized below.

Even though the validation enabled us to achieve encouraging results, further evalua-

tions are needed in real case studies to verify the real-time implementation of SinSO,

particularly its accuracy, completeness, and maintainability. This would allow us to

strengthen the results achieved so far. Furthermore, SinSO may serve as the concep-

tual basis of future work to build a supporting method to develop sustainable systems

20

Chapter 7. Conclusions

by providing conceptual clarity, facilitating domain analysis, enabling knowledge in-

tegration, and supporting decision-making.

Future work proposes to extend and refine the existing methodology in order to

comprehensively address the sustainability of cyber-physical systems in specific or-

ganizational contexts, such as particular industries or social sectors. This extension

would provide insight into how the methodology can be adapted and customized to

meet the specific needs and requirements of various environments or applications.

In addition, consideration would be given to the inclusion of possible new criteria,

metrics, or evaluation approaches. As part of future work, it would be critical to

instantiate a practical example that would allow the methodology to be applied in a

real-world scenario. This would serve as a case study to validate the effectiveness and

applicability of the proposed model. The instantiation of this example would provide

a concrete basis for demonstrating the usefulness and relevance of the methodology

in specific situations.

For the SMS for identifying main models, frameworks, and/or architectures some of

the limitations encountered are: (i) given the vast and ever-evolving nature of software

and CPS architectures, it was challenging to encompass the entire breadth of relevant

research. The study may have missed emerging trends or underrepresented certain

architectural aspects due to the scope constraints. (ii) There is always the possibility

that some relevant papers were missed leading to potential biases in the included

literature, and (iii) the categorization of architectural aspects and the selection of

relevant studies involved a level of subjectivity. While efforts were made to ensure

rigor and objectivity, the absence of expert consensus or certain categorizations may

21

Chapter 7. Conclusions

introduce bias. However, to minimize these threats and avoid data extraction biases,

as mentioned, the entire process was executed by cross-checking between the authors.

Despite the promising outcomes of the framework proposed, it is important to ac-

knowledge certain limitations inherent, such as the lack of a complete instantiation

of a case study in a simulated environment or real context. Looking ahead, further

research and refinement of the framework will be crucial for addressing the identified

limitations and adapting to the evolving landscape of cyberphysical systems. As the

field of CPS continues to advance, our work contributes to the ongoing dialogue on

sustainable system development, offering a solid foundation for future endeavors in

this domain.

The absence of a complete instantiation of a case study in a simulated or real en-

vironment limited the depth of the assessment. This underscores the importance of

extending our experiments to more realistic settings. The challenges of obtaining real-

time health data for customization purposes highlighted the need for collaboration

with healthcare providers and the development of secure data sharing protocols.

The preliminary results lay the groundwork for future research to delve deeper into

the real-world application of the framework, emphasizing complete instantiation in

diverse environments. More research is warranted to address identified challenges,

such as refining the autonomy of microservice integration and developing strategies

to overcome data acquisition hurdles.

22

Bibliographic references

1. Manoharan, S. & Haapala, K. A grey box software framework for sustainability
assessment of composed manufacturing processes: A hybrid manufacturing case
in Procedia cirp 80 (2019), 440–445. doi:10.1016/j.procir.2019.01.088.

2. Jensen, J. C., Chang, D. H. & Lee, E. A. A model-based design methodology for
cyber-physical systems in 2011 7th international wireless communications and
mobile computing conference (2011), 1666–1671. doi:10 . 1109/ IWCMC.2011 .
5982785.

3. Marwedel, P. Embedded system design : embedded systems, foundations of cyber-
physical systems, and the internet of things doi:10.1007/978- 3- 319- 56045- 8
(Springer International Publishing, 2018).

4. Stankovic, J. A. Research directions for the internet of things. Ieee internet of
things journal 1, 3–9. doi:10.1109/JIOT.2014.2312291 (2014).

5. Lee, E. A. Cyber physical systems: Design challenges in Proceedings - 11th ieee
symposium on object/component/service-oriented real-time distributed comput-
ing, isorc 2008 (2008), 363–369. doi:10.1109/ISORC.2008.25.

6. Chantem, T., Guan, N. & Liu, D. Sustainable embedded software and systems
2019. doi:10.1016/j.suscom.2019.05.003.

7. Koziolek, H. Sustainability evaluation of software architectures: A systematic
review in Comparch’11 - proceedings of the 2011 federated events on component-
based software engineering and software architecture - qosa+isarcs’11 (ACM
Press, New York, New York, USA, 2011), 3–12. doi:10.1145/2000259.2000263.

8. Pankowska, M. in Mechanism design for sustainability: techniques and cases
265–281 (Springer Netherlands, 2013). doi:10.1007/978-94-007-5995-4{\{}{\textbackslash}
{_}{\}}13.

9. Zeadally, S., Sanislav, T. & Mois, G. Self-Adaptation Techniques in Cyber-
Physical Systems (CPSs). Ieee access 7, 171126–171139. doi:10.1109/ACCESS.
2019.2956124 (2019).

10. International Organization for Standardization. ISO/IEC/IEEE 42010:2011 -
Systems and software engineering. Architecture description 2011.

23

https://doi.org/10.1016/j.procir.2019.01.088
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/10.1109/JIOT.2014.2312291
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1016/j.suscom.2019.05.003
https://doi.org/10.1145/2000259.2000263
https://doi.org/10.1007/978-94-007-5995-4{\{}{\textbackslash}{_}{\}}13
https://doi.org/10.1007/978-94-007-5995-4{\{}{\textbackslash}{_}{\}}13
https://doi.org/10.1109/ACCESS.2019.2956124
https://doi.org/10.1109/ACCESS.2019.2956124

Bibliographic references

11. Chitchyan, R., Groher, I. & Noppen, J. Uncovering sustainability concerns in
software product lines. Journal of software: evolution and process 29. doi:10.
1002/smr.1853 (2017).

12. Lin, J., Sedigh, S. & Miller, A. Towards integrated simulation of cyber-physical
systems: A case study on intelligent water distribution in 8th ieee international
symposium on dependable, autonomic and secure computing, dasc 2009 (2009),
690–695. doi:10.1109/DASC.2009.140.

13. Lin, K. J. & Panahi, M. A real-time service-oriented framework to support sus-
tainable cyber-physical systems in Ieee international conference on industrial
informatics (indin) (2010), 15–21. doi:10.1109/INDIN.2010.5549473.

24

https://doi.org/10.1002/smr.1853
https://doi.org/10.1002/smr.1853
https://doi.org/10.1109/DASC.2009.140
https://doi.org/10.1109/INDIN.2010.5549473

Appendix A

State of the art on sustainable development for
Self-Adaptive Cyber-Physical System’s

25

The Journal of Systems & Software 180 (2021) 111010

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A sustainable-development approach for self-adaptive cyber–physical
system’s life cycle: A systematicmapping study✩

Luisa Restrepo a, Jose Aguilar a,b,c,∗, Mauricio Toro a, Elizabeth Suescún a

a RID on Information Technologies and Communications Research Group, Universidad EAFIT, Medellín, Colombia
b CEMISID Universidad de Los Andes, Mérida, Venezuela
c Universidad de Alcalá, Dpto. Automática, Alcalá de Henares, Spain

a r t i c l e i n f o

Article history:
Received 2 November 2020
Received in revised form 4 May 2021
Accepted 17 May 2021
Available online 8 June 2021

Keywords:
Self-adaptive systems
Sustainability
Cyber–physical systems
Systems-development life-cycle

a b s t r a c t

Cyber–Physical Systems (CPS) refer to a new generation of systems where the cyber and physical
layers are –strongly– interconnected. The development of these systems requires two fundamental
parts. First, the design of sustainable architectures –centered on adaptation, throughout a System-
Development Life-Cycle (SDLC)– to develop robust and economically profitable products. Second, the
use of self-adaptive techniques to adjust CPSs to the evolving circumstances of their operation context.
This work presents a systematic mapping study (SMS) that discusses different approaches used to
develop self-adaptive CPSs (SA-CPSs) at each stage of the SDLC, focused on sustainability. The results
show trends such as (i) Designs are not limited to particular application domains, (ii) Performance was
the most commonly used attribute, and (iii) Monitor–Analyze–Plan–Execute over a shared Knowledge
(MAPE-K) is the predominant feedback loop applied in the cyber layer. The results also raise challenges
such as (i) How to design and evaluate sustainable SA-CPSs, (ii) How to apply unit and integration
testing in the development of SA-CPSs, and (iii) How to develop feedback loops on SA-CPSs with the
integration of machine-learning techniques.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Cyber–Physical Systems (CPSs) are systems composed of col-
laborative computational elements to control physical entities.
Also, CPSs can be defined as complex and complicated systems
that require techniques of sophisticated design, which include
interaction between the physical world and the cyber world.
CPSs integrate (i) Mathematical modeling of physical systems,
(ii) Formal computation models, (iii) Simulation of heterogeneous
systems, (iv) Software engineering strategies, and (v) Verification
and validation methods (Jensen et al., 2011).

A concept associated with CPSs is the Internet of Things (IoT),
where communication is very important (Marwedel, 2018), in
which systems are interconnected and collaborate. Taken to-
gether, CPSs and IoT will conform to most of the future appli-
cations of information technology.

The design of CPSs is a task that has to be broken down
into several sub-tasks to be tractable (Marwedel, 2018). Most

✩ Editor: Heiko Koziolek.
∗ Corresponding author at: CEMISID Universidad de Los Andes, Mérida,

Venezuela.
E-mail addresses: lrestr61@eafit.edu.co (L. Restrepo),

jlaguilarc@eafit.edu.co, aguilar@ua.ve (J. Aguilar), mtorobe@eafit.edu.co
(M. Toro), esuescu1@eafit.edu.co (E. Suescún).

CPSs are designed for specific types of requirements (Stankovic,
2014). Usually, these requirements concern both the physical
and the cyber parts, and functional and non-functional aspects.
In the physical part, actuators, sensors, and embedded-system
processors are used for computer-controlled tasks. In turn, the
physical part must interact with the cyber part, implemented
through software systems, in order (i) to process data from the
entire CPS, (ii) to diagnose all types of system failures, (iii) to
make real-time decisions to prevent major failures, and (iv) to
make data-based decisions that exhibit real-world behavior (Lee,
2008).

The use of self-adaptation techniques, in CPSs, is considered
an effective approach to deal with changes in its environment and
structure. Current challenges include the design and development
of effective, energy-efficient, and sustainable self-adaptive CPSs
(SA-CPSs) (Chantem et al., 2019).

According to Koziolek (2011), sustainability implies the devel-
opment of technically–robust and economically–profitable prod-
ucts. Although sustainability has been more associated with the
environmental context, it is becoming –increasingly– important
in the context of engineering, in general, and software engineer-
ing, in particular (Pankowska, 2013). In software systems that
are part of a CPS, sustainability is –strongly– linked to non-
functional attributes such as maintainability. Koziolek et al. define
that maintainability is divided in the following non-functional

https://doi.org/10.1016/j.jss.2021.111010
0164-1212/© 2021 Elsevier Inc. All rights reserved.

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

attributes: (i) analysability, (ii) stability, (iii) testability, (iv) un-
derstandability, (v) modifiability, (vi) portability, and (vii) evolv-
ability (Koziolek, 2011).

The design of CPSs –both the physical part and the cyber
part– should include the design of their architecture and its sus-
tainability. Additional to this, their design must consider issues
related to self-adaptation to satisfy requirements in a dynamic
environment (Zeadally et al., 2019a). The concept of architecture
has several meanings (and definitions): The International Orga-
nization for Standarization (ISO) defines the architectural design
as the "process of conceiving, defining, expressing, documenting,
communicating, certifying, maintaining and improving an archi-
tecture throughout a system’s life cycle"(International Organiza-
tion for Standardization, 2011b). The design of an architecture is a
key process in the System-Development Life-Cycle (SDLC), and the
quality of the architecture of a system –strongly– determines its
sustainability (Koziolek, 2011; Chitchyan et al., 2017).

Understand and identifying sustainability strategies used at
each stage of the SDLC of SA-CPSs, is important for the success
of sustainable systems, and, particularly, to (i) improve practices;
(ii) identify current opportunities, threats, trends; and, also, (iii)
serve as an inspiration for the development of future sustainable
autonomous systems. Nonetheless, making a system sustainable
by adding attributes such as self-adaptation, increasing evolvabil-
ity and increasing energy-efficiency, may increase its complexity
and maintenance (by humans). The increase in complexity is both
at the level of development and deployment. The first is related
to the way the solution is implemented and the second is related
to the context where will be used the solution (domain, process).
Also, the maintainability plans allow establishing specific prac-
tices, as well as resources and relevant sequences of activities,
which can be difficult to be followed/applied by humans. Thus,
trade-offs should be taken into account when using sustainability
strategies in SA-CPSs considering the different elements involved.
Previous works do not carry out an analysis of sustainability
strategies used at each stage of the SDLC of the SA-CPSs, based on
the above ideas. Lin et al. (2009) point out that existing methods
for designing and developing CPSs are usually limited to specific
fields of application. Another problem that this work found is
that some approaches are focused only on the physical part of
the CPSs, ignoring the cyber part, or others only deal with the
cyber part, resulting in a lack of integration. Finally, Lin and
Panahi propose a framework, for the development of CPSs, with
an emphasis on sustainability and predictability. However, they
restrict the system architecture to Service-Oriented Architecture
(SOA), without taking into account the use of other architectural
patterns in the design of the CPSs architecture (Lin and Panahi,
2010).

1.1. Related works

In this section, three Systematic Literature Reviews (SLRs), asso-
ciated with SA-CPSs, were analyzed.

First, Muccini et al. (2016) investigated the role of
self-adaptation within CPSs. In their SLR, 42 studies were in-
cluded. In their analysis, Muccini et al. concluded that aspects
–such as performance and reliability– are well covered, and CPS’s
most challenging aspects –such as interoperability and security–
are still barely covered by the literature. Muccini et al. also
concluded that Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K)model is the dominant adaptation mechanism, followed
by agents and self-organization. The main challenges, defined
by Muccini et al., were: (i) How to map these aspects to layers
and adaptation mechanisms, (ii) How to integrate adaptation
mechanisms within and across layers, and (iii) How to ensure
system-wide consistency of adaptation.

Second, Musil et al. (2017) surveyed CPS studies that apply the
promising design strategy of combining different self-adaptation
mechanisms across the technology layers of the system (physical,
proxy, communication, service and middleware, application, and
social layers). In their research, Musil et al. identified perfor-
mance as the dominant adaptation purpose. For the adaptation
mechanisms, Musil et al. identified smart elements, multi-agent
systems, and MAPE-K as the most applied.

Third, Zeadally et al. (2019a) established the state-of-the-
art on CPSs from the self-adaptation perspective and evaluated
the main self-adaptive approaches proposed, in the literature.
Zedeally also evaluated the techniques to enable self-adaptation
capabilities –within CPSs– at different architectural layers. An
important conclusion is that adaptation should be implemented
in all layers of a CPSs, and that researchers must adopt a holis-
tic view of CPSs that includes (i) Self-adaptation, (ii) Auton-
omy, (iii) Efficiency, (iv) Functionality, (v) Reliability, (vi) Safety,
(vii) Scalability, and (viii) Usability. Zedeally et al. defined as
research opportunities the development of cost-effective self-
adaptation cross-layer solutions, as well as run-time model-
driven approaches that manage requirements.

1.2. Our contribution

In contrast to the SLRs of Zeadally et al. (2019a), Musil et al.
(2017), and Muccini et al. (2016), this article discusses the designs
of SA-CPSs from a perspective of the SDLC and identifies –at
each stage of the SDLC–: (i) How the development was carried
out and (ii) How sustainability –from both, the technical and
economical perspectives– was taken into account. These two
perspectives are the most relevant to CPSs according to Koziolek
et al.’s SLR (Koziolek, 2011).

The contribution of this article is summarized as follows: A
general overview of the strategies used for the development of
SA-CPSs, gaps found in each stage of the SDLC, and finally, trends
and future-research directions.

1.3. Organization

The present document is structured as follows. Section 2
presents the basis of sustainable and self-adaptive techniques, in
CPS, and the SDLC. Section 3 presents the methodology to search
and select relevant articles. Section 4 groups the articles found
in the literature, for each phase of the SDLC. Section 5 analyzes
the results of the reviewed articles, and presents the trends and
limitations found. Section 6 presents the potential challenges.
Finally, Section 7 outlines the conclusions of this research.

2. Background

This section is divided into three parts. First, it presents the
SDLC. Second, it introduces the definition of sustainability of
systems. Finally, it defines self-adaptability in CPSs.

2.1. System-development life-cycle (SDLC)

The SDLC is the framework to review the articles in this
SMS. SDLC defines all the stages a system goes through. This life
cycle is common to systems and software projects, and serves
as a framework to understand how systems are built. The SDLC
follows a set of four fundamental stages: (i) Planning, (ii) Analysis,
(iv) Design, and (v) Implementation (Dennis et al., 2014). In
software-engineering projects, it is common to have the test-
ing and maintenance stages, separated from the implementation
stage (Sommerville, 2015). Different projects may emphasize dif-
ferent parts of the SDLC, or approach the SDLC stages in different

2

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

ways; for instance, the work of Sánchez Aristizábal and Sarmiento
Garavito (2019).

For this SMS, a SDLC is proposed in Fig. 1. This life cycle
includes the planning, specification and analysis, design, imple-
mentation, integration, quality control, and maintenance stages,
defined as follows.

Planning: In this stage of the development of a system, it is
fundamental to (i) identify business needs to build a system,
(ii) understand why the system should be built, (iii) identify the
system’s contribution to the organization or context, (iv) evaluate
if the system is economically, technically and organizationally
feasible, and (v) establish a work plan to control the project
through the entire SDLC (Dennis et al., 2014).

Specification and analysis: This stage answers the questions of
(i) who will use the system, (ii) what the system will do, and (iii)
where and when the system will be used because the application
domain determines –largely– how a project will be oriented and
executed (Züllighoven, 2005). During this phase, the project team
investigates existing systems, identifies improvement opportuni-
ties, and develops a concept for the new system (Dennis et al.,
2014).

Design: Usually, at this stage, it is decided (i) how the system
will operate in terms of hardware, software, and networking
infrastructure that will be in place; (ii) how the user interface,
forms, and reports will be used; and (iii) what specific programs,
databases, and files will be needed. Although most of the strategic
decisions about the system are made in the analysis phase. The
design phase determines –exactly– how the system will operate.
Finally, at this stage, the system architecture must be designed
to guarantee the levels of the quality attributes specified (Dennis
et al., 2014).

Implementation: This stage consists of building the system, to
create the functionalities defined during the design stage (Som-
merville, 2015). Many strategies and software tools can be used
in this phase (e.g., open-source tools, Integrated Development Envi-
ronments [IDEs] to develop programs, simulation platforms, Com-
mercial Off-The-shelf [COT], and micro-controllers).

Integration: This stage integrates information technologies
(e.g., servers, databases, applications, and platforms) and physi-
cal objects (e.g., mechanic and electronic) using communication
technologies (Dennis et al., 2014; Marwedel, 2018; Pahl et al.,
2007).

Quality control: This stage aims to validate and verify that
the system (i) is appropriate, (ii) meets all requirements, and
(iii) will perform as expected. According to Marwedel (2018),
this stage is –extremely– important for safety-critical embedded
systems. System tests are conducted to ensure that all modules
and programs meet business requirements, and acceptance tests
are done to ensure that the system meets business needs such as
usability, security, or performance (Dennis et al., 2014).

Maintenance: This stage is the process of refining a system
where corrective, adaptive, perfective, and preventive mainte-
nance are made. "Corrective maintenance is performed to fix
errors, adaptive maintenance adds new capability and enhance-
ments, perfective maintenance improves efficiency, and preven-
tive maintenance reduces the possibility of future system fail-
ure" (Shelly and Rosenblatt, 2011).

Traditionally, to develop software products, methodologies are
used. Such methodologies set up the framework that structures
the phases described above –such as the waterfall model, iterative
model, spiral model, and V-model (Sommerville, 2015)–; how-
ever, most of them lack the generality to be used in CPSs. For
that reason, this research focuses on the SDLC proposed in Fig. 1
and described above.

Fig. 1. System-Development Life-Cycle from Dennis et al. (2014), Sommerville
(2015).

2.2. Sustainable development

Sustainable development is the practice of ‘‘meeting the needs
of society today without compromising the ability of future gen-
erations to meet their own needs" (Stavros and Sprangel, 2008).
In engineering, sustainability can be understood as the selection
and implementation of iterative and incremental methodologies,
which support the development of technologies in the long term,
at low cost, and with reduced effort (Pankowska, 2013).

Becker et al. (2015) identified five sustainability dimensions:
(i) environmental, (ii) social, (iii) economic, (iv) technical, and
(v) individual. Nonetheless, Koziolek et al. in a previous SLR,
found that the most relevant dimensions for CPSs are the eco-
nomic and technical (Koziolek, 2011). This is the reason why
our SMS focuses on the technical and economic dimensions,
but future studies must consider the social and environmental
dimensions. The economic dimension includes aspects such as
capital, profitability, investment, income, and wealth creation.
The technical dimension, according to Beckert et al. refers to the
longevity of software systems and infrastructure, and their ade-
quate evolution with changing surrounding conditions, including
maintenance, innovation, obsolescence, and data integrity.

The main quality attributes of sustainable system architec-
ture are Koziolek (2011): (i) maintainability, (ii) portability, and
(iii) evolvability. In what follows, these three quality attributes
are explained based on their sub-characteristics.

Maintainability: ISO/IEC 25010 (International Organization for
Standardization, 2011a) defines this attribute as the capability
of a product or system to facilitate maintenance activities –
such as corrections, improvements, or adaptation to changes in
the environment–, of requirements and functional specifications.
Also, maintainability includes the installation of updates and up-
grades. This attribute is subdivided into five sub-characteristics:
(i) modularity, (ii) reusability, (iii) analysability, (iv) modifiability,
and (v) testability. Maintainability is also related to evolvability.

Portability: According to ISO/IEC 25010, it is the ‘‘degree of
effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or
other operational or usage environment to another" (Interna-
tional Organization for Standardization, 2011a). This attribute
is subdivided into three sub-characteristics : (i) adaptability,
(ii) installability, and (iii) replaceability.

Evolvability: According to Rowe et al. (1994), it is an ‘‘attribute
that bears on the ability of a system to accommodate changes
in its requirements throughout the system’s lifespan, with the
least possible cost, while maintaining architectural integrity".
Pei Breivold (2020) established that this attribute is similar to the

3

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 1
Evolvability attribute’s sub-characteristics.
Sub-characteristic Definition

Maintainability
(Analysability
and testability)

Analysability - ‘‘Degree of effectiveness and
efficiency with which it is possible to assess
the impact on a product or system of an
intended change to one or more of its parts,
or to diagnose a product for deficiencies or
causes of failures, or to identify parts to be
modified’’ (International Organization for
Standardization, 2011a)
Testability - ‘‘Degree of effectiveness and
efficiency with which test criteria can be
established for a system, product or
component, and tests can be performed to
determine whether those criteria have been
met’’ (International Organization for
Standardization, 2011a).

Maintainability
(Modifiability)

This attribute is a combination of
changeability and stability (International
Organization for Standardization, 2011a)
and, according to our criteria is also
associated with the ability to extend a
system. This attribute is the degree to
which a product or system can be
effectively and efficiently modified without
introducing defects or degrading existing
product quality." (International
Organization for Standardization, 2011a).

Security (Integrity) ‘‘Degree to which a system, product or
component prevents unauthorized access to,
or modification of, computer programs or
data’’ (International Organization for
Standardization, 2011a).

Portability This attribute has been defined previously
Domain-specific attributes Additional quality sub-characteristics that

are required by specific domains
(Pei Breivold, 2020).

maintainability attribute, but in evolvability, one should consider
unexpected changes. On the one hand, Rowe et al. (1994) defined
(i) generality (accommodating change), (ii) adaptability, (iii) scal-
ability, and (iv) extensibility as quality attributes that contribute
to evolvability. On the other hand, Pei Breivold (2020) proposed
that (i) analysability, (ii) integrity, (iii) changeability, (iv) exten-
sibility, (v) portability, (vi) testability, and (vii) domain-specific
attributes are sub-characteristics associated with the evolvabil-
ity attribute. All these quality attributes can be mapped to the
ISO/IEC 25010 model, as shown in Table 1, where these attributes
are described.

A sustainable-system architecture must be able to evolve dur-
ing its life cycle: This means in development and production
environments, and this is achieved when the system is prepared
for maintenance and evolution, an attribute that –indirectly– in-
cludes the concepts of longevity and cost-effectiveness (Koziolek,
2011).

This SMS focuses on the technical and economic perspectives
of sustainability. On the technical, this article focuses on the
maintainability attribute achieved through quality attributes es-
tablished in the CPSs architecture (Hammoudi et al., 2018). This
attribute improves the evolution of the systems, decreasing life-
cycle costs and managing technical debt (Kruchten et al., 2012).
From the economic perspective, this SMS focuses on the costs
and incomes associated with the use and implementation of these
quality attributes.

2.3. Self-adaptive cyber–physical systems

Self-adaptation is the ability of a system to modify its be-
havior and/or structure in response to changes in its environ-
ment and user requirements (De Lemos et al., 2013; Weyns

Fig. 2. MAPE-K feedback loop.
Source: Adapted from Kephart
and Chess (2003).

and Georgeff, 2010). There are several feedback loops for the
implementation of self-adaptive systems used in the design of
CPSs. Typically, the MAPE-K loop is a dominant approach that
allows systems to manage themselves given high-level objectives,
which separates self-adaptation into the following components
(see Fig. 2) (Vizcarrondo et al., 2017).

Monitor: This component collects information by monitoring
context data from sensors and other sources (Seiger et al., 2019),
and –constantly– updates the knowledge component. This infor-
mation serves as the basis of adaptation. The monitor component
also supervises their suppliers and clients to ensure that they
are receiving and not exceeding the agreed-on level of service,
respectively (Kephart and Chess, 2003).

Analyzer: This component performs data analysis, stored on
the knowledge component, to determine if a change is needed
to satisfy the system goals. Plan: If an adaptation is needed, then
the plan component creates a procedure to reach a new tar-
get condition that satisfies the goals (including the intermediate
steps that occur when adapting from one state to another) (Ja-
han et al., 2020). In this component, strategies for translate-
service agreements are needed (Kephart and Chess, 2003). Exe-
cute: The planned procedure recommended by the plan compo-
nent is executed on the managed resources. Knowledge: This is a
shared knowledge-base (Kephart and Chess, 2003) for the other
components. The knowledge component comprises data that the
MAPE-K loop uses during the adaptation strategies.

MAPE-K is a cyclic process, where context and goals are
specified, observed, and managed. Another technique used is
multi-agents systems (MAS), which are autonomous approaches to
solving problems from artificial intelligence (Weyns and Georgeff,
2010). A MAS provides a way to conceptualize adaptive sys-
tems and self-organization of systems defined by interacting au-
tonomous agents, each acting, learning, or evolving –individually–
in response to interactions with their environments (Aguilar et al.,
2005; Dafflon et al., 2019; Perozo et al., 2008).

3. Methodology

The search strategy and the search process used for the articles
are explained as follows.

3.1. Search strategy

This research is a SMS of the methods –currently available–
for the design of the SA-CPSs systems, focused on the SDLC pro-
cess. This research uses the methodology for SMSs proposed by

4

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 2
Groups of terms and phrases.
Group Terms and phrases

G1 (‘‘Embedded Systems’’ OR ‘‘Cyber Physical Systems’’
OR ‘‘CPSs’’ OR ‘‘Cyberphysical Systems’’ OR
‘‘Cyber-physical Systems’’ OR ‘‘Internet of Things’’ OR
’’IoT’’ OR ‘‘Connected things’’ OR ‘‘Autonomous
systems’’ OR ‘‘Industrial internet of things’’ OR
‘‘Intelligent Systems’’ OR ‘‘Industry 4.0’’ OR ‘‘fourth
industrial revolution’’)

G2 (‘‘Self-adaptive’’ OR ‘‘Self Adaptive’’ OR
‘‘Self-adaptiveness’’ OR ‘‘Adaptative’’ OR ‘‘self
Adaptation’’ OR ‘‘self-adaptation’’)

G3 (‘‘Tools’’ OR ‘‘Instrument’’ OR ‘‘Device’’ OR ‘‘Strategies’’
OR ‘‘Methods’’ OR ‘‘Techniques’’ OR ‘‘Frameworks’’ OR
‘‘Structure’’ OR ‘‘Architecture’’ OR ‘‘Design’’)

Kitchenham and Charters (2007). For this research, the following
research questions were defined to provide adequate support for
SDLC.

• (Q1) Which planning strategies were used for SA-CPS?
• (Q2.1) What was the application domain?, (Q2.2) Which were

the specified quality attributes, and (Q2.3) Which specification
techniques were used for SA-CPS?

• (Q3.1) What self-adaptive techniques were used for SA-CPS?,
and (Q3.2) What architecture styles were used for SA-CPS?

• (Q4.1) How self-adaptation was implemented for SA-CPS?,
(Q4.2) How SA-CPS was implemented in the cyber layer, (Q4.3)
physical layer, and (Q4.4) network layer?

• (Q5) How SA-CPS components (e.g., sensors, actuators, servers,
and databases) were integrated?

• (Q6.1) How many application domains were tested? (Q6.2)
How SA-CPS solutions were validated, and (Q6.3) Which quality
attributes were verified?

• (Q7) Which strategies were planned for the maintenance of
SA-CPS?

• (Q8) How technical and economical sustainability was taken
into account at each phase of the SDLC, to develop SA-CPS?

To answer the previous research questions, three groups of
terms and phrases were defined. These terms and phrases were
used in the search process, and are listed in Table 2.

The search string was generated combining the previous
groups of terms and phrases. The search string is the concate-
nation of G1, G2 and G3, showed in Table 2. The boolean search
string used in this research is ‘‘G1 AND G2 AND G3’’.

The following restrictions to include/exclude publications
were defined. These criteria were developed to find the most
relevant articles to solve the research questions, and to exclude
the articles that do not fit this research.

There are four inclusion criteria (IC), numbered from IC1 to
IC4, as follows. IC1: Journal articles, conference papers, and book
chapters whose titles and abstract are related to frameworks or
architectures for self-adaptive CPSs. IC2: Journal articles, confer-
ence papers, and book chapters published between January 2010
and September 2020. IC3: Journal articles, conference papers, and
book chapters available in electronic form. Finally, IC4: Journal
articles, conference papers, and book chapters in the English
language.

There are two exclusion criteria (EC), numbered from EC1 to
EC2, as follows. EC1: Documents whose methods or techniques
do not apply to frameworks or architectures for self-adaptive
CPSs. EC2: Documents in the form of events, posters, unpublished
works, and secondary studies.

3.2. Search process

The search process was composed of five stages, based on
the study proposed by Li et al. (2015): (i) selection by title, (ii)
snowballing, (iii) first-results merge (iv) selection by abstract,
and (v) selection by full text. Each stage is detailed below and
summarized in Fig. 3.

Selection by title: The search process used the search strings
in Scopus and Web of Science, and the search was extended by
looking at Google Scholar, as shown in Fig. 3; after, candidate
documents were selected based on the title. Inclusion criteria IC1,
IC2, IC3, and IC4 were applied in this step. At the end of this step,
120 articles remained.

Snowballing: The backward ‘‘snowballing’’ technique was per-
formed to find other –potentially– relevant documents. Snow-
balling consists of checking the references of the previously se-
lected documents (Wohlin, 2014). This process could be iterated
as many as new documents are found; however, only the first
iteration was applied. At the end of this step, 39 new articles were
selected.

First-results merge: All candidate documents were merged for
each research question; however, duplicated studies were found.
A duplicated study is the one that is retrieved from different
search sources (i.e., digital libraries) because of the overlapping
between these sources. Duplicated documents were excluded
at the first stage of scanning, keeping only one version of the
document (the most complete, extended, or recent version). In
the end, 27 duplicated documents were removed. The total of
selected documents, at this stage, is illustrated in Fig. 3.

Selection by abstract: The candidate documents’ abstracts were
analyzed to guarantee that they were related to the desired topic
(i.e., SA-CPSs); at this point, 24 candidate documents remained.

Selection by full text: The previous documents’ full texts were
analyzed and cross-checks were performed by the authors to
validate the inclusion of each document, and as a result, 16
studies remained to build Table 3. Exclusion criteria EC1, and EC2
were applied at this step.

For the 16 documents selected, at the end of the search pro-
cess, it was identified that there is a growing trend in the scien-
tific production of SA-CPSs. Sweden and Italy are the countries
with the largest number of articles. Bures, T. and Gerostathopou-
los, I. are the most productive authors, and the most cited were
do do Nascimento and de Lucena (2017), and Iftikhar et al. (2017).
The subject area of the research is –mainly– in computer science
and engineering. The word-cloud for the search process result is
shown in Fig. 4. The size of each term indicates its frequency or
importance. The most common terms were (i) IoT, (ii) adapta-
tion, (iii) adaptive, (iv) software, (v) architecture, (vi) cyber, (vii)
physical, and (viii) embedded, as they were the focus of research.
Replication package is available in Mendeley repository (Restrepo,
2021).

3.3. Data items and extraction process

In this section, the methodology to review the articles is de-
tailed, which follows the workflow proposed in Fig. 1. In Section
4, the articles related to each stage of the SDLC are reviewed.
In general, the data of each paper was extracted and analyzed
through a cross-check process among the authors. Particular char-
acteristics are taken from each stage, in Fig. 1, through a
cross-check process to validate the inclusion of each character-
istic. These characteristics are detailed in Table 3, where the
characteristics and sub-characteristics to be analyzed, for each
stage, are listed. The characteristics represent some paths that the
reviewed articles, commonly, follow for each stage of the SDLC.

In Table 3, the Planning stage divides the articles that imple-
mented any planning strategy (Yes) and the articles that did not

5

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Fig. 3. Document search and selection stages.

Fig. 4. Word-cloud associated with the results of the search strategy.

make it or did not give information about it (No). The Specification
and analysis stage defines the application domain (dependent or
independent of the context), the quality attributes established
in the designed architecture or framework, and identifies how
the requirements of the proposed solution were specified. The
Design stage identifies in which CPS architecture layer the arti-
cles are focusing (Cyber, Network, or Physical), the architecture
style, and the self-adaptation technique used. The Implementation
stage identifies the cyber and physical approaches used by the
reviewed articles, differentiating the articles that used any of the
listed layers and the articles that used another type of layer.
The Integration stage differentiates the articles that integrated

the physical and cyber layers (Yes) and the articles that did not
make it or did not give information about it (No). The Quality
control stage identifies how articles measure the quality of the
system. In this sense, quality control differentiates the articles
that implemented any unit test and integration test (Yes) and the
articles that did not make it or did not give information about it
(No). The quality control stage differentiates the strategies used
to execute the system tests, and the attributes tested to achieve
the acceptance tests. The Maintenance stage identifies the articles
that implemented any maintenance strategy (Yes) and the articles
that did not make it or did not give information about it (No).

3.4. Threats to validity

There are four threats to the validity of this research. The
strategies to minimize such threats are explained in what follows.
Table 4 lists some biases that were taken into account.

Construction validity: To limit construction threats, several
measures were taken: (i) the search strategy and the search
process used were guided by a well-known methodology pro-
posed in the literature. (ii) in the construction of the search
strings, different terms that could relate to CPSs were taken into
consideration, and (iii) the research questions were answered
according to a categorization scheme, defined in Table 3, through
a cross-check process among the authors.

Internal validity: We searched three online digital libraries, in-
cluding Google Scholar. These libraries cover the majority of high-
quality publications in the field, but the lack of more libraries
may lead to a bias in the identification of primary studies (Zhou
et al., 2016). Furthermore, we used snowballing (Wohlin, 2014)
as a complementary search strategy to reduce the possibility of
missing relevant articles. Also, the search strategy was developed
and reviewed by all the authors. Finally, an explicit statement of
the methods used for the research review is described for the
reader to make an informed assessment of the scientific rigor of
the review and the strength of the review’s inferences.

External validity: All the articles taken into consideration were
selected based on their relevance to the SA-CPSs domain. The
excluded papers may affect the generalizability of our results.
This threat is minimized by the reliability of our research pro-
cess because it is a systematic process that allows replication
(proposed by Li et al. (2015)).

Conclusion validity: To avoid bias in the data extraction pro-
cess, the data was extracted through a cross-check among the
authors. A cross-check minimizes different interpretations of the
data and subjective judgment.

4. Results

This section presents the results divided into each stage of the
SDLC (see a summary in Table 7).

4.1. Planning

The articles do not show –in detail– how the planning stage
was developed in their proposals because it is not usual to present
this type of information in research articles. Nonetheless, it was
identified the following information, for each planning activity,
following the guidelines of Dennis et al. (2014).

Identification of the opportunity: In most of the articles, the
identification of the opportunity to develop the system was made
through a literature review, where challenges associated with
the design of CPS and IoT systems were addressed, such as net-
working settings (Iftikhar et al., 2017), dynamic environment (Lee
et al., 2019), domain dependency (Park and Park, 2019), and
deployment issues (Alkhabbas et al., 2020).

6

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 3
SDLC characteristics to be analyzed.
Stage Characteristics Sub-characteristic

Planning Planning Yes
strategy No

Specification and analysis

Application Dependent
domain Independent
Quality Performance
attributes Scalability

Energy-efficiency
Reliability
Maintainability
Security
Interoperability
Usability

Requirement System modeling (UML)
specification Natural language

Mathematical specification

Design

Architecture Cyber
Layer Network

Physical
Architecture Cloud-service
style Client–server

Edge computing
Layered
N/A

Self-adaptation MAPE-K
technique Agents

Others

Implementation

Cyber layer Web-application
Web-service
Component-based
Other

Physical layer Physical components
Model representation

Integration Integration Yes; No

Quality control

Unit testing Yes; No
Integration Yes
testing No
System tests Simulation

Small-scale
Real case

Acceptance Adaptability
tests Scalability

Performance
Energy-efficiency
Reliability

Maintenance Maintenance Yes
strategy No

Table 4
Overview of potential biases in the SMS process, based on Cooper (2010), Felson (1992), Janssen (2018), Zhou et al.
(2016).
Bias types Description Solutions

Publication bias Tendency to selectively publish
some articles over others (e.g. only
significant effects or large studies).

Researchers cross-check the
completeness of searches and
validate the suitability of each
study for inclusion.

Location bias Tendency to select studies that are
only indexed in electronic
databases.

Google Scholar was used as a
source of non-indexed articles.

Language bias Tendency to exclusively select
studies based on any language.

English was the dominant research
language in the studies from all
databases.

Citation bias Tendency to select studies that
may be relevant based in the
citation results, this may produce a
biased sample of studies.

Studies selection is not based on
the citation number avoiding this
type of bias. The selection was
based on the inclusion and
exclusion criteria.

Study selection bias It means some errors (e.g., related
studies are not chosen or
irrelevant, poor quality studies or
only positive papers are chosen),
which may be found in the search
process (Zhou et al., 2016).

A rigorous search strategy was
defined and applied. Also, to
mitigate misinterpretations
title/abstract, introduction and
conclusions were read before
rejecting or accepting a paper.

7

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Economic-feasibility evaluation: Articles, in general, do not dis-
cuss development or operational costs, such as consultant fees,
hardware repair, software upgrades, user training, software-
licensing fees, and return on investment (Dennis et al., 2014).
An exception is the research of Trihinas et al. (2018) that defines
that their framework is based on a low-cost adaptive and learning
model. Intangible benefits the system will have were identified as
a higher-quality of the product –directly– associated with quality
attributes (International Organization for Standardization, 2011a)
(also called nonfunctional requirements), defined in the system’s
architecture.

Organizational-feasibility evaluation: From an organizational
perspective, a feasibility evaluation –such as system acceptance
by the users, and incorporation in the organization or context– is
not discussed in the revised articles.

Technical-feasibility evaluation: From a technical perspective,
risks associated with the technology are not discussed.

In this stage, self-adaptation was defined as an opportunity
to detect context changes from unintentional behaviors within
the physical world to provide appropriate services, enabling a
more reliable process execution. Sustainability –from the tech-
nical perspective– although was not explicitly mentioned, it is
directly associated with the intangible benefits planned. Sus-
tainability –from the economic perspective– was not mentioned,
except Trihinas et al. (2018) that related strategic planning with
the use of low-cost techniques to build inexpensive solutions,
addressing economical sustainability.

4.2. Specification and analysis

The identification of the application domain is a part of the
requirements elicitation in the specification and analysis stage
(Sommerville, 2015). In most of the articles, the application do-
main is independent of the context, which means that the pro-
posed SA-CPSs architectures or frameworks have the full poten-
tial to cover diverse domains, such as smart cities, smart agri-
culture, and smart homes. The exception is the work of Provoost
et al.’s work (Provoost and Weyns, 2019), which presented the
Dingnet architecture –where mobile embedded systems (i) move
in a city area, (ii) adapt their network settings to ensure reliable
and energy-efficient communication, and (iii) support the design
and evaluation only for the smart-city application domain.

In the requirements elicitation, the functional and quality at-
tributes were gathered from the literature, surveys, tools, or
personal experience. Most articles included the self-adaptability
requirement, one of the search criteria of this SMS. This require-
ment is understood in CPSs as the ability to modify their be-
havior and/or structure in response to changes in their envi-
ronment and user requirements (De Lemos et al., 2013; Weyns
and Georgeff, 2010). The quality attributes can be grouped into
nine characteristics: (i) functional suitability, (ii) reliability, (iii)
performance, (iv) efficiency, (v) usability, (vi) security, (vi) com-
patibility, (viii) maintainability, and (ix) portability, according to
ISO/IEC 25010:2011 (International Organization for Standardiza-
tion, 2011a). Each characteristic is composed of a set of related
sub-characteristics. Quality attributes, in the reviewed articles,
were very varied, as it is shown in Table 5 , ‘‘Addressed’’ column.

Eleven articles specified performance, where latency, through-
put, overhead, and CPU-cycles consumed were established to
measure it. Four articles specified the energy efficiency, which
is part of the performance attribute, which –usually– is defined
in IoT devices to expand battery life in devices with intense
processing that increases energy consumption (Xiao et al., 2010).

Four articles specified the scalability, which is part of the
adaptability attribute, and refers to the scalability of the inter-
nal capacity that can be vertical, where hardware and software

capacity is increased by adding resources, or horizontal, where
more nodes, such as servers or computers, are added to work as
a single logical unit (Rouse, 2007).

Five articles specified the reliability, focusing on the number of
packets lost, the capability to recover after a failure, automated
error handling, and service accuracy.

Four articles specified maintainability, whose definition is pre-
sented in Section 2.2. For the reusability sub-characteristic of
maintainability, articles focused –primarily– on the reusability of
the device-level functionality and components.

Finally, two articles focused on security and one article in
interoperability.

Quality attributes are documented in a process called require-
ments specification, where requirements can be represented in
natural language, structured language, graphical notations such
as Unified Modeling Language (UML) diagrams, and mathemati-
cal specifications (Sommerville, 2015). In the reviewed articles,
three types of specifications of the architecture or framework
were found: (i) Natural language, (ii) System modeling, and
(iii) Mathematical specification.

Natural language: All articles used natural language to explain
the requirements that the proposal will have, and some comple-
mented with an overview figure, such as Park and Park (2019),
Lee et al. (2019), Cui et al. (2013), Iftikhar et al. (2017), Alkhabbas
et al. (2020), Bedhief et al. (2019), Camara et al. (2020).

System modeling: The articles (Park and Park, 2019; Seiger
et al., 2019; do Nascimento and de Lucena, 2017; Gerostathopou-
los et al., 2019; Provoost and Weyns, 2019; Torres et al., 2017;
Alkhabbas et al., 2020; Ramesh Babu and Mohana Roopa, 2017)
used UML diagrams, such as component diagrams, class diagrams,
sequence diagrams and activity diagrams.

Mathematical specification: The articles (Trihinas et al., 2018;
Lee et al., 2019) used mathematical specifications, such as math-
ematical concepts and finite-state machines.

In this stage, self-adaptation was specified as the main re-
quirement of the proposed solutions. Sustainability –from the
technical perspective– is implicit in the specification of main-
tainability, scalability, and security attributes. From the economic
perspective, explicit information was not found, but economic
sustainability can be implicitly associated with the performance
and energy-efficient attributes since it assists the operation costs
and energy costs, respectively.

4.3. Design

Reviewed articles focused on one or more layers of the CPSs
architecture (cyber, network, physical) (Zeadally et al., 2019b). In
most of the reviewed articles, the focus is on the cyber layer. In
the articles (Trihinas et al., 2018; Cui et al., 2013), the framework
or architecture can be applied to the physical layer, such as sen-
sors, actuators, and controllers. In Iftikhar et al. (2017), Provoost
and Weyns (2019), Torres et al. (2017), Bedhief et al. (2019),
the network-layer design is reflected through the management
of issues such as packet losses, delays, and network topology
changes.

In Torres et al. (2017), Alkhabbas et al. (2020), a client–server
architecture is defined where users or devices access servers to
use services. Authors of Park and Park (2019), Alkhabbas et al.
(2020), Camara et al. (2020) defined a cloud architecture where
the software components and services are distributed across the
cloud. In Trihinas et al. (2018), Iftikhar et al. (2017), Alkhab-
bas et al. (2020), Bedhief et al. (2019), an edge-computing ar-
chitecture is used where software components and embedded
systems are placed in networks, and processing and data dis-
semination are over the network. In Cui et al. (2013), Camara
et al. (2020), a layered architecture is used to support scalability.

8

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 5
Quality attributes addressed and tested in the reviewed articles.
Quality attributes Addressed Tested

Performance Park and Park (2019), Seiger et al. (2019), D’Angelo et al. (2018),
Trihinas et al. (2018), Lee et al. (2019), Gerostathopoulos et al.
(2019), Cui et al. (2013), Alkhabbas et al. (2020), Bedhief et al.
(2019) and Ramesh Babu and Mohana Roopa (2017)

Park and Park (2019), Seiger et al. (2019), Trihinas et al. (2018), Lee
et al. (2019), Gerostathopoulos et al. (2019), Cui et al. (2013),
Alkhabbas et al. (2020), Bedhief et al. (2019) and Ramesh Babu and
Mohana Roopa (2017)

Energy efficiency Trihinas et al. (2018), Iftikhar et al. (2017), Provoost and Weyns
(2019) and Camara et al. (2020)

Trihinas et al. (2018), Iftikhar et al. (2017), Provoost and Weyns
(2019) and Camara et al. (2020)

Scalability Horizontal - Park and Park (2019), Trihinas et al. (2018), Alkhabbas
et al. (2020), Bedhief et al. (2019) and Camara et al. (2020)

Park and Park (2019), Trihinas et al. (2018), Alkhabbas et al. (2020)
and Bedhief et al. (2019)

Vertical -Camara et al. (2020)
Reliability Seiger et al. (2019), Iftikhar et al. (2017), Provoost and Weyns (2019),

Bedhief et al. (2019), Camara et al. (2020) and D’Angelo et al. (2018)
Seiger et al. (2019), Iftikhar et al. (2017), Provoost and Weyns
(2019), Bedhief et al. (2019) and Camara et al. (2020)

Maintainability Park and Park (2019), Seiger et al. (2019), Cui et al. (2013) and
Ramesh Babu and Mohana Roopa (2017)

Security Provoost and Weyns (2019) and Torres et al. (2017)
Interoperability do Nascimento and de Lucena (2017)

In D’Angelo et al. (2018), do Nascimento and de Lucena (2017),
Lee et al. (2019), Gerostathopoulos et al. (2019), Kit et al. (2015),
Provoost and Weyns (2019), Seiger et al. (2019), Ramesh Babu
and Mohana Roopa (2017,?), a specific architecture is not raised
because they implement their solution as a software component
or software project.

MAPE-K is the dominant self-adaptation technique in the
design of CPSs. The articles (Seiger et al., 2019; D’Angelo et al.,
2018; Gerostathopoulos et al., 2019; Kit et al., 2015; Iftikhar
et al., 2017; Torres et al., 2017; Alkhabbas et al., 2020; Camara
et al., 2020; Park and Park, 2019; Lee et al., 2019; Ramesh Babu
and Mohana Roopa, 2017) used this technique. Provoost and
Weyns (2019) used a simple feedback loop. Bedhief et al. (2019)
used an autonomous manager to adapt a network to an on-
demand application based on the available resources. do Nasci-
mento and de Lucena (2017) used adaptive agents that make
decisions on a controller, which could be a finite-state ma-
chine or a machine-learning technique. Trihinas et al. (2018)
used probabilistic-learning algorithms to reduce data volume
and network traffic between IoT devices and cloud services: The
framework created is embeddable in the core software of IoT
devices.

It was identified that most of the articles focused on the
autonomic-computing paradigm use the MAPE-K feedback loop.

Three articles mentioned paradigms such as context-aware,
which is a feature of self-adaptation where intelligent systems
detect context changes and react based on their environment.

Three articles mentioned machine-learning (ML) paradigm,
where ML techniques are used to perform adaptations. One ar-
ticle addressed the process-aware paradigm, where automated
processes in CPSs require that the effects of the processes in the
environment and the context are considered (Wombacher, 2011).

One article addressed the model-driven engineering paradigm
(D’Angelo et al., 2018), where models are used to engineer SA-
CPSs and exploited in all stages of the SDLC. One article addressed
the goal-driven paradigm, where a set of devices with individual
functionalities connect and cooperate temporally to achieve the
user goal (Alkhabbas et al., 2020).

One article addressed the MAS paradigm, to model real-world
systems and managing large and distributed-information sys-
tems.

One article addressed the fog-computing paradigm, to respond
to the requirements in terms of reliability, delay, and scalabil-
ity (Sanchez et al., 2017).

Table 6 presents a summary of paradigms used in the design
stage, identified by the authors of this SMS.

At this stage, self-adaptation is achieved through adaptation
techniques, mainly, the MAPE-K feedback loop. Sustainability –
from the technical perspective– is associated with the design of

software components that can be reused, aiming at the main-
tainability attribute. Technical sustainability is also associated
with the use of layered and cloud-based architecture that al-
lows scalability. Sustainability –from the economic perspective–
is associated with the design of algorithms that reduce costs in
analysis, data collection and energy consumption.

4.4. Implementation

This section focuses on how the cyber and physical layers
were implemented for this type of system, and what technology
decisions were taken.

In the cyber layer, most of the reviewed articles implemented
their proposals as software components or software projects.
The articles (D’Angelo et al., 2018; do Nascimento and de Lu-
cena, 2017; Lee et al., 2019; Gerostathopoulos et al., 2019; Kit
et al., 2015; Provoost and Weyns, 2019; Seiger et al., 2019)
proposed solutions implemented as Java-projects, mostly using
Eclipse IDE. Also, some of the software projects are available in
the GitHub repository: A great advantage of these projects is that
they can be downloaded and used to experiment in different
application domains. Park and Park (2019) implemented a web-
application where developers can easily (i) upload implemented
components, (ii) search existing components, (iii) register par-
ticipant systems/devices, and (iv) launch virtual machines. This
implementation strategy allows developers to focus on imple-
menting IoT collaboration services without caring about the type
of participating devices. Also, Torres et al. (2017) implemented
a web-application to monitor and request data from sensors as
temperature and humidity. The works of Seiger et al. (2019),
Iftikhar et al. (2017), Camara et al. (2020) implemented a web-
service to be used by external entities, such as services and
applications. In Trihinas et al. (2018), a monitoring framework
was used in a server. In Alkhabbas et al. (2020), a simulator
platform was used in a server. In Bedhief et al. (2019), a network
emulator was used in virtual machines.

In the physical layer, the articles (Park and Park, 2019; Seiger
et al., 2019; Trihinas et al., 2018; Lee et al., 2019; Cui et al., 2013;
Iftikhar et al., 2017; Torres et al., 2017) used physical components
(e.g., sensors, actuators, and controllers) in their implementa-
tions, such as Arduino, Raspberry, smartphones, temperature, and
humidity sensors. In D’Angelo et al. (2018), do Nascimento and
de Lucena (2017), Lee et al. (2019), Gerostathopoulos et al. (2019),
Kit et al. (2015), Iftikhar et al. (2017), Provoost and Weyns (2019),
Alkhabbas et al. (2020), Bedhief et al. (2019), Camara et al. (2020),
Ramesh Babu and Mohana Roopa (2017), a model representation
was used in platforms that simulate the behavior of physical
components.

The communication between these layers was made through
the network with the use of hypertext transfer protocol (HTTP) and

9

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 6
Paradigms used in the design of self-adaptive CPSs.
Paradigm Articles

Autonomic computing Park and Park (2019), Seiger et al. (2019), D’Angelo et al. (2018), Lee et al. (2019), Gerostathopoulos et al. (2019), Kit et al.
(2015), Iftikhar et al. (2017), Torres et al. (2017), Alkhabbas et al. (2020), Camara et al. (2020), Ramesh Babu and
Mohana Roopa (2017)

Context-aware Park and Park (2019), Ramesh Babu and Mohana Roopa (2017), Bedhief et al. (2019)
Machine learning Camara et al. (2020), Trihinas et al. (2018), do Nascimento and de Lucena (2017)
Process-aware Seiger et al. (2019)
Model-driven engineering D’Angelo et al. (2018)
Goal-driven Alkhabbas et al. (2020)
MAS do Nascimento and de Lucena (2017)
Fog computing Bedhief et al. (2019)

representational state transfer (REST) standards, but, especially, a
publish–subscribe network protocol, the message queue telemetry
transport (MQTT) broker was –widely– used.

In this stage, self-adaptation was implemented, mainly, in the
cyber layer. Sustainability –from the technical and economical
perspectives– complies with what is stated in the design stage.

4.5. Integration

In the reviewed articles, it was not explicit the integration
process, but it was common to find the ‘‘testbed’’ concept where
the authors showed how a solution design (or proof-of-concept)
of the proposal would be. A testbed includes an environment
with (i) tools, (ii) software components, (iii) servers, (iv) network
components, (v) physical devices, and (vi) their communication.
Therewith, the authors demonstrate, in a prototype, in some
cases, the integration of the software layers and physical ob-
jects (Park and Park, 2019; Seiger et al., 2019; do Nascimento
and de Lucena, 2017; Trihinas et al., 2018; Lee et al., 2019;
Cui et al., 2013; Iftikhar et al., 2017; Torres et al., 2017). When
physical devices are not used, the system integration is made
by combining (i) software packages and libraries (Camara et al.,
2020), (ii) simulation platforms for CPSs (Gerostathopoulos et al.,
2019), (iii) network simulators (Kit et al., 2015), (iv) servers, and
(v) virtual machines (Alkhabbas et al., 2020; Bedhief et al., 2019),
so that they can be treated as a unit.

This stage did not provide much information about
self-adaptation, nor sustainability from neither the technical nor
economic perspectives.

4.6. Quality control

The authors of the reviewed articles tested their proposals in
–usually– one specific application domain. do Nascimento and
de Lucena (2017), Trihinas et al. (2018) tested their proposals
in two or more application domains. The most used application
domains for testing were smart cities, smart homes, smart public
security, smart power grid, smart devices, streaming services, and
smart greenhouses.

Unit-testing or component-testing involves verifying that each
unit meets its specification. In the reviewed articles, there is
no evidence of component tests in isolation from the rest of
the system. This type of testing is considered important because
(i) it allows verifying whether the functional and non-functional
behaviors of the component are as designed and specified, (ii) it
helps to reduce risks, (iii) it builds confidence in the component’s
quality, (iv) it finds defects in the component and (v) it prevents
defects (ISTQB, 2018).

The components were combined to integrate systems and to
ensure that the system works properly –focusing on the flow
control and data exchanged among objects– (Dennis et al., 2014),
and to detect defects in the interfaces and the interactions among
them, known as integration testing. In the reviewed articles, end-
to-end (E2E) integration testing –wherein it is verified that a

Fig. 5. Strategies used to execute and verify the scenarios.

defined set of interconnected systems will perform correctly (Tsai
et al., 2001)– was used in Park and Park (2019), D’Angelo et al.
(2018), do Nascimento and de Lucena (2017), Trihinas et al.
(2018), Gerostathopoulos et al. (2019), Bedhief et al. (2019), Ca-
mara et al. (2020).

Almost all articles defined at least one scenario to be tested,
as in Park and Park (2019), Seiger et al. (2019), do Nascimento
and de Lucena (2017), Trihinas et al. (2018), Lee et al. (2019),
Gerostathopoulos et al. (2019), Provoost and Weyns (2019), Tor-
res et al. (2017), Bedhief et al. (2019), Camara et al. (2020), which
should be examined through system testing. System testing can
be performed in different ways. In the reviewed articles, common
strategies to execute and verify scenarios defined for CPSs are the
following (see a summary in Fig. 5).

Simulation platforms are used for complex and complicated
systems, such as CPSs, IoT, and multi-agent systems. In Park and
Park (2019), D’Angelo et al. (2018), do Nascimento and de Lu-
cena (2017), Lee et al. (2019), Gerostathopoulos et al. (2019), Kit
et al. (2015), Iftikhar et al. (2017), Provoost and Weyns (2019),
Alkhabbas et al. (2020), Camara et al. (2020), the validation of
their design was made through simulations of physical models
(representation of real devices), scenarios, and environments.

Small-scale or also called prototyping, is where the scenario to
test is constructed in small size and limited in extent. For Park
and Park (2019), do Nascimento and de Lucena (2017), Lee et al.
(2019), Bedhief et al. (2019), system testing was made through a
small-scale scenario.

Real-world scenarios, where real-world objects are used in real
environments. In Seiger et al. (2019), Trihinas et al. (2018), Torres
et al. (2017), system testing was executed in real-world scenarios.

Acceptance criteria is a kind of acceptance testing associated
with the system’s requirements –such as functional and quality
attributes– defined in the specification and analysis stage, are
verified. Acceptance testing is used to ensure that the behaviors of
the system are as specified (ISTQB, 2018). In the reviewed articles,
maintainability, security, and interoperability were requirements

10

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

–specified in the Specification stage– but it was not found evi-
dence of the validation of these attributes in the quality-control
stage.

Few articles, such as D’Angelo et al. (2018), Lee et al. (2019),
Camara et al. (2020), did not test performance and scalability
attributes due to the scope or limitations of the research. They
reported that, in future investigations, these attributes will be
evaluated. The quality attributes evaluated, in each article, for the
quality-control stage, are listed in Table 5, ‘‘Tested’’ column.

In this stage, self-adaptation was the main objective and re-
quirement tested, to demonstrate the feasibility of the proposals.
This stage did not provide information about sustainability –from
technical and economic perspectives.

4.7. Maintenance

In the reviewed articles, it was identified that the maintenance
activities are not explicitly mentioned, but –implicitly– they were
performed since they are presented as future research. Mainte-
nance could be associated with adaptive maintenance-planning
activities explained as follows.

Planning to improve the implementation of the system: As ex-
amples, Seiger et al. (2019) used alternative algorithms in the
Analyze-and-Plan stages of the MAPE-K feedback loop to re-
duce modeling effort and increase autonomy. Lee et al. (2019)
proposed to improve the decision-making method using ML tech-
niques. Bedhief et al. (2019) proposed to use artificial intelligence
and ML methodologies to improve the autonomous manager.
Provoost and Weyns (2019) proposed to enhance the simulator
using collected data from an experimental context, to bring it
closer to a real setting.

Planning to add functionality and new features: Some works
plan to extend their researches with new functionalities and
features. As an example, Alkhabbas et al. (2020) proposed to
enable scalability to support large-scale IoT environments, and
to extend the approach to consider energy consumption, privacy,
security, and cost reliable deployment topologies for Goal-Driven
IoT Systems (GDSs). D’Angelo et al. (2018) proposed to develop
a validation technique to detect unintended interactions and to
allow modularization and adaptation at run-time.

Planning to continue with the quality-control stage: Some arti-
cles plan to test the quality attributes –initially defined in the
specification and analysis stage–, but did not reach the quality-
control stage. As an example, D’Angelo et al. (2018) proposed
to evaluate the performance and scalability of the tool. Camara
et al. (2020) proposed to explore scalability and performance
measures, such as response time, use, and throughput, as well as
the trade-offs and robustness of their approach.

Planning to expand the application of the approach: Authors
of Park and Park (2019), do Nascimento and de Lucena (2017)
proposed to apply the proposed solution in various domains to
increase domain coverage.

For self-adaptation, it is notable that the researchers plan to
improve the implementation of the MAPE-K feedback loop with
the use of alternative algorithms, such as ML techniques. For
sustainability –from the technical and economic perspectives–
explicit information was not found in this stage.

5. Discussion

This section presents the most important trends and limita-
tions concerning the results from Section 4. Trends and limita-
tions are divided into the stages of the SDLC (see a summary of
limitations in Table 8 and a representation of trends in Fig. 61)

1 An interactive demo of this figure can be downloaded from https://github.
com/LuisaRestrepo/Sustainable-SA-CPSs, where there is more information about
this study.

Planning
At the planning stage, all articles defined the motivation and

identified the opportunity to be addressed. Everyone used at
least one planning strategy, as shown in Fig. 6. No trends were
identified at this stage.

A weakness observed at this stage is the lack of a better
specification about economic aspects such as development costs and
revenues. This specification would serve to help future researchers
to (i) identify the economic feasibility to replicate or to use the
proposed design, (ii) identify the viability in project planning and
technology adoption, and (iii) know the relevance of the design
to the business contexts. Since the focus of the reviewed articles
is on intangible benefits, sustainability –from the technical and
economic perspective– was not evaluated.

Specification and analysis
In the specification and analysis stage, almost all articles de-

fined that their design can be applied to any application domain.
The first trend is the creation of designs that are not limited
to a particular application domain and the implementation of
generic solutions that allow using diverse devices. Second, as
it is shown in Fig. 6, performance is the most commonly used
attribute when designing SA-CPSs, which coincides with the SLRs
of Muccini et al. (2016) and Musil et al. (2017). Third, attributes
such as energy-efficiency, scalability, and reliability are widely
used. Finally, natural language is the most used technique to
specify system requirements –sometimes– accompanied by UML
diagrams (usually, component diagrams).

Self-adaptability is allowing systems to deal with uncertain-
ties, resulting in a high capacity of maintenance aiming at the
sustainability of the systems from the technical perspective. Sus-
tainability has also been linked with the scalability attribute.
From the environmental perspective, sustainability has been ad-
dressed in the energy-efficient attribute associated with perfor-
mance, and to reduce the environmental impact by reducing the
consumption of energy of the physical devices. Note that there
are trade-offs between performance and energy consumption.

The main weakness identified in this stage is that the quality
attributes associated with the self-adaption and sustainability
–such as security, interoperability, usability, modularity, modi-
fiability, compatibility, testability– are not being considered or
specified in a detailed way. Furthermore, in some cases, it is not
clear how the defined quality attributes will be measured.

Design
For the design stage, the most common trend is to use the

MAPE-K feedback loop, which is consistent with the SLR of Muc-
cini et al. (2016). MAPE-K is applied –mainly– to the cyber layer,
with the implementation of software components. Besides, very
few articles used ML approaches to enhance MAPE-K compo-
nents (Camara et al., 2020; Trihinas et al., 2018; do Nascimento
and de Lucena, 2017).

The weakness observed at this stage is that few articles used
paradigms, such as cloud computing, edge computing and fog
computing. As the focus of most articles is on the cyber layer,
there is a lack of designs that include the physical layer, then
special interfaces or protocols for certain devices have not been
considered. This could imply that the cyber layer may not cor-
rectly accept inputs (e.g., data, control, and parameters) from
the physical layer, or may send incorrect outputs to the physical
layer.

11

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 7
Summary of the results.
Stage Q1 - Q7: Methods and strategies used Q8 - Sustainability dimensions

Technical Economical

Planning

(Q1) Identification of the opportunity in
the literature.

Implicitly associated
with the identification of
intangible benefits of the
product.

Planning to use low-cost
techniques.(Q1) Identification of intangible benefits

associated with higher-quality
attributes.

Specification and analysis

(Q2.1) Application domain independent
of the context

Implicit in the specification of
maintainability, scalability, and
security attributes.

Implicitly associated with the
performance and
energy-efficient attributes(Q2.2) Performance, energy-efficiency,

scalability, reliability, maintainability,
security, and interoperability, as the
specified quality attributes.
(Q2.3) Natural language, system
modeling, and mathematical
specification as the most used
specification techniques.

Design

(Q3.1) Self-adaptation is achieved
through adaptation techniques such as
MAPE-k, adaptative agents,
probabilistic-learning algorithms, and
autonomous managers.

Design of software components
that can be reused
(Maintainability).

Design of algorithms that
reduce costs in analysis, data
collection, and energy
consumption.

(Q3.2) The use of architectural styles
such as cloud, client–server, edge
computing, and layered.

The use of layered and cloud-based
architecture (Scalability).

Implementation

(Q4.1) Self-adaptation was
implemented, mainly, in the cyber layer
as Java-projects.

It complies with what is stated
in the design stage.

It complies with what is stated
in the design stage.

(Q4.2) The cyber layer was
implemented through software
components, web-application, web
service, and the use of servers and
simulator platforms.
(Q4.3) The physical layer was
implemented mostly as a model
representation, a few with the use of
physical components.
(Q4.4) The network layer was
implemented through the use of MQTT,
REST, and HTTP protocols.

Integration (Q5) System integration was made by
combining software packages and
libraries, simulation platforms for CPSs,
network simulators, servers, virtual
machines, and physical devices.

No information No information

Quality control

(Q6.1) Most proposals were tested in
one specific application domain.

No information No information

(Q6.2) Simulation platforms, small-scale,
real-world scenarios were the validation
techniques used to test the scenarios.
(Q6.3) Performance, energy-efficiency,
scalability, and reliability were the
verified quality attributes.

Maintenance

(Q7) Plan to improve the
implementation of the MAPE-K
feedback loop.

No information No information

(Q7) Planning to add functionality and
new features.
(Q7) Planning to continue with the
quality-control stage.
(Q7) Planning to expand the application
of the approach.

Implementation
In the implementation stage, the trend is to implement the

proposed solutions as component-based and to use model repre-
sentations for physical components.

The weaknesses observed at this stage are two. First, although
the use of component-based approaches, attributes crucial for
self-adaptation –such as modularity and reusability– were not
directly mentioned and, therefore, it is not established how they
will be measured. Second, the model-representation techniques

have disadvantages associated with the use of physical-model
representations, since physical aspects such as battery life, data
transmission, and failures are not taken into account.

Integration
In the integration stage, it is identified that almost all articles

integrated their solutions with software systems and a few with
physical components. A weakness observed at this stage is the

12

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Fig. 6. Trends of the selected articles for designing self-adaptive CPSs.

lack of information on how the components were joined as one large
system.

Quality control
In the quality-control stage, a trend –observed in Fig. 6– is to

simulate the scenarios to evaluate and to achieve system testing.
To achieve acceptance testing, the most tested quality attributes
were scalability, performance, and energy-efficiency.

The main weaknesses observed at this stage are that there is
a lack of information on unit testing (or component testing) and a
lack of integrated testing of the subsystems that together compose
the system. Only a general environment of tests was achieved.
Frameworks and architectures have been tested in a few appli-
cation domains; in most of them, they were simulated. There is
a need to verify the real-world effects and the real-time behavior
of the proposed solutions. Finally, more experimental tests are
needed to measure quality attributes –crucial for self-adaptation–
such as security, usability, testability, maintainability, and inter-
operability of the proposed designs.

Maintenance
In the maintenance stage, it is clear that –with the use of the

autonomic paradigm– systems will maintain and adjust their op-
eration for situations like failures in the software or hardware, or
changes in the components at run-time. Nonetheless, no explicit
information was found about the activities carried out to achieve
technical maintenance to increase the useful life and reliability
of the systems. It was identified maintenance activities –such as
planning– to improve and enhance the proposed designs in future
research. For this reason, a weakness observed at this stage is the
lack of information on how technical maintenance can be achieved.

6. Challenges

Given the discussion of the trends and weaknesses, the follow-
ing opportunities for future research were found.

Competitiveness on the market
Competitiveness on the market is an extremely crucial issue due

to the high-volume of embedded systems in the market (Mar-
wedel and Engel, 2016). To affront this demand, the creation

13

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Table 8
Summary of limitations and weaknesses.
Stage Limitation/Weakness

Planning Lack of a better specification about
economic aspects as development
costs and revenues.

Specification and analysis Quality attributes associated with
the self-adaption and sustainability
are not being considered or
specified in a detailed way.

Design Lack of designs that include the
physical layer

Implementation

Attributes such as were not directly
mentioned and it is not established
how they will be measured.
The use of physical-model
representations techniques.

Integration Lack of information on how the
components were joined as one
large system.

Quality control

Lack of information on unit testing
(or component testing).
Lack of integrated testing of the
subsystems that together compose
the system.
Testing in few application domains.
Simulated environments.

Maintenance Lack of information on how
technical maintenance can be
achieved.

of low-cost CPSs should take into account the efficient use of
hardware and software budget and a cost–benefit analysis. Fur-
ther investigations are needed to identify these tangible benefits
associated with the development of SA-CPSs to reach sustainabil-
ity from an economic perspective, and strategies to implement
low-cost SA-CPSs. Examples of such tangible benefits applied
to software systems are (i) sales growth, and (ii) reduction in
information-technology costs, staff, and inventory. A challenge is
how to generalize aspects such as (i) sales growth, and (ii) reduc-
tion in information-technology costs, staff, and inventory (Dennis
et al., 2014) to CPSs because there is no sale-and-cost history or
staff-and-inventory records.

Hybrid approaches for feedback loops
The use of hybrid approaches that combine cloud computing,

edge computing, and fog computing for deployment, with the
MAPE-K model, adaptive agents, or other feedback loop mech-
anisms, may provide a suitable approach to mitigate the issues
of scalability, fault-tolerance, performance, and flexibility of SA-
CPS. Examples of articles in which such approaches mitigated
these issues are Kumar and Hanumanthappa (2013), Kang and Yu
(2018), Wang et al. (2019).

Maintenance of quality levels
The execution of self-adaptation activities –in SA-CPSs– can

affect the levels of quality attributes established. Strategies are
needed to allow maintaining the quality levels of the proposed
designs. Examples of such strategies –in software systems– are
a continuous quality-monitoring platform to understand when
the quality is decreasing (Janes et al., 0000), test automation, and
the establishment of metrics to continuously measure quality. A
challenge is how to generalize these aspects for CPSs because
software systems do not consider the physical layer.

Conceptualization of sustainability
System architectures are a major driver for sustainability

(Koziolek, 2011), therefore, it is important to know how to spec-
ify and evaluate sustainability in CPSs to construct robust and
cost-effective systems. A starting point would be to establish a
unified vision of what sustainability is, by building an ontology,
a soft-goal model, or a non-functional requirement (NFR) frame-
work (Chung et al., 2000). Recent work on decision maps for
sustainability provides such an (initial) framework; for instance,
the work of Lago (2019).

Sustainable framework for CPSs
A framework that allows SA-CPSs to be sustainable from eco-

nomical and technical perspectives is needed. Examples of similar
frameworks are the Insure framework to incorporate sustainability
–in the software-engineering process– (Saputri and Lee, 2020),
and the SustainPro framework to implement sustainable de-
signs (Carvalho et al., 2013). A challenge is how to generalize
these frameworks for CPSs because existing frameworks do not
consider the sustainability of the physical nor network layers.

Specification of heterogeneous devices
CPSs are composed of heterogeneous devices (Romero et al.,

2015), so a challenge is how to cope with the complexity and
heterogeneity of requirements to fulfill various scenarios. For this
reason, it is important to identify the techniques to manage
requirements and constraints from heterogeneous devices, and
methodologies to implement them in SA-CPSs. This has been
extensively controlled –for software development– with the use
of systematic tools that supports requirement management (Hoff-
mann et al., 2004). A challenge is how to generalize that for CPSs
because existing tools do not consider the different requirements
of the physical devices.

Unit and integration testing
Unit and integration testing can be achieved in the develop-

ment of SA-CPSs. In fact, testbeds were used in the development
of SA-CPSs, but the use of methodologies to reduce the number
of bugs, the time to find and fix bugs, and to improve the quality
of tests were not mentioned. Methodologies used in software
engineering –such as Attribute-Driven Design ADD, test-driven-
development (TDD) (Janzen and Saiedian, 2005) and continuous
integration (CI) practices (Zhao et al., 2017)– allow decreasing the
amount of time it takes to find bugs and to reduce the cost to
fix bugs. Thus, a challenge is how to generalize practices such as
TDD and (CI) for CPSs because (i) testing methodologies do not
consider physical devices and (ii) physical components cannot be
continuously improved as software components.

Specification of quality attributes
The quality attributes allow addressing the architecture defini-

tion of the systems. A correct specification of quality attributes –
such as security, interoperability, modularity, modifiability, com-
patibility, testability– are needed in the development of SA-CPSs
to achieve a complete evaluation of the quality levels. In what
follows, we explain challenges related to some of these attributes.
Security: The enhancement of the security to guarantee the safety
and privacy of the users (Hammoudi et al., 2018) is an important
factor. The security of SA-CPSs is transformed into sustainability
due to the ability to maintain the correct functioning under cyber-
attacks. For that reason, it is important to identify and propose
techniques that successfully allow maintaining the security of the
developed designs.

Maintainability: The easy evolution and ability to change the
systems decreases life-cycle costs and managing technical debt
(Kruchten et al., 2012). For that reason, it is important to identify

14

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

and propose strategies to implement SA-CPSs that successfully
allow maintainability and technical sustainability. Interoperabil-
ity: SA-CPSs depend on integration (Song et al., 2016) due to
the variety and heterogeneity of devices that have to operate
in the environment. It is important to identify interoperabil-
ity techniques and methodologies that allow the integration of
diverse devices and systems (i) across the SDLC and (ii) with
different paradigms (e.g., MAS and SOA) to guarantee the delivery
of services.

7. Conclusions

This SMS presented general strategies used to design SA-CPSs,
at each stage of the SDLC, introduced in Fig. 1. This SMS took
into account the sustainability and self-adaptability of the SA-
CPSs. Sixteen articles were selected for this SMS that presented
a self-adaptive framework or an architecture for SA-CPSs.

This SMS unveiled several trends in the design of SA-CPSs.
First, the designs are not limited to particular application do-
mains. Second, performance was the most commonly used at-
tribute. Third, MAPE-K is the predominant feedback loop ap-
plied to the cyber layer with the use of complement adaptation
strategies. Fourth, the creation of component-based projects for
the development of the designs and the simulation of these
proposed designs. Fifth, sustainability, in SA-CPSs, has been ad-
dressed through self-adaptation, and the use of quality attributes
such as adaptability, scalability, energy-efficiency, vaguely, mod-
ularity and reusability.

This SMS also identified the absence of information related to
the stages of the SDLC. First, the lack of a good specification on
economic aspects in the planning stage, especially, tangible ben-
efits. Second, in the specification and analysis stage, the lack of
inclusion of quality attributes, such as security, interoperability,
modularity, modifiability, compatibility, and testability. Third, in
the design and implementation stage, the lack of designs that
include the physical layer. Fourth, in the integration stage, the
lack of information on how the components were integrated.
Fifth, in quality control, the lack of information on unit testing,
and the lack of integrated testing of the subsystems. Sixth, in the
maintenance stage, the lack of information on how maintenance
can be achieved.

Finally, this SMS identified challenges such as (i) How to
design and evaluate sustainable SA-CPSs, (ii) How to apply unit
and integration testing in the development of SA-CPSs, and (iii)
How to develop feedback loops on SA-CPSs with the integration
of machine-learning techniques.

CRediT authorship contribution statement

Luisa Restrepo: Conception and design of study, Acquisition
of data, Analysis and/or interpretation of data, Writing - original
draft. Jose Aguilar: Conception and design of study, Analysis
and/or interpretation of data, Writing - review & editing. Mauri-
cio Toro: Conception and design of study, Analysis and/or inter-
pretation of data, Writing - review & editing. Elizabeth Suescún:
Conception and design of study, Analysis and/or interpretation of
data, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Vicerectoria de Descubrimiento
y Creación from Universidad EAFIT. This research was supported
by Universidad EAFIT, Colombia. The authors would also like to
thank David Velasquez for his early comments and suggestions on
this research. All authors approved the version of the manuscript
to be published.

References used in the review

Alkhabbas, F., Murturi, I., Spalazzese, R., Davidsson, P., Dustdar, S., 2020. A goal-
driven approach for deploying self-adaptive IoT systems. In: Proceedings -
IEEE 17th International Conference on Software Architecture, ICSA 2020.
Institute of Electrical and Electronics Engineers Inc., pp. 146–156. http:
//dx.doi.org/10.1109/ICSA47634.2020.00022.

Bedhief, I., Foschini, L., Bellavista, P., Kassar, M., Aguili, T., 2019. Toward self-
adaptive software defined fog networking architecture for iIoT and industry
4.0. In: IEEE International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks, CAMAD. http://dx.doi.org/10.
1109/CAMAD.2019.8858499.

Camara, J., Muccini, H., Vaidhyanathan, K., 2020. Quantitative verification-aided
machine learning: A tandem approach for architecting self-adaptive IoT
systems. In: Proceedings - IEEE 17th International Conference on Software
Architecture, ICSA 2020. Institute of Electrical and Electronics Engineers Inc.,
pp. 11–22. http://dx.doi.org/10.1109/ICSA47634.2020.00010.

Cui, Y., Voyles, R.M., Mahoor, M.H., 2013. ReFrESH: A self-adaptive architecture
for autonomous embedded systems. In: IEEE International Conference on
Automation Science and Engineering. pp. 850–855. http://dx.doi.org/10.1109/
CoASE.2013.6654042.

D’Angelo, M., Napolitano, A., Caporuscio, M., 2018. Cyphef: A model-driven
engineering framework for self-adaptive cyber-physical systems. In: Pro-
ceedings - International Conference on Software Engineering. pp. 101–104.
http://dx.doi.org/10.1145/3183440.3183483.

do Nascimento, N., de Lucena, C., 2017. FIoT: An agent-based framework for
self-adaptive and self-organizing applications based on the internet of things.
Inform. Sci. 378, 161–176. http://dx.doi.org/10.1016/j.ins.2016.10.031.

Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T., Knauss, A., 2019. Tuning self-
adaptation in cyber-physical systems through architectural homeostasis. J.
Syst. Softw. 148, 37–55. http://dx.doi.org/10.1016/j.jss.2018.10.051.

Iftikhar, M.U., Ramachandran, G.S., Bollansée, P., Weyns, D., Hughes, D.,
2017. DeltaIoT: A self-adaptive internet of things exemplar. In:
Proceedings - 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2017. Institute of Electrical and Electronics Engineers Inc., pp. 76–
82. http://dx.doi.org/10.1109/SEAMS.2017.21, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85025610351&doi=10.1109%2FSEAMS.2017.
21&partnerID=40&md5=461a7294434c88ac3df9c02c491702aa.

Kit, M., Gerostathopoulos, I., Bures, T., Hnetynka, P., Plasil, F., 2015. An
architecture framework for experimentations with self-adaptive cyber-
physical systems. In: Proceedings - 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2015. Institute of Electrical and Electronics Engineers Inc., pp. 93–
96. http://dx.doi.org/10.1109/SEAMS.2015.28, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84953218659&doi=10.1109%2fSEAMS.2015.
28&partnerID=40&md5=413c60f26d422f5eefa1d03d5d6e9200.

Lee, E., Seo, Y.-D., Kim, Y.-G., 2019. Self-adaptive framework based on MAPE
loop for internet of things. Sensors (Switzerland) 19 (13), http://dx.doi.org/
10.3390/s19132996.

Park, S., Park, S., 2019. A cloud-based middleware for self-adaptive IoT-
collaboration services. Sensors (Switzerland) 19 (20), http://dx.doi.org/10.
3390/s19204559.

Provoost, M., Weyns, D., 2019. Dingnet: A self-adaptive internet-of-things
exemplar. In: ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. pp. 195–201. http://dx.doi.org/10.1109/SEAMS.2019.
00033.

Ramesh Babu, M., Mohana Roopa, Y., 2017. Component-based self-adaptive
middleware architecture for networked embedded systems. Int. J. Appl. Eng.
Res. 12 (12), 3029–3034.

Seiger, R., Huber, S., Heisig, P., Aßmann, U., 2019. Toward a framework for self-
adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18 (2),
1117–1134. http://dx.doi.org/10.1007/s10270-017-0639-0.

Torres, R., Aros, M., Calderón, J.F., 2017. Towards self-adaptation for cyber-
physical systems using a distributed MAPE-k schema over XMPP.
In: 2017 CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies, CHILECON 2017 -
Proceedings. Institute of Electrical and Electronics Engineers Inc., pp. 1–5.
http://dx.doi.org/10.1109/CHILECON.2017.8229533, https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85043266216&doi=10.1109%2FCHILECON.
2017.8229533&partnerID=40&md5=6c03fe10883fbcfd06c450255d1895ba.

15

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Trihinas, D., Pallis, G., Dikaiakos, M., 2018. Low-cost adaptive monitoring tech-
niques for the internet of things. IEEE Trans. Serv. Comput. http://dx.doi.org/
10.1109/TSC.2018.2808956.

References

Aguilar, J., Cerrada, M., Mousalli, G., Rivas, F., Hidrobo, F., 2005. A multiagent
model for intelligent distributed control systems. In: Khosla, R., Howlett, R.J.,
Jain, L.C. (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 191–197.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N.,
Venters, C.C., 2015. Sustainability design and software: The karlskrona man-
ifesto. In: Proceedings - International Conference on Software Engineering.
Vol. 2, IEEE Computer Society, pp. 467–476. http://dx.doi.org/10.1109/ICSE.
2015.179.

Carvalho, A., Matos, H.A., Gani, R., 2013. Sustainpro-a tool for systematic process
analysis, generation and evaluation of sustainable design alternatives. Com-
put. Chem. Eng. 50, 8–27. http://dx.doi.org/10.1016/j.compchemeng.2012.11.
007.

Chantem, T., Guan, N., Liu, D., 2019. Sustainable embedded software and systems.
In: Sustainable Computing: Informatics and Systems. Vol. 22, Elsevier Inc.,
pp. 152–154. http://dx.doi.org/10.1016/j.suscom.2019.05.003.

Chitchyan, R., Groher, I., Noppen, J., 2017. Uncovering sustainability concerns in
software product lines. J. Softw.: Evol. Process 29 (2), e1853. http://dx.doi.
org/10.1002/smr.1853, http://doi.wiley.com/10.1002/smr.1853.

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., Chung, L., Nixon, B.A., Yu, E.,
Mylopoulos, J., 2000. The NFR framework in action. In: Non-Functional
Requirements in Software Engineering. Springer US, pp. 15–45. http://dx.
doi.org/10.1007/978-1-4615-5269-7_2, https://link.springer.com/chapter/10.
1007/978-1-4615-5269-7_2.

Cooper, H., 2010. Research Synthesis and Meta-Analysis: A Step-By-Step
Approach, fourth ed. In: Applied Social Research Methods Series, Sage
Publications, Inc, Thousand Oaks, CA, US.

Dafflon, B., Moalla, N., Ouzrout, Y., 2019. Cyber-physical systems network to sup-
port decision making for self-adaptive production system. In: International
Conference on Software, Knowledge Information, Industrial Management and
Applications, SKIMA. http://dx.doi.org/10.1109/SKIMA.2018.8631512.

De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S.,
Engels, G., Geihs, K., Göschka, K.M., Gorla, A., Grassi, V., Inverardi, P.,
Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Miran-
dola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W.,
Schlichting, R., Smith, D.B., Sousa, J.a.P., Tahvildari, L., Wong, K., Wuttke, J.,
2013. Software engineering for self-adaptive systems: A second research
roadmap. In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7475
LNCS, Springer, Berlin, Heidelberg, pp. 1–32. http://dx.doi.org/10.1007/978-3-
642-35813-5{_}1, https://link-springer-com.ezproxy.eafit.edu.co/chapter/10.
1007/978-3-642-35813-5_1.

Dennis, A., Wixom, B.H., Roth, R.M., 2014. Systems analysis and design. In:
Systems Analysis and Design, sixth ed. Wiley Publishing, p. 448. http://dx.
doi.org/10.1201/9781420055948.pt2.

Felson, D.T., 1992. Bias in meta-analytic research. J. Clin. Epidemiol. 45 (8),
885–892. http://dx.doi.org/10.1016/0895-4356(92)90072-U.

Hammoudi, S., Aliouat, Z., Harous, S., 2018. Challenges and research directions for
internet of things. Telecommun. Syst. 67 (2), 367–385. http://dx.doi.org/10.
1007/s11235-017-0343-y, https://link.springer.com/article/10.1007/s11235-
017-0343-y.

Hoffmann, M., Kühn, N., Weber, M., Bittner, M., 2004. Requirements for re-
quirements management tools. In: Proceedings of the IEEE International
Conference on Requirements Engineering. pp. 301–308. http://dx.doi.org/10.
1109/ICRE.2004.1335687.

International Organization for Standardization, 2011a. ISO/IEC 25010:2011 -
systems and software engineering — Systems and software quality require-
ments and evaluation (square) — System and software quality models.
https://www.iso.org/standard/35733.html.

International Organization for Standardization, 2011b. ISO/IEC/IEEE 42010:2011
- systems and software engineering. architecture description. In: BSOL
British Standards Online. https://bsol-bsigroup-com.ezproxy.eafit.edu.co/
Bibliographic/BibliographicInfoData/000000000030216549.

ISTQB R⃝ International Software Testing Qualifications Board, 2018. Foundation
level syllabus . https://www.istqb.org/downloads/syllabi/foundation-level-
syllabus.html.

Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M., McKinley, P.K., Cheng, B.H.,
2020. MAPE-K/MAPE-SAC: An interaction framework for adaptive systems
with security assurance cases. Future Gener. Comput. Syst. 109, 197–209.
http://dx.doi.org/10.1016/j.future.2020.03.031.

Janes, A., Lenarduzzi, V., Cristian Stan, A., 2017. A continuous software quality
monitoring approach for small and medium enterprises, in: Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering
Companion - ICPE ’17 Companion, ACM Press, New York, New York, USA
http://dx.doi.org/10.1145/3053600.3053618.

Janssen, W., 2018. Bias in theory and practice: a literature review of bias types
and a case study of bias views at the dutch safety board.

Janzen, D., Saiedian, H., 2005. Test-driven development: Concepts, taxonomy,
and future direction. Computer 38 (9), 43–50. http://dx.doi.org/10.1109/MC.
2005.314.

Jensen, J.C., Chang, D.H., Lee, E.A., 2011. A model-based design methodology for
cyber-physical systems. In: 2011 7th International Wireless Communications
and Mobile Computing Conference. pp. 1666–1671. http://dx.doi.org/10.
1109/IWCMC.2011.5982785.

Kang, J., Yu, H., 2018. Mitigation technique for performance degradation of
virtual machine owing to GPU pass-through in fog computing. J. Commun.
Netw. 20 (3), 257–265. http://dx.doi.org/10.1109/JCN.2018.000038.

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer
36 (1), http://dx.doi.org/10.1109/MC.2003.1160055.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering. Technical Report EBSE 2007-001.

Koziolek, H., 2011. Sustainability evaluation of software architectures: A
systematic review. In: CompArch’11 - Proceedings of the 2011 Fed-
erated Events on Component-Based Software Engineering and Software
Architecture - QoSA+ISARCS’11. ACM Press, New York, New York, USA,
pp. 3–12. http://dx.doi.org/10.1145/2000259.2000263, http://portal.acm.org/
citation.cfm?doid=2000259.2000263.

Kruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw. 29 (6), 18–21. http://dx.doi.org/10.1109/MS.
2012.167.

Kumar, M., Hanumanthappa, M., 2013. Scalable intrusion detection systems log
analysis using cloud computing infrastructure. In: 2013 IEEE International
Conference on Computational Intelligence and Computing Research, IEEE
ICCIC 2013. IEEE Computer Society, http://dx.doi.org/10.1109/ICCIC.2013.
6724158.

Lago, P., 2019. Architecture design decision maps for software sustainability.
In: Proceedings - 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Society, ICSE-SEIS 2019. pp. 61–64.
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00015.

Lee, E.A., 2008. Cyber physical systems: Design challenges. In: Proceedings
- 11th IEEE Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC 2008. pp. 363–369. http://dx.doi.org/10.1109/
ISORC.2008.25.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 101, 193–220. http://dx.doi.org/10.1016/
j.jss.2014.12.027.

Lin, J., Sedigh, S., Miller, A., 2009. Toward integrated simulation of cyber-
physical systems: A case study on intelligent water distribution. In: 8th IEEE
International Symposium on Dependable, Autonomic and Secure Computing,
DASC 2009. pp. 690–695. http://dx.doi.org/10.1109/DASC.2009.140.

Lin, K.J., Panahi, M., 2010. A real-time service-oriented framework to support
sustainable cyber-physical systems. In: IEEE International Conference on
Industrial Informatics (INDIN). pp. 15–21. http://dx.doi.org/10.1109/INDIN.
2010.5549473.

Marwedel, P., 2018. Embedded System Design : Embedded Systems, Foundations
of Cyber-Physical Systems, and the Internet of Things. Springer Interna-
tional Publishing, http://dx.doi.org/10.1007/978-3-319-56045-8, http://link.
springer.com/10.1007/978-3-319-56045-8.

Marwedel, P., Engel, M., 2016. Cyber-physical systems: opportunities, challenges
and (some) solutions. In: Management of Cyber Physical Objects in the
Future Internet of Things. Springer, pp. 1–30.

Muccini, H., Sharaf, M., Weyns, D., 2016. Self-adaptation for cyber-physical
systems: A systematic literature review. In: Proceedings - 11th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2016. Association for Computing Machinery, Inc, pp.
75–81. http://dx.doi.org/10.1145/2897053.2897069, https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84974536575&doi=10.1145%2f2897053.
2897069&partnerID=40&md5=47dab41342a795ec3aab22756f79810f.

Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., Sharaf, M., 2017. Patterns
for self-adaptation in cyber-physical systems. Multi-Disciplinary Engineering
for Cyber-Physical Production Systems: Data Models and Software Solutions
for Handling Complex Engineering Projects. pp. 331–368. http://dx.doi.org/
10.1007/978-3-319-56345-9{_}13.

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H., 2007. Engineering Design: A
Systematic Approach. Springer London, pp. 1–617. http://dx.doi.org/10.1007/
978-1-84628-319-2.

Pankowska, M., 2013. Sustainable software: A study of software product sustain-
able development. In: Mechanism Design for Sustainability: Techniques and
Cases. Springer Netherlands, pp. 265–281. http://dx.doi.org/10.1007/978-94-
007-5995-4{_}13.

16

L. Restrepo, J. Aguilar, M. Toro et al. The Journal of Systems & Software 180 (2021) 111010

Pei Breivold, H., 2020. Using software evolvability model for evolvability analysis.
Perozo, N., Aguilar, J., Terán, O., 2008. Proposal for a multiagent architecture

for self-organizing systems (MA-SOS). In: Yang, C.C., Chen, H., Chau, M.,
Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K.,
Mao, W., Zhan, J. (Eds.), Intelligence and Security Informatics. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 434–439.

Restrepo, L., 2021. Replication package for: "a sustainable-development approach
for self-adaptive cyber-physical systems life cycle: A systematic mapping
study". 1, http://dx.doi.org/10.17632/GV66S3X56W.1.

Romero, D., Quinton, C., Duchien, L., Seinturier, L., Valdez, C., 2015. Smar-
tyco: Managing cyber-physical systems for smart environments. In: Lec-
ture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9278,
Springer Verlag, pp. 294–302. http://dx.doi.org/10.1007/978-3-319-23727-
5_25, https://link-springer-com.ezproxy.eafit.edu.co/chapter/10.1007/978-3-
319-23727-5{_}25.

Rouse, M., 2007. What is vertical scalability (scaling up)? - definition from
whatis.com. https://searchcio.techtarget.com/definition/vertical-scalability.

Rowe, D., Leaney, J., Lowe, D., 1994. Defining systems evolvability-a taxonomy
of change. Change 94, 541–545.

Sanchez, M., Aguilar, J., Jerez, M., Mendonca, M., 2017. An extension of the misci
middleware for smart cities based on fog computing. J. Inf. Technol. Res. 10
(4), 23–41.

Sánchez Aristizábal, A., Sarmiento Garavito, S., 2019. Diagnosis evaluation of
the coffee leaf rust development stage in the colombian caturra variety
integrating remote sensing, wireless sensor networks and deep learn-
ing (Ph.D. thesis). Universidad EAFIT, http://repository.eafit.edu.co/handle/
10784/15427.

Saputri, T.R.D., Lee, S.W., 2020. Integrated framework for incorporating sustain-
ability design in software engineering life-cycle: An empirical study. Inf.
Softw. Technol. 106407. http://dx.doi.org/10.1016/j.infsof.2020.106407.

Shelly, G.B., Rosenblatt, H.J., 2011. Systems Analysis and Design. Cengage
Learning.

Sommerville, I., 2015. Software engineering. 10th. In: Book Software Engineering.
10th, Series Software Engineering. Addison-Wesley.

Song, H., Rawat, D.B., Jeschke, S., Brecher, C., 2016. Cyber-Physical Systems:
Foundations, Principles and Applications. Morgan Kaufmann.

Stankovic, J.A., 2014. Research directions for the internet of things. IEEE Internet
Things J. 1 (1), 3–9. http://dx.doi.org/10.1109/JIOT.2014.2312291.

Stavros, J.M., Sprangel, J.R., 2008. ‘‘SOAR’’ from the mediocrity of status quo
to the heights of global sustainability. In: Innovative Approaches To Global
Sustainability. Palgrave Macmillan US, pp. 11–35. http://dx.doi.org/10.1057/
9780230616646_2.

Tsai, W.T., Bai, X., Paul, R., Shao, W., Agarwal, V., 2001. End-to-end integration
testing design. In: Proceedings - IEEE Computer Society’s International
Computer Software and Applications Conference. pp. 166–171. http://dx.doi.
org/10.1109/CMPSAC.2001.960613.

Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2017. MAPE-K as a service-
oriented architecture. IEEE Lat. Am. Trans. 15 (6), 1163–1175. http://dx.doi.
org/10.1109/TLA.2017.7932705.

Wang, C., Gill, C., Lu, C., 2019. FRAME: Fault tolerant and real-time messaging for
edge computing. In: Proceedings - International Conference on Distributed
Computing Systems. Institute of Electrical and Electronics Engineers Inc., pp.
976–985. http://dx.doi.org/10.1109/ICDCS.2019.00101.

Weyns, D., Georgeff, M., 2010. Self-adaptation using multiagent systems. IEEE
Softw. 27 (1), 86–91. http://dx.doi.org/10.1109/MS.2010.18.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering -
EASE ’14. pp. 1–10. http://dx.doi.org/10.1145/2601248.2601268.

Wombacher, A., 2011. How physical objects and business workflows can be
correlated. In: Proceedings - 2011 IEEE International Conference on Services
Computing, SCC 2011. pp. 226–233. http://dx.doi.org/10.1109/SCC.2011.24.

Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., Ylä-Jääski, A., 2010.
A system-level model for runtime power estimation on mobile devices. In:
Proceedings - 2010 IEEE/ACM International Conference on Green Computing
and Communications, GreenCom 2010, 2010 IEEE/ACM International Con-
ference on Cyber, Physical and Social Computing, CPSCom 2010. pp. 27–34.
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.114.

Zeadally, S., Sanislav, T., Mois, G., 2019a. Self-adaptation techniques in cyber-
physical systems (CPSs). IEEE Access 7, 171126–171139. http://dx.doi.org/
10.1109/ACCESS.2019.2956124.

Zeadally, S., Sanislav, T., Mois, G.D., 2019b. Self-adaptation techniques
in cyber-physical systems (CPSs). IEEE Access 7, 171126–171139.
http://dx.doi.org/10.1109/ACCESS.2019.2956124, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85078403794&doi=10.1109%2fACCESS.2019.
2956124&partnerID=40&md5=ac0ad13602e57ff214eb6867f0bbfc4a.

Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B., 2017. The impact of
continuous integration on other software development practices: A large-
scale empirical study. In: ASE 2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. Institute of
Electrical and Electronics Engineers Inc., pp. 60–71. http://dx.doi.org/10.1109/
ASE.2017.8115619.

Zhou, X., Jin, Y., Zhang, H., Li, S., Huang, X., 2016. A map of threats to validity
of systematic literature reviews in software engineering. In: Proceedings -
Asia-Pacific Software Engineering Conference, APSEC. IEEE Computer Society,
pp. 153–160. http://dx.doi.org/10.1109/APSEC.2016.031.

Züllighoven, H., 2005. In: Züllighoven, H.B.T.O.-O.C.H. (Ed.), 12 - The Devel-
opment Process. Morgan Kaufmann, San Francisco, pp. 393–457. http://dx.
doi.org/10.1016/B978-155860687-6/50012-8, http://www.sciencedirect.com/
science/article/pii/B9781558606876500128.

Luisa Restrepo received a B.Sc. degree in Computer
Science in 2015 and a M.Sc. degree in Engineering
from Universidad EAFIT, Colombia with emphasis on
Software engineering, in 2019. Since 2020, Luisa works
as Adjunct Professor at the Department of Systems
and Informatics Engineering at Universidad EAFIT. Her
research interests include requirements engineering,
assessment of software applications, software reuse,
cyber–physical systems, and data quality.

Professor Jose Aguilar received the B. S. degree in
System Engineering in 1987 (Universidad de Los Andes-
Venezuela), the M. Sc. degree in Computer Sciences in
1991 (Universite Paul Sabatier-France), and the Ph.D
degree in Computer Sciences in 1995 (Universite Rene
Descartes-France). He was a Postdoctoral Research Fel-
low in the Department of Computer Sciences at the
University of Houston (1999-2000) and in the Lab-
oratoire d’Analyse et d’Architecture des Systems of
Toulouse, France (2010-2011). He is a Titular Professor
in the Department of Computer Science at the Universi-

dad de los Andes, Mérida, Venezuela, and contracted professor of the Department
of Systems Engineering of the EAFIT University, Medellin, Colombia. His research
interests include artificial intelligence, industry 4.0, IoT, cyber–physical and
autonomic systems.

Mauricio Toro received a B.Sc. degree in Computer
Science and Engineering from Pontificia Universidad
Javeriana, Colombia, in 2009. Mauricio got a PhD de-
gree in Computer Science from Université de Bordeux,
France with emphasis on Artificial Intelligence, in 2012.
Mauricio was a postdoctoral fellow at the Computer-
Science department at University of Cyprus, during
2013. Since 2014, Mauricio works as Assistant Pro-
fessor at the Department of Systems and Informatics
Engineering and as a researcher of the GIDITIC Group
at Universidad EAFIT. His research interests include

artificial intelligence, industry 4.0, machine learning, computer vision, and
agricultural applications.

Elizabeth Suescún Monsalve received a B.Sc. degree
in Computer Science from Politecnico Colombiano JIC,
Colombia, in 2004. Elizabeth got a Master and PhD
degree in Computer Science from Pontifical Catholic
University of Rio de Janeiro - PUC-Rio, Brazil with
emphasis on Software Engineering, from 2010 to 2014.
Since 2015, Elizabeth works as Assistant Professor
at the Department of Systems and Informatics En-
gineering and as a researcher of the GIDITIC Group
at Universidad EAFIT. Her research interests include
Software Engineering, DevOps, industry 4.0, Software

Transparency, Intentional Modeling, cyber–physical systems and its applications.

17

Appendix B

SinSO: An Ontology of Sustainability in Software

43

Applied Ontology

SinSO: An ontology of Sustainability in Software
--Manuscript Draft--

Manuscript Number: AO-230004R1

Full Title: SinSO: An ontology of Sustainability in Software

Short Title:

Article Type: Research Article

Section/Category: Regular Submissions

Keywords: sustainability; domain ontology; Quality attributes; Software Engineering

Corresponding Author: Jose Aguilar, PhD
Universidad de Los Andes
Merida, Mérida VENEZUELA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Universidad de Los Andes

Corresponding Author's Secondary
Institution:

First Author: Luisa Restrepo

First Author Secondary Information:

Order of Authors: Luisa Restrepo

Cesar Pardo

Jose Aguilar, PhD

Mauricio Toro

Elizabeth Suescun

Order of Authors Secondary Information:

Abstract: Sustainability in systems refers to applying sustainable principles and practices to
create more resilient, efficient, and equitable systems that promote the well-being of
people and the planet. Sustainability is an essential topic in contemporary software
engineering, and its relationship with the characteristics and properties of a system or
product called quality attributes is still an open question since each researcher has
established their definition of sustainability in software. This has created diverse terms
and concepts for distinct application environments and scopes, creating ambiguity and
misconceptions. This work defines a domain ontology of Sustainability in Software
named SinSO to address these issues. SinSO was implemented in OWL, using
competency-based questions to validate. The findings show that this proposal satisfies
several quality and content requirements. Also, using Protégé and the Hermit
reasoner, we verified that SinSO is consistent since the ontology statements are
coherent and do not lead to conflicting or contradictory conclusions. In addition,
competency questions allowed us to demonstrate that SinSO does fulfill its purpose.
FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in
two case studies, one about software for senior-citizen smart-home, and the other, a
simulator to develop and test smart-city applications, achieving positive outcomes. To
verify its accuracy, completeness, and maintainability, further evaluations of SinSO are
needed in real case studies. We conclude that SinSO can significantly contribute to
reducing ambiguity and enhancing comprehension in this area. Furthermore, SinSO
can be an effective tool for engineers to recognize the concepts and relationships in
the sustainable domain to consider in the systems development life cycle to build
sustainable systems.

Suggested Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response to Reviewers: REVIEW REPORT
PAPER NUMBER: AO-230004R1
SinSO: An Ontology of Sustainability in Software

Firstly, we want to express our thanks to the reviewers, their comments are much
appreciated and contribute to highly improve this work. We appreciate their guidance
for this revision. All the comments were thoroughly considered in the revised version of
our work, resulting in the following list of changes. We hope this report agrees with the
suggestions. Reviewer’s comments are in italic letters, our comments in normal text
letters, and the new paragraphs added/modified in the revised version are in red text
letters. Original paragraphs used in response to the reviewers are in blue text letters.

REVIEWER 1

1. General:
A very ambitious paper on an important topic, sustainability in Software. The paper
motivates the need for an ontology of sustainability in software and successfully coins
what the authors mean by the term (software sustainability) with adequate limitations to
other uses of the same term. The ontology is ambitiously evaluated in several steps
with the aim of both with assuring that the ontology contains the right concepts and as
well as achieving desired results with said concepts.
The presentation, especially the evaluation part, needs to be better, the motivations are
there to some extent but it is very hard to follow how the various parts of the evaluation
is carried out and by whom. Quality metrics, quality questions, grading etc. needs more
background, how were they chosen, were there alternatives, was the grading
automatic or done by an expert etc.?
Reply:

We have added comments in the text to respond to all these comments. Later, we will
describe how we respond.

Some general observations that is partly addressed in the paper but can be improved:
2 Literature review:
How was the ontology conceived? Can an argument be made that the most important
sources are covered in a systematic way – and avoid cherry-picking of articles? This is
a journal article where a larger literature review is possible to conduct.
The referenced papers are ok in terms of recent-ness but the reader needs to see a
little more about how these papers were chosen, i.e. what search-terms where used to
find the initial papers, were they read and then their references read until the field was
exhausted? A little more of what process was used to find enough/the right papers
would be valuable.
Reply:

Thanks for your comment. At the beginning of section 4, we have added the next text
to respond to your comment about how the ontology was conceived, how the review of
works was carried out, and what considerations were made about the search, among
other things:

"The conception of SinSO involved several key steps such as defining the scope and
identifying the relevant literature. The scope defined was to identify quality attributes
relevant to the sustainable domain and their relationship with sustainability dimensions.
Particularly, we considered five dimensions of sustainability: environmental, technical,
economic, social, and individual/personal. Also, some quality attributes in these
dimensions are subsumed by the included quality attributes such as Durability,
Dependability (included in Reability), Traceability (included in Accountability),
Survivability, Data Privacy (included in Security), and Adaptation (included in
Maintainability). Thus, the literature review followed the following steps (i) A search
string (see Table 1) was defined to execute in the selected databases (Scopus and
Google Scholar). (ii) The inclusion/exclusion criteria were to include papers published
from 2015 to 2023, English/Spanish language papers, and exclude papers not
available or not accessible. (iii) The resulting paper's title, abstract, and content were

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

reviewed to exclude non-relevant papers. The process started with 128 papers and
finished with 16."

3. Example: Sustainability characteristics are problematized – good but the paper could
benefit from further explanations/elaborations on the topic. Some characteristics are
very vague. e.g. social aspects. Some other aspects could be argued are missing. For
instance legal and regulatory dimensions of software sustainability such as ensuring
that software abide by regulations? Could these be seen dimensions of the social
characteristics mentioned? Or have they been omitted with purpose? Or missed by
mistake or just not deemed important?
Reply:

This example is a mistake, which has been corrected in Table 4 (see social
dimension):

"It is related to the safeguarding of the interests of social communities, groups of
individuals, or organizations. Also, how well software complies with application-specific
laws."

Evaluation:
4. Competency questions: How do we know that these are right ones? A very difficult,
or perhaps impossible, question to answer in full of course but it could be partly
answered if the authors described more. How were these questions conceived? And
by whom? From literature or were experts on software sustainability consulted? Either
is ok even if the latter is better but, as said before, as a reader you need to be able to
follow and assess the process of evaluation more easily.
The evaluation parts are sometimes hard to follow and the terms used sometime
overloaded. What is verification and what is validation and how and by whom it is done
must be better presented, verification is suited to be automated, validation not so much
– it is not evident to me as a reader what parts are automated and what parts are not.
Or maybe both verification and validation was fully automatic, see 6.3. See more in
details below as well.
Reply:

At the beginning of section 5.1, we clarify as the Competency questions are defined:

"To evaluate SinSO, a group of competency questions (CQs) have been defined and
conceived through the literature review, which provides us insights into the relevant
concepts and relationships that should be covered. CQs were refined with
brainstorming sessions between authors to clarify the information and knowledge the
ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer."

5. The evaluation parts are sometimes hard to follow and the terms used sometime
overloaded. What is verification and what is validation and how and by whom it is done
must be better presented, verification is suited to be automated, validation not so much
– it is not evident to me as a reader what parts are automated and what parts are not.
Or maybe both verification and validation was fully automatic, see 6.3. See more in
details below as well.
Reply:

The penultimate paragraph of section 5.3 clarifies this aspect:

"FOCA methodology (Bandeira et al. (2017) defines how to verify each of the questions
to obtain a final grade. In general, the questions should be answered given one of
these grades (25,50,75,100). For example, for the next questions: (i) ``Does the
document define the ontology objective?", (ii) ``Does the document define the ontology
stakeholders?", (iii) ``Does the document define the use of scenarios?", the resulting
values calculated through a consensus process carried out by the authors were
100,100 and 25, respectively, resulting in a mean of 75. The procedure followed was
the same for other questions, and was manually performed.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

The resulting values for each question were used by Equation 1 to determine a general
value of the quality of the system. The result of the total quality is 0.998 (see Equation
2b), and being a result close to 1 according to the FOCA methodology, we can
conclude that SinSO has a high quality in terms of the five roles defined by Bandeira et
al. (Bandeira et al. (2017)):…"

Details:
6. Methondology and REFSENO – how do we know that these are good in
systematizing implementation of ontology in order to evaluate said ontology? No big
deal and a hard question to answer completely of course but perhaps some alternative
(-s) could be mentioned and ruled out?
Reply:

We have added the last paragraph of section 3.2 to respond to this comment:

"There are different methodologies to systematize the implementation of ontologies
such as NeOn Methodology (Suárez-Figueroa et al. (2015)) that proposes a framework
to reuse available ontologies, Software Engineering Ontology Network (SEON) that
provides ontology reusability and integration (Borges Ruy et al. (2016)), or SMO
ontology that is focused on software process and behavior analysis (Barcellos et al.
(2010)). We employ Methontology (Fernández-López et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)),
an improved version of Methontology. REFSENO allows for (i) exact and consistent
knowledge modeling (in this paper, the conceptual structures are defined using the
class diagram of the Unified Modeling Language-UML); (ii) the construction of an
ontology via the use of identification and detailed characterization of concepts and their
relationships; and (iii) the ontology's validation to assure consistency and applicability
using case studies or instances.} \textcolor{red}{The effectiveness of these
methodologies in systematizing ontology implementation and evaluation depends on
factors such as the expertise of developers, the complexity of the domain, and the
specific goals of the project. Our team has used for a long time with these
methodologies, which adhere to best practices in ontological engineering."

7. “In addition, to enable the evaluation of SinSO and the execution of the competency
questions (CQs), SinSO was populated by creating a series of instances/objects, in
each of the classes, which are referred to..”
Very interesting and well done but it would be good to know how these instances were
created – from any particular domain and if so can this affect the evaluation? In 5.2
there are some examples (of formal axioms expressed in natural language) – these
seem to be domain independent though, good. Under the introduction in chapter 6 is
mentioned (iv) creation of SinSO instances (based on two case articles) – is this the
aforementioned instances? I may misunderstand but some parts of the Implementation
and Evaluation is not completely clear and in what order what it is even done – could
they be better explained/presented?
Reply:

After Figure 2 we added:

"Subsequently, SinSO was filled with a collection of instances/objects from each class
mentioned as individuals in Protégé. These individuals are represented using what is
commonly referred to as ``dummy data" (see Fig. 3) to illustrate the structure and
functionality of the ontology and also to be able to test the axioms and competency
questions."

8. Table 2 page 10 (Goal, Question, Metrics, Grade, Mean in the SinSos component
evaluation) – how was the grade assessed and by whom? How is the scale to be
interpreted 75, 100, 0? Can the table be better explained – who did the evaluation –
who assigned the grades – the language is a bit rough both syntactically and
semantically – the terms and process need to be better explained.
Reply:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

See the answer to question 5, which also answers this question.

9. 6.3 page 12: “Expandability: Expandability refers to the effort required to add new
definitions to an ontology [51]. Since it has not been tailored to specific organisations or
domains, SinSO can be adapted and extended by including and defining new terms, so
that it can be used in specific industry contexts” .
Just a minor but how do we know this? The choice of class structure _could_
potentially invalidate or hinder the incorporation of not yet covered (domain dependent)
concepts should they be deemed to sort under several other classes or invalidate
some already existing relationship etc.? Generally though it is good that the ontology is
domain independent for the point of expandability, agreed.
Reply:

According to your comment, in section 5.4, we have added the next comment:

"…Since it has not been tailored to specific organizations or domains, SinSO can be
customized and enhanced to be used in specific industry scenarios by including and
specifying new terms. Its structure consists of few levels of depth, and adding a new
definition will require only the minimal effort of adding it in the corresponding section
and configuring its properties. Also, new concepts can use multiple inheritance to
handle cases where an entity fits into multiple classes. SinSO can be iterated for
regular updates and revisions as the domain evolves to improve flexibility and allow
multiple classifications and relationships."

10. Figure 5 Results of the Hermit Reasoner: “Ontology processed in 22 ms by
HermiT”. What does this mean? Is it within the boundaries of goals set by
standards/authors etc.? Can these metrics/table-content be explained better?
Reply:

Thanks for your comment. The description of Figure 5 was corrected and the text that
cites Figure 5 improved:
As a result, SinSO did not present errors (see Fig5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms
and the resulting time for the execution). Thus, the reasoner computed the ontology
successfully and did not generate inconsistencies executing all axioms.

11. page 15 “All Axioms were executed in the DL Query feature of Proteg´e and the
average time for the computed results was 8.5ms with a minimum time of 2ms and a
maximum of 15ms for Axiom A3. Thus, the computing time of SinSO is acceptable
according to the authors’ criteria. ”
This section is hard to read and be convinced by – what author’s criteria is referred to
here? What persons did the instantiation? Sustainability experts, the authors (probably)
– more details on a general level on how the instantiation process is done needed –
how it was done needs to be more transparent.
Reply:

According to your comment, the text before Table 3 was modified:

"All Axioms were applied in the DL Query feature of Protégé over the ontology.
Considering the time taken to run the reasoner, the average time for the results was
8.5ms, with a minimum time of 2ms and a maximum of 15ms for Axiom A3. Thus, the
computing time of SinSO is acceptable for the context analyzed, but future works must
test the scalability of the ontology. On the other hand, the main task is to associate the
system's objectives with their corresponding quality attributes to identify which
dimensions of sustainability are being targeted. That implies an instantiation time of our
ontology is necessary, which depends on the size of the project. The instantiation of
these case studies took three days, but it must be taken into account that not all the
information was fully known; we were not part of the projects, and it was based on what
was published in the articles. Therefore, for an associated person to the project, it
should take less time."

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

12. Formalia&Form: Language could be improved in parts, especially in tables, the [8]
reference is lacking year
Reply:

The year was added to the reference and the language was improved.

REVIEWER 2

General:
The paper is an ontology paper. It motivates, describes, and evaluates the SinSo
ontology about sustainability in software. It follows form, in the sense of ticking the
boxes for an ontology paper, but there are a number of content issues as well as a
number of presentation issues, described below. Therefore, I recommend major
revision.
Details
1. Abstract: “Although....” part: it would be better to state what you did, including use
case, rather than what has not been done.
Reply:

Thanks for your comment. The abstract was modified according to your suggestion:

"FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in
two case studies, one about software for senior-citizen smart-home, and the other, a
simulator to develop and test smart-city applications, achieving positive outcomes."

2. The introduction states that “this paper is thus devoted to understanding....”: but is
it? While understanding is needed, that is not the contribution of the paper. Nor does
‘devoted to understand’ answer a research question or solve a problem with evidence.
Reply:

Thanks, we have modified this sentence:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

3. Sect 4.2. While using a methodology is better than none, Methontology and
REFSENO are quite outdated, to put it mildly. If updates thereto were used, it should
be mentioned there, like a quality framework, DOLCE (methontology never even
mentions foundational ontologies).
Reply:

We have added a comment about DOLCE in the last paragraph of section 6:

"In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSO's categories are specializations of abstract
quality since the ontology components are non-physical objects. DOLCE Relationships
can be reused, such as ``has-part" to ``involves" and ``is related to" SinSO
relationships, and "is-part-of" to "is composed of " and "belongs to" SinSO
relationships"

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Also, we have added the last paragraph of section 3.2 to respond to the comment
about the utilization of Methontology and REFSENO:

"There are different methodologies to systematize the implementation of ontologies
such as NeOn Methodology (Suárez-Figueroa et al. (2015)) that proposes a framework
to reuse available ontologies, Software Engineering Ontology Network (SEON) that
provides ontology reusability and integration (Borges Ruy et al. (2016)), or SMO
ontology that is focused on software process and behavior analysis (Barcellos et al.
(2010)). We employ Methontology (Fernández-López et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)),
an improved version of Methontology. REFSENO allows for (i) exact and consistent
knowledge modeling (in this paper, the conceptual structures are defined using the
class diagram of the Unified Modeling Language-UML); (ii) the construction of an
ontology via the use of identification and detailed characterization of concepts and their
relationships; and (iii) the ontology's validation to assure consistency and applicability
using case studies or instances.} \textcolor{red}{The effectiveness of these
methodologies in systematizing ontology implementation and evaluation depends on
factors such as the expertise of developers, the complexity of the domain, and the
specific goals of the project. Our team has used for a long time with these
methodologies, which adhere to best practices in ontological engineering."

4. Sect 5: “inherited from the next sub-ontologies”: imported, rather. Abstract quality
does not inherit from NPED, it inheres-in. Then it states that SinSo also can be located
in DOLCE abstract region: but then where is it aligned eventually? Or, rather, I suspect
that different parts of SinSo can be aligned to different DOLCE categories, but
definitely not one at multiple places. Aggregation (p6) in UML is not about strong
dependence, but about parthood; composition: no, not that classes are mandatory, but
the participation in the association is mandatory.
Reply:

We have modified the sentence:

"...In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSO's categories are specializations of abstract
quality since the ontology components are non-physical objects… "

5. Sect 5.1: Web Ontology Language OWL, not Ontology Web Language. Were or
weren’t the competency questions specified upfront? This is not clear now. And
“execution” of CQs? I suspect what’s meant is the execution of the SPARQL queries
written for the CQs, rather than the CQs themselves.
Reply:

Text changed to “Web Ontology Language”.

Also, at the beginning of section 5.1, we clarify as the Competency questions are
defined:

"To evaluate SinSO, a group of competency questions (CQs) have been defined and
conceived through the literature review, which provides us insights into the relevant
concepts and relationships that should be covered. CQs were refined with
brainstorming sessions between authors to clarify the information and knowledge the
ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer. Subsequently, SinSO
was filled with a collection of instances/objects from each class mentioned as
individuals in Protégé. These individuals are represented using what is commonly
referred to as ``dummy data" (see Fig. 3) to illustrate the structure and functionality of
the ontology and also to be able to test the axioms and competency questions. "

6. As to the ontology: I went to https://github.com/LuisaRestrepo/Sustainable-SA-
CPSs, but it only has figure 1. I had expected at least one OWL file that I could inspect.
Going by the figure and assuming/hoping for a proper encoding in OWL: the ‘has’

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

between Quality attribute and Objective misses multiplicity constraints, as do some
other associations there among the purple classes. Indicator’s goalsQuantitative as
string does not appear appropriate as attribute for an ontology (I’m guessing encoded
as a DataProperty in the OWL file), nor are ”j”. Also, it looks like only a module of SMO
is imported, rather than the whole SMO; please clarify.
Reply:

OWL File was uploaded in the Mendeley data for journals and it was referenced in the
article. The GitHub site is not updated and it will deleted. The next text was added at
the end of section 5.4:

"The SinSO ontology can be downloaded from Gutierrez (2023), to execute queries or
reasoning in Protégé and thus validate its operation."

7. Further, returning to DOLCE mentioned earlier: which of those relations could be
reused? Parthood and proper parthood, likely, for the SinSo’s Involved in and
composed of, respectively, yet they have not been considered.
Figure 2: what would be real instances of, e.g., Operability?
Reply:

We have added a comment about DOLCE in the last paragraph of section 6:

"In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSO's categories are specializations of abstract
quality since the ontology components are non-physical objects. DOLCE Relationships
can be reused, such as ``has-part" to ``involves" and ``is related to" SinSO
relationships, and "is-part-of" to "is composed of " and "belongs to" SinSO
relationships"

Also, after Figure 2 we added the next text to clarify the source of information:

"Subsequently, SinSO was filled with a collection of instances/objects from each class
mentioned as individuals in Protégé. These individuals are represented using what is
commonly referred to as ``dummy data" (see Fig. 3) to illustrate the structure and
functionality of the ontology and also to be able to test the axioms and competency
questions."

8. Sect 5.2: on the formal axioms always being true: no, not necessarily, it may also be
false. The deductive reasoner infers implicit information, not “new” (though it may be
new to the user). Figure 3: “has participant some Economical” economical *what*, or:
the name ideally would include ‘dimension’ in the name in order to disambiguate the
adjective.
Reply:

We have modified the sentence to:

"Formal axioms are logical expressions used to specify constraints in the ontology"

Also, we have added dimension to the figure and axioms. See Figure 4 and Table 6.

9. Were there any novel modelling challenges that were solved? How does the
alignment to DOLCE look like exactly? What’s the current content in terms of size, DL
fragment?
Reply:

See the response to your comment 4, which is related to this comment. In addition, we
have added the following sentence in section 4.1:

"…As a result, each SinSO concept was converted into a class, each attribute into a
data property via domains, and each relationship into an object property. DL fragment
size of SinSO is as follows: logical axioms - 284, declaration axioms - 149, class cout -

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

49, object property - 17, data property - 17, individuals - 66, subclass relationships - 67,
and disjoint classes – 8."

10. Sect. 6.1: the reader is still left wondering about the CQ development, on whether
that was done before for scoping or only for evaluation after the development of the
ontology. Please clarify.
Reply:

Competency questions were moved to the evaluation section since they were used to
evaluate ontology after development.

11. Sect 6.2: The validation is done with the FOCA methodology, but reference 49 is
incomplete. Why this one specifically? While it may perhaps be useful, there are some
pertinent details missing to make much sense of this section. For instance, a “Grade”
of “75” for goal 1: where does that once from/why/how? Of question Q4: imposing a
“maximum ontology commitment” means what exactly? I understand ontological
commitment, but ‘maximum’? Similarly, from “The criteria to calculate…”: out of context
it does not seem very meaningful, and likewise for the numbers plugged into the
formula.
Reply:

Thanks for your comment. A paragraph is added explaining the process in the
penultimate paragraph of section 5.3:

"FOCA methodology (Bandeira et al. (2017) defines how to verify each of the questions
to obtain a final grade. In general, the questions should be answered given one of
these grades (25,50,75,100). For example, for the next questions: (i) ``Does the
document define the ontology objective?", (ii) ``Does the document define the ontology
stakeholders?", (iii) ``Does the document define the use of scenarios?", the resulting
values calculated through a consensus process carried out by the authors were
100,100 and 25, respectively, resulting in a mean of 75. The procedure followed was
the same for other questions, and was manually performed.
The resulting values for each question were used by Equation 1 to determine a general
value of the quality of the system. The result of the total quality is 0.998 (see Equation
2b), and being a result close to 1 according to the FOCA methodology, we can
conclude that SinSO has a high quality in terms of the five roles defined by Bandeira et
al. (Bandeira et al. (2017)):…"

12. Sect 6.3: p11 claims consistency thanks to the (textual??) definitions, terms, and
relations, but that alone would then not suffice for evidence. As such the “as a result” is
not clear either: result of what? And fig 5 presumably shows the output of the whole
ontology, not just one axiom “A1”. Further, Hermit will not report on redundancies;
there exist limited (and by now old) non-standard reasoning services for that. The last
sentence of this section is vague, lacking evidence (if that’s even possible) and does
not relate to the logic, so if it is important, it needs clarification and precisification.
Reply:

In section 5.4, we have improved the definition of consistency:

"Consistency: A definition is consistent if the individual purpose is consistent and no
conflicting sentences can be deduced using other definitions and axioms (Gómez-
Pérez (2001)). The authors checked the definition of each term and its connections to
ensure consistency, to identify inconsistencies and misinterpretations."

Also, the description of Figure 5 was corrected and the text that cites Figure 5
improved:

"As a result, SinSO did not present errors (see Fig5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms
and the resulting time for the execution). Thus, the reasoner computed the ontology
successfully and did not generate inconsistencies executing all axioms."

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

13. Sect 6.4: the authors probably did not “instantiate” the use cases’ systems with the
ontology, but instantiated the entities in the ontology, or used the ontology in
annotations. Those detailed descriptions on p14 don’t add much. Maybe it is meant as
a quasi natural language rendering of the diagram or of some axioms, but that then
would be duplication of information and then either the figure or the formalisation will
do as compared to this imprecision. And “execution” of axioms is unlikely the right
term.
Reply:

Detailed descriptions explain how it was operationalized each attribute associated with
a dimension for each domain. It is clarified in section 5.5.3:

"For domain 1 (senior-citizen smart-home case study) and domain 2 (DingNet
simulator), formal axioms and relevant CQs were executed (see Table 2). In the case
studies, each quality attribute was operationalized for each dimension.
Below is the process followed:"

Also, the word “execution” was changed to “application”.

14. Conclusions. “SinSo is a valuable contribution”: users will decide that, not the
authors if there’s no ample evidence. “can serve as a useful tool…”: perhaps, but that
has not been shown in the paper, so that conclusion cannot be drawn from the data
presented (the authors may hope for it, envision it, or expect it or some such
description, but “can” is too strong a claim).
Reply:

Sections I (introduction), VI (discussion) and VII (Conclusions) have been modified
according to this comment. For example, see the antepenultimate paragraph added in
the introduction:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

Also, it has been eliminated “SinSo is a valuable contribution”. The new first paragraph
in the conclusion is:

"This paper presents SinSO, a formal representation of knowledge in the domain of
sustainability in software that can be used by software engineers or researchers, and
serves as a structured model for organizing and representing. One of the primary
objectives for developing SinSO was to overcome the discrepancies and uncertainty in
sustainability language. SinSO contributes to reducing ambiguity and boosting
understanding in this domain. SinSO can also be used to help in software
engineering."

15. Table 5. column 2: clarify whether that is the domain or range, or whether the “-”
was intended to separate them rather than having a multi-word term.
Reply:

The text has been changed to “Domain-Range”

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

16. Table 6: are they intended to be all axioms in the ontology? Then, in the
Description logic column: it’s \sqsubseteq not \subseteq and \sqcup rather than U; the
hasQAS is not in table 5; the DL query queries for something else than what’s stated in
the second column, such as A1 having isComposedOf in the query but does not
appear in the axiom. This table needs some careful checking and verification or
correcting.
Reply:

The sentence “it must possess” was changed to “it must be composed of”. For
example,

"For any domain to be sustainable, it must be composed of the attributes of
maintainability or portability or evolvability or scalability."

17. Presentation
The paper is formatted incorrectly, misses authors’ institute, keywords never go as
Introduction section, there are many grammatical infelicities that easily could have
been picked up by MS word or Grammarly or the like (e.g., “it was integrated all these”,
“it is presented the”), typesetting infelicities (text---text for dashes, `` for opening
quotes), has images and tables whose text are hardly readable in print (esp. tables 4
and 5), and captions that don’t make the images self-contained. All that has to be
corrected. Currently, it gives a negative impression of a previously rejected, here
recycled, paper that the authors were too fed up with to finalize, which is not
publishable in this form.
Reply:

The next actions were carried out:
•formatted corrected according to journal template.
•Authors’ institute added and keywords relocated.
•The English of the document was improved.
•Opening quotes corrected
•Captions were improved
•For Tables 4 and 5, we have improved the size and adjusted the columns.

Associate Editor:

Thanks for making this effort to investigate the notion of sustainability in software and
considering Applied Ontology as a publication channel. As the reviewers state, the
topic is most significant and timely, but as they also argue the paper needs
considerable improvements to be publishable. Thus, the decision is major revision.
Please carefully take into account all the feedback from reviewers. I would point out
three issues that seem to be the most critical ones.
1. The foundation for the ontology. Firstly, the foundation of the ontology needs to be
strengthened. The ontology is primarily based on a literature review. However, for this
purpose, the review would need to be a systematic review. There should also be a
discussion, including motivations, on which notions you decided to include in the
ontology, which ones you considered but did not include, and which ones you deemed
to be subsumed by the included notions. In particular, this pertains to the dimensions of
sustainability.
Reply:

We have made several changes, based on reviewer comments, to respond to this
comment. For example, see the response to comment 2 of reviewer 1.

2. The competency questions. Secondly, the sources of the competency questions
need to be made explicit. Competency questions should be viewed as functional
requirements on an ontology. Therefore, the sources of the competency questions are
essential and must be made clear.
Reply:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Again, we have responded to those comments from the reviewers. See the response
to comment 4 of reviewer 1 and the response to comment 5 of reviewer 2.

3. Evaluation. Thirdly, the evaluation needs to be clarified. As one of the reviewers
pointed out, the claim that the ontology can serve as a useful tool is not supported by
the paper. The evaluation appears to be more of a proof-of-concept for the use of the
ontology, and the conclusions that can be drawn from it need to be clarified.
Reply:

Sections I (introduction), VI (discussion) and VII (Conclusions) have been modified
according to this comment. For example, see the antepenultimate paragraph added in
the introduction:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

Or the first paragraph of Conclusions:

"This paper presents SinSO, a formal representation of knowledge in the domain of
sustainability in software that can be used by software engineers or researchers, and
serves as a structured model for organizing and representing. One of the primary
objectives for developing SinSO was to overcome the discrepancies and uncertainty in
sustainability language. SinSO contributes to reducing ambiguity and boosting
understanding in this domain. SinSO can also be used to help in software
engineering."

Also, section 5 has been enriched with more details, with clarifications, among other
things.

4. Furthermore, the presentation is not satisfactory as shown by, e.g., many
grammatical errors and some incomplete references. If you decide to resubmit, please
take these comments into account, but also all the more detailed comments by both
reviewers.
Reply:

The English of the document and the references have been improved.

The Authors

Additional Information:

Question Response

By submitting this article I agree with the
IOS Press Author copyright agreement,
the IOS Press Privacy Policy, and the IOS
Press Ethics Policy.

Yes

Authors publishing a paper with IOS
Press should certify that: (i) all those
mentioned in the list of authors have
contributed significantly to the paper

I confirm and consent.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

according to the IOS Press Authorship
Policy; (ii) no person who has made a
significant contribution has been omitted
from the list of authors or acknowledged
persons;
<p>
In accordance with the above excerpt
from the <a
href="https://www.iospress.nl/service/auth
ors/ethics-policy/" target="_blank">IOS
Press ethics policy, authors cannot
be added to or omitted from the author list
of the submission after it has been
accepted.
<p>
Please select ‘I confirm and consent.’ to
acknowledge that you have submitted
your manuscript in accordance with these
guidelines, and that all subsequent
changes to the author list require a signed
approval from all authors and from the
Editor(s) in Chief.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Applied Ontology 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

SinSO: An Ontology of Sustainability in
Software

Luisa Restrepo a, César Pardo a,d, Jose Aguilar a,b,c,∗, Mauricio Toro a and Elizabeth Suescún a

a GIDITIC Research Group, EAFIT University, Medellín, Colombia
E-mails: lrestr61@eafit.edu.co, esuescu1@eafit.edu.co
b CEMISID, University of the Andes, Mérida, Venezuela
E-mail: jlaguilarc@eafit.edu.co; aguilar@ula.ve
c IMDEA Network Institute, Madrid, Spain
E-mail: jlaguilarc@eafit.edu.co; aguilar@ula.ve
d GTI Research Group, University of Cauca, Popayán, Cauca
E-mail: cpardoc@eafit.edu.co

Abstract. Sustainability in systems refers to applying sustainable principles and practices to create more resilient, efficient,
and equitable systems that promote the well-being of people and the planet. Sustainability is an essential topic in contemporary
software engineering, and its relationship with the characteristics and properties of a system or product called quality attributes is
still an open question since each researcher has established their definition of sustainability in software. This has created diverse
terms and concepts for distinct application environments and scopes, creating ambiguity and misconceptions. This work defines
a domain ontology of Sustainability in Software named SinSO to address these issues. SinSO was implemented in OWL, using
competency-based questions to validate. The findings show that this proposal satisfies several quality and content requirements.
Also, using Protégé and the Hermit reasoner, we verified that SinSO is consistent since the ontology statements are coherent and
do not lead to conflicting or contradictory conclusions. In addition, competency questions allowed us to demonstrate that SinSO
does fulfill its purpose. FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in two case studies, one
about software for senior-citizen smart-home, and the other, a simulator to develop and test smart-city applications, achieving
positive outcomes. To verify its accuracy, completeness, and maintainability, further evaluations of SinSO are needed in real
case studies. We conclude that SinSO can significantly contribute to reducing ambiguity and enhancing comprehension in this
area. Furthermore, SinSO can be an effective tool for engineers to recognize the concepts and relationships in the sustainable
domain to consider in the systems development life cycle to build sustainable systems.

Keywords: Sustainability, Domain Ontology, Quality attributes, Software Engineering

1. Introduction

Sustainability is the practice of “fulfilling today’s societal needs without compromising the ability of
future generations to meet their own needs" (Stavros and Sprangel (2008)). In engineering, sustainable
development can be defined as the selection and execution of iterative and incremental processes that
promote the long-term, low-cost, and minimal-effort development of innovations (Pankowska (2013)).
Sustainable development has become an important topic in contemporary software engineering. There
is a growing interest in understanding what sustainability means in this field and what it entails and
implies. Since maintenance, evolution, and adaptation can be extremely expensive for organizations due

*Corresponding author. E-mail: jlaguilarc@eafit.edu.co; aguilar@ula.ve.

1570-5838/$35.00 © 0 – IOS Press. All rights reserved.

Manuscript Click here to
access/download;Manuscript;Luisa___SinSO___Applied_Ontol

2 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

to the continuous and fast evolution of technologies (Jansen et al. (2011)), sustainability development
emerges as a potential solution to these demands because it allows the consideration of these aspects
using iterative and incremental approaches. These approaches aid in the long-term development of
innovations at a low cost and with minimal effort (Pankowska (2013)).

Sustainability within Software Engineering, from the perspective of the longevity of the software
artifact (rather than environmental sustainability), is essential and not fully understood. The literature has
inconsistencies in the terminology used to define Software Sustainability. This is because each researcher
has established a definition of sustainability in software. Sometimes, these definitions and their linked
concepts can be the same as mentioned by other authors but using different terms. For instance, to refer
to the software’s energy performance and the amount of energy resources used, authors used words
like performance efficiency (Khalifeh et al. (2020)), energy efficiency (Sobhy et al. (2016); Kocak and
Alptekin (2019); Koçak et al. (2015)), energy consumption (García-Berná et al. (2021)), performance
and efficiency (Sobhy et al. (2016)). For this case, the term adopted in this paper was energy efficiency.

When software contributes to sustainability, it is called Sustainability by software e.g., remote work for
reducing physical travel to minimize carbon emissions. Sustainability in software refers to incorporating
sustainable practices during the software development process for sustainable designs like reducing
resource consumption, user experience, etc. (Condori-Fernandez et al. (2019)). In this paper, we are
concerned with Sustainability in Software, in which the objective is the software itself.

On the other hand, ontologies define knowledge structures and promote a shared understanding of a
domain, task, or application (Chandrasekaran et al. (1999); Mendonça et al. (2020); González-Eras et al.
(2022)). By creating an ontology for Sustainability in Software, we can decrease the inconsistencies and
facilitate information sharing in the sustainability domain, thus making assumptions over this domain
explicit. An ontology is also helpful in analyzing knowledge and relationships in this domain.

This paper proposes an ontology focused on the key sustainability factors (Carver et al. (2021)).
SinSO is a generic ontology that could be useful for providing adequate terminology to support and
lead the implementation of sustainable software projects. This ontology presents terms, concepts, and
relationships to support the development of sustainable software systems. For sustainable software
development, an ontology exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al.
(2023)), our ontology SinSO focuses on the characteristics related to each dimension of sustainability,
allowing (i) knowing what characteristics to implement to focus on a certain dimension of sustainability,
(ii) identifying if the application impacts some of the dimensions of sustainability, (iii) knowing what is
needed to achieve sustainability in all its dimensions.

This paper is structured as follows. Section 2 features a literature review on the ontologies of software
sustainability. Section 3 presents the basis of ontologies and sustainability in software, the methodology
used, and the goals associated with creating an ontology. Section 4 introduces SinSO. An evaluation
with the FOCA methodology (Bandeira et al. (2017)) of the ontology is presented in Section 5. Based
on the outcomes of using this ontology, we present, in Section 6, the strengths and limitations of SinSO.
Finally, conclusions and future work directions are presented in Section 7.

2. Related Work

In search of the literature, We discovered that the majority of essential contributions related to software
and ontologies have been focused on industrial applications (Huang et al. (2019); Giovannini et al.
(2012)), sustainable urban transport (Moskolai et al. (2019); Giret et al. (2018)). Energy management

L. Restrepo et al. / SinSO 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(Hippolyte et al. (2016); Brizzi et al. (2016); Saba et al. (2015); Hamdaoui and Maach (2019); Sayah
et al. (2020)). These subjects are beyond the scope of this paper.

However, the following works are related to the topics that support this proposal. First, Khalilef et
al. (Khalifeh et al. (2020)) linked and classified the eight most essential quality characteristics of
the ISO/IEC 25010 product quality model for the environmental, economic, and social dimensions
of sustainability. Second, Condori-Fernandez and Lago (Condori-Fernandez and Lago (2019)) and
Condori-Fernandez et al. (Fernandez et al. (2019)) identified relevant quality attributes to the economic,
technical, environmental, and social dimensions of sustainability by using case studies. Third, Kern et
al. (Kern et al. (2018)), Kokak, Alptekin, and Bener (Kocak and Alptekin (2019); Koçak et al. (2015)),
and García-Berna et al. (García-Berná et al. (2021))identified attributes associated to the environmental
dimension. Fourth, Nazir et al. (Nazir et al. (2020)) focused on individual sustainability challenges.

On the other hand, Sobhy et al. (Sobhy et al. (2016)) presented a case study to explain how
decision-makers and architects might use a diverse cost-value approach to think about sustainability.
Aljarallah and Lock, in 2019 (Aljarallah and Lock (2019)), studied the occurrences of software-
sustainability characteristics in the literature and concluded that the most frequent characteristics
are maintainability, portability, usability, and efficiency, followed by reliability, reusability, security,
durability, and extensibility. Raisian et al. (Komeil Raisian (2022)) identified green measurements
based on environmental, social, and economic dimensions in a software product linked to productivity,
usability, resource efficiency, and others. Quispe and Condori (Quispe and Condori (2022)) list the
quality characteristics contributing to each technical, environmental, economic, or social dimension.
Finally, Paybarjay et al. (Paybarjay et al. (2023)) collected criteria for evaluating supplier development
according to social, economic, and environmental dimensions.

From these papers, it is identified the following five conclusions. First, authors classified quality
attributes in standard sustainable dimensions; however, in some papers, this classification is omitted,
or papers did not cover all five dimensions (environmental, social, economic, technical, and individual).
Second, the authors associate different sustainable quality attributes with one or more dimensions. Third,
quality models, such as ISO/IEC 25010 and ISO/IEC 9126, have been used to characterize software
sustainability because some sustainable quality attributes refer to the same concept, such as modifiability
and changeability attributes. Fourth, the individual dimension is mentioned in some papers as a personal
dimension. Fifth, no works propose ontologies with terminology, concepts, and relationships between
them, which would contribute to the topic of software sustainability.

For the previous reasons, this paper integrated all these concepts into SinSO, an ontology that offers
adequate, consistent terms to facilitate and lead the execution of sustainable software projects.

3. Background

This section presents the background on sustainability in software and ontologies.

3.1. Sustainability in Software

Sustainable development in engineering can be characterized as the selection and execution of iterative
and incremental methods that encourage long-term innovation creation Pankowska (2013).

Becker et al. (Becker et al. (2015)) stated that sustainability has to be understood on a set of five
dimensions: (i) economic, (ii) individual, (iii) environmental, (iv) technical, and (v) social. Koziolek
(Koziolek (2011)) stated that sustainability at least compromises the quality attributes of (i) portability,

4 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(ii) evolvability, and (iii) maintainability. These three quality criteria are detailed further below
depending on their sub-characteristics.

Maintainability: ISO/IEC 25010 International Organization for Standardization (2011) described this
feature as a product’s or system’s ability to support maintenance tasks such as repairs, improvements,
or adaptation to environmental changes. Also included in maintainability is the ability to apply updates
and upgrades. This characteristic is broken into five subcharacteristics: (I) testability, (ii) modifiability,
(iii) analyzability, (iv) reusability, and (v) modularity. Maintainability is also related to evolvability.

Portability: It is defined as the “degree of effectiveness and efficiency with which a system, product, or
component can be transferred from one hardware, software, or other operational or usage environment
to another" by ISO/IEC 25010 International Organization for Standardization (2011). This characteristic
is broken into three subcharacteristics: (i) replaceability, (ii) installability, and (iii) adaptability.

Evolvability: According to Rawe Rowe et al. (1994), it is a quality that affects a system’s capacity
to adjust to changes in its requirements during its lifespan while spending as little money as feasible
and retaining architectural integrity. According to Pei and Crnkovic Pei Breivold (2020), this attribute
is comparable to the attribute of maintainability, but in the case of evolvability, one should take
unanticipated changes into account.

The System-Development Life-Cycle (SDLC) includes a vital procedure for designing a system’s
architecture, and a system’s architecture’s quality qualities substantially influence how long it will last
Koziolek (2011); Chitchyan et al. (2017). A sustainable architecture must also be adaptable throughout
its lifespan. This entails creating a system that is ready for upkeep and development. Indirectly included
in this final quality are the ideas of durability and cost-effectiveness Koziolek (2011).

3.2. Ontologies and their representation

The knowledge of a particular topic is formalized or determined using ontologies (Studer et al. (1998);
Guarino et al. (2009)) in such a detailed and broad manner that apps and groups of people may share
data(Gomez-Perez et al. (2004)). Ontologies provide a common vocabulary solving issues such as
data integration (Keet (2018)). Ontologies have been used in different computer science fields such as
artificial intelligence, database and information systems, and software engineering, mainly for the need
to promote software reuse at a higher level of abstraction than only programming code and to lessen the
disproportionate costs of software maintenance (Guizzardi (2005)).

Ontologies can be classified as application, high-level, information, and domain ontologies, among
others (Studer et al. (1998); Corcho et al. (2006); Fensel (2004); Roussey et al. (2011)). A domain
ontology is the sort of ontology explored in this study that enables the expression of conceptualizations
in a particular context (Studer et al. (1998); Negri et al. (2017); Arp et al. (2015)) through the following
processes: (i) knowledge capture (Fensel (2004)), (ii) concept definition and relationship definition about
the activities occurring in the domain, and (iii) theory and principle definition (Gomez-Perez et al.
(2004)).

There are different methodologies to systematize the implementation of ontologies such as NeOn
Methodology (Suárez-Figueroa et al. (2015)) that proposes a framework to reuse available ontologies,
Software Engineering Ontology Network (SEON) that provides ontology reusability and integration
(Borges Ruy et al. (2016)), or SMO ontology that is focused on software process and behavior analysis
(Barcellos et al. (2010)). We employ Methontology (Fernández-López et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)), an improved version
of Methontology. REFSENO allows for (i) exact and consistent knowledge modeling (in this paper, the

L. Restrepo et al. / SinSO 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

conceptual structures are defined using the class diagram of the Unified Modeling Language-UML); (ii)
the construction of an ontology via the use of identification and detailed characterization of concepts and
their relationships; and (iii) the ontology’s validation to assure consistency and applicability using case
studies or instances. The effectiveness of these methodologies in systematizing ontology implementation
and evaluation depends on factors such as the expertise of developers, the complexity of the domain, and
the specific goals of the project. Our team has used for a long time with these methodologies, which
adhere to best practices in ontological engineering.

4. SinSO: An ontology of Sustainability IN Software

The conception of SinSO involved several key steps such as defining the scope and identifying the
relevant literature. The scope defined was to identify quality attributes relevant to the sustainable domain
and their relationship with sustainability dimensions. Particularly, we considered five dimensions of
sustainability: environmental, technical, economic, social, and individual/personal. Also, some quality
attributes in these dimensions are subsumed by the included quality attributes such as Durability,
Dependability (included in Reability), Traceability (included in Accountability), Survivability, Data
Privacy (included in Security), and Adaptation (included in Maintainability). Thus, the literature review
followed the following steps (i) A search string (see Table 1) was defined to execute in the selected
databases (Scopus and Google Scholar). (ii) The inclusion/exclusion criteria were to include papers
published from 2015 to 2023, English/Spanish language papers, and exclude papers not available or not
accessible. (iii) The resulting paper’s title, abstract, and content were reviewed to exclude non-relevant
papers. The process started with 128 papers and finished with 16

Table 1
Search string used for the literature review

(“ sustainability" OR “ sustainable") AND (“ Architecture" OR “ Design" OR “ framework" OR “
Nonfunctional Requirement" OR “ Quality requirement" OR “ quality attribute") AND (“ software") AND
NOT (“Domain-specific languages" OR “Embedded" OR “Internet of things")

We pursue the following two goals to develop Sustainability in Software Ontology (SinSO). First,
synonyms and homonyms, terminology location, and identity identification. Second, integration of the
concepts discovered in the analyzed literature. These objectives can be met by using a shared ontology
that represents the domain of software sustainability. The ontology must explain all concepts, providing
clear and straightforward definitions for terms and identifying the links between them. In this research
area, an ontology can serve as a foundation to support the development of sustainable systems.

SinSO is a formal representation of knowledge in software sustainability, which software engineers
or researchers can use. This ontology serves as a structured model for organizing and representing
information about sustainability in software, which is implemented in the Protégé tool to provide
functionalities to visualize and query the ontology and to support reasoning and inference. SinSO
approaches quality attributes, aspects of great relevance for the sustainable domain, defining them
as a measurable characteristic that quantifies how effectively a system satisfies particular qualitative
requirements such as performance, maintainability, security, etc. Some concepts were imported
from Measurement, and Software-Measures ontologies are components of the Software-Measurement
Ontology (SMO) (Pardo et al. (2012)). These sub-ontologies define and explain the main aspects of the
definition of a software measure and the terminology associated with software measurement.

6 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 1 shows a graphical representation in UML of the concepts and relationships established in SinSO.
Each color identifies a group of terms in the ontology; for example, grey is for sustainability dimensions.
Appendix 8.1 presents, in detail, the concepts of SinSO in Table 4 and the relationships of SinSO in Table
5.

Relationships of SinSO were adapted from UML class diagrams (Larman (2012)): (i) Association
establishes a relationship between classes, (ii) Directed association refers to a directional relationship,
(iii) Aggregation means that a child concept is not strongly dependent on a parent concept, (iv)
Composition means that a child concept is strongly dependent on a parent concept, which allows
establishing that concepts are mandatory, and (v) Inheritance means that a child concept is a specific
parent concept.

Data properties were added to the concepts, and they can be extended. For example, all quality
attributes at least have a description data property that describes their objectives, and SMO sub-ontology
classes have the respective data properties as an identifier. Child concepts inherit data properties from
parent concepts.

A few concepts demand specific attention from the ontology’s definitions. As a result, we expanded
the description and analysis of some words, such as resource efficiency and energy efficiency, since
they are mentioned in most of the reviewed articles, and some articles only focus on one of them. (1)
Resource efficiency: the concept in some papers is not mentioned explicitly, sometimes its derivatives
are used such as materials reused, waste materials discarded, water reuse (Konys (2018)), water, energy,
or food sustainability (Babaie et al. (2019)), since papers usually focus in a specific resource, especially,
the energy resource, for that reason, it was separated in a sub-concept. Resource efficiency covers all
types of resources in the ontology. (2) Energy efficiency: this concept is mentioned in papers such
as sustainable energy (Giovannini et al. (2012)), performance efficiency, energy efficiency, energy
consumption (García-Berná et al. (2021)), and performance or efficiency (Kern et al. (2018)). However,
our ontology refers to “under specified parameters, the software’s energy performance level and the
amount of energy resources used" based on (Kocak and Alptekin (2019)).

4.1. Implementation

SinSO was implemented in the Web Ontology Language (OWL), using the Protégé editor (version
5.5.0). Protégé allows for the creation of ontologies using OWL. As a result, each SinSO concept was
converted into a class, each attribute into a data property via domains, and each relationship into an
object property. DL fragment size of SinSO is as follows: logical axioms - 284, declaration axioms -
149, class cout - 49, object property - 17, data property - 17, individuals - 66, subclass relationships - 67,
and disjoint classes - 8.

4.2. Formal axioms

Basic predicates and axioms of SinSO are listed in Table 6, in Appendix 8.3. “Formal axioms are
logical expressions used to specify constraints in the ontology" (Corcho et al. (2005)). Each formal
axiom was described in natural language after the expression was translated into first-order logic, and,
finally, the DL query expression was executed in the Description Logic (DL) Query feature of Protégé.
The reasoner allows inferring new information from an ontology using queries in description logic.

L. Restrepo et al. / SinSO 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 1. An ontology of Sustainability in Software (SinSO)

5. Evaluation

The evaluation of SinSO was divided into five phases: (i) application of competence questions; (ii)
application of axioms; (iii) component validation modeled in Protégé; (iv) quality validation through
metrics; and, finally, (v) creation of SinSO instances based on two scientific papers.

5.1. Application of competence questions (CQs)

To evaluate SinSO, a group of competency questions (CQs) have been defined and conceived through
the literature review, which provides us insights into the relevant concepts and relationships that should
be covered; CQs were refined with brainstorming sessions between authors to clarify the information
and knowledge the ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer. Subsequently, SinSO was filled with a

8 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 2. SPARQL application example for competency question 9 with dummy data.

collection of instances/objects from each class mentioned as individuals in Protégé. These individuals are
represented using what is commonly referred to as “dummy data" (see Fig. 3) to illustrate the structure
and functionality of the ontology and also to be able to test the axioms and competency questions..

To apply CQs expressed in natural language, it was necessary to formalize them by using the SPARQL
Protocol And Resource description framework Query Language (SPARQL) (Wiśniewski et al. (2019)).
This language is employed for locating and modifying data in RDF format and is used to consult an
ontology using Protégé. A synopsis of the application of these CQs is shown in Table 7 (see Appendix
8.4).

As an example, using the instances of Fig. 3 and the SPARQL Query of Protégé, we want to answer
the competency question CQ9 – “What are the dimensions of sustainability impacted by domain 1?" (see
Table 7). Fig. 2 shows that technical and social dimensions are impacted by domain 1, which coincides
with what is expected. This result indicates that CQs can be used to verify requirements’ satisfiability
using the knowledge recovered through the SPARQL query feature of Protégé. Thus, all CQs were
successfully tested through a result verification using the instances created.

5.2. Application of axioms

Fig. 3 shows instances of some concepts of SinSO. This paper evaluates the axiom A1 as an example,
using DL queries. The axiom A3 defines that (see Table 6 in the Appendices section): “For any domain
to be economically sustainable, it must be composed of the attributes of Modifiability or Portability or
Functionality Sufficiency or Compatibility or Capability or User Error Protection or Learnability", with
the DL Query feature of Protégé, the reasoner concludes that domain 1 is the only one that complies with
the axiom statement (see Fig.4). It is correct since domain 2 is associated with the operability attribute,
and domain 3 has no attributes associated.

5.3. Ontology-components validation

To evaluate ontology components, Bandeira et al. ’s FOCA methodology (Bandeira et al. (2017))
was applied in this evaluation process. FOCA methodology uses the Goal, Question, Metric (GQM)
approach to evaluate ontology components in conjunction with a statistical model to validate ontology
quality. FOCA is comprised of three steps: Ontology-type verification (i), question verification (ii), and
quality verification (iii) (Bandeira et al. (2017)).

L. Restrepo et al. / SinSO 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 3. Ontology instances example with dummy data.

Fig. 4. Formal axiom application example for axiom 4 with dummy data.

For ontology-type verification, SinSO is considered a domain ontology. For this reason, and according
to the FOCA methodology, SinSO is Type 1 – a task or domain ontology.

For Question verification, Table 2 summarizes how GQM was utilized in this step. Question
verification comprises five objectives, twelve questions, and six metrics that can be used to assess the
validity of a domain ontology. Bandeira et al. (Bandeira et al. (2017)) provided precise validation criteria
for each of the questions, allowing analyzing whether or not an ontology fulfills the goal of the question
by assigning a corresponding number from 0 to 100 (e.g., 25, 50, 75, 100). Finally, the average of each
target is computed using the scores obtained by each of the objectives-related questions.

The quality of an ontology must be calculated for quality verification. (Bandeira et al. (2017) offered
two methods for performing this calculation: total quality and partial quality. Total quality verification
was selected for this work because it enables consideration of the five knowledge representation
roles (“substitution, ontological commitments, intelligent reasoning, efficient computation, and human
expression"). The beta-regression model proposed by Ferrari et al. (Ferrari and Cribari-Neto (2004)) is
used to compute an ontology’s overall quality. Beta-regression is a data modeling technique that has

10 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
SinSO’s component evaluation results

Goal Question Metric Grade Mean

1. Check if the ontology
complies with Substitute

Q1. Were the competency questions
defined?

1. Completeness 75
91.66

Q2. Were the competency questions
answered?

1. Completeness 100

Q3. Did the ontology reuse other
ontologies?

2. Adaptability 100

2. Check if the ontology
complies with Ontological
Commitments

Q4. Did the ontology impose
a maximum ontological
commitment?

3. Conciseness 0
50

Q5. Are the ontology properties
coherent with the domain?

4. Consistency 100

3. Check if the ontology
complies with Intelligent
Reasoning

Q6. Are there contradictory
axioms?

4. Consistency 100
100

Q7. Are there redundant axioms? 3. Conciseness 100
4. Check if the ontology
complies with Efficient
Computation

Q8. Did the reasoner bring
modeling errors?

5. Computational
efficiency

100
100

Q9. Did the reasoner perform
quickly?

5. Computational
efficiency

100

5. Check if the ontology
complies with Human
Expression

Q10. Is the documentation
consistent with modeling?

6. Clarity 87.5
62.5

Q11. Were the concepts well
written?

6. Clarity 100

Q12. Are there annotations in the
ontology that show the definitions
of the concepts?

6. Clarity 0

µ̂i=
exp

{
−0.44+0.03(Covs ×S b)i+0.02(CovC ×Co)i+0.01(CovR ×Re)i+0.02

(
CovCP

×Cp
)

i
−0.66L Expi −25(0.1×Nl)i

}

1+exp
{
−0.44+0.03(Covs ×S b)i+0.02(CovC ×Co)i+0.01(CovR ×Re)i+0.02

(
CovCP

×Cp
)

i
−0.66LExpi−25(0.1×Nl)i

} (1)

µ̂=
exp{−0.44+0.03(91.66×1)+0.02(50×1)+0.01(100×1)+0.02(100×1)−0.66×0−25(0.1×0)}

1+exp{−0.44+0.03(91.66×1)+0.02(50×1)+0.01(100×1)+0.02(100×1)−0.66×0−25(0.1×0)} (2a)

µ̂ =
exp{6.31}

1 + exp{6.31} = 0.998 (2b)

been submitted. This model’s output ranges between 0 and 1 (see Equation 1).
The following are the criteria used to calculate total quality. First, CovS is the average grade achieved

from Goal 1 (see Table 2). Second, CovC is the average grade achieved from Goal 2 (see Table 2).
Third, CovR is the average grade achieved from Goal 3 (see Table 2). Fourth, CovC p is the average grade
achieved from Goal 4 (see Table 2). Fifth, LExp is the variable that corresponds with the evaluator’s
experience. If the evaluator considers themself a person with vast experience in ontologies, the value of
LExp is 1. Otherwise, the value is 0. Sixth, Nl is 1 only if the evaluator cannot answer all the questions.
Seventh, S b = 1, Co = 1, Re = 1, Cp = 1 because the total quality considers all the roles (Sb -
Evaluate the ontology in terms of substitute, Co - in terms of Ontological Commitment, Re - in terms
of Intelligent Reasoning, and Cp - in terms of Efficient Computation). The Human Expression role is
implied in the Equation since it refers to the evaluator’s knowledge and ability to respond to all queries.

FOCA methodology (Bandeira et al. (2017)) defines how to verify each of the questions to obtain a

L. Restrepo et al. / SinSO 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

final grade. In general, the questions should be answered given one of these grades (25,50,75,100). For
example, for the next questions: (i) “Does the document define the ontology objective?", (ii) “Does the
document define the ontology stakeholders?", (iii) “Does the document define the use of scenarios?", the
resulting values calculated through a consensus process carried out by the authors were 100,100 and 25,
respectively, resulting in a mean of 75. The procedure followed was the same for other questions, and
was manually performed.

The resulting values for each question were used by Equation 1 to determine a general value of the
quality of the system. The result of the total quality is 0.998 (see Equation 2b), and being a result close
to 1 according to the FOCA methodology, we can conclude that SinSO has a high quality in terms of
the five roles defined by Bandeira et al. (Bandeira et al. (2017)): (i) Substitute: there is a coherence
between documentation, which contains the competency questions, the main terms and the objectives
of the ontology, and concepts model the real world. (ii) Ontological commitments: definitions were
well presented in the specific domain, consistent with the documentation. (iii) Intelligent Reasoning:
A reasoner can run the ontology without producing inconsistencies. (iv) Efficient computation: the
computational efficiency of the ontology is satisfactory because an appropriate response time was
achieved for the results presented in Fig. 5, and (v) Human expression: ontology is easy to understand
for users with domain expertise, but it may require some learning and practice for new persons in the
field.

5.4. Ontology-quality validation

To evaluate ontology quality, the following five criteria were assessed, as proposed by Gomez et al.
(Gómez-Pérez (2001)):

Consistency: A definition is consistent if the individual purpose is consistent and no conflicting
sentences can be deduced using other definitions and axioms (Gómez-Pérez (2001)). The authors
checked the definition of each term and its connections to ensure consistency, and to identify
inconsistencies and misinterpretations.

The graphic representation –using UML notation– may aid in gaining a deeper understanding of the
knowledge modeled, and, finally, the consistency of SinSO was validated with the Hermit reasoner of
Protégé (Motik et al.). As a result, SinSO did not present errors (see Fig. 5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms and the resulting
time for the execution). Thus, the reasoner computed the ontology successfully and did not generate
inconsistencies executing all axioms.

Completeness denotes the extent, degree, amount, or coverage with which the knowledge in a user-
independent ontology covers real-world information Gómez-Pérez (2001). SinSO adequately covers
the context of sustainability as a quality attribute, as listed in Appendix 8.1, but further completeness
assessment is required. In this sense, SinSO covers the most essential terms to help you learn and
comprehend this subject. In addition, CQs were created and applied using test cases to assess compliance
with ontology criteria.

Conciseness: An ontology is considered concise if it does not include any definitions that are unneeded
or worthless (Gómez-Pérez (2001)). SinSO does not present redundancies between existing terms and
their representations since the authors validated the definitions and concepts that compose SinSO through
cross-checking to avoid useless reports. On the other hand, the scope of the ontology is clear, and we
focused on core aspects.

Expandability: Expandability refers to the effort required to add new definitions to an ontology
(Gómez-Pérez (2001)). Since it has not been tailored to specific organizations or domains, SinSO can

12 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 5. Results of Hermit Reasoner

be customized and enhanced to be used in specific industry scenarios by including and specifying
new terms. Its structure consists of few levels of depth, and adding a new definition will require only
the minimal effort of adding it in the corresponding section and configuring its properties. Also, new
concepts can use multiple inheritance to handle cases where an entity fits into multiple classes. SinSO
can be iterated for regular updates and revisions as the domain evolves to improve flexibility and allow
multiple classifications and relationships.

Sensitiveness: Sensitivity describes how minor changes in a definition affect the set of well-defined
attributes that are already assured (Gómez-Pérez (2001)). SinSO should not be overly sensitive to
minor modifications in existing reports since definitions are primarily based on quality models, such
as ISO/IEC 25010 and ISO/IEC 9126, and these do not usually change much over time.

The SinSO ontology can be downloaded from Gutierrez (2023) to execute queries or reasoning in
Protégé and thus validate its operation.

5.5. Application of SinSO

To test the applicability of SinSO in a natural context, two articles from the literature on the
development of cyber-physical systems were selected to instantiate them with our ontology and thus
evaluate SinSO. The selection process is described below.

5.5.1. Case studies definition
To select the case studies, the methodology for systematic literature reviews in software engineering

proposed by Kitchenham et al. (Kitchenham and Charters (2007)) was used to find the articles used to
define them, which should have the following characteristics: (i) Articles on the development or design
of cyber-physical systems (ii) Articles that mention software-quality attributes, (iii) Articles that mention
software-quality measures or metrics and, finally, (iv) Articles that applied their research to real-context
cases.

According to these characteristics, the following search string was used:
(“Embedded” OR “cyberphysical” OR “Cyber-physical” OR “Cyber Physical” OR “CPSs” OR

“IoT” OR “Internet of Things” OR “Connected things") AND (“Architecture” OR “Design” OR
“framework” OR “Nonfunctional Requirements” OR “Quality requirements” OR “quality attributes”)
AND (“software”) AND NOT (“Domain-specific languages” OR “Embedded”).

Publications are subject to the following restrictions, which are used as inclusion criteria (IC) to
refine the search (numbered from IC1 to IC3): IC1: Articles, book chapters, and conference papers

L. Restrepo et al. / SinSO 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

published after 2014. IC2: Articles, book chapters, and conference papers available in electronic form.
IC3: Articles, book chapters, and conference papers in the English language.

The search was divided into three sections, based on Li et al. (Li et al. (2015)):
(i) Selection by title: Scopus and Google Scholar search strings were utilized in the search process.

The candidate documents were then chosen based on their titles. This step used the inclusion criteria
IC1, IC2, and IC3. There were 128 articles left at the end of this step.

(ii) Selection by abstract: The abstracts of the selected articles were examined to ensure that they
were associated with the necessary qualities. There were 13 candidate documents left at this time. Most
of the articles were discarded because they did not implement the solution in a real case study or did not
give enough evidence of the results in terms of quality attributes.

(iii) Selection by full text: The entire contents of the prior papers were studied, and the writers
performed cross-checks to justify the inclusion of each article; as a result, only two articles remained.
Finally, one paper that discusses sustainable-dimension results and another that does not were selected
in order to compare the ability of the ontology to cover the notions presented in each of them.

The selected articles are described below.

5.5.2. Case studies selected
A senior-citizen smart-home case study, implemented by Saputri and Lee (Saputri and Lee (2021)),

was selected. The system allows older people to customize their home’s settings, interact socially with
family members or neighbors, and send emergency notifications via a panic button. Once an emergency
occurs, the system automatically notifies the selected family member and health care center. Cloud
technology, a health monitor, security control, an emergency detector, and remote health care help
are among the features they employ (Saputri and Lee (2021)). In this case study, Saputri and Lee
captured stakeholders’ goals and their measurements based on stakeholder information (enterprise chief
executive officers [CEOs], users, software developers, medical facility staff, and sustainability experts)
and mapped these goals with sustainability dimensions and some quality attributes.

The DingNet simulator, developed by Provoost and Weyns (Provoost and Weyns (2019)), was the
other article selected. The simulator facilitates the development and testing of smart-city applications
using fixed and mobile motes that collect and transmit data to gateways in urban areas such as forests,
open spaces, and building areas. The authors did not provide information about the sustainability
dimensions; this data was taken directly from the article.

5.5.3. Instantiation of case studies
For the first case study, the authors adopted the GQM (goal, question, metric) approach for the

requirements elicitation phase. This allowed instancing SinSO: goals were instanced in SinSO as
objectives, metrics and measurements as measures and sizes, and quality attributes were extracted
from this information based on the definitions presented in Appendix 8.1. Fig. 6 shows a complete
instantiation describing the domain, listing all quality attributes, the associated objectives, indicators,
measures, and measurements according to our ontology.

For the second case study, the quality attributes defined were instanced as the quality attributes. The
scenarios described by the authors were instanced in SinSO as objectives, and finally, the metrics as
measurements.

For domain 1 (senior-citizen smart-home case study) and domain 2 (DingNet simulator), formal
axioms and relevant CQs were executed (see Table 3). In the case studies, each quality attribute was
operationalized for each dimension. Below is the process followed:

14 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Technical dimension
Domain 1 achieves technical sustainability by measuring and proposing support for different

platforms (interoperability), providing correct monitoring results (reliability), reducing the complexity
of the setting preference and monitoring temperature features (Maintainability), proposing decoupling
the methods (Modifiability), providing a scalable system (Adaptability), capturing response time in the
software’s source code (time Behaviour). Domain 2 achieves technical sustainability by measuring and
controlling the messages lost between motes (Reliability).

Environmental dimension
Domain 1 achieves environmental sustainability by reducing the energy consumption of the home

system (Energy efficiency) and measuring the level of reusability of the project as Reusable Reusable
with some effort, or Not Reusable (Reusability). Domain 2 achieves environmental sustainability by
minimizing the energy consumption of the motes (Energy efficiency).

Economical dimension
Domain 1 achieves economic sustainability by optimizing utility costs such as controlling the

execution and invocation time of methods in the software’s source code (performance) and identifying
the number of adaptable elements (Adaptability). Domain 2 achieves economic sustainability since it
balances resources at gateways (Resource utilization).

Social dimension
Domain 1 achieves social sustainability by supporting user social interaction of elders with

family members or neighbors (Usability), measuring and proposing support for different platforms
(Interoperability). Domain 2 achieves social sustainability by measuring and controlling the messages
compromised between motes (Security).

Individual/Personal dimension
Domain 1 achieves individual/personal sustainability by providing preference settings such as

temperature, lighting, and energy usage (Usability). Domain 2 did not achieve unique/personal
sustainability.

According to the results reported by Saputri and Lee Saputri and Lee (2021), for each sustainability
dimension in the senior-citizen smart-home case study, the environmental, technical, economic, and
social dimensions are achieved, this is consistent with our results in the application of axioms A2, A3,
A4, and A5. The exception is the individual-personal dimension (application of axiom a6), where authors
associate it with performance attributes. Also, results indicate that both case studies impact sustainability
dimensions, except domain 2, which does not impact the individual-personal dimension. Finally, results
show that domain 2 is not sustainable since it did not meet the logical expression given by formal axiom
A1. This process made it possible to evaluate the ontology and demonstrate that it can identify the
dimensions of sustainability achieved by a domain.

All Axioms were applied in the DL Query feature of Protégé over the ontology. Considering the time
taken to run the reasoner, the average time for the results was 8.5ms, with a minimum time of 2ms and
a maximum of 15ms for Axiom A3. Thus, the computing time of SinSO is acceptable for the context
analyzed, but future works must test the scalability of the ontology. On the other hand, the main task is to
associate the system’s objectives with their corresponding quality attributes to identify which dimensions
of sustainability are being targeted. That implies an instantiation time of our ontology is necessary, which
depends on the size of the project. The instantiation of these case studies took three days, but it must be
taken into account that not all the information was fully known; we were not part of the projects, and

L. Restrepo et al. / SinSO 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 3
Results from the instantiation of case studies

Question Result
Domain 1 Domain 2

1 Domain is sustainable (A1) Yes No
2 Attributes that impact (dimension):

2.1 Technical (CQ8) Interoperability, Reliability
Reliability,
Maintainability,
Modifiability,
Adaptability,
Time Behaviour

2.2 Environmental (CQ8) Energy efficiency, Energy efficiency
Reusability

2.3 Economical (CQ8) Performance, Resource utilization
Adaptability

2.4 Social (CQ8) Usability; Security
Interoperability

2.5 Individual/Personal (CQ8) Usability None
3 Dimensions impacted (CQ9) Technical, Individual-Personal,

Social, Environmental, Economical
Technical, Social,
Environmental,
Economical

4 Attributes that contribute to
Evolvability (CQ11)

Modifiability None

it was based on what was published in the articles. Therefore, for an associated person to the project, it
should take less time.

6. Discussion

There is ambiguity and variation in the terminology connected with sustainability in papers that focus
on this issue. As a result, this proposal has been developed to provide a general view of valuable concepts
from a software engineering perspective for specifying systems where sustainability is an essential
requirement. Its architecture must be guided by this and the conditions that compose it. SinSO is an
approach that aims to codify knowledge. However, it is limited by the concepts explored here.

From this perspective, SinSO’s quality was evaluated by applying different methods. The results show
that this proposal passes various quality criteria. Furthermore, using the Protégé editor and the Hermit
reasoner, it was determined that SinSO is consistent. Also, the CQs allowed us to evaluate its results and
demonstrate that SinSO does fulfill its purpose. As a result, SinSO was satisfactorily assessed and is now
ready to be used in future projects. In addition, SinSO is shared openly, and other authors or researchers
can evolve it.

Finally, SinSO can be integrated into ontologies that include agile methodologies such as OntoAgile
(Ortega Ordoñez et al. (2019)) or OntoSuSD (Zada et al. (2023)), particularly into the concepts that
describe the behavior or quality attributes to implement in the system. For example, SinSO can be
integrated with OntoAgile in the product concept to describe the artifacts to be developed or with
OntoSuSD as a specialization of the sustainability goals as a specific way to achieve those goals for
each sustainable dimension. In the context of the DOLCE (Descriptive Ontology for Linguistic and

16 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Cognitive Engineering) (Borgo et al. (2022)), SinSO’s categories are specializations of abstract quality
since the ontology components are non-physical objects. DOLCE Relationships can be reused, such as
“has-part" to “involves" and “is related to" SinSO relationships, and "is-part-of" to "is composed of "
and "belongs to" SinSO relationships.

7. Conclusions and Future Work

This paper presents SinSO, a formal representation of knowledge in the domain of sustainability in
software that can be used by software engineers or researchers, and serves as a structured model for
organizing and representing. One of the primary objectives for developing SinSO was to overcome the
discrepancies and uncertainty in sustainability language. SinSO contributes to reducing ambiguity and
boosting understanding in this domain. SinSO can also be used to help in software engineering.

We also recognize that our approach does not address all of the issues in this domain, and requires
some improvements. Instead, it lays the groundwork for future research that will assist in formalizing
and synthesizing sustainable software methods. For example, some papers include measures (Saputri
and Lee (2020); Calero et al. (2013); Oyedeji et al. (2018)) that allow the evaluation of sustainability in
software. These listed measurements and metrics could be merged into SinSO, specifically in the SMO
sub-ontology, but more information is needed about indicators and scales of software measurement.

Even though the validation enabled us to achieve encouraging results, further evaluations are needed in
real case studies to verify the real-time implementation of SinSO, particularly its accuracy, completeness,
and maintainability. This would allow reinforcing the results achieved so far. Furthermore, SinSO
may serve as the conceptual basis of future work to build a supporting method to develop sustainable
systems by providing conceptual clarity, facilitating domain analysis, enabling knowledge integration,
and supporting decision-making. Future work can also focus on the non-functional requirements
framework (NFR) (Chung et al. (2000)) application to identify trade-offs between NFRs, with a focus on
sustainability, e.g., determining whether having a low energy-consuming system may affect the system’s
scalability.

8. Appendices

8.1. Definition of the terms and relationships of SinSO

The precise definitions of the concepts included in SinSO, presented in Table 4, are ordered
alphabetically and organized in the following way: columns one and two show the concept being
described and its type (SinSO or SMO concept), then column three shows the definition of the concepts
in SinSO. Finally, column four shows the source where the concept has been adopted or adapted. Some
values used in the fourth column can be either:

• Defined from [source]; the concept has been defined from a source that does not provide a particular
definition, that is, the concept has been defined without highlighting, changing, or complementing
an existing term, but the work presented in it has been key to establishing a definition.

• New [term]; the concept is used in SinSO or has a new meaning in this proposal.
• Cited in [resource]; a resource has cited the concept and is not the original resource. The term has

not been modified.

L. Restrepo et al. / SinSO 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 4
Definition of the terms in SinSO

Term Type Definition Resource
Accountability SinSO The extent to which an entity’s actions can be traced back to the entity. Defined from International Organization for Standardization (2011)
Adaptability SinSO The extent to which a product or system may be successfully and efficiently adapted for new or changing

hardware, software, or other operational or consumption settings.
Defined from International Organization for Standardization (2011)

Analyzability SinSO The degree of efficacy and efficiency with which it is feasible to assess the influence of an intended
modification to one or more of a product’s parts on the product or system, or to diagnose a product for
defects or causes of failure, or to identify parts to be modified.

Defined from International Organization for Standardization (2011)

Appropriateness
recognizability

SinSO The degree to which users can determine whether a product or system is suitable for their needs. Defined from International Organization for Standardization (2011)

Authenticity SinSO The extent to which a subject’s or resource’s identification may be proven to be the one claimed. Defined from International Organization for Standardization (2011)
Capacity SinSO The degree to which the maximum limits of a product or system parameter meet requirements. Defined from International Organization for Standardization (2011)
Changeability SinSO The capability of the software product to enable a specified modification to be implemented. Defined from Standardization (2001)
Co-existence SinSO Degree to which a product can perform its required functions efficiently while sharing a common

environment and resources with other products, without detrimental impact on any other product.
Defined from International Organization for Standardization (2011)

Compatibility SinSO The degree to which a product, system, or component may communicate information with other products,
systems, or components while sharing the same hardware or software environment.

Defined from International Organization for Standardization (2011)

Confidentiality SinSO The extent to which a product or system ensures that data is only accessible to those who have been granted
access.

Defined from International Organization for Standardization (2011)

Domain SinSO The application domain is where the developed software system will be used, and it heavily influences how
a project is planned and carried out.

Züllighoven (2005)

Dimension SinSO An aspect or feature of sustainability is referred to as a dimension, which includes many components
relating to environmental, social, technical, individual, and economic factors.

New

Economic SinSO It is concerned with stakeholders’ investments for the long term and high return on investment. Cited in Malik and Khan (2018)
Energy efficiency SinSO Under specified parameters, the software’s energy performance level, and the amount of energy resources

consumed.
Cited in Kocak and Alptekin (2019)

Environmental SinSO It assures that no harmful effects on the environment occur during software engineering processes. Defined from Malik and Khan (2018)
Evolvability SinSO Attribute bear on the ability of a system to accommodate changes in its requirements throughout the

system’s lifespan, with the least possible cost, while maintaining architectural integrity.
Defined from Rowe et al. (1994)

Functional
appropriateness

SinSO Degree to which the functions facilitate the accomplishment of specified tasks and objectives. Defined from International Organization for Standardization (2011)

Functional
correctness

SinSO The degree to which a product or system produces the desired outputs with the required precision. Defined from International Organization for Standardization (2011)

Functional
suitability

SinSO When employed under specific conditions, the degree to which a product or system offers functions that
meet stated and implied needs.

Defined from International Organization for Standardization (2011)

Indicator SMO The defined calculation method and scale in addition to the model and decision criteria in order to provide
an estimate or evaluation of a calculable concept concerning defined information needs.

Cited in De Los Angeles Martín and Olsina (2003)

Individual SinSO It is concerned with software engineers’ well-being by providing them with education, knowledge,
methodologies, and tools to help them maintain their expertise, competencies, and abilities while increasing
their productivity.

Defined from Malik and Khan (2018)

Integrity SinSO The degree to which a system, product, or component protects computer programs or data from
unauthorized access or change.

Defined from International Organization for Standardization (2011)

Interoperability SinSO The degree to which two or more systems, products, or components can exchange and utilize that
information.

Defined from International Organization for Standardization (2011)

Learnability SinSO The extent to which specified users may use a product or system to achieve given goals of learning to use
the product or system effectively, efficiently, risk-free, and satisfactorily in a specified context of usage.

Defined from International Organization for Standardization (2011)

Maintainability SinSO The ease and speed with which the intended maintainers can update a product or system. Defined from International Organization for Standardization (2011)
Measure SMO Activity uses a metric definition to produce a measure’s value. Defined from De Los Angeles Martín and Olsina (2003)
Measurement SMO The defined measurement approach and the measurement scale. (A measurement approach is either a

measurement method, function, or analysis model).
Defined from Pardo et al. (2012)

Modifiability SinSO Degree to which a product or system can be effectively and efficiently modified without introducing defects
or degrading existing product quality.

Defined from International Organization for Standardization (2011)

Modularity SinSO Degree to which a system or computer program is composed of discrete components such that a change to
one component has minimal impact on other components.

Defined from International Organization for Standardization (2011)

Objective SMO Specific, measurable, and desirable goals set for quality attributes to ensure that the software or system
meets the desired level of quality.

New

Operability SinSO The degree to which a product or system contains features that make it simple to use and control. Defined from International Organization for Standardization (2011)
Performance
efficiency

SinSO Under certain parameters, performance is measured about the amount of resources used. Defined from International Organization for Standardization (2011)

Portability SinSO The ease with which a system, product, or component can be moved from one hardware, software, or other
operational or consumption environment to another.

Defined from International Organization for Standardization (2011)

Quality attribute SinSO A property of a work product or goods by which its quality will be judged by some stakeholder or
stakeholders

Defined from ISIXSIGMA

Reliability SinSO The degree to which a system, product, or component performs specified functions over a specified amount
of time under specified conditions.

Defined from International Organization for Standardization (2011)

Replaceability SinSO The extent to which a product can replace another defined software product in the same environment for the
same purpose.

Defined from International Organization for Standardization (2011)

Resource
utilization

SinSO The degree to which a product’s or system’s amounts and types of resources consumed when performing
its activities fulfill criteria.

Defined from International Organization for Standardization (2011)

Reusability SinSO The extent to which an asset can be employed in more than one system or the construction of other assets. Defined from International Organization for Standardization (2011)
Scalability SinSO Scalabilitymmeasures’s ability to increase or decrease performance and cost in response to changes in

application and system processing demands.
Defined from Gartner (2021)

Scale SMO A set of values with defined properties. Cited in Pardo et al. (2012)
Security SinSO The extent to which a product or system safeguards information and data so that people or other products

or systems have data access appropriate to their types and levels of authorization.
Defined from International Organization for Standardization (2011)

Social SinSO It is related to safeguarding the interests of social communities, groups of individuals, or organizations.
Also, how well software complies with application-specific laws.

Cited in Malik and Khan (2018); Fernandez et al. (2019)

Stability SinSO The capacity of the software product to avoid unanticipated impacts from software modifications. Defined from Standardization (2001)
Technical SinSO It is focused on developing software while managing changing technical needs and maintaining the

software’s longevity.
Defined from Malik and Khan (2018)

Testability SinSO The degree of efficacy and efficiency with which test criteria for a system, product, or component can be
defined and tests done to assess whether those criteria have been satisfied.

Defined from International Organization for Standardization (2011)

Time behavior is
behaviour

SinSO The degree to which a product’s or system’s response and processing times and throughput rates fulfill
requirements when performing its functions.

Defined from International Organization for Standardization (2011)

Type of Scale SMO Different ways data is collected and categorized to represent certain attributes or variables. Defined from International Organization for Standardization (2011)
Usability SinSO The extent to whichsspecific users may utilize a product or systemomplish specific goals with effectiveness,

efficiency, and satisfaction in a specific context of use.
Defined from International Organization for Standardization (2011)

User error
protection

SinSO Degree to which a system protects users against making errors. Defined from International Organization for Standardization (2011)

18 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

8.2. Relationships of SinSO

Relationships are presented in Table 5. In the first column, relationship names; in the second column,
the concepts involved in the relationship are defined; and the third column describes the relationship
among the concepts in natural language.

8.3. Formal Axioms of SinSO.

8.4. Competency questions for SinSO expressed in SPARQL.

Table 7 lists eleven CQs with their respective query. The prefix added was
http://www.semanticweb.org/ontologies/sinso#>.

L. Restrepo et al. / SinSO 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 5
Relationships in SinSO

Name Domain-Range Description
is related to Quality attribute-Dimension A quality attribute could be related to a dimension. A dimension could be associated with a quality attribute.
is composed of Quality attribute-Maintainability A quality attribute is composed of maintainability. Maintainability is a quality attribute.
is composed of Quality attribute-Evolvability A quality attribute is composed of evolvability. Evolvability is a quality attribute.
is composed of Quality attribute-Portability A quality attribute is composed of portability. Portability is a quality attribute.
is composed of Quality attribute-Scalability A quality attribute is composed of Scalability. Scalability is a quality attribute.
involves Quality attribute-Security A quality attribute involves security. Security is a quality attribute.
is composed of Accountability-Security Accountability is composed of security.
is composed of Confidentiality-Security Confidentiality is composed of security.
is composed of Authenticity-Security Authenticity is composed of security.
is composed of Integrity-Security Integrity is composed of security.
is composed of Adaptability-Portability Adaptability is composed of portability.
is composed of Replaceability-Portability Replaceability is composed of portability.
belongs to Scalability-Adaptability Scalability belongs to adaptability attribute. Adaptability has a scalability subcharacteristic.
contributes to Portability-Evolvability Portability contributes to the evolvability attribute. Evolvability is associated with portability.
contributes to Integrity-Evolvability Integrity contributes to the evolvability attribute. Evolvability is associated with integrity.
contributes to Analyzability-Evolvability Analyzability contributes to the evolvability attribute. Evolvability is associated with analyzability.
contributes to Testability-Evolvability Testability contributes to the evolvability attribute. Evolvability is associated with testability .
contributes to Modifiability-Evolvability Modifiability contributes to the evolvability attribute. Evolvability is associated with modifiability.
is composed of Reusability-Maintainability Reusability is composed of maintainability.
is composed of Analyzability-Maintainability Analyzability is composed of maintainability
is composed of Modifiability-Maintainability Modifiability is composed of maintainability
is composed of Modularity-Maintainability Modularity is composed of maintainability
is composed of Testability-Maintainability Testability is composed of maintainability
belongs to Changeability-Modifiability Changeability belongs to modifiability attribute. Modifiability has the changeability subcharacteristic.
belongs to Stability-Modifiability Stability belongs to modifiability attribute. Modifiability has the stability subcharacteristic.
is composed of Environmental-Dimension Environmental is composed of dimensions.
is composed of Technical-Dimension Technical is composed of dimension.
is composed of Economical-Dimension Economical is composed of dimensions.
is composed of Social-Dimension Social is composed of dimension.
is composed of Individual-Dimension Individual is composed of dimensions.
involves Quality attribute-Usability A quality attribute involves usability. Usability is a quality attribute.
is composed of Appropriateness recognizability-Usability Appropriateness recognizability is composed of usability.
is composed of Operability-Usability Operability is composed of usability.
is composed of User error protection-Usability User error protection is composed of usability.
is composed of Learnability-Usability Learnability is composed of usability.
involves Quality attribute-Performance A quality attribute involves performance. Performance is a quality attribute.
is composed of Time behaviour-Performance Time behavior is composed of performance.
is composed of Resource utilization-Performance Resource utilization is composed of performance.
is composed of Capacity-Performance Capacity is composed of performance.
is composed of Energy efficiency-Resource utilization Energy efficiency is composed of resource utilization attributes.
involves Quality attribute-Compatibility A quality attribute involves compatibility. Compatibility is a quality attribute.
is composed of Co-existence-Compatibility Co-existence is composed of compatibility.
is composed of Interoperability-Compatibility Interoperability is composed of compatibility.
involves Quality attribute-Reliability A quality attribute involves reliability. Reliability is a quality attribute.
involves Quality attribute-Fuctional Suitability A quality attribute involves functional suitability. Functional suitability is a quality attribute.
is composed of Functional appropriateness-Fuctional

Suitability
Functional appropriateness is composed of functional suitability.

is composed of Functional correctness-Fuctional Suitability Functional correctness is composed of functional suitability.
has impact Functional suitability-Economic Functional suitability attribute has an impact in the Economic dimension.
has impact Functional suitability-Technical Functional suitability attribute has an impact in the Technical dimension
has impact Compatibility-Social Compatibility attribute has an impact in the Social dimension
has impact Compatibility-Technical Compatibility attribute has an impact in the Technical dimension
has impact Compatibility-Economic Compatibility attribute has an impact in the Economic dimension
has impact Learnability-Economic Learnability attribute has an impact in the Economic dimension
has impact User error protection-Economic User error protection attribute has impact in the Economic dimension
has impact Usability-Individual Usability attribute has an impact in the Individual dimension
has impact Usability-Social Usability attribute has an impact in the Social dimension
has impact Time behaviour-Technical Time behavior attribute has an impact in the Technical dimension
has impact Performance-Economic Performance attribute has an impact in the Economic dimension
has impact Realiability-Technical Realiability attribute has an impact in the Technical dimension
has impact Resource utilization-Environmental Resource utilization attribute has an impact in the Environmental dimension
has impact Integrity-Technical Integrity attribute has an impact in the Technical dimension
has impact Security-Social Security attribute has an impact in the Social dimension
has impact Portability-Technical Portability attribute has an impact in the Technical dimension
has impact Portability-Economic Portability attribute has an impact in the Economic dimension
has impact Evolvability-Technical Evolvability attribute has an impact in the Technical dimension
has impact Scalability-Technical Scalability attribute has an impact in the Technical dimension
has impact Reusability-Environmental Reusability attribute has an impact in the Environmental dimension
has impact Modifiability-Environmental Modifiability attribute has an impact in the Environmental dimension
has impact Maintainability-Technical Maintainability attribute has an impact in the Technical dimension
has impact Modifiability-Economic Modifiability attribute has an impact in the Economic dimension
hasObjective Quality attribute-Objective A quality attribute has an objective to fulfill. Objectives are associated with quality attributes.
specified for Quality attribute-Domain Quality attributes are specified for a specific domain.
hasIndicator Objective-Indicator An Objective has one or more indicators. An indicator is related to an objective.
Obtains Indicator-Measure An indicator obtains a measure. A measure is related to an indicator.
uses Measure-Measurement A measure is expressed in one unit of measurement. A unit of measurement is used to express one or more measures.
transformation Measurement-Measurement Two measurements can be related by a transformation function; the kind of function will depend on the scale types of the scales.
hasScale Measurement-Scale Every measurement can have a scale. A scale may serve to define more than one measure.

20 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 6
Formal axioms

Axiom Descriptive logic (Predicate) DL Query (Protégé)
A1 For any domain to be sustainable, it

must be composed of the attributes of
maintainability or portability or evolvability
or scalability.

Dominio ⊑ ∃
hasQAS.Maintainability ⊔
∃ hasQAS.Portability ⊔
∃ hasQAS.Evolvability ⊔
∃ hasQAS.Scalability

Domain and (hasQAS
some (QualityAttribute and
(isComposedOf some (Evolvability
or Maintainability or Portability or
Scalability))))

A2 For any domain to be technically sustainable,
it must be composed of the following
attributes: Maintainability or Portability
or Integrity or Functional suitability or
Compatibility or Temporal behavior or
Reliability or Scalability or Evolvability ,
and impact technical dimension.

Dominio ⊑ (∃
hasQAS.Maintainability ⊔
∃ hasQAS.Portability ⊔
∃ hasQAS.Integrity ⊔
∃ hasQAS.FunctionalSuitability ⊔
∃ hasQAS.Compatibility ⊔
∃ hasQAS.TimeBehaviour
⊔ ∃ hasQAS.Reliability ⊔
∃ hasQAS.Scalability ⊔ ∃
hasQAS.Evolvability)
∩ (∃ hasImpact.Technical) ∩
(∃ isComposedOf.Dimension)

Domain and (hasQAS
some (QualityAttribute and
isComposedOf some (((
Maintainability or Portability
or Scalability or Evolvability))
and (hasImpact some Technical))
or involves some (((Integrity
or FunctionalSuitability or
Compatibility or TimeBehaviour or
Reliability)) and (hasImpact some
(Technical and isComposedOf
some Dimension)))))

A3 For any domain to be economically
sustainable, it must be composed of the
attributes of Modifiability or Portability or
FunctionalitySufficiency or Compatibility
or Performance or UserErrorProtection
or Learnability , and impact economic
dimension

Dominio ⊑ (∃
hasQAS.Modifiability ⊔
∃ hasQAS.Portability ⊔
∃ hasQAS.FunctionalSuitability ⊔
∃ hasQAS.Compatibility ⊔
∃ hasQAS.Performance ⊔
∃ hasQAS.UserErrorProtection ⊔
∃ hasQAS.Learnability) ∩
(∃ hasImpact.Economical) ∩
(∃ isComposedOf.Dimension)

Domain and (hasQAS
some (QualityAttribute and
isComposedOf some (((
Modifiability or Portability
)) and (hasImpact some
Economical)) or involves some
(((FunctionalSuitability or
Compatibility or Performance
or UserErrorProtection or
Learnability)) and (hasImpact some
(Economical and isComposedOf
some Dimension)))))

A4 For any domain to be environmentally
sustainable implies that it possesses the
attributes of Modifiability or Reusability
or Resource Utilization, and impact
enviromental dimension

Dominio ⊑ (∃
hasQAS.Modifiability ⊔
∃ hasQAS.Reusability ⊔
∃ hasQAS.ResourceUtilization) ∩
(∃ hasImpact.Environmental) ∩
(∃ isComposedOf.Dimension)

Domain and (hasQAS
some (QualityAttribute and
isComposedOf some (((
Modifiability or Reusability
or ResourceUtilization
)) and (hasImpact some
Environmental)) or involves
some (((ResourceUtilization)) and
(hasImpact some (Enviromental
and isComposedOf some
Dimension)))))

A5 For any domain to be socially sustainable,
it must be composed of the attributes of
Security or Co-Existence or Usability, and
impact social dimension

Dominio ⊑ (∃ hasQAS.Security ⊔
∃ hasQAS.CoExistence ⊔
∃ hasQAS.Usability) ∩
(∃ hasImpact.Social) ∩
(∃ isComposedOf.Dimension)

Domain and (hasQAS some
(QualityAttribute and (involves
some ((Security or CoExistence or
Usability) and (hasImpact some
(Social and isComposedOf some
Dimension)))))

A6 For any domain to be individual-Personel
sustainable, it must be composed of the
attribute of Usability, and impact individual
dimension

Dominio ⊑ (∃ hasQAS.Usability)
∩
(∃ hasImpact.Individual-Personel)
∩
(∃ isComposedOf.Dimension)

Domain and (hasQAS some
(QualityAttribute and (involves
some (Usability and (hasImpact
some (Individual-Personel
and isComposedOf some
Dimension)))))

A7 Any attribute of sustainable quality must be
measurable , must have an objective and
indicator,r and uses measures

QualityAttribute ⊑ ∃
hasObjective.Objective ∩
∃ hasIndicator.Indicator ∩
∃ obtains.Measurement ∩
∃ uses.Measure

QualityAttribute and (hasObjective
some (Objective and (hasIndicator
some (Indicator and (obtains
some (Measure and (uses some
Measurement)))))))

L. Restrepo et al. / SinSO 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 7
Competency questions expressed in SPARQL.

Competency Query SPARQL Query
CQ1 What quality attributes must a

system include to be technically
sustainable?

SELECT DISTINCT ?qa ?qas WHERE { ?qa rdfs:subClassOf ?restriction .
OPTIONAL{?qas rdfs:subClassOf ?qa .}
?restriction2 owl:onProperty SINSO:shouldHas .
?restriction2 owl:someValuesFrom ?qa.}

CQ2 What quality attributes are
recommended to be included
in a system to make it technically
sustainable?

SELECT * WHERE
{{SELECT DISTINCT ?qa ?qas WHERE { ?qa rdfs:subClassOf ?restriction .
?qas rdfs:subClassOf ?qa . ?restriction2 owl:onProperty SINSO:mayHas

. ?restriction2 owl:someValuesFrom ?qa.
?qas rdfs:subClassOf ?h .
?h owl:someValuesFrom SINSO:Technical . }}UNION{

SELECT DISTINCT ?qa ?qas WHERE { ?qa rdfs:subClassOf ?restriction .
OPTIONAL{?qas rdfs:subClassOf ?qa .}
?restriction2 owl:onProperty SINSO:mayHas .

?restriction2 owl:someValuesFrom ?qa.
?restriction owl:someValuesFrom SINSO:Technical .}}}

CQ3 What quality attributes should a
system include to be technically
sustainable?

SELECT ?qa WHERE { ?qa rdfs:subClassOf ?restriction .
?restriction owl:onProperty SINSO:hasImpact .
?restriction owl:someValuesFrom SINSO:Technical. }

CQ4 What quality attributes may or
should a system include to be
economically sustainable?

SELECT ?qa WHERE { ?qa rdfs:subClassOf ?restriction .
?restriction owl:onProperty SINSO:hasImpact .
?restriction owl:someValuesFrom SINSO:Economical. }

CQ5 What quality attributes may or
should a system include to be
socially sustainable?

SELECT ?qa
WHERE { ?qa rdfs:subClassOf ?restriction .
?restriction owl:onProperty SINSO:hasImpact .
?restriction owl:someValuesFrom SINSO:Social.}

CQ6 What quality attributes may or
should a system include to be
environmentally sustainable?

SELECT ?qa WHERE {
?qa rdfs:subClassOf ?restriction .
?restriction owl:onProperty SINSO:hasImpact .
?restriction owl:someValuesFrom SINSO:Environmental . }

CQ7 What are the objectives assigned to
the application domain “domain1”? SELECT * WHERE { ?QA SINSO:specifiedFor ?Domain.

OPTIONAL { ?QA SINSO:hasObjective ?Objective.}
?Domain SINSO:identifier ""domain1"" }

CQ8 What quality attributes does
domain1 contain to be technically
sustainable?

SELECT DISTINCT ?A ?dimension WHERE { ?QA SINSO:specifiedFor ?Domain.
?Domain SINSO:identifier ""domain1""
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves ?d.}
?d SINSO:hasImpact ?dp. ?d rdf:type ?A .
?dp rdf:type ?dimension . FILTER(?dimension = SINSO:Technical) }

CQ9 What are the dimensions of
sustainability impacted by the
domain1 domain?

SELECT DISTINCT ?dimension WHERE { ?QA SINSO:specifiedFor ?Domain.
?Domain SINSO:identifier ""domain1""
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves ?d.}
?d SINSO:hasImpact ?dp. ?dp rdf:type ?dimension . }

CQ10 What are the 5 quality attributes
that have the greatest impact on
domain1?

SELECT ?class (AVG(?value) AS ?avg) WHERE { ?QA SINSO:specifiedFor ?
Domain.

?QA SINSO:hasObjective ?Objective.
OPTIONAL { ?Domain SINSO:identifier ""domain1""}
?Objective SINSO:hasIndicator ?Indicator .
?Indicator SINSO:obtains ?Measure
OPTIONAL { ?Measure SINSO:uses ?Measurement}
OPTIONAL {?Measurement SINSO:hasScale ?Scale} ?Scale SINSO:value ?

value
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves ?d.}
?d a ?class. FILTER (?value >=1)} GROUP BY ?class ORDER BY DESC(?

value) LIMIT 5

CQ11 What attributes for domain1
contribute to the evolvability of the
system?

SELECT DISTINCT ?d WHERE { ?QA SINSO:specifiedFor ?Domain.
?QA SINSO:hasObjective ?Objective.
?Domain SINSO:identifier ""domain1"" OPTIONAL {

?QA SINSO:isComposedOf | SINSO:involves ?d.}
?d a ?class. ?d SINSO:contributesTo ?evo. }

22 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

8.
5.

C
as

e
st

ud
y

in
st

an
ce

s.

Fi
g.

6
an

d
Fi

g.
7,

in
A

pp
en

di
x

8.
5,

sh
ow

–g
en

er
al

ly
–

ho
w

th
es

e
ca

se
st

ud
ie

s
w

er
e

in
st

an
ce

d
in

Pr
ot

ég
é,

re
pr

es
en

tin
g

th
e

in
st

an
ce

s
an

d
th

ei
r

re
la

tio
ns

hi
ps

in
a

re
la

tio
na

ld
ia

gr
am

.T
he

pr
op

er
tie

s
fo

r
ea

ch
in

st
an

ce
ar

e
de

ta
ile

d
in

th
e

ta
bl

es
ac

co
m

pa
ny

in
g

th
e

fig
ur

es
as

so
ci

at
ed

w
ith

th
e

id
en

tifi
er

pr
op

er
ty

.S
ca

le
s

w
er

e
no

tf
ou

nd
in

th
e

m
ea

su
re

m
en

ts
gi

ve
n

by
th

e
ca

se
st

ud
ie

s,
so

th
is

co
nc

ep
tw

as
no

t
in

st
an

ce
d.

Fi
g.

6.
Sm

ar
tH

om
e

In
st

an
ce

Fi
g.

7.
D

in
gN

et
In

st
an

ce

L. Restrepo et al. / SinSO 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

References

Aljarallah, S. & Lock, R. (2019). A Comparison of Software Quality Characteristics and Software Sustainability Characteristics.
In ACM International Conference Proceeding Series. doi:10.1145/3386164.3389078.

Arp, R., Smith, B. & Spear, A.D. (2015). Building Ontologies with Basic Formal Ontology. The MIT Press.
doi:10.7551/mitpress/9780262527811.001.0001.

Babaie, H., Davarpanah, A. & Dhakal, N. (2019). Projecting Pathways to Food-Energy-Water Systems Sustainability Through
Ontology. Environmental Engineering Science, 36(7), 808–819. doi:10.1089/ees.2018.0551.

Bandeira, J., Bittencourt, I.I., Espinheira, P. & Isotani, S. (2017). FOCA: A Methodology for Ontology Evaluation. Technical
report, arXiv. https://arxiv.org/abs/1612.03353.

Barcellos, M.P., Falbo, R.d.A. & Rocha, A.R. (2010). A Well-Founded Software Process Behavior Ontology to Support
Business Goals Monitoring in High Maturity Software Organizations. In 2010 14th IEEE International Enterprise
Distributed Object Computing Conference Workshops (pp. 253–262). doi:10.1109/EDOCW.2010.15.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N. & Venters, C.C. (2015). Sustainability
Design and Software: The Karlskrona Manifesto. In Proceedings - International Conference on Software Engineering
(Vol. 2, pp. 467–476). doi:10.1109/ICSE.2015.179.

Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S. & Guizzardi, G. (2016). SEON: A Software
Engineering Ontology Network. In E. Blomqvist, P. Ciancarini, F. Poggi and F. Vitali (Eds.), Knowledge Engineering and
Knowledge Management (pp. 527–542). Cham: Springer International Publishing.

Borgo, S., Ferrario, R., Gangemi, A., Guarino, N., Masolo, C., Porello, D., Emilio, S. & Vieu, L. (2022). DOLCE: A Descriptive
Ontology for Linguistic and Cognitive Engineering. Applied ontology, 1(17), 45–69.

Brizzi, P., Bonino, D., Musetti, A., Krylovskiy, A., Patti, E. & Axling, M. (2016). Towards an ontology driven approach for
systems interoperability and energy management in the smart city. In 2016 International Multidisciplinary Conference on
Computer and Energy Science, SpliTech 2016. doi:10.1109/SpliTech.2016.7555948.

Calero, C., Bertoa, M.F. & Moraga, M.A. (2013). A systematic literature review for software sustainability measures. In 2013
2nd International Workshop on Green and Sustainable Software, GREENS 2013 - Proceedings (pp. 46–53). IEEE Computer
Society. doi:10.1109/GREENS.2013.6606421.

Carver, J.C., Cosden, I.A., Hill, C., Gesing, S. & Katz, D.S. (2021). Sustaining Research Software via Research Software
Engineers and Professional Associations. In 2021 IEEE/ACM International Workshop on Body of Knowledge for Software
Sustainability (BoKSS) (pp. 23–24). doi:10.1109/BoKSS52540.2021.00016.

Chandrasekaran, B., Josephson, J.R. & Benjamins, V.R. (1999). What are ontologies, and why do we need them? IEEE
Intelligent Systems and Their Applications, 14(1), 20–26. doi:10.1109/5254.747902.

Chitchyan, R., Groher, I. & Noppen, J. (2017). Uncovering sustainability concerns in software product lines. Journal of
Software: Evolution and Process, 29(2). doi:10.1002/smr.1853.

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., Chung, L., Nixon, B.A., Yu, E. & Mylopoulos, J. (2000). The NFR Framework
in Action. In Non-Functional Requirements in Software Engineering (pp. 15–45). Springer US. doi:10.1007/978-1-4615-
5269-7{_}2. https://link.springer.com/chapter/10.1007/978-1-4615-5269-7_2.

Condori-Fernandez, N. & Lago, P. (2019). Towards a software sustainability-quality model: Insights from a multi-
case study. In Proceedings - International Conference on Research Challenges in Information Science (Vol. 2019-
May). doi:10.1109/RCIS.2019.8877084. https://ieeexplore-ieee-org.ezproxy.eafit.edu.co/stamp/stamp.jsp?tp=&arnumber=
8877084.

Condori-Fernandez, N., Lago, P., Luaces, M. & Catala, A. (2019). A Nichesourcing Framework applied to Software
Sustainability Requirements. In Proceedings - International Conference on Research Challenges in Information Science
(Vol. 2019-May). doi:10.1109/RCIS.2019.8877000.

Corcho, O., Fernández-López, M. & Gómez-Pérez, A. (2006). Ontological engineering: Principles, methods, tools and
languages. In Ontologies for Software Engineering and Software Technology (pp. 1–48). Springer Berlin Heidelberg.
doi:10.1007/3-540-34518-3{_}1.

Corcho, O., Fernández-López, M., Gómez-Pérez, A. & López-Cima, A. (2005). Building legal ontologies with
METHONTOLOGY and WebODE. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Vol. 3369 LNAI, pp. 142–157). Springer Verlag. doi:10.1007/978-3-540-
32253-5_9. https://link.springer.com/chapter/10.1007/978-3-540-32253-5_9.

De Los Angeles Martín, M. & Olsina, L. (2003). Towards an ontology for software metrics and indicators as the foundation for
a cataloging Web system. In Proceedings - 1st Latin American Web Congress: Empowering our Web, LA-WEB 2003 (pp.
103–113). Institute of Electrical and Electronics Engineers Inc. doi:10.1109/LAWEB.2003.1250288.

Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. In Ontologies.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-09083-1{_}2. http://link.springer.com/10.1007/
978-3-662-09083-1_2.

24 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fernandez, N.C., Lago, P., Luaces, M.R., Places, A.S. & Folgueira, L.G. (2019). Using participatory technical-action-research
to validate a software sustainability model. In CEUR Workshop Proceedings (Vol. 2382).

Fernández-López, M., Gomez-Perez, A. & Juristo, N. (1997). METHONTOLOGY: from ontological art towards ontological
engineering. Engineering Workshop on Ontological Engineering (AAAI97).

Ferrari, S.L.P.P. & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics,
31(7), 799–815. doi:10.1080/0266476042000214501.

García-Berná, J.A., Fernández-Alemán, J.L., Carrillo de Gea, J.M., Toval, A., Mancebo, J., Calero, C. & García, F.
(2021). Energy efficiency in software: A case study on sustainability in personal health records. Journal of Cleaner
Production, 282, 124262. doi:https://doi.org/10.1016/j.jclepro.2020.124262. https://www.sciencedirect.com/science/article/
pii/S0959652620343079.

Gartner (2021). Information Technology Glossary - Definition of Scalability. https://www.gartner.com/en/
information-technology/glossary/scalability.

Giovannini, A., Aubry, A., Panetto, H., Dassisti, M. & El Haouzi, H. (2012). Ontology-based system for supporting
manufacturing sustainability. Annual Reviews in Control, 36(2), 309–317. doi:10.1016/j.arcontrol.2012.09.012.

Giret, A., Julian, V., Carrascosa, C. & Rebollo, M. (2018). An ontology for sustainable intelligent transportation systems
(Vol. 887, pp. 381–391). Springer International Publishing. doi:10.1007/978-3-319-94779-2_33.

Gomez-Perez, A., Fernández-López, M. & Corcho, O. (2004). Ontological Engineering: With Examples from the Areas of
Knowledge Management, e-Commerce and the Semantic Web. In Ontological Engineering. Springer-Verlag. doi:10.1007/1-
85233-840-7{_}1.

Gómez-Pérez, A. (2001). Evaluation of ontologies. International Journal of Intelligent Systems, 16(3), 391–
409. doi:10.1002/1098-111X(200103)16:3<391::AID-INT1014>3.0.CO;2-2. https://onlinelibrary.wiley.com/doi/10.1002/
1098-111X(200103)16:3%3C391::AID-INT1014%3E3.0.CO;2-2.

González-Eras, A., Santos, R.D., Aguilar, J. & Lopez, A. (2022). Ontological engineering for the definition of a COVID-19
pandemic ontology. Informatics in Medicine Unlocked, 28, 100816. doi:https://doi.org/10.1016/j.imu.2021.100816. https:
//www.sciencedirect.com/science/article/pii/S2352914821002811.

Guarino, N., Oberle, D. & Staab, S. (2009). What Is an Ontology?. In S. Staab and R. Studer (Eds.), Handbook on Ontologies
(pp. 1–17). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-92673-3_0.

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. Telematica Instituut / CTIT.
Gutierrez, L.F.R. (2023). SINSO Ontology. Mendeley Data, 1. doi:10.17632/YGV49PB4DX.1.
Hamdaoui, Y. & Maach, A. (2019). Ontology-Based Context Agent for Building Energy Management Systems. In M.

Ezziyyani (Ed.), Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (pp. 131–140). Cham: Springer
International Publishing.

Hippolyte, J.L., Howell, S., Yuce, B., Mourshed, M., Sleiman, H.A., Vinyals, M. & Vanhee, L. (2016). Ontology-based demand-
side flexibility management in smart grids using a multi-agent system. In IEEE 2nd International Smart Cities Conference:
Improving the Citizens Quality of Life, ISC2 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc.
doi:10.1109/ISC2.2016.7580828.

Huang, C., Cai, H., Xu, L., Xu, B., Gu, Y. & Jiang, L. (2019). Data-driven ontology generation and evolution towards intelligent
service in manufacturing systems. Future Generation Computer Systems, 101, 197–207. doi:10.1016/j.future.2019.05.075.

International Organization for Standardization (2011). ISO/IEC 25010:2011 - Systems and software engineering ”Systems
and software Quality Requirements and Evaluation (SQuaRE)” System and software quality models. https://www.iso.org/
standard/35733.html.

ISIXSIGMA Quality Attribute Definition. https://www.isixsigma.com/dictionary/quality-attribute/.
Jansen, A., Wall, A. & Weiss, R. (2011). TechSuRe: A method for assessing technology sustainability in long lived software

intensive systems. In Proceedings - 37th EUROMICRO Conference on Software Engineering and Advanced Applications,
SEAA 2011 (pp. 426–434). doi:10.1109/SEAA.2011.66.

Keet, C.M. (2018). An Introduction to Ontology Engineering. https://people.cs.uct.ac.za/~mkeet/files/OEbook.pdf: University
of Cape Town. http://hdl.handle.net/11427/28312.

Kern, E., Hilty, L.M., Guldner, A., Maksimov, Y.V., Filler, A., Gröger, J. & Naumann, S. (2018). Sustainable software
products: Towards assessment criteria for resource and energy efficiency. Future Generation Computer Systems, 86, 199–
210. doi:10.1016/j.future.2018.02.044.

Khalifeh, A., Farrell, P., Alrousan, M., Alwardat, S. & Faisal, M. (2020). Incorporating sustainability into software projects: a
conceptual framework. International Journal of Managing Projects in Business, 13(6), 1339–1361. doi:10.1108/IJMPB-12-
2019-0289.

Kitchenham, B. & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.
Technical report EBSE 2007-001, Keele University.

Kocak, S.A. & Alptekin, G.I. (2019). A utility model for designing environmentally sustainable software. In CEUR Workshop
Proceedings (Vol. 2541).

L. Restrepo et al. / SinSO 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Koçak, S.A., Alptekin, G.I. & Bener, A.B. (2015). Integrating environmental sustainability in software product quality. In
CEUR Workshop Proceedings (Vol. 1416, pp. 17–24).

Komeil Raisian, A.D. Jamaiah Yahaya (2022). Green Measurements for Software Product Based on Sustainability Dimensions.
Computer Systems Science and Engineering, 41(1), 271–288. doi:10.32604/csse.2022.020496. http://www.techscience.com/
csse/v41n1/44795.

Konys, A. (2018). An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain. Sustainability, 10(2).
doi:10.3390/su10020300. https://www.mdpi.com/2071-1050/10/2/300.

Koziolek, H. (2011). Sustainability evaluation of software architectures: A systematic review. In CompArch’11 - Proceedings of
the 2011 Federated Events on Component-Based Software Engineering and Software Architecture - QoSA+ISARCS’11 (pp.
3–12). New York, New York, USA: ACM Press. doi:10.1145/2000259.2000263. http://portal.acm.org/citation.cfm?doid=
2000259.2000263.

Larman, C. (2012). Applying UML and patterns: an introduction to object oriented analysis and design and interative
development. Pearson Education India.

Li, Z., Avgeriou, P. & Liang, P. (2015). A systematic mapping study on technical debt and its management. Journal of Systems
and Software, 101, 193–220. doi:10.1016/j.jss.2014.12.027.

Malik, M.N. & Khan, H.H. (2018). Investigating Software Standards: A Lens of Sustainability for Software Crowdsourcing.
IEEE Access, 6, 5139–5150. doi:10.1109/ACCESS.2018.2791843.

Mendonça, M., Perozo, N. & Aguilar, J. (2020). Ontological emergence scheme in self-organized and emerging systems.
Advanced Engineering Informatics, 44, 101045. doi:https://doi.org/10.1016/j.aei.2020.101045. https://www.sciencedirect.
com/science/article/pii/S1474034620300148.

Moskolai, J.N., Houe, R.N., Karray, M.H. & Archimede, B. (2019). Ontology based approach for complexity management
in the design of a sustainable urban mobility system. In Conference Proceedings - IEEE International Conference on
Systems, Man and Cybernetics (Vol. 2019-Octob, pp. 3223–3228). Institute of Electrical and Electronics Engineers Inc.
doi:10.1109/SMC.2019.8914648.

Motik, B., Shearer, R., Glimm, B., Stoilos, G. & Horrocks, I. HermiT Reasoner: Support. http://www.hermit-reasoner.com/
support.html.

Nazir, S., Fatima, N., Chuprat, S., Sarkan, H., Nurulhuda, F. & Sjarif, N.N.A. (2020). Sustainable software engineering:
A perspective of individual sustainability. International Journal on Advanced Science, Engineering and Information
Technology, 10(2), 676–683. doi:10.18517/ijaseit.10.2.10190.

Negri, P.P., Souza, V.E.S., de Castro Leal, A.L., de Almeida Falbo, R. & Guizzardi, G. (2017). Towards an Ontology of Goal-
Oriented Requirements. CIbSE, 94, 469–482.

Ortega Ordoñez, W.A., Pardo Calvache, C.J. & Pino Correa, F.J. (2019). OntoAgile: an ontology for agile software development
processes. DYNA, 86(209), 79–90–. doi:10.15446/dyna.v86n209.76670. https://revistas.unal.edu.co/index.php/dyna/article/
view/76670.

Oyedeji, S., Seffah, A. & Penzenstadler, B. (2018). Classifying the measures of software sustainability. In CEUR Workshop
Proceedings (Vol. 2286, pp. 19–25).

Pankowska, M. (2013). Sustainable software: A study of software product sustainable development. In Mechanism Design for
Sustainability: Techniques and Cases (pp. 265–281). Springer Netherlands. doi:10.1007/978-94-007-5995-4{_}13.

Pardo, C., Pino, F.J., García, F., Piattini, M. & Baldassarre, M.T. (2012). An ontology for the harmonization of multiple
standards and models. Computer Standards and Interfaces, 34(1), 48–59. doi:10.1016/j.csi.2011.05.005.

Paybarjay, H., Fallah Lajimi, H. & Hashemkhani Zolfani, S. (2023). An investigation of supplier development through
segmentation in sustainability dimensions. Environment, Development and Sustainability. doi:10.1007/s10668-023-03198-
w.

Pei Breivold, H. (2020). Using Software Evolvability Model for Evolvability Analysis. Mälardalen University.
Provoost, M. & Weyns, D. (2019). DingNet: A self-adaptive internet-of-things exemplar. In ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (Vol. 2019-May, pp. 195–201). IEEE Computer Society.
doi:10.1109/SEAMS.2019.00033. https://ieeexplore.ieee.org/document/8787065.

Quispe, M. & Condori, N. (2022). Extending the Sustainability-Quality Model for supporting the design of Persuasive Software
Systems. In Anais do XXV Congresso Ibero-Americano em Engenharia de Software (pp. 158–172). Porto Alegre, RS, Brasil:
SBC. doi:10.5753/cibse.2022.20970. https://sol.sbc.org.br/index.php/cibse/article/view/20970.

Roussey, C., Pinet, F., Kang, M.A. & Corcho, O. (2011). An introduction to ontologies and ontology engineering. In Advanced
Information and Knowledge Processing (Vol. 1, pp. 9–38). Springer London. doi:10.1007/978-0-85729-724-2{_}2. https:
//link.springer.com/chapter/10.1007/978-0-85729-724-2_2.

Rowe, D., Leaney, J. & Lowe, D. (1994). Defining systems evolvability-a taxonomy of change. Change, 94, 541–545.
Saba, D., Laallam, F.Z., Hadidi, A.E. & Berbaoui, B. (2015). Optimization of a Multi-source System with Renewable Energy

Based on Ontology. In Energy Procedia (Vol. 74, pp. 608–615). doi:10.1016/j.egypro.2015.07.787.
Saputri, T.R.D. & Lee, S.W. (2020). Integrated framework for incorporating sustainability design in software engineering life-

cycle: An empirical study. Information and Software Technology, 106407. doi:10.1016/j.infsof.2020.106407.

26 L. Restrepo et al. / SinSO

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Saputri, T.R.D. & Lee, S.-W. (2021). Integrated framework for incorporating sustainability design in software engineering
life-cycle: An empirical study. Information and Software Technology, 129. doi:10.1016/j.infsof.2020.106407.

Sayah, Z., Kazar, O., Lejdel, B., Laouid, A. & Ghenabzia, A. (2020). An intelligent system for energy management in smart
cities based on big data and ontology. Smart and Sustainable Built Environment. doi:10.1108/SASBE-07-2019-0087.

Sobhy, D., Bahsoon, R., Minku, L. & Kazman, R. (2016). Diversifying software architecture for sustainability: A value-based
perspective (Vol. 9839 LNCS, pp. 55–63). ResearchGate. doi:10.1007/978-3-319-48992-6_4.

Standardization, I.O.f. (2001). ISO/IEC 9126-1:2001, Software engineering ”Product quality” Part 1: Quality model. https:
//www.iso.org/standard/22749.html.

Stavros, J.M. & Sprangel, J.R. (2008). “SOAR” from the Mediocrity of Status Quo to the Heights of Global Sustainability. In
Innovative Approaches to Global Sustainability (pp. 11–35). Palgrave Macmillan US. doi:10.1057/9780230616646{_}2.

Studer, R., Benjamins, V.R. & Fensel, D. (1998). Knowledge Engineering: Principles and methods. Data and Knowledge
Engineering, 25(1-2), 161–197. doi:10.1016/S0169-023X(97)00056-6.

Suárez-Figueroa, M.C., Gómez-Pérez, A. & Fernández-López, M. (2015). The NeOn Methodology framework:
A scenario-based methodology for ontology development. Applied Ontology, 10, 107–145. 2.
doi:10.3233/AO-150145.

Tautz, C., Tautz, C. & von Wangenheim, C. (1998). REFSENO. A Representation Formalism for Software Engineering
Ontologies. IESE-Report. Kaiserslautern: ResearchGate.

Wiśniewski, D., Potoniec, J., Ławrynowicz, A. & Keet, C.M. (2019). Analysis of Ontology Competency Questions and their
formalizations in SPARQL-OWL. Journal of Web Semantics, 59, 100534. doi:10.1016/j.websem.2019.100534.

Zada, I., Shahzad, S., Ali, S. & Mehmood, R.M. (2023). OntoSuSD: Software engineering approaches
integration ontology for sustainable software development. Software: Practice and Experience, 53(2), 283–317.
doi:https://doi.org/10.1002/spe.3149. https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3149.

Züllighoven, H. (2005). 12 - The Development Process. In H.B.T.-O.-O.C.H. Züllighoven (Ed.), Object-Oriented Construction
Handbook (pp. 393–457). San Francisco: Morgan Kaufmann. doi:https://doi.org/10.1016/B978-155860687-6/50012-8. http:
//www.sciencedirect.com/science/article/pii/B9781558606876500128.

Corrections

Click here to access/download
Dataset

Corrections.pdf

Appendix C

NFR-Based framework para el análisis de la
sostenibilidad en sistemas ciberfísicos (CPS)

84

NFR-BASED FRAMEWORK PARA EL ANÁLISIS DE LA

SOSTENIBILIDAD EN SISTEMAS CIBERFÍSICOS (CPS)

Cesar Augusto Arce Vargas

Universidad EAFIT

Medellín - Antioquia - Colombia

Abstract- El análisis de la sostenibilidad en los sistemas ciberfísicos

(CPS) y su relación con los requisitos no funcionales se ha convertido

en uno de los aspectos más críticos en la actualidad. La diversidad de

contextos, conceptos, criterios de diseño y puntos de vista de los

diseñadores e investigadores puede generar ambigüedades y dificultar

la determinación o medición de la sostenibilidad de los sistemas. Para

abordar esta problemática, este trabajo plantea una herramienta

metodología cuyo principal objetivo es representar la sostenibilidad

mediante el NFR Framework, y esclarecer los atributos que

contribuyen para su futura operacionalización. A través del análisis y

la enumeración de los requisitos no funcionales, se propone formular

una serie de interrogantes que, al ser resueltos, permitan identificar

aspectos primordiales en el marco de la sostenibilidad y evaluarlos en

escalas de relevancia definidas de acuerdo al contexto. El diseñador y

su equipo de trabajo podrían utilizar este modelo para establecer

métricas que indiquen las relaciones y los niveles de contribución de

cada uno de los requisitos no funcionales en favor de la sostenibilidad.

Aunque la ponderación final recae nuevamente en el diseñador y su

equipo, el modelo propuesto permite documentar, estandarizar y

definir en forma detallada el proceso realizado y la escala de valoración

aplicada.

1. Introducción

La estructura tecnológica de los sistemas basados en IOT (Internet de

las cosas) comúnmente conocidos como sistemas Ciberfísicos o CPS

(Cyber Physical Systems), integran recursos computacionales

(Software) y dispositivos físicos (Hardware) como sensores y

actuadores en procesos con diversas áreas de aplicación tanto en la

industria, como la agricultura, salud y en general procesos con

marcado impacto social, ecológico y económico en la sociedad actual

entre otras [1]. La sostenibilidad de los sistemas o capacidad de

perdurar y preservar su función durante un período de tiempo

prolongado es uno de los principales retos a afrontar en un mundo

globalizado y en continua evolución. Mejorar la capacidad productiva

en diferentes sectores de la economía, velar por un positivo impacto

ecológico, económico y social desemboca en un aumento significativo

en la complejidad y diversidad de aplicaciones de los sistemas

ciberfísicos; convirtiéndose estos aspectos en el centro de atención de

múltiples trabajos e investigaciones [2]; Es allí donde el análisis de los

requisitos no funcionales toma una marcada relevancia, velar por la

seguridad, asegurar el rendimiento, garantizar la escalabilidad y la

calidad se transforman en premisas fundamentales que deben ser

inherentes al sistema. Nuestra contribución se centra en plantear una

herramienta metodológica que nos permita analizar los aspectos

relacionados con un interrogante central: ¿cómo representar las

contribuciones de los requisitos no funcionales y la posible

operacionalización en el marco de la sostenibilidad en los CPS? En este

contexto, se utilizó como herramienta principal la ingeniería de

requisitos y más específicamente el enfoque en los requisitos no

funcionales y su injerencia en el diseño, implementación y posterior

evaluación de la sostenibilidad de los CPS [3].

Así mismo, considerar los requisitos funcionales “Declaraciones de los

servicios que debe proporcionar el sistema, de la manera en que este

debe reaccionar a entradas particulares y de cómo debe comportarse

en ciertas situaciones. En algunos casos también pueden declarar

explícitamente lo que el sistema no debe hacer” [4], los requisitos no

funcionales o restricciones de los servicios y funciones ofrecidas por el

sistema, se caracterizan por no estar vinculados directamente a las

funciones del sistema, sino a sus propiedades. Así como las

características del hardware de los CPS no son suficientes para una

adecuada resolución de diseño; Se requiere de un modelo

arquitectónico en el que los servicios se puedan implementar

fácilmente de acuerdo con la demanda y que al mismo tiempo

satisfagan requisitos específicos sin dejar de lado la sostenibilidad del

sistema.

Como eje metodológico para el estudio de la sostenibilidad de los CPS,

usaremos el método GQM-O (Goal, Question, Metric -

Operationalization). Este método se centra en lograr una métrica o

conjunto de ellas que permitan medir o evaluar el cumplimiento de los

objetivos o requisitos no funcionales del sistema. La propuesta del

presente trabajo se desarrolla inicialmente identificando un conjunto

de NFR centrales a partir de los cuales, se identifican otros posibles

NFR para finalmente elaborar una serie de preguntas o interrogantes

encaminados en determinar o evaluar su grado de cumplimiento u

operacionalización. Seguido esto, se procede a especificar las medidas

que deben ser tomadas con el fin de responder a esos interrogantes y

finalmente poder realizar una evaluación de la conformidad o grado de

cumplimiento de las métricas establecidas [5][6]. La presente

propuesta que se basa en el GQM-O se divide en 4 niveles principales

así:

1. El nivel conceptual "Goal" implica establecer métricas y relaciones

a través de objetos o conjunto de referentes específicos,

identificados mediante análisis desde múltiples perspectivas en un

ambiente previamente definido.

2. En el nivel operativo “Questions”: se elabora un conjunto de

preguntas que permiten definir o especificar las características que

el sistema debe cumplir en término de los NFR centrándose en una

característica o meta específica.

3. Nivel cuantitativo “metrics”: Establecer un conjunto de métricas

que permitan evaluar cada una de las respuestas asociadas a las

diferentes metas, mediante escalas previamente especificadas por

el diseñador. En el contenido de esta propuesta se recomienda

usar escalas de ponderación acordes a las premisas o

especificaciones del diseño.

4. Nivel Operacionalización “Operationalization”. La definición de

indicadores y la recolección de datos para evaluar la sostenibilidad

del sistema en relación con los requisitos no funcionales

establecidos. Se establecen los procedimientos para recopilar,

analizar e interpretar los resultados y poder así, obtener una

evaluación objetiva y sistemática de los atributos relacionados con

la sostenibilidad.

Además de la introducción, el documento está conformado por 5

secciones principales. Sección II Marco Teórico: describe los

conceptos principales y las tecnologías en el marco de los CPS. Sección

III. Trabajos relacionados: Menciona los documentos destacados y de

mayor contribución en la propuesta. La sección IV Análisis de la

sostenibilidad: Describe en detalle el modelo planteado, su evolución,

objetivos, características principales y pasos para su aplicación.

Sección V Conclusiones: Se destacan las contribuciones principales y

posibles trabajos futuros. Por último, la sección VI: Referencias.

2. Marco teórico

El concepto de “Industria 4.0” originado en Alemania, ha planteado

un nuevo modo de organizar y diseñar los procesos productivos y en

general todos los procesos en la sociedad moderna, apoyándose en

herramientas computacionales, dispositivos electrónicos y sistemas

intercomunicados que operen de forma autónoma. Desde este punto

de vista, se plantea el modelo de los denominados sistemas

inteligentes que se centran en atender de una mejor manera las

necesidades de los usuarios gracias fundamentados en una mayor

flexibilidad y en la continua optimización de recursos [7]. En este

contexto, la transformación de los procesos productivos, se centraliza

en una comunicación continua e instantánea en tiempo real entre

puestos de trabajo, componentes y herramientas en donde se

instauran procesos puntuales de análisis y captura de datos en un

marco centrado en la optimización de procesos y recursos [3] [8].

Figura 1. Modelo de Ecosistemas Industriales [11].

Existen múltiples definiciones sobre el concepto, si bien todas

coinciden en los mismos puntos centrales, partiremos de la definición

de la fundación americana de la ciencia NFS (National Science

Foundation). Los “CPS son construidos a partir de la integración

transparente de componentes físicos y computacionales, que permitan

superar a los simples sistemas integrados actuales en cuanto a

capacidad, adaptabilidad, escalabilidad, resiliencia, seguridad y

usabilidad.” [1].

Podría decirse que los CPS tienen el potencial de enriquecer todos los

procesos donde son utilizados debido a la integración de diferentes

tecnologías. Conforme a la evaluación realizada por Guío Ávilade [9],

en los modelos de ecosistemas basados en CPS aplicados a los procesos

industriales (Figura 1), podemos evidenciar la incorporación de

componentes como la Ciberseguridad aplicada a procesos todo tipo

sistemas, siempre enfocados en la consecución de una mayor robustez,

un mejor y duradero ciclo de vida. Otros recursos como el Cloud

Computing, BIG Data y el uso de recursos sostenibles como las

energías limpias (Eólica, solar, geotérmica, entre otras.) en conjunto

con materiales alternativos, incrementan las posibilidades de

aplicación y su consecuente impacto social y económico sobre las

poblaciones objeto de estos sistemas. Encontramos aplicaciones en

campos tan diversos como: Dispositivos médicos, sistemas de vida

asistida, sistemas de control de tráfico, control de procesos

productivos, conservación de energía, control de infraestructuras

críticas, vigilancia y control de recursos, comunicaciones, robótica

industrial, telemedicina, sistemas de defensa y en general todo tipo de

sistemas inteligentes. El difundido concepto de Smart City toma aún

más fuerza en aplicaciones de mantenimiento, espacios públicos y

otros servicios que facilitan que las ciudades sean aún mucho más

sostenibles, con un menor costo de administración y un resultado más

satisfactorio para todos [9].Las ciudades inteligentes son un claro

ejemplo de cómo los sistemas ciberfísicos se utilizan para recopilar,

analizar y utilizar datos en tiempo real utilizando mediante tecnologías

de la información y las telecomunicaciones (TIC) con el propósito

fundamental de mejorar la calidad de vida de sus habitantes y

optimizar los servicios urbanos. Como podemos ver, en la Figura 2 se

representan algunos de estos servicios como la movilidad inteligente,

en la que los CPS se aplican para mejorar la movilidad y el tráfico

utilizando sensores, cámaras y todo tipo de sistemas de control. O en

el caso de la sociedad inteligente, en donde se aplican los CPS en

modelos de gestión de residuos optimizando los modelos de

recolección buscando evitar las acumulaciones y efectos indeseados

derivados de ello.

Figura 2. CPS y el concepto de ciudad inteligente.

Los requisitos no funcionales o NFRs son aquellos que describen la

calidad del sistema y su funcionamiento en conformidad a su

operación, en la Figura 3 podemos su división tres grupos principales:

1. los requisitos del producto en donde se especifican los criterios de

usabilidad, eficiencia y seguridad entre otros, 2. los requisitos de la

organización relacionados con el medioambiente, aspectos

operacionales y de desarrollo, y por último 3. los requisitos externos

que se relacionan con las regulaciones, la legislación, ética y lo

concerniente a la legislación. Otro ejemplo de ellos son los requisitos

de desempeño, características de interfaz, condiciones de

funcionamiento y atributos de calidad. Es así como los NFRs juegan

un rol decisivo en el análisis del cumplimiento o no del sistema. Así, la

adecuada especificación de los NFRs es considerada como una de las

partes más críticas y sensibles en el diseño, análisis y posterior

evaluación de los CPS [10].

Figura 3. Topología de los Requisitos No Funcionales según

su propósito [11].

Antes de iniciar con el proceso de diseño de un sistema basado en

software, resulta extremadamente importante entender y determinar

los NFRs. Así mismo, documentarlos adecuada y sistemáticamente;

esto con el fin de poder realizar una adecuada evaluación para

finalmente determinar su grado de cumplimiento. Recordemos que el

no cumplimiento de los NFRs no es un indicador del funcionamiento

del sistema, pero sí indica el grado de cumplimiento de las expectativas

en el sistema y si cumple con lo que se espera de él.

3. Trabajos relacionados

Existen numerosos estudios centrados en los CPS con enfoques

variados sobre la sostenibilidad. Entre que han tenido una influencia

significativa en el desarrollo de la propuesta, destaca el artículo

titulado "SinSO: Anontology of Sustainability in Software" [12]. En

este artículo se aborda la sostenibilidad y su relación con los atributos

de calidad del software estableciendo una ontología en el dominio de

la sostenibilidad. Esta ontología proporciona una herramienta

fundamental para el análisis e identificación de las relaciones de los

atributos de calidad, al tiempo que ofrece una terminología que

respalda la implementación de proyectos de software sostenibles. Su

objetivoes reducir las inconsistencias y facilitar el intercambio de

información entre los diseñadores y otros actores involucrados. SinSO

abarca el dominio sostenible en sus aspectos de alto nivel,

estableciéndose como concepto fundamental en cuanto a calidad [12].

El artículo "Extending The NFR Framework with Measurable Non-

Functional Requirements"[13], propone una herramienta basada en

gráficos de interdependencia para cerrar la brecha entre los NFR y su

posterior implementación. En este documento, se utilizarán los

conceptos y herramientas gráficas presentadas en [13] para

representar los NFR del sistema objeto de estudio. En este marco de

trabajo, los NFR se representan como “softgoals”, o metas flexibles en

español. Estas abarcan cualidades como amigable, confidencial,

seguro en las transacciones o de fácil mantenimiento, las cualidades

no admiten definiciones obvias debido a su naturaleza cualitativa.

Estas metas flexibles son denotadas “meta nebulosa” o “FuzzyGoals”

ya que no tienen un criterio claro de satisfacción, y en muchos casos,

dependen de la precepción del evaluador. Según se establece en el

artículo “Softgoals are satisfaced, ratherthan satisfied” [17], es decir,

son operacionalizados a través de la funcionalidad del sistema.

El artículo realizado por MohdFahrul Hassan en el documento titulado

“A Decision Tool for Product Configuration Designs based on

Sustainability Performance Evaluation” [14] propone un análisis de

la sostenibilidad del proceso productivo centrado en la sostenibilidad

del desempeño. En este estudio, se establecen siete etapas o fases a

considerar usando Analytic Hierarchy Process (AHP) (Figura 4);En la

primera fase se identifican los elementos principales relacionados con

la sostenibilidad del sistema y sus correspondientes métricas,

posteriormente en la segunda fase, se establecen pesos a cada uno de

ellos, posteriormente, en la tercera fase, se define el producto a ser

evaluado y poderlo así subdividir en sus componentes básicos,

plantear diferentes alternativas de diseño a partir del análisis

morfológico, ponderar y por último plantear un diseño final a partir de

los componentes básicos que cumpla las metas de sostenibilidad

deseadas.

A partir de este modelo metodológico, se logró implementar un

software cuyo propósito central es el de evaluar en forma sencilla el

proceso y por otro lado facilitar la toma de decisiones. los 46 factores

preponderantes introducidos en Gupta et al. (2010) [15] se establecen

como las métricas de sostenibilidad centrales. De aquí se infiere que el

modelo metodológico descrito, aplica en el análisis de la sostenibilidad

de los CPS. En resumen, el modelo metodológico descrito y su

correspondiente software constituyen una herramienta clave en el

análisis de la sostenibilidad de los CPS, al proporcionar una evaluación

sencilla, basada en métricas relevantes y el fomento de prácticas más

sostenibles en beneficio de las organizaciones.

Figura4. A Decision Tool for Product Configuration

Designs based on Sustainability Performance Evaluation

methodology [15].

Por otro lado, en la reflexión “Desafíos en el diseño de sistemas cyber

físicos” publicada por John C. Chandy, se analizan los desafíos de

previsibilidad y confiabilidad en el hardware y software involucrado en

los CPS. Para ellos, hasta el programa más sencillo pierde su

predictibilidad y confiabilidad ya que los sistemas no expresan los

aspectos más esenciales. Por ejemplo, si el programa pierde la

sincronización de reloj, podría ejecutarse correctamente pero no

realizar las funciones para las cuales fue diseñado en el entorno del

CPS [8]. En dicha reflexión, se menciona como los sistemas se han

caracterizado por su previsibilidad y fiabilidad con estándares

elevados. Adicional a esto los CPS incrementa el nivel de exigencia

debido a las posibles aplicaciones en procesos críticos que no pueden

presentar paros indeseados y mucho menos carecer de confiabilidad.

Es así como en esta reflexión, podemos identificar una serie de

criterios o características que pueden resultar críticos en el análisis de

la sostenibilidad de los CPS en la presente propuesta.

El proceso metodológico reportado por Capelli sobre Software

Transparency [16], en el cual se establece un modelo metodológico

para el análisis, ponderación y posterior evaluación de la transparencia

del software como requisito no funcional (NFR).Plantea la

identificación de metas centrales (Goals) cómo la usabilidad,

auditabilidad y accesibilidad, entre otros; Posteriormente, se

identifican metas derivadas que se enlazan a cada una de las metas

principales y finalmente sustentarlas a partir de su contribución con el

objetivo principal, en este caso la transparencia. Para la presente

propuesta, utilizamos el modelo metodológico reportado por Capelli

[16] como herramienta principal de modelado para las diferentes

metas que contribuyen a la sostenibilidad del CPS. Adicional a eso, la

propuesta de Capelli [16] se fundamenta en el libro elaborado por

Chung [17] sobre requisitos no funcionales (NFR) en donde se propone

una lista de NFRs a ser contemplados en el proceso de diseño y

posterior análisis de los sistemas. Uno de los principales conceptos es

el de los “Softgoals”o Metas Flexibles que deberían ser alcanzadas y

que ayudan a representar los objetivos y al mismo tiempo poder

evaluar su grado de cumplimiento. El modelo ofrece una estructura

para representar y guardar los procesos de diseño y razonamiento en

gráficos llamados “softgoal interdependency graphs (SIGs)”. En estos

gráficos se recopilan las consideraciones del diseño y su

interdependencia representando los softgoals como nubes, ubicado en

la parte superior del SIG los softgoals de mayor jerarquía y mediante

líneas su interdependencia; Para finalmente, mediante el uso de

etiquetas, establecer el grado de cumplimiento. En esta propuesta, se

aplica el modelo de representación mediante los denominados SIGS

Chung [17] con enfoque en análisis de la sostenibilidad de los CPS.

Por último y como documento guía: “A sustainable-
developmentapproachforself-adaptivecyber–physicalsystem’s life
cycle: A systematic mapping study” [10] en el cual se identifican
dimensiones relacionadas con la sostenibilidad y sus diferentes
relaciones. Este documento describe un modelo sistemático de mapeo
cuyo fin es el de analizar diferentes metodologías en el marco de
desarrollo de CPS autoadaptables con enfoque en la sostenibilidad. En
este se plantea una descripción general de las estrategias utilizadas
para el desarrollo de SA-CPS “Self Adaptive CPS”, las brechas
encontradas en cada etapa del SDLC “System-DevelopmentLife-
Cycle” y el enfoque dado al análisis de especificaciones, considerando
aspectos como: ¿Quién usará el sistema?, ¿qué debe hacer el sistema?
y ¿dónde será utilizado?; que son considerados de vital importancia al
realizar el acercamiento con enfoque en la sostenibilidad de los CPS.

En conjunto, estos documentos han enriquecido la propuesta actual al

proporcionar conceptos y enfoques que contribuyen a los aspectos de

sostenibilidad en los sistemas ciberfísicos. Sin embargo, ninguno de

ellos establece un modelo metodológico que permita medir o

determinar el cumplimiento de los Requisitos No Funcionales (NFRs).

El artículo "SinSO: Anontology of Sustainability in Software"

propone una ontología en el dominio de la sostenibilidad en el

software, lo cual resulta fundamental para analizar e identificar las

relaciones entre los atributos de calidad y respaldar la implementación

de proyectos de software sostenible. No obstante, es importante tener

en cuenta que podría haber limitaciones en la adaptabilidad de esta

ontología a contextos específicos que vayan más allá del ámbito del

software. Por otro lado, el artículo "Extending The NFR Framework

with Measurable Non-Functional Requirements" presenta una

herramienta basada en gráficos de interdependencia que ayuda a

cerrar la brecha entre los NFRs y su implementación, facilitando su

representación y comprensión. Sin embargo, es importante tener en

cuenta que la evaluación de las metas flexibles puede resultar

complicada debido a su naturaleza cualitativa y subjetiva. En resumen,

si bien estos documentos han aportado valiosos conocimientos, aún se

requiere el desarrollo de un modelo metodológico que permita medir

y determinar el cumplimiento de los NFRs en relación con la

sostenibilidad en los sistemas ciberfísicos.

4. Enfoque en la sostenibilidad

Conforme a lo encontrado en el mapeo sistemático de la literatura

realizada se evidencia la existencia de una marcada heterogeneidad al

definir sostenibilidad pero con variadas formas de ser abordada;

siendo en múltiples ocasiones relacionada con el concepto de

desarrollo sostenible introducido por Brundtland Commission (1987)

[3] y que se define como “El desarrollo que cumple las necesidades del

presente sin comprometer la capacidad de generaciones futuras de

cumplir con sus propias necesidades”[3]. La ontología propuesta en

[12] denominada como SINSO reduce la ambigüedad en el dominio de

la sostenibilidad al establecer una terminología clara para respaldar la

implementación de proyectos de software y evaluar su efectividad

mediante la revisión de 5 criterios: Consistencia, Completitud,

Concisión, Expansibilidad y Sensibilidad. La sostenibilidad en los CPS

integra tanto el diseño del sistema como su implementación,

operación y disposición final, integrando aspectos sociales en el ciclo

de vida del sistema, esto sin descuidar las consideraciones ambientales

y/o económicas [18]. Sin embargo, no podemos dejar de lado aspectos

inherentes a la calidad de los sistemas como son su confiabilidad y

seguridad, sobre todo si consideramos que los CPS inevitablemente

harán parte de procesos de alto impacto y en muchos casos de vital

importancia para las actividades cotidianas de la sociedad. En esta

propuesta se plantea una herramienta metodológica para el análisis

que permita representar, evaluar y ponderar el grado de sostenibilidad

de los CPS desde aspectos denominados metas flexibles o “softgoals”.

Para el planteamiento de estas metas, debemos aclarar interrogantes

como ¿Qué significa que el sistema sea sostenible?, ¿cuáles serían las

características principales que contribuyen a la sostenibilidad? y más

importante aún ¿Cómo podemos medir o determinar los niveles de

sostenibilidad?

Por ser la sostenibilidad un atributo de calidad del sistema, la

consideramos como un NFR. Decir si un sistema es o no sostenible de

forma tácita resulta muy complicado, sin embargo, podemos

determinar niveles o grados de cumplimiento de dicho atributo. En el

marco de los NFR [17] y la ontología propuesta en SINSO [12]

abordaremos 5 atributos principales o softgoals considerados como

Fiable, Seguro, Económico, Ecológico y Social los cuales contribuyen

directamente a la sostenibilidad. El hecho de que SINSO [12] cubra de

manera adecuada el contexto de la sostenibilidad como atributo de

calidad, proporciona una base confiable para el desarrollo de software.

El no tener definiciones ambiguas, contribuye a plantear diseños más

claros, concisos, fiables y en consecuencia menos vulnerables. Por otro

lado, la eficiencia y optimización de recursos propuesta en SINSO [12],

apunta al desarrollo de sistemas económicos y de fácil mantenimiento;

así mismo, la profunda comprensión de los conceptos implica poder

analizar y determinar el impacto ecológico de las soluciones y por ende

minimizar su impacto negativo. Finalmente, SINSO [12] contribuye a

una comprensión ampliada de la sostenibilidad, lo que permite

considerar aspectos sociales y la inclusión del análisis del impacto en

las comunidades en los procesos de desarrollo de soluciones.

Para la representación de la presente propuesta, utilizamos el modelo

de Sistemas de Interacción Gráfica (SIGs). Estos sistemas están

compuestos por nodos y enlaces, donde los nodos, o sofgoals,

representan los objetivos que deben cumplirse en un contexto

determinado. Los enlaces determinan la contribución o aporte que

puede ser positivo (helps) o negativo (faults, failures). Siguiendo el

estándar de representación utilizado en [17], las contribuciones

pueden ser de descomposición fuerte (AND), de especialización (OR),

de descomposición suave (some) o de ayuda en la consecución de la

meta (Help). Además, se utilizan flechas continuas para representar la

contribución realizada por un SoftGoal y flechas discontinuas para

representar la correlación.

Para establecer métricas a las diferentes contribuciones, se emplea la

representación mediante signos. La satisfacción positiva se representa

con el signo (+), mientras que la satisfacción positiva fuerte se

representa con (++). Por otro lado, la contribución negativa se

representa con el signo (-) y la contribución negativa fuerte con (--). A

partir de los NFRs identificados y representados en la ontología se

establecen las bases para la propuesta, tal como se muestra en la

Figura 5.

En esta figura se plantea el SIG general de la sostenibilidad,

incluyendo las contribuciones de descomposición (AND) de los

diferentes softgoals relacionados. El SIG resultante presenta 5 nodos

centrales: Fiable, Seguro, Económico, Ecológico y Social. Más adelante

desglosamos cada una de estas metas en sus correspondientes

subnodos derivados y especifica en forma detallada la contribución

que realiza cada uno de ellas a la meta superior y por ende al objetivo

central de Sostenibilidad.

Figura 5. Metas de la sostenibilidad.

Para la elaboración y adaptación de las definiciones de cada una de las

metas planteadas en este documento, se tomaron en cuenta las

referencias citadas en [10], [12], [13], [17]. Es importante destacar que

se contextualizaron las definiciones con un enfoque en la

sostenibilidad de los sistemas ciberfísicos (CPS). Si bien el análisis

centra principalmente en el ámbito del software, algunos requisitos no

funcionales (NFR) se enfocan en el componente físico, ya que se

consideró relevante para este estudio.

Comencemos con las definiciones en el contexto de la sostenibilidad y

los marcos de referencia de los NFR que contribuyen, como se detalla

a continuación:

Fiable: Relacionado con los indicadores centrados con el

comportamiento del sistema ante la presencia de fallos en sus

componentes o alteraciones en sus condiciones normales de

operación.

Seguro: Relacionado con los indicadores centrados con el

comportamiento del sistema ante la presencia de ataques externos,

intentos de alteración o divulgación no deseada de datos.

Económico: Relacionado con los indicadores centrados en el

impacto económico, más específicamente en aspectos como son la

disminución de tiempos de producción, el aumento de productividad,

el ahorro de energía y el cumplimiento de especificaciones.

Ecológico: Relacionado con los indicadores centrado en el impacto

que tiene el sistema (Positivo o Negativo) sobre el medio ambiente y

en general en los ecosistemas con los que interactúa. (Manejo de

recursos renovables y energías limpias).

Social: Relacionado con los indicadores centrados en el impacto del

sistema sobre las actividades humanas o en los grupos sociales

directamente involucrados.

En el modelo metodológico propuesto, se deben plantear interrogantes

a ser evaluados por el diseñador del CPS en el momento de ponderar

el grado de cumplimiento o satisfacción de la sostenibilidad del

sistema objeto de estudio y de conformidad con cada uno de los

SoftGoals previamente estipulados, para posteriormente establecer

una escala de validación conforme a la relación de las metas de

sostenibilidad y el objetivo principal del sistema. La ponderación de

los NFR será por criterio del diseñador a partir de la importancia o

peso del NFR dentro del contexto del sistema; Es decir, si la meta

primordial del CPS es la sostenibilidad ambiental, por encima de otros

aspectos secundarios como la sostenibilidad económica, se dará mayor

peso ponderado al cumplimiento de las metas ecológicas.

Prosigamos con el análisis detallado de las metas principales y sus

metas relacionadas o de segundo nivel. Siendo estas últimas las

encargadas de operacionalizar la sostenibilidad. Es importante

destacar que cada meta directamente asociada a la sostenibilidad tiene

metas asociadas que se representan en niveles inferiores y que, al

analizar estas metas secundarias, obtenemos una visión más completa

sobre el grado de cumplimiento de la sostenibilidad.

4.1. Fiable

Como primer paso analizamos la Fiabilidad y sus metas relacionadas

o de contribución positiva. En [19], [20] se indica que la fiabilidad en

un sistema es afectada por una serie de amenazas denominadas fallas

(“faults”), errores (“errors”) y faltas (“failures”). La falta es un evento

que ocurre cuando el servicio entregado se desvía del servicio esperado

o servicio correcto; un error es aquella parte del estado del sistema que

pueda causar una falta de servicio y una falla es definida como la causa

hipotética de un error. Un error también se define como la parte total

del estado del sistema que conlleva a faltas subsecuentes de servicio.

Las diversas formas en la que un sistema puede dejar de proporcionar

un servicio se denominan modos de falla (“failure modes”) [20]. Los

usuarios esperan que sus dispositivos funcionen de forma continua y

bajo las especificaciones para las que fue concebido. Por ejemplo, el

usuario de un vehículo espera que este se comporte conforme a sus

expectativas de funcionamiento, consumo de combustible y de

seguridad para sus ocupantes. En el caso de los CPS, esas expectativas

se incrementan debido a que, como ya se había mencionado, son

utilizados en aplicaciones críticas. Por otro lado, los CPS se enfrentan

a entornos no predecibles en su totalidad, operan en ambientes que

deberían ser altamente controlados. Sin embargo, deben contar con

una marcada resiliencia ante condiciones inesperadas y al mismo

tiempo adaptarse a los errores en sus componentes o subsistemas. El

reto se centra en obtener la mejor configuración e interrelación de una

serie de componentes seleccionados cuidadosamente en una

plataforma de hardware específica. En general, los CPS se centran en

procesos de monitoreo y realimentación de variables involucradas en

los subsistemas y su influencia sobre el resultado final del proceso.

 Existen innumerables aplicaciones que atañen a actividades críticas

en las cuales interferencias externas o alteraciones en la seguridad

resultan en consecuencias catastróficas, por lo que la fiabilidad es uno

de los aspectos más importantes a considerar. Es así como se plantea

analizar el softgoal (FIABLE) desde 4 metas implícitas que realizan

una contribución positiva o ayudan a la meta superior y son: Traceable,

Mantenible, Protegido y Estable. (Figura 6.).

Figura 6. SoftGoals– Fiable

Continuando con el procedimiento establecido, se plantean las

siguientes definiciones contextualizadas a los CPS y nuestro abordaje

para los softgoals relacionados en el segundo nivel:

- Traceable: capacidad del sistema para rastrear el origen de los

datos, señales y en general la información relacionada con su

operatividad.

- Mantenible: capacidad del sistema de ser reparado

completamente a nivel operacional dentro de los parámetros

temporales establecidos. Debe contar con herramientas de

monitoreo que permitan rastrear completamente el sistema a nivel

operaciones en un periodo de tiempo acorde a los procedimientos

establecidos en el diseño.

- Protegido: Capacidad de operar sin generar consecuencias sobre

el usuario o el medio ambiente.

- Estable: Capacidad del sistema de operar aun ante fallos en sus

componentes. El sistema cuenta con opciones o alternativas para

garantizar su operatividad.

Una vez identificados los SoftGoals y sus relaciones con la meta

superior, se deberá plantear una serie de interrogantes con objetivo de

dilucidar en forma más específica los objetivos con el propósito de fijar

métricas que permitan establecer niveles o grados de cumplimiento de

la meta. En la Figura 7 se ilustran un ejemplo de preguntas “Questions”

relacionado con el SoftGoal Fiable que lleven a la operacionalización:

Figura 7. Catálogo - Fiable.

La evaluación de los interrogantes y su consecuente ponderación por

niveles de prioridad o relevancia, depende del ámbito de la aplicación

y de los objetivos centrales. Por ejemplo, analicemos el caso de la

estabilidad ante fallos; se plantean interrogantes como ¿en caso de

fallos se cuenta con sistemas redundantes?, el cumplimiento o no de

esta característica dependerá del nivel de disponibilidad operativa del

sistema. Es decir, si la aplicación es un sistema crítico (sistema que

debe funcionar en forma ininterrumpida) como por ejemplo un equipo

de vida asistida en una unidad de cuidados intensivos o un sistema de

control de tráfico, este parámetro tendrá una consideración prioritaria

y su cumplimiento de carácter obligatorio. Por otro lado, en otro

ámbito de aplicaciones en donde se puedan presentar fallos del

sistema bajo condiciones de temporalidad (Interrupciones por

periodos de tiempo), podría darse que este atributo no sea

fundamental u obligatorio.

4.2. Seguro

La intrínseca relación entre hardware y software trae como

consecuencia que los conceptos clásicos relacionados con la seguridad

como son, confidencialidad, integridad y disponibilidad tomen

renovada validez sobre las especificaciones de los CPS [5]. Resulta

necesario analizar el impacto de ataques o interferencias externas

sobre el sistema y su efecto sobre el funcionamiento y las posibles

consecuencias que acarrearía sobre los procesos críticos que éste

realiza y en consideración a la no homogeneidad de las funciones

realizadas por los componentes involucrados. La creciente

conectividad de los CPS ha introducido nuevos retos relacionados con

la seguridad, más aún cuando los sistemas utilizan redes públicas

como el internet para la transmisión de parámetros e información con

la consecuente susceptibilidad ante posibles ciberataques [21].

Comúnmente las redes de CPS están conformadas por una serie de

elementos que interactúan entre sí de maneras complejas y

cambiantes. Dichos sistemas, mezclan una variada gama de

componentes como por ejemplo PLC (Controlador lógico

programable), sensores, actuadores, dispositivos de red y protocolos

industriales de comunicación cuyo objetivo en muchos casos, es

realizar labores cotidianas de vital importancia y elevado impacto en

los procesos productivos [3]. Para analizar las características de

seguridad del sistema se plantea caracterizar el sistema desde 3

metasflexibles que ayudan o contribuyen a la meta principal (Figura

8): Íntegro, Disponible y Confidencial.

Figura 8. SoftGoals - Seguro

Teniendo como especificación para cada uno de los softgoals

relacionados de segundo nivel, se plantean las siguientes definiciones:

- Integro: capacidad del sistema de garantizar que la información

no se vea alterada por medios externos, gestionar los usuarios,

componentes del sistema y sus roles. Entendiendo como usuarios a

las personas y a los componentes del sistema que requieran de

servicios.

- Disponible: capacidad del sistema de continuar operando de

manera adecuada incluso en presencia de ataques o perturbaciones

externas no deseadas. El sistema continúe su funcionamiento sin

sufrir degradaciones en cuanto a accesos, esté en capacidad de

ofrecer los recursos que requieran los usuarios autorizados cuando

estos los necesiten (Garantizar accesibilidad a elementos

autorizados).

- Confidencial: capacidad del sistema de garantizar la protección

de la información y protecciones contra divulgaciones no deseadas.

El sistema debe contar con mecanismos de control de acceso que

aseguren la confidencialidad de la información.

De la misma forma que la Fiabilidad y en concordancia con la

metodología propuesta GQM, en la Figura 9 se indican las preguntas

sugeridas con enfoque en seguridad del sistema y su posterior

ponderación por niveles de prioridad o relevancia.

Figura 9. Catálogo – Seguro

Con enfoque en la seguridad se pueden analizar múltiples aspectos,

pensemos por ejemplo en las métricas sobre protección de acceso a la

información, fiabilidad, seguridad o los niveles y alcances dependen

del ámbito de aplicación. No tendría las mismas consideraciones una

aplicación de conteo electoral que una de información climática. Sin

embargo, es conveniente reiterar que el grado de cumplimiento y las

métricas relacionadas dependen exclusivamente del dominio de

aplicación y de los criterios del diseñador en la identificación y

ponderación de los NFR. Al analizar la interrelación de metas de

fiabilidad y seguridad, se logró establecer una notoria interrelación y

correlación entre las diferentes metas de donde surgieron nuevas

metas con otros tipos de contribuciones. Para la elaboración del SIG

resultante, utilizaremos “Some +” y “Help +” [17]. Indicando mediante

AND aquellos de mayor obligatoriedad o compromiso, “Help +” los

que realizan algún aporte positivo y con “Some +” los que contribuyen

en menor grado o de menor obligatoriedad relativa que los denotados

por And.

Figura 10. Interacción SoftGoals Fiable – Seguro

Durante el presente análisis, se pudo identificar que incluso entre las

metas flexibles del nivel superior, existen relación de contribución,

como se muestran en la Figura 10. A partir de este análisis, se pueden

derivar conceptos y plantear preguntas relevantes como:

Configurable: Indicador de la capacidad del sistema a ser

configurado o modificado en sus parámetros de funcionamiento,

protocolos de comunicación y tecnologías compatibles. Se analizan

aspectos como:

- Parametrizable: ¿cuenta con modelos empleados para establecer los

parámetros de funcionamiento, definición de variables, parámetros

de comunicación y estándares de operación?

- Comunicación: ¿tiene claramente establecidos y parametrizados los

medios y protocolos de comunicación aceptados por el sistema?

- Modularidad: ¿cuenta con catálogo de patrones de modelado y tipos

de tecnologías compatibles?

Escalable: capacidad de adaptación y respuesta de un sistema con

respecto al rendimiento del mismo a medida que aumentan de forma

significativa el número de usuarios. Se analizan aspectos como:

- Adaptable: ¿están claras las especificaciones y el grado de flexibilidad

del sistema ante cambios en los parámetros o condiciones de

funcionamiento, adiciones de funciones o componentes?

- Arquitectura: ¿Se puede especificar el efecto del incremento de

componentes o funciones sobre la arquitectura del sistema? ¿La

arquitectura se adapta fácilmente o es necesario cambiarla

completamente ante la adición de componentes o funciones?

- Modelo de escalamiento empleado: ¿Se pueden añadir fácilmente

nuevos recursos (escalamiento horizontal) o es necesario reemplazar

el recurso (escalamiento vertical)?

Preciso: Indicador de la precisión del sistema en cuanto a la

repetitividad de los datos arrojados por los elementos de medición

(variación causada por el dispositivo de medición) y su

reproducibilidad (variación causada por el sistema de medición),

directamente relacionado con la integridad y disponibilidad. Realiza

contribución con la disponibilidad e integridad del sistema.

- Repetitividad: ¿los datos medidos por un elemento del sistema son

iguales si se repiten en diferentes instantes de tiempo bajo las mismas

condiciones de operación?

- Reproducibilidad: ¿las mediciones realizadas por diferentes

componentes con iguales características y bajo las mismas

condiciones de operación son iguales?

Flexible: Indicador de los niveles de flexibilidad del sistema. Afecta

directamente la estabilidad y disponibilidad del mismo. Ayuda a

determinar qué tan flexible es el sistema ante los posibles fallos y por

ende como afectaría la estabilidad y disponibilidad del mismo.

- ¿Ante la presencia de fallos en componentes o indisponibilidad de los

mismos, se cuenta con medios alternativos para suplir la necesidad?

- ¿cuenta con mecanismos o componentes que aseguren el

funcionamiento continuo?

Resiliente: capacidad de adaptarse, recuperarse y mantenerse en

niveles adecuados de funcionamiento después de una falla. Se evalúan

aspectos como:

- Análisis de estado: ¿Está estandarizada la información que define el

estado del sistema?, ¿están definidas las cadenas de

obsolescencia?,¿se tienen planes de contingencia ante fallas o

comportamiento anómalo?, ¿en caso de falla el sistema sigue

operando?

- Testeo: ¿se tienen planes y cronograma de testeo?, ¿se analizan los

test realizados y se toman medidas a partir del análisis cualitativo del

problema?

- Verificación: ¿Se tienen parámetros de verificación?, ¿Se realiza

verificación automática del estado de componentes?, ¿se analizan los

resultados?, ¿Se tienen medidas de contingencia?, ¿cuenta con

protocolos de reemplazo?

Consistente: Indicador de la consistencia del sistema ante la

presencia de ataques o incursiones no deseadas. Relacionado

directamente con la integridad y estabilidad del mismo.

- Análisis: ¿los datos arrojados por el sistema pierden consistencia o

validez ante la presencia de ataques externos?

- Indicadores: ¿se tiene indicadores del grado de afectación que

producen los ataques externos sobre la integridad del sistema?

Accesible: Indicador de los niveles de accesibilidad del sistema,

siendo primordial en relación a la confidencialidad.

- Verificación: ¿Cuenta con protocolos de autenticación de usuarios?,

¿Presenta un esquema basado en redes seguras?, ¿Se garantiza la

confidencialidad de la información?

Traceable: Cuenta con procedimientos preestablecidos y

autosuficientes que permiten conocer el histórico en un momento

dado.

Auditable: Tiene mecanismos que permiten revisar, evaluar y

controlar los recursos que intervienen en el sistema.

- Verificación: ¿Se lleva registro de acciones realizadas por los

usuarios?, ¿se lleva registro de intrusiones no deseadas?, ¿Se lleva

registro de fallos o eventos anómalos?, ¿Cuenta con alarmas para

fallos, intrusiones o funcionamiento por fuera de los parámetros

establecidos?

4.3. Ecológico

Para abordar la sostenibilidad de los CPS con enfoque en impacto

ecológico, vale la pena recordar la preocupación mundial por integrar

las variables ecológicas con las económicas, dando origen a conceptos

como eco desarrollo, desarrollo integrado, crecimiento orgánico y

múltiples acepciones del término “desarrollo sostenible”. Entendiendo

“Desarrollo sostenible es el desarrollo que satisface las necesidades de

la generación presente sin comprometer la capacidad de las

generaciones futuras para satisfacer sus propias necesidades” [22]. En

su libro Ecological Economics Principles and Applications H. Daly

[23], plantea “una sociedad sostenible es aquélla en la que: los

recursos no se deben utilizar a un ritmo superior al de su ritmo de

regeneración, no se emiten contaminantes a un ritmo superior al que

el sistema natural es capaz de absorber, los recursos no renovables se

deben utilizar a un ritmo más bajo que el que el capital humano creado

pueda reemplazar al capital natural perdido” [23]. Teniendo esto

como premisa, los CPS tienen un compromiso ineludible con la

sostenibilidad y deben propender por el desarrollo sostenible. El

concepto 6R (Reducir, reusar, reciclar, recuperar, rediseñar y

remanufacturar) analizado por Jawahir IS [24] plantea una serie de

elementos que pueden ser aplicados al análisis de la sostenibilidad en

la implementación y uso de los CPS. Entendiendo que el análisis parte

desde el impacto de la implementación, así como el impacto generado

por su uso y disposición final. “Un hacha puede ser fabricada con acero

reciclado, pero ser utilizada para talar un bosque” [25]. Para evaluar

la sostenibilidad del CPS con enfoque en el impacto ecológico se tienen

los siguientes SoftGoals (Figura 11):

Figura 11. SoftGoals - Ecológico.

Para cada uno de los softgoals relacionados con Ecológico los cuales

están relacionados directamente con la parte física del CPS tenemos:

Eficiencia: Se consideran aspectos relacionados al balance entre el

impacto ecológico y la eficiencia de operación del sistema como son:

Consumo energético: uso de materiales y recursos renovables, y en

general el balance entre operación del sistema y el impacto generado.

Impacto: Especificaciones del impacto directo sobre el medio

ambiente en donde opera el sistema y desechos generados por el CPS.

Ciclo de vida: Se centra en evaluar los aspectos relacionados con el

reciclaje, disposición final de desechos, re-manufactura de

componentes, re-uso y desensamble. Impacto regional y global del

sistema en todas sus etapas del ciclo de vida. Realiza procesos limpios

y eco-sostenibles.

Conforme con la metodología propuesta GQM, en la Figura 12 se

indican las “Questions” sugeridas con enfoque Ecológico.

Figura 12. Catálogo - Ecológico

4.4. Económico

En el análisis de los CPS Económicamente Sostenibles [10], nos

centraremos en verificar en tiempo y espacio el cumplimiento de unos

objetivos económicos de progreso adecuados y centrados en promover

la productividad, competitividad y el crecimiento económico; siempre

en un marco eficiente de acumulación y distribución equitativa de

riqueza. Para ello, nos enfocaremos en la mejora de los tiempos de

producción, rentabilidad, eficiencia energética, uso de recursos

renovables, manufactura por demanda y reducción del desperdicio.

Los NFR relacionados con el impacto económico se representan en la

Figura 13 como:

Figura 13. SoftGoals - Económico.

Durabilidad: Relacionado con el tiempo de vida útil operativa del

sistema directamente relacionado con el retorno de la inversión y su

rentabilidad.

Modularidad: la propiedad que permite subdividir un sistema en

partes más pequeñas (módulos), cada uno de las cuales es tan

independiente como sea posible, facilitando el reemplazo sin afectar el

sistema en general.

Mantenibilidad: Desde el punto de vista físico, relacionado con los

costos de mantenimiento y operación del sistema (eficiencia de

operación). Desde el punto de vista del software, relacionado a la

capacidad de evolucionar del sistema.

Efectividad: Indicador de la medida del avance tecnológico generado

por el sistema y las oportunidades de nuevas aplicaciones. Impacto

sobre el fomento de la equidad económica.

Modernización: Indicador de la capacidad del sistema de ser

actualizado utilizando los mismos componentes (reúso) sin alterar su

estructura general.

En la Figura 14 se indican algunas “Questions” sugeridas para el

análisis con enfoque en la meta Económico.

Figura 14. Catálogo Económico

4.5. Social

Para el enfoque social [10], el estudio se centra en garantizar en tiempo

y espacio, por un lado, la coherencia, aceptación y conservación del

sistema de valores e integración de la población, y, por otro lado, la

reducción de la pobreza y desigualdades sociales y en general, la feliz

convivencia y bienestar de la población. El CPS con enfoque Social se

centra en mejorar las condiciones de vida de un grupo social, resolver

problemas, suplir necesidades, generar impacto positivo en todos los

sectores y en general sobre la actividad humana. Esto sin dejar de lado

los aspectos culturales, legales y políticos inherentes al entorno donde

opera el CPS. Los NFR identificados con el aspecto social se muestran

en la Figura 15:

Figura 15. SoftGoals - Social.

Seguridad: Se establece para proteger la integridad del sistema, su

información, su funcionamiento ante ataques y/o accesos no

autorizados. Por otro lado, contribuye a evitar posibles consecuencias

sobre las personas o usuarios del sistema.

Efecto: Indicador de medida del impacto sobre la calidad de vida y el

bienestar del entorno social relacionado con el sistema.

Responsabilidad: Indicador de la responsabilidad ética y los niveles de

promoción de equidad, participación y desarrollo común. Relación

entre el sistema y el entorno cultural.

Legalidad: Indicador del cumplimiento de leyes y regulaciones

relacionadas con el sistema en todo su ciclo de vida.

En la Figura 16 se indican algunas “Questions” sugeridas para el

análisis con enfoque en la meta Social.

Figura 16. Catálogo Social

Como podemos evidenciar, los NFR relacionados con el impacto

ecológico, económico y social no pueden estar desligados unos de otros

y acarrean compromisos ineludibles para el diseñador del CPS. En la

Figura 17, representamos el SIG resultante con el compendio de los

tres enfoques (Económico, Ecológico y Social).

Figura 17. Relación entre SIG Ecológico, Económico y

Social.

5. Evaluación del NFR-BASED FRAMEWORK para el

análisis de la sostenibilidad en sistemas CiberFisicos

(CPS)

Para la evaluación del NFR- Based Framework propuesto se utilizó la

técnica de Grupo Focal. Esta técnica consiste en reunir un grupo de

profesionales con conocimientos en el área con el propósito de conocer

su opinión y obtener resultados cuantitativos que permitan identificar

oportunidades de mejora para el objeto de estudio. Para la realización

del grupo focal se aplicaron las directrices definidas en [26]:

1. Planeamiento de objetivos y elaboración de materiales.

2. Reclutamiento del grupo de discusión.

3. Sesión de debate y captura de opiniones de los participantes.

4. Análisis de la información y reporte de resultados.

5.1. Planteamiento de la investigación

En esta fase se definió como objetivos del grupo focal poder conocer la

opinión sobre los aspectos del modelo propuesto con respecto a su

comprensibilidad, aplicabilidad, idoneidad y completitud; y al mismo

tiempo identificar posibles mejoras. Continuando con los lineamientos

definidos en [26], se prepararon los materiales, guía procedimental,

mecanismos de socialización y formalización de documentos,

herramientas de captura y registro de resultados y métodos de análisis

de los resultados obtenidos.

5.2. Reclutamiento

Para el proceso de reclutamiento de los participantes y definición de

elementos principales del grupo focal [26], se extendió la invitación a

los ingenieros pertenecientes al grupo de investigación del área de

sostenibilidad en la universidad EAFIT y a los profesores de la

universidad del Quindío de la facultad de ingeniería que trabajan en

desarrollo de software y gestión de proyectos. Finalmente, el grupo

conformado para la realización del grupo focal estuvo compuesto por

profesionales con experiencia y conocimiento en diferentes áreas de la

ingeniería de software. En la tabla 1, se describe su perfil:

ID ESTUDIOS OCUPACIÓN

1 Ingeniero de sistema
Msc - PHD Ingeniería

Docente Maestría Ingeniería
Universidad EAFIT

2

Ingeniero de sistemas
Msc - Candidato. PHD

Estudiante Doctorado
Universidad EAFIT

3 Ingeniero de sistemas
Msc - PHD Ingeniería

Docente Maestría Ingeniería
Universidad EAFIT

4 Ingeniero de sistemas
Msc Ingeniería

Universidad EAFIT

5 Ingeniero Electrónico
PHD Ingeniería

Docente/Director facultad
de ingeniería Universidad
del Quindío.

6 Ingeniero Electrónico
Msc Ingeniería

Director Maestría
Universidad del Quindío.

Tabla1. Perfil profesional de los participantes del grupo

focal.

Entre los elementos utilizados en el proceso se incluyó:

- Fecha y hora de realización: Para la selección de la fecha se compartió

con 4 semanas de antelación a los participantes un DOODLE con

diferentes opciones de horario.

- Lugar y duración: Se optó por realizarlo de forma virtual, esto dado

que los participantes están radicados en diferentes ciudades (Madrid

(España), Medellín y Armenia en Colombia). La duración estimada

para la realización es de 1Hora.

- Tema a tratar: con 2 semanas de anticipación se hizo entrega a los

participantes de un resumen del NFR-BASED FRAMEWORK PARA

EL ANÁLISIS DE LA SOSTENIBILIDAD EN SISTEMAS

CIBERFÍSICOS con el propósito de brindar información acerca del

modelo planteado y contextualizarlos adecuadamente acerca de la

propuesta.

- Protocolo de captura y registro de información: Se diseñó un

cuestionario de google con el fin de evaluar la propuesta desde los 4

aspectos centrales previamente establecidos en los objetivos del grupo

focal (Comprensibilidad, Aplicabilidad, Idoneidad, Completitud y dos

preguntas abiertas de opinión); teniendo como opciones de respuesta

una escala de ponderación de 1 a 5 puntos, siendo 5 que está

totalmente de acuerdo y 1 totalmente en desacuerdo.

- Protocolo de ejecución: Para la sesión del grupo focal se definió el

siguiente cronograma:

1. Bienvenida a los participantes

2. Presentación del estudiante y el director de la propuesta.

3. Presentación de los participantes invitados.

4. Exposición y contextualización de la propuesta.

5. Sesión de preguntas.

6. Aplicación de la encuesta.

7. Agradecimientos y despedida.

5.3. Ejecución

En la fecha y hora planteada se dio inicio a la agenda establecida para

el grupo focal conforme al protocolo de ejecución previamente

planteado. Una vez finalizada la presentación de la propuesta se dio

espacio a 20 minutos para preguntas e intervenciones por parte de los

participantes. Al finalizar el espacio de preguntas, se procedió a

compartir el cuestionario de validación diseñado para evaluar la

propuesta desde los 4 aspectos centrales previamente descritos, a

continuación, se muestra el set de preguntas realizadas para cada uno

de estos aspectos a evaluar:

Comprensibilidad:

 P1. ¿Considera que el modelo planteado es de fácil comprensión?

P2. ¿Considera que cada uno de los SoftGoals son de fácil
comprensión?

P3. ¿Considera que las relaciones de interdependencia y contribución
entre cada uno de los SoftGoals propuestos son comprensibles?

Aplicabilidad

P4. De acuerdo con su experiencia: ¿Considera que los SoftGoals

definidos en el NFR framework son apropiados y pueden aplicarse con

éxito?

P5. ¿Considera que el esfuerzo requerido para la aplicación del NFR

framework está en concordancia con los resultados esperados?

Idoneidad

P6. ¿Considera que los SoftGoals propuestos son relevantes para el

análisis de la sostenibilidad de los sistemas ciberfísicos?

P7. ¿Considera que el modelo propuesto cumple con su objetivo

principal en el análisis de la sostenibilidad de los sistemas ciberfísicos?

P8. ¿Considera que el modelo propuesto sirve de referencia para

proyectos relacionados con los sistemas ciberfísicos?

P9. ¿Considera que las relaciones de interdependencia y contribución

entre cada uno de los SoftGoals propuestos son adecuadas?

Completitud

P10. ¿De acuerdo con su experiencia: ¿Considera que el modelo

propuesto es completo para el alcance del objetivo propuesto?

P11. ¿Considera que el modelo de valoración generado brinda

elementos necesarios para llevar a cabo una valoración de grado de

sostenibilidad del CPS?

P12. ¿Considera que el modelo propuesto brinda elementos que

permitan identificar oportunidades de mejora relacionadas con la

sostenibilidad de los CPS?

Preguntas Abiertas

P13. ¿Considera que se deben agregar, eliminar o modificar elementos

(SoftGoals, relaciones, contribuciones) de la propuesta?

P14. ¿Tiene algún comentario adicional acerca de la propuesta?

5.4. Análisis de resultados

Una vez finalizado el diligenciamiento del cuestionario de validación

por parte de los participantes, se procedió al análisis de los resultados

obtenidos, donde la ponderación de los resultados corresponde a una

calificación de 1 a 5 siendo 5 que está totalmente de acuerdo y 1 que

está totalmente en desacuerdo Tabla 2.

Valor Interpretación

1 Totalmente en desacuerdo

2 Parcialmente en desacuerdo

3 Parcialmente de acuerdo

4 Medianamente de acuerdo

5 Totalmente de acuerdo

Tabla 2. Escala de ponderación.

5.4.1. Preguntas cerradas: para las doce (12) preguntas cerradas

denominadas como P1 a P12, se obtuvieron los siguientes resultados

en la Tabla 3 y Figura 19:

Tabla 3. Respuestas al cuestionario

Como se observa en la Tabla 5, la cantidad de votos que obtuvo cada

una de las preguntas denotadas como P1 hasta P12 ninguno de los

aspectos planteados fue considerado con una calificación menor a 4,

todos los participantes indicaron respuestas con puntajes entre 4 y 5.

En la Figura 19 se indican en color rojo las preguntas evaluadas con

puntaje 5 (Totalmente de acuerdo) y en azul las preguntas evaluadas

con puntaje 4 (medianamente de acuerdo).

Figura 19. Consolidado de respuestas.

Conforme a los resultados, podemos concluir que los participantes

tuvieron una opinión favorable acerca del NFR-BASED

FRAMEWORK PARA EL ANÁLISIS DE LA SOSTENIBILIDAD EN

SISTEMAS CIBERFÍSICOS acerca de la comprensibilidad del modelo,

su aplicabilidad, idoneidad y completitud. La pregunta P5 (¿Considera

que el esfuerzo requerido para la aplicación del NFR framework está

en concordancia con los resultados esperados?) Es la de menor nivel

de aceptación con cuatro respuestas con puntuación de 4 y dos

respuestas con puntuación de 5. Las demás preguntas tienen una

aceptación 5 puntos para la totalidad de participantes y las restantes

oscilan entre porcentajes del 68 al 93 por ciento con puntaje de 5.

Ninguna de las preguntas obtuvo puntajes inferiores a 4 puntos de

ninguno de los participantes.

5.4.2 Preguntas Abiertas

Para las dos preguntas abiertas planteadas se obtuvieron las siguientes

respuestas:

P13. ¿Considera que se deben agregar, eliminar o modificar elementos

(SOFT GOALS, relaciones, contribuciones) de la propuesta?

Respuestas Obtenidas:

Siento que los Softgoals son comprensibles siempre y cuando uno ya
tenga un background en sistemas entonces pueden ser modificados
para que sea un poco más fácil la comprensión para alguien externo a
este ambiente por lo demás excelente.

No considero que se deban agregar o modificar aspectos.

Me parece que cumple con el alcance del proyecto, está muy bien
explicado, estructurado y resulta muy útil a la hora de operacionalizar
estos atributos en el desarrollo de estos sistemas.

Considero que con el tiempo se irán agregando nuevos softgoals
asociados a la sostenibilidad, por lo tanto, se puede considerar que el
framework escalará con el tiempo.

Me parece que son muy pertinentes.

Tabla 4. Respuestas a la pregunta 13 (P13).

Con respecto a las respuestas podemos indicar que:

En primer lugar, se destaca que los Softgoals propuestos son

comprensibles para aquellos con experiencia en sistemas, lo cual es

positivo. Sin embargo, se sugiere realizar modificaciones para facilitar

la comprensión por parte de personas externas a este ámbito. Esto es

importante para asegurar que la propuesta sea accesible y

comprensible para un público más amplio. En cuanto a agregar o

modificar aspectos, las respuestas indican que no se considera

necesario realizar cambios en este momento. Los participantes

consideran que la propuesta actual cumple con el alcance del proyecto,

está bien explicada y estructurada, y resulta útil para operacionalizar

los atributos de sostenibilidad en el desarrollo de sistemas ciberfísicos.

 Esta retroalimentación positiva valida la solidez y relevancia de la

propuesta tal como está planteada; Además, se destaca la perspectiva

de que con el tiempo se irán agregando nuevos softgoals asociados a

la sostenibilidad en concordancia con una conciencia de la evolución y

dinamismo de los requisitos de sostenibilidad en el campo de los

sistemas ciberfísicos. La capacidad de escalar y adaptarse a medida

que surgen nuevos desafíos y criterios de evaluación es un aspecto

valioso que asegura la vigencia de la propuesta en el futuro. En

resumen, las respuestas obtenidas refuerzan la pertinencia, al tiempo

que proporcionan sugerencias constructivas para mejorar su

comprensión.

Estos comentarios son valiosos para futuras revisiones y

actualizaciones.

P14. ¿Tiene algún comentario adicional acerca de la propuesta?

Respuestas Obtenidas:

Sería importante volver a revisar los RNF como ciclo de vida y efecto.
Debe quedar más explícito las contribuciones de trabajos anteriores
en la propuesta como un todo.

Para mí es un poco confuso la definición de las relaciones cuando
mencionas que es una descomposición fuerte se podría mencionar en
términos más naturales o que implica que sea fuerte. Por lo demás se
entendió perfectamente.

Excelente propuesta, muy bien presentada.

Una propuesta muy coherente y completa que establece una base para
la proyección de un modelo orientado a la estimación de tendencias
en el marco de los diferentes requerimientos y vida útil operativa de
los sistemas ciberfísicos.

Tabla 5. Respuestas a la pregunta 14 (P13).

En resumen, las respuestas proporcionan comentarios valiosos para

mejorar aspectos específicos de la propuesta, como la revisión de los

RNF y la claridad en la definición de las relaciones. Sin embargo, en

general, las respuestas son positivas y respaldan la solidez y coherencia

de la propuesta, destacando su presentación y el potencial para

establecer un modelo que estime las tendencias en sistemas

ciberfísicos.

5.5. Acciones de mejora:

A partir de los resultados obtenidos en el grupo focal y de los

comentarios planteados por el panel de expertos, se realizaron los

ajustes y las aclaraciones planteadas tanto en la contribución de los

trabajos anteriores como en la aclaración del concepto de contribución

fuerte utilizado en los SIGs para la representación da las relaciones de

los diferentes SoftGoals. Así mismo, se aclaró el Softgoal de Seguridad

dentro del campo social ya que este se relaciona a las afectaciones que

puede tener el sistema sobre los usuarios o personas que lo rodean a

diferencia del Softgoal Seguro el cual se relaciona con la

disponibilidad, confidencialidad e integridad del sistema.

Adicionalmente, se clarifico, mejoro y adapto las definiciones y

explicaciones de los requisitos no funcionales y las relaciones

utilizadas en los modelos de representación, con el propósito que sean

más accesibles y comprensibles para personas externas al ámbito del

software. Estas acciones de mejora buscan abordar las áreas de

oportunidad identificadas en las respuestas, enfocándose en la

claridad y comprensión de los conceptos, así como en la inclusión

adecuada de contribuciones de trabajos anteriores. Al implementar

estas acciones, se fortaleció la propuesta y se optimizo su calidad y

relevancia en relación con los comentarios recibidos.

6. Conclusiones

En esta propuesta se describen una serie de requisitos no funcionales

(NFR) que pueden servir como base para aquellos que enseñan o

implementan CPS, determinen y evalúen la sostenibilidad desde la

etapa de diseño hasta la implementación final.

El modelo propuesto se constituye como una herramienta de elevada

utilidad y versatilidad en el proceso de especificación, análisis,

ponderación y evaluación de la sostenibilidad en los CPS.

A partir del SIG planteado, el diseñador del CPS podrá establecer

cuáles son las metas centrales del CPS en pro de la sostenibilidad y al

mismo tiempo determinar indicadores sobre las demás metas

secundarias. Uno de los retos más importantes en el diseño e

implementación de los CPS es poder determinar los grados de

asertividad en el alcance de los requisitos no funcionales (NFR)

inherentes al sistema y que finalmente serán preponderantes en el

éxito del mismo.

Si bien crear marcos teóricos para el análisis de la sostenibilidad es un

objetivo primordial en la actualidad, un gran desafío será fomentar la

adopción de sostenibilidad en el diseño de los sistemas y en general

para las diferentes aplicaciones de la ingeniería.

La sostenibilidad no se puede afrontar como una serie de elementos a

ser contemplados, es más bien como un compendio de características

o especificaciones que interactúan y se relacionan entre sí para el logro

de un objetivo mayor.

El modelo metodológico planteado y los SIGs resultantes podrán servir

de herramienta de análisis en el planteamiento de otros enfoques de

estudio en el campo de los CPS.

7. Trabajos futuros

En los trabajos futuros se propone ampliar y refinar la metodología

existente con el objeto de abordar de manera exhaustiva la

sostenibilidad de los sistemas ciberfísicos en contextos

organizacionales específicos, como industrias o sectores sociales

particulares. Esta ampliación permitiría comprender cómo la

metodología puede adaptarse y personalizarse para satisfacer las

necesidades y requisitos específicos de diversos entornos o

aplicaciones. Además, se consideraría la inclusión de posibles nuevos

criterios, métricas o enfoques de evaluación. Como parte de los

trabajos futuros, sería fundamental instanciar un ejemplo práctico que

permita aplicar la metodología en un escenario real. Esto serviría como

caso de estudio para validad la efectividad y aplicabilidad del modelo

propuesto. La instanciación de este ejemplo proporcionaría una base

concreta para demostrar la utilidad y relevancia de la metodología en

situaciones específicas.

8. Referencias

[1] O. Givehchi, K. Landsdorf, P. Simoens and A. W. Colombo,

“Interoperabilityfor Industrial Cyber-Physical Systems: An Approach

for Legacy Systems,” IEEE Transactions on Industrial Informatics,

vol.13, num. 6, pp. 3370-3378, Dec. 2017. DOI:

10.1109/TII.2017.2740434.

[2] K. Joshi, A. Venkatachalam, I.H. Jaafar, I.S. Jawahir, a new

methodology for transforming 3R concept into 6R for improved

sustainability: Analysis and case studies in product design and

manufacturing, Proc. IV Global Conf. On Sustainable Product

Development and Life Cycle Engineering: Sustainable Manufacturing,

October 3-6, Sao Paulo, Brazil. (2006).

[3] Thomas, A., Haven-Tang, C., Barton, R., Mason-Jones, R., Francis,

M., &Byard, P. (2018). Smart Systems implementation in UK food

manufacturing companies: A sustainability perspective.

Sustainability, 10(12), 4693

[4] Sommerville, I., & Velázquez, S. F. (2011). Ingeniería de software.

[5] Basili, V. R.; Weiss, D. M. (November 1984). "A Methodology for

CollectingValid Software Engineering Data". IEEE Transactionson

Software Engineering. SE-10 (6): 728–738.

[6] Mairiza, Dewi&Zowghi, Didar&Nurmuliani, Nur. (2010). An

investigation into the notion of non-functional requirements.

Proceedings of the ACM Symposiumon Applied Computing. 311-317.

10.1145/1774088.1774153.

[7] F. Perez, E. Irisarri, D. Orive, M. Marcos, and E. Estevez, “A CPPS

Architecture approach for Industry 4.0,” in 2015 IEEE 20th

Conference on Emerging Technologies & Factory Automation (ETFA),

2015, pp. 1–4.

[8] J. C. Chandy. Desafíos en el diseño de sistemas Cyber-Físicos. Ing.

USBMed, ISSN: 2027-5846, Vol 1, No. 1, pp. 6-14. Jul-Dic 2010.

[9] Guío Ávila, H. A. (2015). Evaluación de las características de un

sistema de información con base en la norma ISO/IEC 9126-1.

SIGNOS - Investigación En Sistemas de Gestión, 5(2), 33.

[10] Restrepo L, Aguilar J, Toro M, Suescún E. A sustainable-

development approach for self-adaptive cyber–physical system’s life

cycle: A systematic mapping study. J SystSoftw.

2021;180(111010):111010.

[11] Clements P, Escalona MJ, Inverardi P, Malavolta I, Marchetti E.

Exploiting software architecture to support requirements satisfaction

testing. En: Proceedings of the 19th ACM SIGSOFT symposium and

the 13th European conference on Foundations of software engineering

- SIGSOFT/FSE ’11. New York, New York, USA: ACM Press; 2011.

[12] Restrepo L, Pardo C, Aguilar J, Toro M, Suescún E, SinSO:

Anontology of Sustainability in Software (2015).

[13] Anton Yrjönen, Janne Merilinna. Extending the NFR Framework

with Measurable Non-Functional Requirements. VTT Technical

Research Centre of Finland, January 2009.

[14] Hassan, M. F., Saman, M. Z. M., Sharif, S., &Badrul, O. (2014). A

decisión tool for product configuration designs based on sustainability

performance evaluation. Advanced Materials Research, 903, 384–

389.

[15] A. Gupta, R. Vangari, A.D. Jayal, I.S. Jawahir, Priority evaluation

of product metrics for sustainable manufacturing, Proceedings of the

20th CIRP Design Conference, Nantes, France. (2010) 631-641.

[16] Leite, Capelli, J.C.S. do P., Cappelli, C. "Software Transparenz."

WIRTSCHAFTSINFORMATIK, vol. 52, no. 3, pp. 119-132, 2010.

[17] Chung, L., Nixon, B., Yu, E. and Mylopoulos,J. “Non-

Functional Requirements in Software Engineering”, Kluwer

Academic Publishers, 2000.

[18] M. Charter, U. Tischner, Sustainable Solution: Developing

Products and Services for the Future, Sheffield, UK, Greenleaf

Publishing, 2001.

[19] AVIZIENIS A., LAPRIE J_C., RANDELL B. y LANDWEHR C.

Basic concepts and taxonomy of dependable and secure computing.

IEEE Transaction on dependable and Secure Computing Vol. 1, issue

1, pp 11-33, IEEE 2004.

[20] LAPRIE J.C. Dependability: Basic Concepts and terminology.

IFIP WG 10.4 - Dependable Computing and Fault Tolerance, August

1994.

[21] B. Galloway and G. P. Hancke. Introduction to industrial control

networks. IEEE Communications Surveys&Tutorials, 15(2):860–880,

2013.

[22] ONU. (1987). Nuestro Futuro Común. Informe de la Comisión

Mundial sobre el Medio Ambiente y el Desarrollo. Informe

Brundtland.

[23] DALY, H.; FARLEY, J. (2004). Ecological Economics: Principles

and Applications. Island Press. Washington DC.

[24] Jawahir IS, Bradley R. Technological elements of circular

economy and the principles of 6R-based closed-loop material flow in

sustainable manufacturing. Procedia CIRP. 2016; 40:103–8.

[25] Raturi A, Penzenstadler B, Tomlinson B, Richardson D.

Developing a sustainability non-functional requirements framework.

En: Proceedings of the 3rd International Workshop on Green and

Sustainable Software - GREENS 2014. New York, New York, USA:

ACM Press; 2014.

[26] M. Mendoza, C. González, and F. Pino, “FocusGroup como

Proceso en la Ingeniería de Software: Una Experiencia desde la

Práctica,” Dyna, vol. 80, no. 1, pp. 51–60, 2013.

Appendix D

Toward a conceptual framework for designing
sustainable cyber-physical system architectures: A
systematic mapping study

139

Appendix E

Towards Sustainable Cyber-Physical Systems: A
Comprehensive Framework and Case Study for
Healthcare Enviroments

167

Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments
Luisa Restrepoa,∗, Elizabeth Suescúna and Jose Aguilarb,c

a RID on Information Technologies and Communications Research Group, Universidad EAFIT, Medellín, Colombia
b CEMISID Universidad de Los Andes, Mérida, Venezuela
cUniversidad de Alcalá, Dpto. Automática, Alcalá de Henares, Spain

A R T I C L E I N F O
Keywords:
Cyber-physical systems
Design
Sustainability
Framework

A B S T R A C T
Cyber-Physical Systems (CPS) represent a new generation of systems where the cyber and physical
layers are strongly interconnected. Developing these types of system involves two essential aspects.
First, design sustainable architectures with a focus on adaptation to create robust and economically vi-
able products. Second, employ self-adaptive techniques to adjust CPSs to the evolving circumstances
of their operational context. The aim of this research is to propose a comprehensive framework as
the foundational design for developing sustainable cyber-physical systems. The framework is built on
strategies such as microservices and MAPE-K methodologies, with the aim of achieving sustainability
in the proposed system. The suggested framework has been applied to the smart home management
system for seniors, specifically instantiated for patients with stage 1 hypertension , using mining tech-
niques. This instantiation serves as a guide for incorporating autonomy microservices to achieve
sustainability and also for evaluating the viability and robustness of this proposal.

1. Introduction
Cyber-Physical Systems (CPSs) are systems composed

of collaborative computational elements to control physical
entities. CPSs require modern design techniques, includ-
ing the interaction between the physical world and the cyber
world. For this, CPSs integrate (i) mathematical modeling of
physical systems, (ii) formal computation models, (iii) sim-
ulation of heterogeneous systems, (iv) software engineering
strategies, and (v) verification and validation methods [15].
A concept associated with CPSs is the Internet of Things
(IoT), where communication is essential [21], in which sys-
tems are interconnected and collaborate. Combined, CPSs
and IoT form the basis of most future applications of infor-
mation technology.

The design of CPSs is a task that must be broken down
into several subtasks to be tractable [21]. Most CPSs are de-
signed for specific types of requirements [35]. Usually, these
requirements concern both the physical and the cyber parts,
and functional and non-functional aspects. On the physical
part, the actuators, sensors, and processors of the embedded
system are used for computer-controlled tasks. In turn, the
physical part must interact with the cyber part, implement-
ed through software systems, to (i) process data from the
entire CPS, (ii) diagnose all types of system failures, (iii)
make real-time decisions to prevent major failures, and (iv)
make data-based decisions that exhibit real-world behavior,
among other tasks [18].

Current challenges include designing and developing ef-
fective, energy-efficient, and sustainable CPSs [4]. Accord-
ing to Koziolek et al. [17], sustainability implies devel-
oping technically–robust and economically–profitable prod-

lrestr61@eafit.edu.co (L. Restrepo); esuescu1@eafit.edu.co (E.
Suescún); jlaguilarc@eafit.edu.co (J. Aguilar)

ORCID(s): 0000-0002-4448-9309 (L. Restrepo); 0000-0001-7872-7638
(E. Suescún); 0000-0003-4194-6882 (J. Aguilar)

ucts. Although sustainability has been more associated with
the environmental context, it is becoming increasingly im-
portant in engineering, in general, and software engineer-
ing, in particular, [24]. In software systems that are part of
a CPS, sustainability is –strongly– linked to non-functional
attributes such as maintainability. Koziolek et al. define that
maintainability is divided into the following non-functional
attributes: (i) analysability, (ii) stability, (iii) testability, (iv)
understandability, (v) modifiability, (vi) portability, and (vii)
evolvability [17].

The design of CPSs –both the physical and the cyber
parts– should include the design of their architecture and
its sustainability. Additionally, their design must consider
issues related to self-adaptation to satisfy requirements in a
dynamic environment [42]. The design of an architecture is a
key process in the System-Development Life-Cycle (SDLC),
and the quality of the architecture of a system –strongly– de-
termines its sustainability [17, 5].
1.1. Our Contribution

This research makes several noteworthy contributions to
the field of sustainable cyber-physical systems:

• Development of a comprehensive framework: We
propose a novel framework for the development
of sustainable cyber-physical systems, which inte-
grates adaptation-centric architectures, microservices,
and the MAPE-K paradigm (Monitor-Analyze-Plan-
Execute-Knowledge) to address the challenges posed
by the interconnected nature of CPS.

• Application to real-world scenario: The framework is
applied to a practical scenario, specifically targeting
smart home management systems for seniors. Instan-
tiation for patients with stage 1 hypertension showcas-
es the applicability of the proposed framework in a

LF Restrepo et al.: Preprint submitted to Elsevier Page 1 of 13

Sustainable Framework for CPSs

real-world healthcare setting.
• Utilization of mining techniques: Our research incor-

porates mining techniques to tailor the framework to
the specific needs of patients with hypertension. This
demonstrates the adaptability of the framework and its
potential for customization to various use cases.

• Guide for autonomy microservices integration: The
instantiated framework serves as a practical guide for
the incorporation of autonomy microservices, pro-
viding insights into the achievement of sustainability
within the context of CPSs.

These contributions collectively help to the advancement of
knowledge in sustainable CPSs, offering a foundation for
further research and development in this crucial area.
1.2. Organization

The present document is structured as follows. Section
2 presents the basis of sustainability, self-adaptation in CPS,
and ADD (Attribute-Driven Design) and MIDANO (Data
mining applications) methodologies. Section 3 presents the
method followed for the construction of the proposed frame-
work, and explains the resulting proposed framework for
sustainable CPS. Section 4 presents the case study. Section
5 analyses the results. Finally, Section 6 ends with conclu-
sions.

2. Background
This section is divided into four parts. First, it presents

the sustainability concept. Second, it introduces the defini-
tion of self-adaptation. Third, it explains the ADD method,
and finally, it defines the MIDANO methodology.
2.1. Sustainable development

Sustainable development is the practice of "meeting the
needs of society today without compromising the ability of
future generations to meet their own needs" [36]. In engi-
neering, sustainability can be understood as the selection
and implementation of iterative and incremental methodolo-
gies, which support the development of technologies in the
long term, at low cost, and with reduced effort [24]. Addi-
tionally, it is crucial that these technologies prioritize sus-
tainability principles, such as low energy consumption and
minimal environmental impact, ensuring their long-term vi-
ability and ecological compatibility [27].

Becker et al. [3] identified five sustainability dimen-
sions: (i) environmental, (ii) social, (iii) economic, (iv) tech-
nical, and (v) individual. However, The environmental di-
mension is with the long-term effects of human activities
on natural systems" [3]. The social dimension aims to al-
low current and future generations to have equal and equi-
table access to resources" [7]. The economic dimension in-
cludes capital, profitability, investment, income, and wealth
creation. The individual dimension focuses on the quali-
ty of life of the human individual. The technical dimen-
sion, according to Beckert et al., refers to the longevity of

software systems and infrastructure and its adequate evolu-
tion with changing surrounding conditions, including main-
tenance, innovation, obsolescence, and data integrity.

The main quality attributes of the sustainable architec-
ture of the system are [17]: (i) maintainability, (ii) portabil-
ity, and (iii) evolvability. These three quality attributes are
explained in what follows based on their sub-characteristics.

Maintainability: ISO/IEC 25010 [13] defines this at-
tribute as the capability of a product or system to facilitate
maintenance activities –such as corrections, improvements,
or adaptation to changes in the environment–, of require-
ments and functional specifications. Also, maintainability
includes the installation of updates and upgrades. This at-
tribute is subdivided into five sub-characteristics: (i) mod-
ularity, (ii) reusability, (iii) analysability, (iv) modifiability,
and (v) testability. Maintainability is also related to evolv-
ability.

Portability: According to ISO/IEC 25010, it is the "de-
gree of effectiveness and efficiency with which a system,
product or component can be transferred from one hard-
ware, software or other operational or usage environment to
another" [13]. This attribute is subdivided into three sub-
characteristics : (i) adaptability, (ii) installability, and (iii)
replaceability.

Evolvability: According to Rawe [30], it is an "attribute
that bears on the ability of a system to accommodate changes
in its requirements throughout the system’s lifespan, with the
least possible cost, while maintaining architectural integri-
ty". Pei and Crnkovic [25] established that this attribute is
similar to the maintainability attribute, but one should con-
sider unexpected changes in evolvability. On the one hand,
Rawe et al. [30] defined (i) generality (accommodating
change), (ii) adaptability, (iii) scalability, and (iv) extensi-
bility as quality attributes that contribute to evolvability. On
the other hand, Pei et al. [25] proposed that (i) analysability,
(ii) integrity, (iii) changeability, (iv) extensibility, (v) porta-
bility, (vi) testability, and (vii) domain-specific attributes are
sub-characteristics associated with the evolvability attribute.

A sustainable system architecture must be able to evolve
during its life cycle: This means in development and pro-
duction environments, and this is achieved when the sys-
tem is prepared for maintenance and evolution, attributes
that –indirectly– include the concepts of longevity and cost-
effectiveness [17].
2.2. Self-adaptive cyber-physical systems

Self-adaptation is the ability of a system to modify its
behavior and structure in response to changes in its environ-
ment and user requirements [6, 39]. There are several feed-
back loops to implement self-adaptive systems used in the
design of CPSs. Typically, the MAPE-K loop is a dominant
approach that allows systems to manage themselves given
high-level objectives, which separates self-adaptation into
the following components (see Fig. 1) [38].

Monitor: This component collects information by mon-
itoring context data from sensors and other sources [34], and
–constantly– updates the knowledge component. This infor-

LF Restrepo et al.: Preprint submitted to Elsevier Page 2 of 13

Sustainable Framework for CPSs

mation serves as the basis for adaptation [16].
Analyzer: This component performs data analysis, us-

ing the data stored in the knowledge component, to deter-
mine if a change is needed to satisfy the goals of the system.

Plan: If an adaptation is needed, then the plan compo-
nent creates a procedure to reach a new target condition that
satisfies the goals (including the intermediate steps that oc-
cur when adapting from one state to another) [14].

Execute: The planned procedure recommended by the
plan component is executed on the managed resources.

Knowledge: This is a shared knowledge-base [16] for
the other components. The knowledge component compris-
es data and models that the MAPE-K loop uses during adap-
tation strategies. In particular, these models are built and
shared with the other components.

Figure 1: MAPE-K feedback loop, adapted from [16].

2.3. Attribute-driven design methodology
The approach used for designing the proposal is adapt-

ed from the Attribute-driven design 3.0 (ADD3.0) method,
which is an iterative method that focuses on quality attributes
and will allow us to approach sustainability as the main re-
quirement. The process followed is shown in Fig. 2 and
explained below [40]:

1. Reviewing inputs: The overall design problem is de-
fined through the inputs as design objectives, primary func-
tional requirements, quality attributes scenarios, constraints,
and architectural concerns.

2. Establishing the iteration goal and selecting inputs
to be considered in the iteration: The design problem is
subdivided into several subproblems. An iteration starts by
deciding which subproblem to address.

3. Choosing design concepts and instantiating archi-
tectural elements: Based on the iteration goal and the ar-
chitectural drivers, the parts to be decomposed are selected.
For each element, one or more design concepts that meet the
iteration goal and satisfy the inputs are selected. An analysis
is performed to provide details regarding the responsibilities
of the elements being decomposed.

4. Sketching views and recording design decisions:
Views should be sketched, recording the solution designed.
All design decisions made during this particular iteration are
documented in this step. This documentation should also in-
clude the design rationale.

5. Performing an analysis of the current design and
reviewing the goal and objectives of the iteration: In this
final step of an iteration of a software architecture design,
the software architect and other team members must analyze
the current design. Design decisions are analyzed to ensure
that they are correct and satisfy the iteration goal and the
architectural drivers established for the iteration. The result
of this analysis should determine whether new iterations of
the architectural design will be necessary.

6. Iterating if necessary: Proceed to the next iteration
until completion. When no further iterations are required,
the software architecture design is considered complete. If
additional iterations are deemed necessary, return to Step 2
for another iteration.

Figure 2: Methodological Process based on ADD 3.0 [40]

2.4. Definition of MIDANO
MIDANO is a methodology that makes it possible to

identify and conceptualize the solution of a problem from
the perspective of the development of data mining applica-
tions based on, but at the same time, it allows the develop-
ment of autonomous cycles of data analysis tasks based on
the MAPE+K paradigm [23]. It is made up of three main
phases:

Phase 1. Identification of knowledge sources in an orga-
nization: The major goal of this phase is to know the com-
pany, its processes, and its experts, to establish the goal of
using data-analysis techniques in the organization.

Phase 2. Data preparation and processing: This pro-
cess involves extracting data from its sources, transforming
it, and loading it into the autonomic cycle data warehouse.
A feature engineering process is used to select the important
variables of the examined process to carry out this process.
Finally, a mineable view is constructed that includes a de-
scription of all variables of interest.

Phase 3. Development of the Data Mining tool: This
phase ends with the creation of a prototype for each task
of the autonomic cycle. Experiments are carried out dur-
ing this phase to validate the knowledge models generated
by the data-analysis task.

LF Restrepo et al.: Preprint submitted to Elsevier Page 3 of 13

Sustainable Framework for CPSs

In this research, MIDANO has been the methodology
used for the definition of autonomic cycles. The data sources
used were dummy data. The use of MIDANO in this work
consisted of three phases:

Phase 1. Analysis of the health of seniors to improve
emergency response for patients with hypertension stage 1
and specification of the autonomic cycles for this problem.

Phase 2. Identification of variables, definition of da-
ta sources with dummy data, and definition of the multi-
dimensional data model.

Phase 3. Implementation of autonomic cycles of data
analysis tasks for emergency response, such as microser-
vices, specifically for patients with hypertension stage 1.

3. Proposed framework
This section shows the process followed for the design

of the framework for the development of sustainable CPSs
and the results following the adapted methodology of ADD
3.0.
3.1. Design

This section shows the results for each step in Fig. 2.
1. Reviewing inputs: our design purpose is an explana-

tory prototype where we assess initially some quality at-
tributes. There are no constraints defined, and our main ar-
chitectural concern in the case of this proposal is sustainabil-
ity requirement where we will focus on the challenges iden-
tified in the work of Restrepo et al. [27] for sustainable CPSs
such as (i) Interoperability for the integration of various de-
vices and systems to guarantee the delivery of services. In
this point, sustainability points technically directly to main-
tainable systems that have not dependencies on technologies
and frameworks, so that if any external part becomes obso-
lete, it should be easily replaced allowing feasible evolvabil-
ity. (ii) Security for guaranteeing users’ functionality, safety,
and privacy opt for techniques that successfully allow main-
taining the security of the developed designs. (iii) Maintani-
bility to have the ability to ease change in the system. (iv)
Adaptability is essential in the development of this type of
system to deal with uncertainties [27], implemented through
the MAPE-K model or other feedback loop mechanisms.

In addition to interoperability, security, maintainability,
and adaptability, some requirements must be taken into ac-
count for the correct development of the design of architec-
ture, especially for the application of CPSs [27] such as (v)
Performance to ensure adequate system response time, use,
and throughput. (vi) Energy-efficiency to expand battery life
in devices with intense processing that increases energy con-
sumption [41]. (vii) Scalability to increase or decrease inter-
nal capacity in response to changes in the application.. (viii)
Reliability to perform correctly during system operation, fo-
cusing on the number of lost packets, the ability to recover
after a failure, automated error handling and accuracy of the
service [27].

2. Establishing the iteration goal and selecting inputs
to be considered in the iteration: for the development of the
proposal, two iterations were needed to refine the design:

1. During the first iteration, the goal was to identify de-
sign solutions for each of the quality attributes and
select the most appropriate ones for the final propos-
al. Additionally, microservices were specified as the
core of the proposal to achieve technological indepen-
dence. Autonomous cycles were also introduced us-
ing MIDANO to facilitate adaptation.

2. The goal of the last iteration was to create the final pro-
posal, which was reviewed and refined by the authors.
The result of this iteration is presented in section 3.2.

3. Choosing design concepts and instantiate architec-
tural elements: for each input defined discusses the chosen
design concepts and their justification.

1. Interoperability : It has been proven that microser-
vices architecture (MSA) deals adequately with com-
plexity because they have levels of granularity and in-
dependence in the technology, allowing for best prac-
tices at the coupling level. The components of the sys-
tem are autonomous and can be heterogeneous, which
means that the system can be designed, constructed,
or implemented in different manners and languages
[19]. It is realistic to consider that it cannot complete-
ly decouple technologies, unexpected problems may
arise, and there are so many challenges such as secu-
rity, privacy, and others [9]. Still, MSA allows it to be
agnostic to technology, achieving technological inde-
pendence in our proposed framework.

2. Security: It was aimed at providing secure communi-
cation between the cyber and natural world to ensure
integrity, confidentiality, and safety when a transac-
tion occurs on or with a different network. A secure
gateway was chosen to solve this problem since it acts
as a bridge providing secure communication and ac-
cess control [20].

3. Maintainability: The focus in microservices is on
modularity and independence, which can enhance
maintainability by making it easier to manage and up-
date the system over time. Additionally, implement-
ing monitoring and logging helps track the perfor-
mance and health of microservices, contributing to
their overall maintainability.

4. Adaptability: self-adaptation in CPSs is achieved
through adaptation techniques, mainly the MAPE-
K feedback loop [27]. Then, this attribute will be
approached with this technique to allow the system
to modify its behavior and structure in response to
changes in its environment and user requirements.
MAPE-K will be implemented into microservices, re-
sulting in autonomous microservices.

5. Performance: The proposal must ensure that its func-
tionality is delivered in a usable manner. To achieve
this, it is necessary to implement fitness functions
that measure the system’s alignment with architectural

LF Restrepo et al.: Preprint submitted to Elsevier Page 4 of 13

Sustainable Framework for CPSs

goals. In this case, a fitness function is used to an-
alyze and monitor changes for performance improve-
ments such as the amount of time it takes to send infor-
mation from a source to a destination (Latency), the
time between an request and the response to the re-
quest (Response Time), and the amount of data that
can be transferred from one location to another in a
given amount of time (Throughput). Performance is
also reached through scalability and Energy-efficiency
attributes, which are considered in the proposal.

6. Scalability: There are four ways to scale depend-
ing on the needs (Vertical scaling, horizontal dupli-
cation, data partitioning, and functional decomposi-
tion). Our proposal is based by nature on functional
decomposition where functionalities are extracted in-
to microservices.[19]

7. Energy-efficiency: There are different techniques to
improve energy efficiency in CPS, such as (i) Dynam-
ic resource allocation, where resources are allocated
efficiently based on system requirements and work-
load. (ii) Energy-aware schedulings where tasks and
processes are scheduled to minimize energy consump-
tion and avoid unnecessary computations [12]. (iii)
Power management to minimize energy consumption
by turning off or reducing power to unnecessary de-
vices or components. (iv) Energy harvesting, where
energy is captured from the environment. (v) Energy-
efficient hardware design where low-power compo-
nents are used and designed to operate at optimal ef-
ficiency levels. (vi) Data compression and aggrega-
tion to reduce the amount of data transmitted and pro-
cessed [37], and (vii) Energy-efficient software design
reduces expensive computation by caching frequently
requested data, minimizing network traffic, or speed-
ing up response times from databases or other sources
[2]. For the proposal, it is decided to use energy-
efficient software design by caching on the user side
since it can reduce the number of requests made to
microservices [19], which can lead to energy savings.
Also, it is necessary to monitor the energy consump-
tion of microservices to identify areas where energy
efficiency can be improved.

8. Reliability: It is essential to ensure that the sys-
tem performs its intended function adequately without
failure, and there are different techniques to achieve
such as (i) Design for failure, such as building a mech-
anism to detect and handle failure [8]. (ii) Use dis-
tributed architectures to improve reliability by dis-
tributing load. (iii) Implement monitoring to identify
and diagnose issues before they become critical. (iv)
Use redundancy to ensure that backup options are al-
ways available [19]. (v) Implement testing to ensure
that the system is functioning correctly and can han-
dle unexpected loads [8]. (vi) Implement security to
ensure that the system is protected against malicious

Table 1
Quality attributes choosed for the design of the proposal.

Quality Attribute Design rationale

Interoperability Microservices architecture to
achieve technological independence.

Security A secure gateway to secure commu-
nication and access control.

Maintainability
Well-defined scope and functionality
of each microservice to achieve mod-
ularity.

Adaptability MAPE-K method to deal with un-
certainties.

Performance

Monitoring - Fitness function imple-
mentation to collect data from the
system and decide if action is need-
ed.

Energy-efficiency

Caching and monitoring energy con-
sumption to improve system perfor-
mance and efficiency while reducing
overall energy consumption.

Scalability

Fuctional descomposition to use dif-
ferent technologies to achieve scala-
bility, flexibility, and optimization in
a microservices architecture.

Reliability

Monitoring - Fitness function imple-
mentation to collect data from the
system and decide if take action is
needed.

attacks and (vii) Use automation in deployment and
monitoring management to reduce human error [26].
The proposed design chosen was to implement moni-
toring to identify and diagnose issues before they be-
come critical through the fitness function mentioned
in the Performance attribute, adding functions such as
detecting failures such as timeouts or reentries. Reli-
ability is also reached through the Security attribute.

In addition to autonomous microservices to achieve sus-
tainability, there are other components that must be taken
into account in the design of cyber-physical systems, such
as physical components, the user interface for interaction
with the system, the communication of these components
with microservices, the communication with external ser-
vices and the persistence of the data, which is why they are
integrated into the final proposal as layers that communicate
with each other [28].

4. Sketching views and recording design decisions:
Table 1 lists the quality attributes and the design rationale
for each.

5. Performing an analysis of the current design and
reviewing the goal and objectives of the iteration: The
resulting design was analyzed, and it was determined that it
satisfied the iteration’s goal.

6. Iterating if necessary: After executing the two de-
fined iterations, it was established that no more iterations

LF Restrepo et al.: Preprint submitted to Elsevier Page 5 of 13

Sustainable Framework for CPSs

Figure 3: Proposed framework for developing sustainable cyber-physical systems.

were needed.
3.2. Proposal

This section presents the proposed framework for sus-
tainable CPSs (see Fig. 3.2) as the result of ADD method-
ology executed in section 3.1. In this research, we propose
a framework based on the autonomous computing paradigm
with MAPE-K and microservices to ensure its autonomy and
adaptability, with a focus on sustainability. The framework
has seven layers: (i) resources, (ii) business, (iii) external
services, (iv) middleware, (v) controller, (vi) microservices,
and (vii) data store, these layers are described below.

1. Resource layer: This layer defines the physical speci-
fications of each system that implements this frame-
work; it symbolizes the physical component of the
CPSs. Here, we will find two of most important com-
ponents: the actuators and sensors. Actuators (as their
name suggests) are devices that receive control sig-
nals and convert them into actions. In contrast, sen-
sors could be called their opposites, as they monitor
the system conditions (the default parameters, what
changes have occurred, among others) and send these
data. In our proposal, the sensors send the data to the
middleware layer, while the middleware layer sends
the data to the actuators.

2. Business layer: in this layer, the user has access to
the system through a secure connection entering the
necessary values that would become (with interaction
with its environment) in the business goals. These
are the ones that function as conductors for the en-
tire framework, so its creation and description must

be rigorous and well-founded.
A secure gateway is necessary since these objectives
are the ones that directly affect the operation ; it is es-
sential that the entry of these can only be by authorized
means.

3. External services: External services allow microser-
vices to interact with other services, systems, and data
sources outside of their context.

4. Middleware layer: this section contains the drivers
and means necessary to provide and manage the trans-
fer of data in a reliable way to both the upper layer
(client side) and the lower layer (microservices and
data store v). This layer works as a middleware for
the communication of the system, in this way, we
achieve that the components are loosely coupled since
the source of specific data does not have to know
where the data is going, how it is going to be pro-
cessed or what the data is needed for, the bus takes
care of all this and lightens the load of each compo-
nent and streamlines the process.
An example of this is that the actuators do not need to
know where the data is coming from; they receive it
and act according to what is obtained. Likewise, the
sensors should only focus on monitoring the system’s
state and sending the data.

5. Controller: the controller layer is responsible for
managing the incoming requests and routing them to
the appropriate microservice for processing providing
a unified point for all incoming requests and perform-

LF Restrepo et al.: Preprint submitted to Elsevier Page 6 of 13

Sustainable Framework for CPSs

ing basic input validation, authentication, and autho-
rization before forwarding the request [29, 33].

6. Microservice layer: The microservices layer is made
up of domain tasks and components.
(i) Domain tasks oversee generating feasible instruc-
tions (tasks) for the component layer while maintain-
ing the best configuration. Three major parts make
up this layer, the first is the health manager (Monitor),
which receives the states of the components, and the
information of the actuators, among others, and ana-
lyzes these states together with the restrictions of the
system to act always in favor of the health of the sys-
tem. The goal manager (Analyzer) seeks to act in favor
of the business goals, with its objective being to ana-
lyze data to maximize the utility of the system in meet-
ing those goals. These objectives are dictated solely
by the user, thereby preventing potential component
saturation and system damage during the evolution of
the goal. The third and last part is the operations man-
ager (Plan), its main function is to be the brain of this
layer, it must take the inputs given by its twin parts
(health manager and objectives manager) and in this
way join forces to create the operations (tasks) that
give the best result for the business objective without
compromising the health of the system.
(ii) Components (Execute) is where all the software
components are located, following the Separation of
Concerns pattern (explained above) divided by the
concern to avoid incidental coupling, creating layers
of isolation. Within this layer, there are no hierarchi-
cal relationships.

7. Data store layer: Data store layer enables microser-
vices to access and manipulate data efficiently and
reliably. This layer can be implemented in different
ways such as sue a database for all microservices or
using a separate database for each microservices pro-
viding flexibility and scalability but requiring more re-
sources [31].
Our proposal is immersed in the MAPE-K paradigm
as follows: the health manager works as the system
monitor. The goal manager works as the analyzer
component, and the operation manager is the part that
creates the procedures to reach a specific target and
works as the plan component. Components works as
the executor of this tasks. Data layer which works as
the knowledge component.

4. Case Study: smart home management
system for seniors
For this case study, this section presents the experimental

context and a simulated study of monitoring seniors’ health
status. This study focuses on patients with stage 1 hyperten-
sion (ERM-HS1).

4.1. General architecture
We designed an architecture for a smart home manage-

ment system for seniors taken from [32], based on the pro-
posal defined that will guarantee the sustainability of the sys-
tem through autonomy and adaptability (see Fig. 4).

1. Resource layer: The physical components are a
health monitor, emergency detector, environment
monitor, energy management, security control, and
home appliance control.

2. External Services: Health centers can have external
systems that consume elderly patients’ data.

3. Business layer: Elderly users can configure prefer-
ence setups such as temperature and lighting manage-
ment, and optimized energy consumption option, and
also use functionalities such as a panic button and so-
cial interaction with family members. Health centers
can provide remote health medical assistance, request
emergency assistance, manage inventory and human
resources. Family members can add emergency con-
tacts and consult medical reports.

4. Midleware: Communication protocols between mi-
croservices could be lightweight protocols like
HTTP/REST or messaging systems like MQTT.

5. Controller: Microservices should implement secu-
rity measures such as authentication and authoriza-
tion to ensure communication between microservices,
users can access and perform specific actions, and sen-
sitive information is protected.

6. Microservices: Each microservice would represent a
specific function such as motion detection, medica-
tion reminders, temperature control, and emergency
response. Microservices are composed of: (i) Health
manager: To handle failures within the microservice,
practices such as checking database connections, ex-
ternal dependencies, resource availability, and design-
ing endpoints for health checks can be used to main-
tain overall system stability. Monitoring, logging, and
alerting are essential to the overall health of the sys-
tem. (ii) Goal manager: Based on the user-specific
goals, system objectives, or metrics, this component
should track the progress of goals and notify when
goals are achieved, updated, or approaching deadlines.
(iii) Operation manager: Identify the operations or
tasks that need to be performed to achieve the goals
and maintain the system’s health. The component im-
plements the logic for executing operations and moni-
tors the status of the operation since progress updates
should be reflected in the goal manager and system’s
health. (iv) Components: Execute operations man-
ager implementations.

7. Data Storage: In preference, each microservice
should have its own data store, then each microser-
vice will save data for the goal manager component

LF Restrepo et al.: Preprint submitted to Elsevier Page 7 of 13

Sustainable Framework for CPSs

Figure 4: smart home management system for seniors design example based on the pro-
posal defined.

to represent goals with attributes such as goal ID, de-
scription, target metrics, progress, and due dates. The
operation manager will save operations including at-
tributes such as operation ID, type, status, related goal
ID, timestamps, and any other relevant information.

4.1.1. Emergency Response Microservice (ERM)
In this case study, we will focus on the Emergency Re-

sponse Microservice (ERM) (see Fig. 5).
4.1.2. Health manager

To maintain overall system stability, the health manag-
er should verify the state of the entire system, including (i)
hardware, (ii) software, and (iii) network components im-
plied in the emergency response functionality.
4.1.3. Goal manager

This is in charge of verifying the state of (i) seniors’
health status according to the goals defined with machine
learning algorithms to analyze data patterns and detect
anomalies that may indicate emergencies such as falls, un-
usual activity patterns, or abrupt changes in vital signs, and
(ii) suspending non-critical goals during emergencies.

4.1.4. Operation manager
This is in charge of (i) defining clear emergency response

protocols for various scenarios such as actions to be taken by
the system, caregivers, and emergency services. (ii) Create
detailed user profiles containing medical history, emergen-
cy contacts, preferred communication methods, and any spe-
cial needs, and (iii) Conduct risk assessments based on the
senior’s health conditions and living environment to tailor
emergency response plans accordingly.
4.1.5. Components

This is in charge of (i) Automatically triggering emer-
gency alerts to designated contacts, caregivers, and emer-
gency services in real-time using multiple communication
channels. (ii) Enable two-way communication between se-
niors and emergency responders through smart home de-
vices. (iii) Automatically activate emergency devices, such
as alarms or lights, to attract attention and aid responders,
and (iv) establish seamless coordination with emergency ser-
vices, providing them with relevant information, including
the senior’s location, medical history, and any other perti-
nent details.

LF Restrepo et al.: Preprint submitted to Elsevier Page 8 of 13

Sustainable Framework for CPSs

4.1.6. Data storage
This is in charge of (i) Maintaining logs of user activities,

emergency events, and system responses for future analysis
and improvement. (ii) Implement robust privacy measures
to protect sensitive health and emergency-related data, en-
suring compliance with data protection regulations. (iii) Use
data analytics to continuously learn from emergency events
and improve the system’s response mechanisms over time.
(iv) Share relevant emergency data with healthcare providers
to facilitate better-informed medical responses and follow-
up care.

Figure 5: Emergency response microservice autonomic cycle.

4.2. Experimental context
To illustrate the functionality of ERM, this case study

discusses the senior’s health status monitoring process for
patients with stage 1 hypertension (ERM-HS1), according
to the following scenario. A smart home management sys-
tem for seniors may support a dozen or more users. stage
1 hypertension users begin their health monitoring process
with an average systolic between 130mm to 139mm Hg or
Diastolic between 80mm to 89mm Hg, in three months with
the treatment plan is expected to down blood pressure to a
normal range (below 120 mm Hg and Diastolic below 80 mm
Hg). In the process of seniors’ health status monitoring pro-
cess, the system is constantly monitoring different variables
such as blood pressure, heart rate, temperature, and medica-
tion intake. During the 3 months of monitoring the doctors
based on his experience defined which changes the patient
should include.
4.3. Instantiation of patients with stage 1

hypertension
The instantiation of ERM-HS1 must consider, for in-

stance, blood pressure measurement, emergency response
plan activation, user confirmation, and Learning and adapta-
tion tasks. The following steps describe the ERM-HS1 that
is instanced for this case study (see Fig. 6).

Task 1. Blood pressure measurement task: The first
task is to determine the senior’s blood pressure, for which an
estimation model is used. The estimation model is built with
dummy data. The prediction model uses variables such as (i)
age, (ii) weight, (iii) sex, (iv) heart rate, (v) temperature, and
(vi) medication intake percentage to explain an increase or

Figure 6: Emergency response microservice for patients with
stage 1 hypertension (ERM-HS1).

Table 2
Description of the tasks of ERM-HS1

Task name Mining
techniques Data sources

1. Blood pressure
measurement task

Estimation
model Dummy data

2. Emergency re-
sponse plan activa-
tion task

N/A N/A

3. User confirmation
task

Assignment
model Dummy data

4. Learning and
adaptation task

Prescriptive
model Dummy data

decrease in blood pressure. In what follows. two cases of
this task are presented.

Case 1: A patient with a blood pressure of 139mm Hg.
The model estimates that it should have a systolic of 115mm
Hg. Since health conditions were favorable for blood pres-
sure. Task 2 would not be performed, since the patient has
the desired blood pressure.

Case 2: A patient with a blood pressure of 138mm Hg.
The model estimates that it should have a systolic of 140mm
Hg. The estimation model analyzed collected health data
and predicted potential health issues based on individual pa-
tient trends triggering timely interventions and adjustments
to the treatment plan.

Task 2. Emergency response plan activation task:
Upon detecting a critical blood pressure level or prolonged
inactivity, the system activates the emergency response plan.
Also, the system initiates communication with the senior cit-
izen, using voice prompts or visual displays, to assess their
condition. If there’s no response, it moves to the next stage
of the emergency plan.

Task 3. User confirmation task: If the senior citizen
responds, the system assesses their well-being. Depending
on the severity, an assignment model uses the data to decide
if it may guide the user through emergency measures, such as
taking prescribed medication or contacting emergency ser-
vices. If there’s no response or the situation worsens, the sys-
tem automatically places an emergency call to local medical

LF Restrepo et al.: Preprint submitted to Elsevier Page 9 of 13

Sustainable Framework for CPSs

services, providing vital information about the user’s health
history, current medications, and the detected emergency.
Simultaneously, the system notifies designated caregivers or
family members about the emergency, providing details and
instructions.

Task 4. Learning and adaptation task: After the
emergency is resolved, the system analyzes the incident to
understand the cause and effectiveness of the response. The
system seeks feedback from the user or caregivers to improve
future emergency response plans. Based on the analysis of
the emergency scenario, the system continuously updates
its algorithms, improving its ability to predict, respond, and
adapt to the specific health needs of senior citizens. As an ex-
ample, in the second case, presented in Task 1 was estimated
blood pressure greater than expected, this condition would
invoke the prescriptive model to define treatment changes
such as medication

This emergency scenario ensures a comprehensive and
automated response to critical health situations for senior cit-
izens with high blood pressure, integrating real-time moni-
toring, analysis, personalized emergency plans, and contin-
uous learning for improved future responses demonstrating
the sustainability of the system by modifying its behavior
and structure in response to changes in its environment and
user requirements.

5. General Analysis
The proposed framework can be applied across various

application domains where CPS technology is utilized such
as smart cities, energy management, manufacturing, agricul-
ture, healthcare, transportation, environmental monitoring,
water management, disaster management, supply chain man-
agement, renewable energy, building automation, wearable
technology, education, defense, and security. Application of
the framework can vary within these domains, but the over-
arching goal is to design systems that positively impact sus-
tainability. As an example, the conceptual framework can be
applied in the context of a Smart Manufacturing System to
enhance the efficiency and flexibility of a manufacturing fa-
cility the microservices section can be implemented in edge
devices for local data processing handling tasks like anomaly
detection, and real-time control, or also could be implement-
ed in cloud services to provide remote monitoring that will
used for predictive maintenance, quality control, and process
optimization, and in the middleware section high-speed and
low latency communication protocols will used to facilitate
data exchange between microservices. This results in en-
hanced adaptability, evolvability, and scalability, allowing
for the easy integration of new processes.
5.1. Architecture Validation
5.2. Comparison with previous work

Our research stands out in the landscape of sustainable
CPSs by offering distinct contributions and improvements
when compared to prior works:

1. Holistic Framework Integration: Guo et al. [11] pro-
posed a deep-federated-learning-based approach to support

secure and privacy-preserving POI microservices in cyber-
physical systems. While existing studies often focus on iso-
lated aspects of cyber-physical systems, our research intro-
duces a comprehensive framework that seamlessly integrates
adaptation-centric architectures, microservices, and MAPE-
K methodologies. This integrated approach provides a more
holistic solution to the challenges of sustainability.

2. Real-World Applicability: In contrast to theoretical
frameworks proposed in prior works, our research takes a
significant step forward by applying the framework to a real-
world scenario—the smart home management system for se-
niors. This application enhances the practical relevance and
effectiveness of our contributions.

3. Customization through Mining Techniques: Unlike
some earlier works that may offer generic solutions, our re-
search employs mining techniques to tailor the framework
specifically to patients with hypertension. This customiza-
tion showcases the adaptability and versatility of our frame-
work across diverse use cases.

4. Emphasis on Autonomy Microservices: Mena et al.
[22] proposed a solution called Digital Dice that establishes
an architecture based on microservices, a REST API, and
Server Sent-Events (SSE) for the management of IoT de-
vices and cyber-physical systems applying the standards de-
fined by the Web of Things. It is a proposal closer to the
implementation level. Gartziandia et al. [10] proposed a
microservice-based architecture focused on continuous de-
ployment, monitoring, and validation of CPSs. Aldalur et
al. [1] use the same microservice-based framework and case
study of Gartziandia for executing test cases. The differ-
ence with these articles is that our work places particular
emphasis on autonomy microservices. This targeted focus
provides a detailed guide for integrating microservices to en-
hance system autonomy, offering a nuanced perspective not
extensively explored in prior literature.

5. Transparent Acknowledgment of Limitations: In
comparison to certain earlier works that may not extensive-
ly address limitations, our study transparently identifies and
acknowledges specific shortcomings. Notably, the absence
of a complete instantiation of a case study in a simulated or
real environment is acknowledged, contributing to a more
realistic assessment of the proposed framework.

6. Guidance for Future Research: Our research not only
identifies limitations but also provides a roadmap for future
investigations. This forward-looking approach contributes
to the ongoing discourse in the field, offering valuable in-
sights for researchers seeking to build upon our work.

Our research significantly advances the state of the art in
sustainable cyber-physical systems, providing novel insights
and practical contributions that build upon and surpass the
achievements of previous works.
5.3. Discussion of preliminary results

Our preliminary results offer valuable insights into the
effectiveness and potential implications of the proposed
framework for sustainable cyber-physical systems. While
these findings are preliminary and require further validation,

LF Restrepo et al.: Preprint submitted to Elsevier Page 10 of 13

Sustainable Framework for CPSs

they provide a foundation for understanding the initial im-
pact of our approach.

1. Performance of the framework: The proposed frame-
work demonstrated robustness during simulated stress tests,
outperforming existing systems in terms of fault tolerance.

2. Mining techniques and customization: Data mining
techniques effectively tailored the framework to the specif-
ic needs of patients with hypertension, dynamically adjust-
ing medication reminders and activity schedules based on
individual health data. Challenges were encountered in ob-
taining real-time health data, which impacted the granularity
of customization; ongoing efforts are focused on addressing
this limitation.

3. Integration of autonomy microservices: Autonomy
microservices, integrated as per the framework, demonstrat-
ed enhanced decision-making capabilities within the smart
home environment, leading to more autonomous and adap-
tive responses to user needs. Challenges arose in balancing
the level of autonomy to avoid potential conflicts with us-
er preferences, highlighting the need for fine-tuning the mi-
croservices integration.

In conclusion, while these preliminary results provide a
glimpse into the potential of the proposed framework, it is
crucial to interpret them with caution. Ongoing work will
involve further validation, refinement, and a more compre-
hensive analysis to strengthen the robustness of our findings.

6. Conclusions and future work
This research has presented a novel framework for

the development of sustainable CPSs. By emphasiz-
ing adaptation-centric architectures and incorporating self-
adaptive techniques such as microservices and MAPE-K
methodologies, our framework aims to address the dynamic
and interconnected nature of CPS.

The application of the proposed framework to the smart
home management system for seniors, with a focus on pa-
tients with stage 1 hypertension , demonstrated its efficacy
in real-world scenarios. Through the utilization of mining
techniques, the framework provides a tailored solution, of-
fering a guide for the integration of autonomous microser-
vices to achieve sustainability.

Despite the promising outcomes, it is important to
acknowledge certain limitations inherent in the proposed
framework, such as the lack of a complete instantiation of
a case study in a simulated environment or real context.

Looking ahead, further research and refinement of the
framework will be crucial for addressing the identified lim-
itations and adapting to the evolving landscape of cyber-
physical systems. As the field of CPS continues to advance,
our work contributes to the ongoing dialogue on sustainable
system development, offering a solid foundation for future
endeavors in this domain.

4. Limitations and Challenges: The absence of a com-
plete instantiation of a case study in a simulated or real en-
vironment limited the depth of the assessment. This under-
scores the importance of extending our experiments to more

realistic settings. Challenges in obtaining real-time health
data for customization purposes highlighted the need for col-
laboration with healthcare providers and the development of
secure data-sharing protocols.

5. Implications for future research: The preliminary re-
sults lay the groundwork for future research to delve deep-
er into the real-world application of the framework, empha-
sizing complete instantiating in diverse environments. Fur-
ther investigation is warranted to address the identified chal-
lenges, such as refining the autonomy of microservices in-
tegration and developing strategies for overcoming data ac-
quisition hurdles.

Acknowledgments
The authors would like to thank Vicerectoria de Des-

cubrimiento y Creación from Universidad EAFIT. Universi-
dad EAFIT supported this research. The authors would also
like to thank XXXXXXXXXXX for his early comments and
suggestions on this research.

References
[1] Aldalur, I., Arrieta, A., Agirre, A., Sagardui, G., Arratibel, M., 2023.

A microservice-based framework for multi-level testing of cyber-
physical systems. Software Quality Journal URL: https://doi.org/
10.1007/s11219-023-09639-z, doi:10.1007/s11219-023-09639-z.

[2] Alsharif, M.H., Kelechi, A.H., Jahid, A., Kannadasan, R., Singla,
M.K., Gupta, J., Geem, Z.W., 2024. A comprehensive sur-
vey of energy-efficient computing to enable sustainable mas-
sive iot networks. Alexandria Engineering Journal 91, 12–
29. URL: https://www.sciencedirect.com/science/article/pii/

S1110016824001091, doi:https://doi.org/10.1016/j.aej.2024.01.067.
[3] Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler,

B., Seyff, N., Venters, C., 2015. Sustainability Design and Software:
The Karlskrona Manifesto, in: Proceedings - International Confer-
ence on Software Engineering, pp. 467–476. doi:10.1109/ICSE.2015.
179.

[4] Chantem, T., Guan, N., Liu, D., 2019. Sustainable embedded software
and systems. doi:10.1016/j.suscom.2019.05.003.

[5] Chitchyan, R., Groher, I., Noppen, J., 2017. Uncovering sustainability
concerns in software product lines. Journal of Software: Evolution
and Process 29. doi:10.1002/smr.1853.

[6] De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson,
J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel,
T., Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K.,
Göschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G.,
Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mi-
randola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer,
C., Schäfer, W., Schlichting, R., Smith, D.B., Sousa, J.P., Tahvil-
dari, L., Wong, K., Wuttke, J., 2013. Software engineering for self-
adaptive systems: A second research roadmap, in: Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), Springer,
Berlin, Heidelberg. pp. 1–32. URL: https://link-springer-com.

ezproxy.eafit.edu.co/chapter/10.1007/978-3-642-35813-5_1, doi:10.
1007/978-3-642-35813-5{\{}{\textbackslash}{_}{\}}1.

[7] Fernandez, N., Lago, P., Luaces, M., Places, , Folgueira, L., 2019.
Using participatory technical-action-research to validate a software
sustainability model.

[8] Fowler, M., 2014. Microservices. URL: https://martinfowler.com/
articles/microservices.html.

[9] Fritzsch, J., Bogner, J., Haug, M., Franco da Silva, A.C., Rub-
ner, C., Saft, M., Sauer, H., Wagner, S., 2023. Adopting mi-

LF Restrepo et al.: Preprint submitted to Elsevier Page 11 of 13

Sustainable Framework for CPSs

croservices and devops in the cyber-physical systems domain:
A rapid review and case study. Software: Practice and Expe-
rience 53, 790–810. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1002/spe.3169, doi:https://doi.org/10.1002/spe.3169,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3169.

[10] Gartziandia, A., Ayerdi, J., Arrieta, A., Ali, S., Yue, T., Agirre, A.,
Sagardui, G., Arratibel, M., 2021. Microservices for continuous de-
ployment, monitoring and validation in cyber-physical systems: an
industrial case study for elevators systems, in: 2021 IEEE 18th Inter-
national Conference on Software Architecture Companion (ICSA-C),
pp. 46–53. doi:10.1109/ICSA-C52384.2021.00014.

[11] Guo, Z., Yu, K., Lv, Z., Choo, K.K.R., Shi, P., Rodrigues, J.J.P.C.,
2022. Deep federated learning enhanced secure poi microservices for
cyber-physical systems. IEEE Wireless Communications 29, 22–29.
doi:10.1109/MWC.002.2100272.

[12] ul Hassan, M., Al-Awady, A.A., Ali, A., Iqbal, M.M., Akram,
M., Khan, J., AbuOdeh, A.A., 2023. An efficient dy-
namic decision-based task optimization and scheduling approach
for microservice-based cost management in mobile cloud com-
puting applications. Pervasive and Mobile Computing 92,
101785. URL: https://www.sciencedirect.com/science/article/pii/
S1574119223000433, doi:https://doi.org/10.1016/j.pmcj.2023.101785.

[13] International Organization for Standardization, 2011. ISO/IEC
25010:2011 - Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. URL: https://www.iso.org/standard/35733.
html.

[14] Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M., McKinley,
P.K., Cheng, B.H.C., 2020. MAPE-K/MAPE-SAC: An interaction
framework for adaptive systems with security assurance cases. Future
Generation Computer Systems 109, 197–209. doi:10.1016/j.future.
2020.03.031.

[15] Jensen, J.C., Chang, D.H., Lee, E.A., 2011. A model-based design
methodology for cyber-physical systems, in: 2011 7th International
Wireless Communications and Mobile Computing Conference, pp.
1666–1671. doi:10.1109/IWCMC.2011.5982785.

[16] Kephart, J.O., Chess, D.M., 2003. The vision of autonomic comput-
ing. Computer 36. doi:10.1109/MC.2003.1160055.

[17] Koziolek, H., 2011. Sustainability evaluation of software architec-
tures: A systematic review, in: CompArch’11 - Proceedings of the
2011 Federated Events on Component-Based Software Engineering
and Software Architecture - QoSA+ISARCS’11, ACM Press, New
York, New York, USA. pp. 3–12. URL: http://portal.acm.org/

citation.cfm?doid=2000259.2000263, doi:10.1145/2000259.2000263.
[18] Lee, E.A., 2008. Cyber physical systems: Design challenges, in:

Proceedings - 11th IEEE Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, ISORC 2008, pp. 363–
369. doi:10.1109/ISORC.2008.25.

[19] Lu, Z., Delaney, D.T., Lillis, D., 2023. A survey on microservices
trust models for open systems. IEEE Access 11, 28840–28855.
doi:10.1109/ACCESS.2023.3260147.

[20] Marstein, K.E., Chiriac, A., Riley, L., Hardjono, T., Ver-
dian, G., 2023. Implementing Secure Bridges: Learnings
from the Secure Asset Transfer Protocol URL: https://www.

techrxiv.org/articles/preprint/Implementing_Secure_Bridges_

Learnings_from_the_Secure_Asset_Transfer_Protocol/22285183,
doi:10.36227/techrxiv.22285183.v1.

[21] Marwedel, P., 2018. Embedded system design : embedded systems,
foundations of cyber-physical systems, and the internet of things.
Springer International Publishing. URL: http://link.springer.com/
10.1007/978-3-319-56045-8, doi:10.1007/978-3-319-56045-8.

[22] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopou-
los, Y., 2023. Towards high-availability cyber-physical sys-
tems using a microservice architecture. Computing 105, 1745–
1768. URL: https://doi.org/10.1007/s00607-023-01165-x, doi:10.
1007/s00607-023-01165-x.

[23] Pacheco, F., Rangel, C., Aguilar, J., Cerrada, M., Altamiranda, J.,
2014. Methodological framework for data processing based on the

data science paradigm, in: 2014 XL Latin American Computing Con-
ference (CLEI), pp. 1–12. doi:10.1109/CLEI.2014.6965184.

[24] Pankowska, M., 2013. Sustainable software: A study of software
product sustainable development, in: Mechanism Design for Sustain-
ability: Techniques and Cases. Springer Netherlands, pp. 265–281.
doi:10.1007/978-94-007-5995-4{\{}{\textbackslash}{_}{\}}13.

[25] Pei Breivold, H., 2020. Using Software Evolvability Model for Evolv-
ability Analysis .

[26] Rajavaram, H., Rajula, V., Thangaraju, B., 2019. Automation of mi-
croservices application deployment made easy by rundeck and ku-
bernetes, in: 2019 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT), pp. 1–
3. doi:10.1109/CONECCT47791.2019.9012811.

[27] Restrepo, L., Aguilar, J., Toro, M., Suescún, E., 2021. A sustainable-
development approach for self-adaptive cyber–physical system’s life
cycle: A systematic mapping study. Journal of Systems and Soft-
ware 180, 111010. URL: https://www.sciencedirect.com/science/

article/pii/S0164121221001072, doi:https://doi.org/10.1016/j.jss.
2021.111010.

[28] Restrepo Gutierrez, L.F., Bernal Moreno, P., Suescún Monsalve, E.,
Aguilar Castro, J.L., Pardo Calvache, C.J., 2023. Toward a conceptual
framework for designing sustainable cyber-physical system architec-
tures: A systematic mapping study. Heritage and Sustainable Devel-
opment 5, 253–279. URL: https://hsd.ardascience.com/index.php/
journal/article/view/226, doi:10.37868/hsd.v5i2.226.

[29] Richardson, C., 2018. Microservices Patterns: With examples
in Java. Manning. URL: https://books.google.com.co/books?id=

UeK1swEACAAJ.
[30] Rowe, D., Leaney, J., Lowe, D., 1994. Defining systems evolvability-a

taxonomy of change. Change 94, 541–545.
[31] Sadri, A., Rahmani, A., Saberikamarposhti, M., Hosseinzadeh, M.,

2021. Fog data management: A vision, challenges, and future direc-
tions. Journal of Network and Computer Applications 174, 102882.
doi:10.1016/j.jnca.2020.102882.

[32] Saputri, T., Lee, S.W., 2021. Integrated framework for incorporating
sustainability design in software engineering life-cycle: An empirical
study. Information and Software Technology 129. doi:10.1016/j.
infsof.2020.106407.

[33] Saverio, Lluch, L.A., Manuel, M., Fabrizio, M., Ruslan, M., Nico-
la, S.L.D., Giallorenzo, 2017. Microservices: Yesterday, Today,
and Tomorrow. Springer International Publishing. pp. 195–216.
URL: https://doi.org/10.1007/978-3-319-67425-4_12, doi:10.1007/
978-3-319-67425-4_12.

[34] Seiger, R., Huber, S., Heisig, P., Aßmann, U., 2019. Toward a
framework for self-adaptive workflows in cyber-physical systems.
Software and Systems Modeling 18, 1117–1134. doi:10.1007/
s10270-017-0639-0.

[35] Stankovic, J.A., 2014. Research directions for the internet of things.
IEEE Internet of Things Journal 1, 3–9. doi:10.1109/JIOT.2014.
2312291.

[36] Stavros, J.M., Sprangel, J.R., 2008. “SOAR” from the Mediocrity
of Status Quo to the Heights of Global Sustainability, in: Innovative
Approaches to Global Sustainability. Palgrave Macmillan US, pp. 11–
35. doi:10.1057/9780230616646{\{}{\textbackslash}{_}{\}}2.

[37] Tagne, E.F., Kamdjou, H.M., Amraoui, A.E., Nzeukou, A.,
2023. A lossless distributed data compression and aggrega-
tion methods for low resources wireless sensors platforms.
Wireless Personal Communications 128, 621–643. URL:
https://link.springer.com/article/10.1007/s11277-022-09970-x,
doi:10.1007/S11277-022-09970-X/METRICS.

[38] Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2017. MAPE-K
as a service-oriented architecture. IEEE Latin America Transactions
15, 1163–1175. doi:10.1109/TLA.2017.7932705.

[39] Weyns, D., Georgeff, M., 2010. Self-adaptation using multiagent sys-
tems. IEEE Software 27, 86–91. doi:10.1109/MS.2010.18.

[40] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord,
R., Wood, W., 2006. Attribute-Driven Design (ADD), Version 2.0.
Technical Report CMU/SEI-2006-TR-023. Software Engineering In-

LF Restrepo et al.: Preprint submitted to Elsevier Page 12 of 13

Sustainable Framework for CPSs

stitute, Carnegie Mellon University. Pittsburgh, PA. URL: http:

//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147.
[41] Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., Ylä-

Jääski, A., 2010. A system-level model for runtime power estimation
on mobile devices, in: Proceedings - 2010 IEEE/ACM International
Conference on Green Computing and Communications, GreenCom
2010, 2010 IEEE/ACM International Conference on Cyber, Physi-
cal and Social Computing, CPSCom 2010, pp. 27–34. doi:10.1109/
GreenCom-CPSCom.2010.114.

[42] Zeadally, S., Sanislav, T., Mois, G., 2019. Self-Adaptation Techniques
in Cyber-Physical Systems (CPSs). IEEE Access 7, 171126–171139.
doi:10.1109/ACCESS.2019.2956124.

Luisa Restrepo received a B.Sc. degree in Com-
puter Science in 2015 and an M.Sc. in Engineering
from Universidad EAFIT, Colombia, emphasizing
Software Engineering, in 2019. Since 2020, Luisa
has worked as an Adjunct Professor at the Depart-
ment of Systems and Informatics Engineering at
Universidad EAFIT. Her research interests include
requirements engineering, assessment of software
applications, software reuse, cyber-physical sys-
tems, and data quality.

Professor Jose Aguilar received the B. S. degree
in System Engineering in 1987 (Universidad de
Los Andes-Venezuela), the M. Sc. degree in Com-
puter Sciences in 1991 (Universite Paul Sabatier-
France), and the Ph.D degree in Computer Sci-
ences in 1995 (Universite Rene Descartes-France).
He was a Postdoctoral Research Fellow in the De-
partment of Computer Sciences at the Universi-
ty of Houston (1999-2000) and in the Labora-
toire d’Analyse et d’Architecture des Systems of
Toulouse, France (2010-2011). He is a Titular
Professor in the Department of Computer Sci-
ence at the Universidad de los Andes, Mérida,
Venezuela, and contracted professor of the De-
partment of Systems Engineering of the EAFIT
University, Medellin, Colombia. His research in-
terests include artificial intelligence, industry 4.0,
IoT, cyber-physical and autonomic systems.

Elizabeth Suescún Monsalve received a B.Sc.
degree in Computer Science from Politecnico
Colombiano JIC, Colombia, in 2004. Elizabeth
got a Master and PhD degree in Computer Sci-
ence from Pontifical Catholic University of Rio
de Janeiro - PUC-Rio, Brazil with emphasis on
Software Engineering, from 2010 to 2014. Since
2015, Elizabeth works as Assistant Professor at the
Department of Systems and Informatics Engineer-
ing and as a researcher of the GIDITIC Group at
Universidad EAFIT. Her research interests include
Software Engineering, DevOps, industry 4.0, Soft-
ware Transparency, Intentional Modeling, cyber-
physical systems and its applications.

LF Restrepo et al.: Preprint submitted to Elsevier Page 13 of 13

	Abstract
	Scientific contributions
	Acknowledgement
	Introduction and research context
	Problem statement and motivation
	Research Objectives
	General objective
	Specific objectives

	Contributions and research scope
	Thesis organization

	State of the art on sustainable development for Self-Adaptive Cyber-Physical System’s
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	SinSO: An ontology of Sustainability in Software
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	NFR-Based framework para el análisis de la sostenibilidad en sistemas ciberfísicos (CPS)
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Toward a conceptual framework for designing sustainable cyber-physical system architectures: A systematic mapping study
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Towards Sustainable Cyber-Physical Systems: A Comprehensive Framework and Case Study for Healthcare Enviroments
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Conclusions
	Summary
	Limitations and future work

	Bibliographic references
	State of the art on sustainable development for Self-Adaptive Cyber-Physical System’s
	SinSO: An Ontology of Sustainability in Software
	NFR-Based framework para el análisis de la sostenibilidad en sistemas ciberfísicos (CPS)
	Toward a conceptual framework for designing sustainable cyber-physical system architectures: A systematic mapping study
	Towards Sustainable Cyber-Physical Systems: A Comprehensive Framework and Case Study for Healthcare Enviroments

