A SUSTAINABLE FRAMEWORK FOR
CYBER-PHYSICAL SYSTEMS

by

Luisa Fernanda Restrepo Gutierrez

A dissertation submitted to The EAFIT University in conformity

with the requirements for the degree of Doctor of Philosophy in Engineering

Medellin,Colombia
2024

© 2024 Luisa Restrepo
All rights reserved

Abstract

Cyber-Physical Systems (CPS) represent a new generation of systems where the cy-
ber and physical layers are strongly interconnected. Developing these types of system
involves two essential aspects. First, design sustainable architectures with a focus on
adaptation to create robust and economically viable products. Second, employ self-
adaptive techniques to adjust CPSs to the evolving circumstances of their operational
context. The aim of this research is to propose a comprehensive framework as the
foundational design for developing sustainable cyber-physical systems. The frame-
work is built on strategies such as microservices and MAPE-K methodologies, with
the aim of achieving sustainability in the proposed system. The suggested frame-
work has been applied to the smart home management system for seniors, specifically
instantiated for patients with stage 1 hypertension , using mining techniques. This
instantiation serves as a guide for incorporating autonomy microservices to achieve

sustainability and also for evaluating the viability and robustness of this proposal.

Keywords: Cyber-physical systems, Design, Sustainability, Framework

Primary reader and thesis advisor:

Dra. Elizabeth Suescin

Professor

Department of Product and Experience Design Area
Universidad EAFIT

Secondary readers:

Dr. Jose Aguilar

i

Abstract

Professor

Department of Engineering
Universidad EAFIT

1il

Scientific contributions

Several scientific articles were generated and published during the development pro-

cess of this research project.

Published articles:

o Luisa Restrepo, Jose Aguilar, Mauricio Toro, Elizabeth Suescin, A sustainable-
development approach for self-adaptive cyber—physical system’s life cycle: A
systematic mapping study, Journal of Systems and Software, Volume 180, 2021,
111010, ISSN 0164-1212, https://doi.org/10.1016/].jss.2021.111010.

o Restrepo Gutierrez, Luisa Fernanda, Pablo Bernal Moreno, Elizabeth Suescin
Monsalve, Jose Lisandro Aguilar Castro, and César Jesus Pardo Calvache. 2023.
“Toward a Conceptual Framework for Designing Sustainable Cyber-Physical
System Architectures: A Systematic Mapping Study”. Heritage and Sustainable
Development 5 (2):253-79. https://doi.org/10.37868 /hsd.v5i2.226.

Articles submitted to journals:

o Restrepo Gutierrez, Luisa Fernanda, Suescin Monsalve Elizabeth, and Aguilar
Castro Jose Lisandro. 2024. “SinSO: An ontology of Sustainability in Software”.

Articulo bajo revisién en Applied Ontology, Q1.

o Arce Vargas. Cesar Augusto, Restrepo Gutierrez, Luisa Fernanda, Suesctn
Monsalve Elizabeth y Aguilar Jose. NFR-Based Framework para el Analisis de

la Sostenibilidad en Sistemas Ciberfisicos. INGE CUC. Articulo aceptado en

v

Jose
Nota adhesiva
y el articulo

Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments????

Scientific contributions

proceso de revision.

Acknowledgement

I would like to express my deepest gratitude to my partner and sons for their un-
wavering support, understanding, and patience throughout this journey. Their love
and encouragement have been my anchor, enabling me to navigate the challenges of
completing this dissertation. I am also immensely grateful to my advisors, Elizabeth
Suescun and Jose Aguilar, for their invaluable guidance, expertise, and unwavering
belief in me. Their mentorship has been instrumental in shaping this work. Addi-
tionally, I extend my thanks to EAFIT University for the financial support that made

this PhD journey possible.

vi

Table of Contents

Abstract
Scientific contributionso
Acknowledgement
Chapter 1 Introduction and research context
1.1 Problem statement and motivation
1.2 Research Objectives
1.2.1 General objective

1.2.2 Specific objectives

1.3 Contributions and research scope
1.4 Thesis organization L

Chapter 2 State of the art on sustainable development for Self-

Adaptive Cyber-Physical System’s

2.1 Motivation
2.2 Identification of the article
2.3 Abstract
2.3.1 Link tofull paper

Chapter 3 SinSO: An ontology of Sustainability in Software
3.1 Motivationo

3.2 Identification of the article
3.3 Abstract
3.3.1 Link to full paper

Chapter 4 NFR-Based framework para el analisis de la sostenibili-

dad en sistemas ciberfisicos (CPS)
4.1 Motivation
4.2 Identification of the article
4.3 Abstract

vii

ii

[T a a

© oo 0o oo 0o

Jose
Nota adhesiva
estas haciendo un capitulo por articulo, lo mejor es que agrupes en funcion de sus vinculos

capt 2 ok

4, 5 y 6 no estan muy cerca??, podrian quedar en un capitulo

Jose
Nota adhesiva

Table of Contents

4.3.1 Link to full paper

Chapter 5 Toward a conceptual framework for designing sustain-
able cyber-physical system architectures: A systematic
mapping studyo

5.1 Motivation
5.2 Identification of the article
5.3 Abstract

5.3.1 Link to full paper

Chapter 6 Towards Sustainable Cyber-Physical Systems: A Com-
prehensive Framework and Case Study for Healthcare
Enviroments 0oL

6.1 Motivation
6.2 Identification of the article
6.3 Abstract

6.3.1 Link to full paper L

Chapter 7 Conclusions
7.1 Summary . o.o. ...

7.2 Limitations and future work L.
Bibliographic references

Appendix A State of the art on sustainable development for Self-
Adaptive Cyber-Physical System’s

Appendix B SinSO: An Ontology of Sustainability in Software

Appendix C NFR-Based framework para el analisis de la sostenibili-

dad en sistemas ciberfisicos (CPS)

Appendix D Toward a conceptual framework for designing sustain-
able cyber-physical system architectures: A systematic

mapping study

viil

Table of Contents

Appendix E Towards Sustainable Cyber-Physical Systems: A Com-
prehensive Framework and Case Study for Healthcare

Enviroments

X

Chapter 1

Introduction and research context

1.1 Problem statement and motivation

Cyber-Physical Systems (CPSs) are systems composed of collaborative computational
elements to control physical entities [1]. CPSs integrate (i) Mathematical modeling
of physical systems, (ii) Formal computation models, (iii) Simulation of heteroge-
neous systems, (iv) Software engineering strategies, and (v) Verification and valida-

tion methods [2].

A concept associated with CPSs is the Internet of Things (IoT), where communication
is very important [3], in which systems are interconnected and collaborate. Taken
together, CPSs and IoT will conform to most of the future applications of information
technology [3]. Most CPSs are designed for specific types of requirements [4]. Usually,
these requirements concern both the physical and the cyber parts, and functional
and non-functional software-related aspects. In the physical part, actuators, sensors,
and embedded system processors are used for computer-controlled tasks. In turn,
the physical part must interact with the cyber part, implemented through software
systems, in order (i) to process data from the entire CPS, (ii) to diagnose all types of
system failures, (iii) to make real-time decisions to prevent major failures, and (iv)

to make data-based decisions that exhibit real-world behavior [5].

The use of self-adaptation techniques in CPSs, is considered an effective approach to

deal with changes in its environment and structure. Current challenges include the

Chapter 1. Introduction and research context

design and development of effective, energy-efficient, and sustainable self-adaptive
CPSs (SA-CPSs) [6]. According to Koziolek et al. [7], sustainability implies the
development of technically—robust and economically—profitable products. Although
sustainability has been more associated with the environmental context, it is becom-
ing —increasingly— important in the context of engineering, in general, and software
engineering, in particular [8]. In software systems that are part of a CPS, sustainabil-
ity is —strongly— linked to non-functional attributes such as maintainability. Koziolek
et al. define that maintainability is divided in the following non-functional attributes:
(i) analysability, (ii) stability, (iii) testability, (iv) understandability, (v) modifiability,

(vi) portability, and (vii) evolvability [7].

The design of CPSs —both the physical part and the cyber part— should include the de-
sign of their architecture and its sustainability. Additionally to this, their design must
consider issues related to self-adaptation to satisfy requirements in a dynamic envi-
ronment [9]. The concept of architecture has several meanings (and definitions): The
International Organization for Standarization (ISO) defines architectural design as
the "process of conceiving, defining, expressing, documenting, communicating, certify-
ing, maintaining and improving an architecture throughout a system’s life cycle'[10].
The design of architecture is a key process in the System-Development Life-Cycle
(SDLC), and the quality of the architecture of a system —strongly— determines its

sustainability [7, 11].

Understanding and identifying sustainability strategies used at each stage of the
SDLC of SA-CPSs, is important for the success of sustainable systems, and, par-

ticularly, to (i) improve practices; (ii) identify current opportunities, threats, trends;

Chapter 1. Introduction and research context

and, also, (iii) serve as an inspiration for the development of future sustainable au-
tonomous systems. Nonetheless, making a system sustainable by adding attributes
such as self-adaptation, increasing evolvability and energy efficiency, may increase
its complexity and maintenance (by humans). The increase in complexity is both
at the level of development and deployment. The first is related to the way the so-
lution is implemented and the second is related to the context where will be used
the solution (domain, process). Also, the maintainability plans allow for establishing
specific practices, as well as resources and relevant sequences of activities, which can
be difficult to be followed /apply by humans. Thus, trade-offs should be taken into ac-
count when using sustainability strategies in CPSs considering the different elements
involved. Previous works do not carry out an analysis of sustainability strategies
used at each stage of the SDLC of the CPSs, based on the above ideas. Lin et al.
[12] point out that existing methods for designing and developing CPSs are usually
limited to specific fields of application or domain. Another problem that this work
found is that some approaches are focused only on the physical part of the CPSs,
ignoring the cyber part, or others only deal with the cyber part, resulting in a lack
of integration. Finally, Lin and Panahi propose a framework for the development of
CPSs, with an emphasis on sustainability and predictability. However, they restrict
the system architecture to Service-Oriented Architecture (SOA), without taking into
account the use of other architectural patterns in the design of the CPSs architecture

13].

Chapter 1. Introduction and research context

1.2 Research Objectives

1.2.1 General objective

Propose a conceptual framework for the architectural design of sustainable cyber-
physical systems.

1.2.2 Specific objectives

e O1: Identify the approaches and challenges used to develop self-adaptive CPSs
(SA-CPSs) at each stage of the System-Development Life-Cycle (SDLC) focused

on sustainability.

e O2: Design a high-level ontology of what is sustainability in software in terms

of economic, technical, environment, social, and individual dimensions.

e 0O3: Develop a model for the specification, analysis, weighting, and evaluation

of sustainability in CPSs based on the NFR Framework.

e O4: Develop a conceptual framework for the design of sustainable cyber-physical

systems architecture.

o O5: Demonstrate the use of the conceptual framework.

1.3 Contributions and research scope

This research makes several noteworthy contributions to the field of sustainable cyber-

physical systems:

Chapter 1. Introduction and research context

A general overview of the strategies used for the development of self-adaptive

CPSs, gaps found in each stage of the System-Development Life Cycle.

An ontology called SinSO that contributes to reducing ambiguity and boosting

understanding in sustainability in software domain.

A methodological tool that allows to analyze aspects related to a central ques-
tion: how to represent the contributions of non-functional requirements and

their possible operationalization within the framework of sustainability in CPSs?.

A general overview of the models, frameworks, representations, and strategies

used to design software and CPSs architectures.

Development of a comprehensive framework: We propose a novel framework
for the development of sustainable cyber-physical systems, which integrates
adaptation-centric architectures, microservices, and the MAPE-K paradigm
(Monitor-Analyze-Plan-Execute-Knowledge) to address the challenges posed by

the interconnected nature of CPS.

Application to real-world scenario: The framework is applied to a practical
scenario, specifically targeting smart home management systems for seniors.
Instantiation for patients with stage 1 hypertension shows the applicability of

the proposed framework in a simulated healthcare setting.

Utilization of mining techniques: Our research incorporates mining techniques
to tailor the framework to the specific needs of patients with hypertension. This

demonstrates the adaptability of the framework and its potential for customiza-

Chapter 1. Introduction and research context

tion to various use cases.

e Guide for autonomy microservices integration: The instantiated framework
serves as a practical guide for the incorporation of autonomy microservices,
providing insights into the achievement of sustainability within the context of

CPSs.

Demonstrating the usability in a real case study is beyond the scope of this work.
Difficulties in time make it difficult to evaluate and validate the results obtained at full
scale. However, the results are evaluated by instantiating the proposal in a simulated

case study.

1.4 Thesis organization

This document is outlined as follows:

This thesis is presented as a collection of articles developed to meet each of the
proposed objectives. Chapter 2 describes the results of our SLR on sustainable devel-
opment for Self-Adaptive Cyber-Physical System’s. This SLR allowed us to identify
trends, challenges, and research opportunities in this field. Chapter 3 shows the
ontology of sustainability in software that achieves the second objective, Chapter 4
presents the methodological tool that represent the contributions of nonfunctional
requirements to sustainability in CPS, Chapter 5 shows a first version of the frame-
work for Sustainable Cyber-Physical Systems achieving fourth objective, Chapter 6
presents the final version of the framework and the experimental context and a sim-

ulated study of monitoring seniors’ health status achieving objectives four and five.

Chapter 1. Introduction and research context

Finally, Chapter 7 presents a summary of the conclusions of all the articles presented
in the previous sections. We also show the limitations of our research and possible

future work.

Chapter 2

State of the art on sustainable development for
Self-Adaptive Cyber-Physical System’s

2.1 Motivation

In this chapter, we present the results for Objective 1, the main trends and challenges
in sustainable-development for Self-Adpative Cyber-Physycal Systems. Also, we show
the main challenges and research opportunities. Below, we present the title and
abstract of the SLR and then, a link to the full paper. This literature review resolves
objective 1: Identify the approaches and challenges used to develop self-adaptive CPSs
(SA-CPSs) at each stage of the System-Development Life-Cycle (SDLC) focused on

sustainability. The arcticle about the SLR is in Appendix A.

2.2 Identification of the article

Luisa Restrepo, Jose Aguilar, Mauricio Toro, Elizabeth Suesctin, A sustainable-
development approach for self-adaptive cyber—physical system’s life cycle: A sys-
tematic mapping study, Journal of Systems and Software, Volume 180, 2021, 111010,
ISSN 0164-1212, https://doi.org/10.1016/].jss.2021.111010.

2.3 Abstract

Cyber-Physical Systems (CPS) refer to a new generation of systems where the cyber

and physical layers are —strongly— interconnected. The development of these sys-

Chapter 2. State of the art on sustainable development for Self-Adaptive
Cyber-Physical System’s

tems requires two fundamental parts. First, the design of sustainable architectures
—centered on adaptation, throughout a System-Development Life-Cycle (SDLC)- to
develop robust and economically profitable products. Second, the use of self-adaptive
techniques to adjust CPSs to the evolving circumstances of their operation context.
This work presents a systematic mapping study (SMS) that discusses different ap-
proaches used to develop self-adaptive CPSs (SA-CPSs) at each stage of the SDLC,
focused on sustainability. The results show trends such as (i) Designs are not lim-
ited to particular application domains, (ii) Performance was the most commonly used
attribute, and (iii) Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-
K) is the predominant feedback loop applied in the cyber layer. The results also
raise challenges such as (i) How to design and evaluate sustainable SA-CPSs, (ii)
How to apply unit and integration testing in the development of SA-CPSs, and (iii)
How to develop feedback loops on SA-CPSs with the integration of machine-learning

techniques.

2.3.1 Link to full paper

Appendix A.

Chapter 3

SinSO: An ontology of Sustainability in Software

3.1 Motivation

Software sustainability applies to all types of systems that involve a cyber part, such
as self-adaptive CPSs (SA-CPSs). However, according to the results of the literature
review, it is necessary to understand the sustainability concept since the definitions
of Software Sustainability found in the literature have terminological inconsistencies.
By creating an ontology for Sustainability in Software, we can decrease the inconsis-
tencies and facilitate information sharing in the sustainability domain, thus making
assumptions over this domain explicit. An ontology is also useful for the analysis
of knowledge and relationships in this domain. Also, to achieve objective O2 (De-
sign a high-level ontology of what is sustainability in software in terms of economic,

technical, environment, social and individual dimensions.).

3.2 Identification of the article

In process of publication.

3.3 Abstract

Sustainability in systems refers to applying sustainable principles and practices to
create more resilient, efficient, and equitable systems that promote the well-being of

people and the planet. Sustainability is an essential topic in contemporary software

10

Chapter 3. SinSO: An ontology of Sustainability in Software

engineering, and its relationship with the characteristics and properties of a system
or product called quality attributes is still an open question since each researcher
has established their definition of sustainability in software. This has created di-
verse terms and concepts for distinct application environments and scopes, creating
ambiguity and misconceptions. This work defines a domain ontology of Sustainabil-
ity in Software named SinSO to address these issues. SinSO was implemented in
OWL, using competency-based questions to validate. The findings show that this
proposal satisfies several quality and content requirements. Also, using Protégé and
the Hermit reasoner, we verified that SinSO is consistent since the ontology state-
ments are coherent and do not lead to conflicting or contradictory conclusions. In
addition, competency questions allowed us to demonstrate that SinSO does fulfill its
purpose. FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was
used in two case studies, one about software for senior-citizen smart-home, and the
other, a simulator to develop and test smart-city applications, achieving positive out-
comes. To verify its accuracy, completeness, and maintainability, further evaluations
of SinSO are needed in real case studies. We conclude that SinSO can significantly
contribute to reducing ambiguity and enhancing comprehension in this area. Fur-
thermore, SinSO can be an effective tool for engineers to recognize the concepts and
relationships in the sustainable domain to consider in the systems development life

cycle to build sustainable systems.

3.3.1 Link to full paper

Appendix B.

11

Chapter 4

NFR-Based framework para el analisis de la
sostenibilidad en sistemas ciberfisicos (CPS)

4.1 Motivation

After the creation of the ontology, it is necessary to have a tool to determine and
evaluate sustainability in the CPSs, that’s why this paper focuses on proposing a
methodological tool that allows us to represent the contributions of non-functional
requirements and their possible operationalization within the framework of sustain-
ability in CPSs. The proposed model is a useful and versatile tool in the process of
specification, analysis, weighting, and evaluation of sustainability in CPSs achieving

the third objective.

4.2 Identification of the article

In process of publication.

4.3 Abstract

The analysis of sustainability in cyber-physical systems (CPS) and its relationship
with non-functional requirements has become one of the most critical issues today.
The diversity of contexts, concepts, design criteria and points of view of designers and
researchers can generate ambiguities and make it difficult to determine or measure the

sustainability of systems. To address this problem, this paper proposes a method-

12

Chapter 4. NFR-Based framework para el analisis de la sostenibilidad en sistemas
ciberfisicos (CPS)

ological tool whose main objective is to represent sustainability through the NFR

Framework, and to clarify the attributes that contribute to its future operationaliza-
tion. Through the analysis and enumeration of the non-functional requirements, it is
proposed to formulate a series of questions that, when solved, allow to identify key
aspects in the framework of sustainability and to evaluate them in scales of relevance
defined according to the context. The designer and his team could use this model to
establish metrics that indicate the relationships and contribution levels of each of the
non-functional requirements in favor of sustainability. Although the final weighting
falls again on the designer and his team, the proposed model allows documenting,
standardizing and defining in detail the process carried out and the valuation scale

applied.

4.3.1 Link to full paper

Appendix C.

13

Chapter 5

Toward a conceptual framework for designing
sustainable cyber-physical system architectures: A
systematic mapping study

5.1 Motivation

To achieve the development of a conceptual framework for the design of sustain-
able cyber-physical systems architecture, an SMS is being executed to identify which
strategies, methodologies, and frameworks are used in the design of CPSs archi-
tectures. As a result of this process, an initial version of the proposed conceptual

framework was constructed to be evolved.

5.2 Identification of the article

L. F. Restrepo Gutierrez, P. Bernal Moreno, E. Suesciin Monsalve, J. L. Aguilar
Castro, and C. J. Pardo Calvache, “Toward a conceptual framework for designing
sustainable cyber-physical system architectures: A systematic mapping study”, Her-

itage and Sustainable Development, vol. 5, no. 2, pp. 253-279, Sep. 2023.

5.3 Abstract

Cyber-physical systems (CPS) represent devices whose components enable interaction
between machines and processes. One of the biggest challenges of these systems today

is the ability to adjust to changes at the time of execution as they are implemented

14

Chapter 5. Toward a conceptual framework for designing sustainable cyber-physical
system architectures: A systematic mapping study

in environments with a multidimensional complexity, this challenge is currently ad-
dressed from the design of the systems themselves by integrating sustainability. With
this problem in mind, the present document describes a systematic mapping study
of the literature with the goal of demonstrating the current panorama of the frame-
works, designs, and/or models used at the time of initiating the development of a
cyber-physical system. As a result, it has been concluded that there is a lack of
guidelines to construct sustainable, and evolvable cyber-physical systems. To address

these issues, a framework for designing sustainable CPS architectures is outlined.

5.3.1 Link to full paper

Appendix D.

15

Chapter 6

Towards Sustainable Cyber-Physical Systems: A
Comprehensive Framework and Case Study for
Healthcare Enviroments

6.1 Motivation

The previous version of the framework was refined to produce the final proposal.
Demonstrating the usability in a real case study is beyond the scope of this work.
Difficulties in time make it difficult to evaluate and validate the results obtained on a
full scale. However, the results are evaluated by instancing the proposal in real case

studies.

6.2 Identification of the article

In process of making adjustments to be submitted to magazines.

6.3 Abstract

Cyber-Physical Systems (CPS) represent a new generation of systems where the cy-
ber and physical layers are strongly interconnected. Developing these types of system
involves two essential aspects. First, design sustainable architectures with a focus on
adaptation to create robust and economically viable products. Second, employ self-
adaptive techniques to adjust CPSs to the evolving circumstances of their operational

context. The aim of this research is to propose a comprehensive framework as the

16

Chapter 6. Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments

foundational design for developing sustainable cyber-physical systems. The frame-
work is built on strategies such as microservices and MAPE-K methodologies, with
the aim of achieving sustainability in the proposed system. The suggested frame-
work has been applied to the smart home management system for seniors, specifically
instantiated for patients with stage 1 hypertension , using mining techniques. This
instantiation serves as a guide for incorporating autonomy microservices to achieve

sustainability and also for evaluating the viability and robustness of this proposal.

6.3.1 Link to full paper

Appendix E.

17

Chapter 7

Conclusions

This thesis made contributions on the design of sustainable cyber-physical systems
architecture. In this chapter, we present a summary of the results of all of the work
presented above. In addition, we show limitations and research opportunities for the

future.

7.1 Summary

The SMS presented general strategies used to design SA-CPSs, at each stage of the
SDLC. This SMS unveiled several trends in the design of SA-CPSs. First, the de-
signs are not limited to particular application domains. Second, performance was
the most commonly used attribute. Third, MAPE-K is the predominant feedback
loop applied to the cyber layer with the use of complement adaptation strategies.
Fourth, the creation of component-based projects for the development of the designs
and the simulation of these proposed designs. Fifth, sustainability, in SA-CPSs, has
been addressed through self-adaptation, and the use of quality attributes such as
adaptability, scalability, energy-efficiency, vaguely, modularity and reusability. This
SMS identified a crucial challenge such as How to design and evaluate sustainable

SA-CPSs.

To resolve the challenge first it was necessary to understand the sustainability concept
by creating an ontology for Sustainability in Software, to decrease the inconsistencies

and facilitate information sharing in the sustainability domain. That is why the

18

Chapter 7. Conclusions

second work defines a domain ontology of Sustainability in Software named SinSO to
address ambiguity and misconceptions on the diverse terms and concepts for distinct
application environments and scopes. SinSO identify quality attributes relevant to

the sustainable domain and their relationship with sustainability dimensions.

As a continuation of this work, it is defined to clarify the attributes that contribute
to its future operationalization. The model defined on the third work can be used
to establish metrics that indicate the relationships and contribution levels of each of
the non-functional requirements in favor of sustainability. The proposed model is a
highly useful and versatile tool in the process of specification, analysis, weighting and

evaluation of sustainability in CPSs.

After being clear about the trends in CPS design, how sustainability is defined and
its evaluation through quality attributes. It was necessary to carry out another SMS
with the main objective of identifying main models, frameworks, and /or architectures
to additionally propose a framework for designing sustainable CPS architectures that
help to solve the problems raised where sustainability is addressed. With this in
mind, the SMS demostrates the current panorama of the frameworks, designs, and /or
models used at the time of initiating the development of a cyber-physical system. It
was found that there are several practices from various sources, as well as several
types of representations for this kind of system. However, this was not the case
for cyber-physical systems, where fewer representations and design strategies were
found. Since CPS is a relatively new technology since is something that is still being
contributed. Also, it is missing a framework that allows for designing sustainable

CPS architectures. Finally, in the SMS, a preliminary version of the framework was

19

Chapter 7. Conclusions

constructed.

The last work contributed to the creation of the final framework for the development
of sustainable cyber-physical systems which are based on the concept of microservices
architecture allowing to construct of a framework of highly decentralized decreasing
coupling which also promotes the evolvability of the system at a granular level, with
technological independence. Having sustainability as the main non-functional re-
quirement, Also integrates the MAPE-K paradigm (Monitor-Analyze-Plan-Execute-
Knowledge) to address the challenges posed by the interconnected nature of CPS. The
application of the proposed framework to the smart home management system for
seniors, with a focus on patients with stage 1 hypertension , demonstrated its efficacy
in real-world scenarios. Through the utilization of mining techniques, the frame-
work provides a tailored solution, offering a guide for the integration of autonomous

microservices to achieve sustainability.

7.2 Limitations and future work

With the results of the present thesis, we were able to achieve the proposed objectives.
However, this thesis had some limitations in terms of validation, the models, and the

instantiation of the case study which are summarized below.

Even though the validation enabled us to achieve encouraging results, further evalua-
tions are needed in real case studies to verify the real-time implementation of SinSO,
particularly its accuracy, completeness, and maintainability. This would allow us to
strengthen the results achieved so far. Furthermore, SinSO may serve as the concep-

tual basis of future work to build a supporting method to develop sustainable systems

20

Chapter 7. Conclusions

by providing conceptual clarity, facilitating domain analysis, enabling knowledge in-

tegration, and supporting decision-making.

Future work proposes to extend and refine the existing methodology in order to
comprehensively address the sustainability of cyber-physical systems in specific or-
ganizational contexts, such as particular industries or social sectors. This extension
would provide insight into how the methodology can be adapted and customized to
meet the specific needs and requirements of various environments or applications.
In addition, consideration would be given to the inclusion of possible new criteria,
metrics, or evaluation approaches. As part of future work, it would be critical to
instantiate a practical example that would allow the methodology to be applied in a
real-world scenario. This would serve as a case study to validate the effectiveness and
applicability of the proposed model. The instantiation of this example would provide
a concrete basis for demonstrating the usefulness and relevance of the methodology

in specific situations.

For the SMS for identifying main models, frameworks, and/or architectures some of
the limitations encountered are: (i) given the vast and ever-evolving nature of software
and CPS architectures, it was challenging to encompass the entire breadth of relevant
research. The study may have missed emerging trends or underrepresented certain
architectural aspects due to the scope constraints. (ii) There is always the possibility
that some relevant papers were missed leading to potential biases in the included
literature, and (iii) the categorization of architectural aspects and the selection of
relevant studies involved a level of subjectivity. While efforts were made to ensure

rigor and objectivity, the absence of expert consensus or certain categorizations may

21

Chapter 7. Conclusions

introduce bias. However, to minimize these threats and avoid data extraction biases,

as mentioned, the entire process was executed by cross-checking between the authors.

Despite the promising outcomes of the framework proposed, it is important to ac-
knowledge certain limitations inherent, such as the lack of a complete instantiation
of a case study in a simulated environment or real context. Looking ahead, further
research and refinement of the framework will be crucial for addressing the identified
limitations and adapting to the evolving landscape of cyberphysical systems. As the
field of CPS continues to advance, our work contributes to the ongoing dialogue on
sustainable system development, offering a solid foundation for future endeavors in

this domain.

The absence of a complete instantiation of a case study in a simulated or real en-
vironment limited the depth of the assessment. This underscores the importance of
extending our experiments to more realistic settings. The challenges of obtaining real-
time health data for customization purposes highlighted the need for collaboration

with healthcare providers and the development of secure data sharing protocols.

The preliminary results lay the groundwork for future research to delve deeper into
the real-world application of the framework, emphasizing complete instantiation in
diverse environments. More research is warranted to address identified challenges,
such as refining the autonomy of microservice integration and developing strategies

to overcome data acquisition hurdles.

22

Bibliographic references

1. Manoharan, S. & Haapala, K. A grey box software framework for sustainability
assessment of composed manufacturing processes: A hybrid manufacturing case
in Procedia cirp 80 (2019), 440-445. doi:10.1016/j.procir.2019.01.088.

2. Jensen, J. C., Chang, D. H. & Lee, E. A. A model-based design methodology for
cyber-physical systems in 2011 7th international wireless communications and
mobile computing conference (2011), 1666-1671. doi:10.1109 /TWCMC.2011.
5982785.

3. Marwedel, P. Embedded system design : embedded systems, foundations of cyber-
physical systems, and the internet of things doi:10.1007 /978-3-319-56045-8
(Springer International Publishing, 2018).

4. Stankovic, J. A. Research directions for the internet of things. leee internet of
things journal 1, 3-9. doi:10.1109/JI0T.2014.2312291 (2014).

5. Lee, E. A. Cyber physical systems: Design challenges in Proceedings - 11th ieee
symposium on object/component/service-oriented real-time distributed comput-
ing, isorc 2008 (2008), 363-369. doi:10.1109/ISORC.2008.25.

6. Chantem, T., Guan, N. & Liu, D. Sustainable embedded software and systems
2019. doi:10.1016/j.suscom.2019.05.003.

7. Koziolek, H. Sustainability evaluation of software architectures: A systematic
review in Comparch’11 - proceedings of the 2011 federated events on component-
based software engineering and software architecture - qosa+isarcs’11 (ACM
Press, New York, New York, USA, 2011), 3-12. doi:10.1145/2000259.2000263.

8. Pankowska, M. in Mechanism design for sustainability: techniques and cases
265281 (Springer Netherlands, 2013). doi:10.1007/978-94-007-5995-4{\ { }{ \textbackslash }

{(\HA\HHS.

9. Zeadally, S., Sanislav, T. & Mois, G. Self-Adaptation Techniques in Cyber-
Physical Systems (CPSs). leee access 7, 171126-171139. doi:10.1109/ACCESS.
2019.2956124 (2019).

10. International Organization for Standardization. ISO/IEC/IEEE 42010:2011 -
Systems and software engineering. Architecture description 2011.

23

https://doi.org/10.1016/j.procir.2019.01.088
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/10.1109/JIOT.2014.2312291
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1016/j.suscom.2019.05.003
https://doi.org/10.1145/2000259.2000263
https://doi.org/10.1007/978-94-007-5995-4{\{}{\textbackslash}{_}{\}}13
https://doi.org/10.1007/978-94-007-5995-4{\{}{\textbackslash}{_}{\}}13
https://doi.org/10.1109/ACCESS.2019.2956124
https://doi.org/10.1109/ACCESS.2019.2956124

Bibliographic references

11.

12.

13.

Chitchyan, R., Groher, I. & Noppen, J. Uncovering sustainability concerns in
software product lines. Journal of software: evolution and process 29. doi:10.
1002/smr.1853 (2017).

Lin, J., Sedigh, S. & Miller, A. Towards integrated simulation of cyber-physical
systems: A case study on intelligent water distribution in Sth ieee international
symposium on dependable, autonomic and secure computing, dasc 2009 (2009),
690-695. doi:10.1109/DASC.2009.140.

Lin, K. J. & Panahi, M. A real-time service-oriented framework to support sus-
tainable cyber-physical systems in Ieece international conference on industrial
informatics (indin) (2010), 15-21. doi:10.1109/INDIN.2010.5549473.

24

https://doi.org/10.1002/smr.1853
https://doi.org/10.1002/smr.1853
https://doi.org/10.1109/DASC.2009.140
https://doi.org/10.1109/INDIN.2010.5549473

Appendix A

State of the art on sustainable development for
Self-Adaptive Cyber-Physical System’s

25

The Journal of Systems & Software 180 (2021) 111010

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A sustainable-development approach for self-adaptive cyber-physical ®

Check for

system’s life cycle: A systematic mapping study™

Luisa Restrepo?, Jose Aguilar ab.c* Mauricio Toro?, Elizabeth Suesctn ?

2RID on Information Technologies and Communications Research Group, Universidad EAFIT, Medellin, Colombia
b CEMISID Universidad de Los Andes, Mérida, Venezuela
¢ Universidad de Alcald, Dpto. Automdtica, Alcald de Henares, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 2 November 2020

Received in revised form 4 May 2021
Accepted 17 May 2021

Available online 8 June 2021

Cyber-Physical Systems (CPS) refer to a new generation of systems where the cyber and physical
layers are -strongly- interconnected. The development of these systems requires two fundamental
parts. First, the design of sustainable architectures -centered on adaptation, throughout a System-
Development Life-Cycle (SDLC)- to develop robust and economically profitable products. Second, the
use of self-adaptive techniques to adjust CPSs to the evolving circumstances of their operation context.
This work presents a systematic mapping study (SMS) that discusses different approaches used to
develop self-adaptive CPSs (SA-CPSs) at each stage of the SDLC, focused on sustainability. The results
show trends such as (i) Designs are not limited to particular application domains, (ii) Performance was
the most commonly used attribute, and (iii) Monitor-Analyze-Plan-Execute over a shared Knowledge
(MAPE-K) is the predominant feedback loop applied in the cyber layer. The results also raise challenges
such as (i) How to design and evaluate sustainable SA-CPSs, (ii) How to apply unit and integration
testing in the development of SA-CPSs, and (iii) How to develop feedback loops on SA-CPSs with the

Keywords:

Self-adaptive systems
Sustainability

Cyber-physical systems
Systems-development life-cycle

integration of machine-learning techniques.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Cyber-Physical Systems (CPSs) are systems composed of col-
laborative computational elements to control physical entities.
Also, CPSs can be defined as complex and complicated systems
that require techniques of sophisticated design, which include
interaction between the physical world and the cyber world.
CPSs integrate (i) Mathematical modeling of physical systems,
(ii) Formal computation models, (iii) Simulation of heterogeneous
systems, (iv) Software engineering strategies, and (v) Verification
and validation methods (Jensen et al., 2011).

A concept associated with CPSs is the Internet of Things (IoT),
where communication is very important (Marwedel, 2018), in
which systems are interconnected and collaborate. Taken to-
gether, CPSs and IoT will conform to most of the future appli-
cations of information technology.

The design of CPSs is a task that has to be broken down
into several sub-tasks to be tractable (Marwedel, 2018). Most

* Editor: Heiko Koziolek.
* Corresponding author at: CEMISID Universidad de Los Andes, Mérida,
Venezuela.
E-mail addresses: Irestr61@eafit.edu.co (L. Restrepo),
jlaguilarc@eafit.edu.co, aguilar@ua.ve (J. Aguilar), mtorobe@eafit.edu.co
(M. Toro), esuescul@eafit.edu.co (E. Suesctn).

https://doi.org/10.1016/j.jss.2021.111010
0164-1212/© 2021 Elsevier Inc. All rights reserved.

CPSs are designed for specific types of requirements (Stankovic,
2014). Usually, these requirements concern both the physical
and the cyber parts, and functional and non-functional aspects.
In the physical part, actuators, sensors, and embedded-system
processors are used for computer-controlled tasks. In turn, the
physical part must interact with the cyber part, implemented
through software systems, in order (i) to process data from the
entire CPS, (ii) to diagnose all types of system failures, (iii) to
make real-time decisions to prevent major failures, and (iv) to
make data-based decisions that exhibit real-world behavior (Lee,
2008).

The use of self-adaptation techniques, in CPSs, is considered
an effective approach to deal with changes in its environment and
structure. Current challenges include the design and development
of effective, energy-efficient, and sustainable self-adaptive CPSs
(SA-CPSs) (Chantem et al., 2019).

According to Koziolek (2011), sustainability implies the devel-
opment of technically-robust and economically-profitable prod-
ucts. Although sustainability has been more associated with the
environmental context, it is becoming -increasingly- important
in the context of engineering, in general, and software engineer-
ing, in particular (Pankowska, 2013). In software systems that
are part of a CPS, sustainability is -strongly- linked to non-
functional attributes such as maintainability. Koziolek et al. define
that maintainability is divided in the following non-functional

L. Restrepo, J. Aguilar, M. Toro et al.

attributes: (i) analysability, (ii) stability, (iii) testability, (iv) un-
derstandability, (v) modifiability, (vi) portability, and (vii) evolv-
ability (Koziolek, 2011).

The design of CPSs -both the physical part and the cyber
part- should include the design of their architecture and its sus-
tainability. Additional to this, their design must consider issues
related to self-adaptation to satisfy requirements in a dynamic
environment (Zeadally et al., 2019a). The concept of architecture
has several meanings (and definitions): The International Orga-
nization for Standarization (ISO) defines the architectural design
as the "process of conceiving, defining, expressing, documenting,
communicating, certifying, maintaining and improving an archi-
tecture throughout a system’s life cycle"(International Organiza-
tion for Standardization, 2011b). The design of an architecture is a
key process in the System-Development Life-Cycle (SDLC), and the
quality of the architecture of a system -strongly- determines its
sustainability (Koziolek, 2011; Chitchyan et al., 2017).

Understand and identifying sustainability strategies used at
each stage of the SDLC of SA-CPSs, is important for the success
of sustainable systems, and, particularly, to (i) improve practices;
(ii) identify current opportunities, threats, trends; and, also, (iii)
serve as an inspiration for the development of future sustainable
autonomous systems. Nonetheless, making a system sustainable
by adding attributes such as self-adaptation, increasing evolvabil-
ity and increasing energy-efficiency, may increase its complexity
and maintenance (by humans). The increase in complexity is both
at the level of development and deployment. The first is related
to the way the solution is implemented and the second is related
to the context where will be used the solution (domain, process).
Also, the maintainability plans allow establishing specific prac-
tices, as well as resources and relevant sequences of activities,
which can be difficult to be followed/applied by humans. Thus,
trade-offs should be taken into account when using sustainability
strategies in SA-CPSs considering the different elements involved.
Previous works do not carry out an analysis of sustainability
strategies used at each stage of the SDLC of the SA-CPSs, based on
the above ideas. Lin et al. (2009) point out that existing methods
for designing and developing CPSs are usually limited to specific
fields of application. Another problem that this work found is
that some approaches are focused only on the physical part of
the CPSs, ignoring the cyber part, or others only deal with the
cyber part, resulting in a lack of integration. Finally, Lin and
Panahi propose a framework, for the development of CPSs, with
an emphasis on sustainability and predictability. However, they
restrict the system architecture to Service-Oriented Architecture
(SOA), without taking into account the use of other architectural
patterns in the design of the CPSs architecture (Lin and Panahi,
2010).

1.1. Related works

In this section, three Systematic Literature Reviews (SLRs), asso-
ciated with SA-CPSs, were analyzed.

First, Muccini et al. (2016) investigated the role of
self-adaptation within CPSs. In their SLR, 42 studies were in-
cluded. In their analysis, Muccini et al. concluded that aspects
-such as performance and reliability- are well covered, and CPS’s
most challenging aspects —such as interoperability and security-
are still barely covered by the literature. Muccini et al. also
concluded that Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K) model is the dominant adaptation mechanism, followed
by agents and self-organization. The main challenges, defined
by Muccini et al., were: (i) How to map these aspects to layers
and adaptation mechanisms, (ii) How to integrate adaptation
mechanisms within and across layers, and (iii) How to ensure
system-wide consistency of adaptation.

The Journal of Systems & Software 180 (2021) 111010

Second, Musil et al. (2017) surveyed CPS studies that apply the
promising design strategy of combining different self-adaptation
mechanisms across the technology layers of the system (physical,
proxy, communication, service and middleware, application, and
social layers). In their research, Musil et al. identified perfor-
mance as the dominant adaptation purpose. For the adaptation
mechanisms, Musil et al. identified smart elements, multi-agent
systems, and MAPE-K as the most applied.

Third, Zeadally et al. (2019a) established the state-of-the-
art on CPSs from the self-adaptation perspective and evaluated
the main self-adaptive approaches proposed, in the literature.
Zedeally also evaluated the techniques to enable self-adaptation
capabilities —within CPSs- at different architectural layers. An
important conclusion is that adaptation should be implemented
in all layers of a CPSs, and that researchers must adopt a holis-
tic view of CPSs that includes (i) Self-adaptation, (ii) Auton-
omy, (iii) Efficiency, (iv) Functionality, (v) Reliability, (vi) Safety,
(vii) Scalability, and (viii) Usability. Zedeally et al. defined as
research opportunities the development of cost-effective self-
adaptation cross-layer solutions, as well as run-time model-
driven approaches that manage requirements.

1.2. Our contribution

In contrast to the SLRs of Zeadally et al. (2019a), Musil et al.
(2017), and Muccini et al. (2016), this article discusses the designs
of SA-CPSs from a perspective of the SDLC and identifies -at
each stage of the SDLC-: (i) How the development was carried
out and (ii) How sustainability -from both, the technical and
economical perspectives— was taken into account. These two
perspectives are the most relevant to CPSs according to Koziolek
et al.’s SLR (Koziolek, 2011).

The contribution of this article is summarized as follows: A
general overview of the strategies used for the development of
SA-CPSs, gaps found in each stage of the SDLC, and finally, trends
and future-research directions.

1.3. Organization

The present document is structured as follows. Section 2
presents the basis of sustainable and self-adaptive techniques, in
CPS, and the SDLC. Section 3 presents the methodology to search
and select relevant articles. Section 4 groups the articles found
in the literature, for each phase of the SDLC. Section 5 analyzes
the results of the reviewed articles, and presents the trends and
limitations found. Section 6 presents the potential challenges.
Finally, Section 7 outlines the conclusions of this research.

2. Background

This section is divided into three parts. First, it presents the
SDLC. Second, it introduces the definition of sustainability of
systems. Finally, it defines self-adaptability in CPSs.

2.1. System-development life-cycle (SDLC)

The SDLC is the framework to review the articles in this
SMS. SDLC defines all the stages a system goes through. This life
cycle is common to systems and software projects, and serves
as a framework to understand how systems are built. The SDLC
follows a set of four fundamental stages: (i) Planning, (ii) Analysis,
(iv) Design, and (v) Implementation (Dennis et al., 2014). In
software-engineering projects, it is common to have the test-
ing and maintenance stages, separated from the implementation
stage (Sommerville, 2015). Different projects may emphasize dif-
ferent parts of the SDLC, or approach the SDLC stages in different

L. Restrepo, J. Aguilar, M. Toro et al.

ways; for instance, the work of Sanchez Aristizabal and Sarmiento
Garavito (2019).

For this SMS, a SDLC is proposed in Fig. 1. This life cycle
includes the planning, specification and analysis, design, imple-
mentation, integration, quality control, and maintenance stages,
defined as follows.

Planning: In this stage of the development of a system, it is
fundamental to (i) identify business needs to build a system,
(ii) understand why the system should be built, (iii) identify the
system’s contribution to the organization or context, (iv) evaluate
if the system is economically, technically and organizationally
feasible, and (v) establish a work plan to control the project
through the entire SDLC (Dennis et al., 2014).

Specification and analysis: This stage answers the questions of
(i) who will use the system, (ii) what the system will do, and (iii)
where and when the system will be used because the application
domain determines -largely- how a project will be oriented and
executed (Ziillighoven, 2005). During this phase, the project team
investigates existing systems, identifies improvement opportuni-
ties, and develops a concept for the new system (Dennis et al.,
2014).

Design: Usually, at this stage, it is decided (i) how the system
will operate in terms of hardware, software, and networking
infrastructure that will be in place; (ii) how the user interface,
forms, and reports will be used; and (iii) what specific programs,
databases, and files will be needed. Although most of the strategic
decisions about the system are made in the analysis phase. The
design phase determines —exactly- how the system will operate.
Finally, at this stage, the system architecture must be designed
to guarantee the levels of the quality attributes specified (Dennis
et al.,, 2014).

Implementation: This stage consists of building the system, to
create the functionalities defined during the design stage (Som-
merville, 2015). Many strategies and software tools can be used
in this phase (e.g., open-source tools, Integrated Development Envi-
ronments [IDEs] to develop programs, simulation platforms, Com-
mercial Off-The-shelf [COT], and micro-controllers).

Integration: This stage integrates information technologies
(e.g., servers, databases, applications, and platforms) and physi-
cal objects (e.g., mechanic and electronic) using communication
technologies (Dennis et al,, 2014; Marwedel, 2018; Pahl et al.,
2007).

Quality control: This stage aims to validate and verify that
the system (i) is appropriate, (ii) meets all requirements, and
(iii) will perform as expected. According to Marwedel (2018),
this stage is —extremely- important for safety-critical embedded
systems. System tests are conducted to ensure that all modules
and programs meet business requirements, and acceptance tests
are done to ensure that the system meets business needs such as
usability, security, or performance (Dennis et al., 2014).

Maintenance: This stage is the process of refining a system
where corrective, adaptive, perfective, and preventive mainte-
nance are made. "Corrective maintenance is performed to fix
errors, adaptive maintenance adds new capability and enhance-
ments, perfective maintenance improves efficiency, and preven-
tive maintenance reduces the possibility of future system fail-
ure" (Shelly and Rosenblatt, 2011).

Traditionally, to develop software products, methodologies are
used. Such methodologies set up the framework that structures
the phases described above -such as the waterfall model, iterative
model, spiral model, and V-model (Sommerville, 2015)-; how-
ever, most of them lack the generality to be used in CPSs. For
that reason, this research focuses on the SDLC proposed in Fig. 1
and described above.

The Journal of Systems & Software 180 (2021) 111010

THE
SYSTEMS
DEVELOPMENT
LIFE CYCLE

5. 4.
Integration Implementation

Fig. 1. System-Development Life-Cycle from Dennis et al. (2014), Sommerville
(2015).

2.2. Sustainable development

Sustainable development is the practice of “meeting the needs
of society today without compromising the ability of future gen-
erations to meet their own needs" (Stavros and Sprangel, 2008).
In engineering, sustainability can be understood as the selection
and implementation of iterative and incremental methodologies,
which support the development of technologies in the long term,
at low cost, and with reduced effort (Pankowska, 2013).

Becker et al. (2015) identified five sustainability dimensions:
(i) environmental, (ii) social, (iii) economic, (iv) technical, and
(v) individual. Nonetheless, Koziolek et al. in a previous SLR,
found that the most relevant dimensions for CPSs are the eco-
nomic and technical (Koziolek, 2011). This is the reason why
our SMS focuses on the technical and economic dimensions,
but future studies must consider the social and environmental
dimensions. The economic dimension includes aspects such as
capital, profitability, investment, income, and wealth creation.
The technical dimension, according to Beckert et al. refers to the
longevity of software systems and infrastructure, and their ade-
quate evolution with changing surrounding conditions, including
maintenance, innovation, obsolescence, and data integrity.

The main quality attributes of sustainable system architec-
ture are Koziolek (2011): (i) maintainability, (ii) portability, and
(iii) evolvability. In what follows, these three quality attributes
are explained based on their sub-characteristics.

Maintainability: ISO/IEC 25010 (International Organization for
Standardization, 2011a) defines this attribute as the capability
of a product or system to facilitate maintenance activities -
such as corrections, improvements, or adaptation to changes in
the environment-, of requirements and functional specifications.
Also, maintainability includes the installation of updates and up-
grades. This attribute is subdivided into five sub-characteristics:
(i) modularity, (ii) reusability, (iii) analysability, (iv) modifiability,
and (v) testability. Maintainability is also related to evolvability.

Portability: According to ISO/IEC 25010, it is the “degree of
effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or
other operational or usage environment to another" (Interna-
tional Organization for Standardization, 2011a). This attribute
is subdivided into three sub-characteristics : (i) adaptability,
(ii) installability, and (iii) replaceability.

Evolvability: According to Rowe et al. (1994), it is an “attribute
that bears on the ability of a system to accommodate changes
in its requirements throughout the system’s lifespan, with the
least possible cost, while maintaining architectural integrity".
Pei Breivold (2020) established that this attribute is similar to the

L. Restrepo, J. Aguilar, M. Toro et al.

Table 1
Evolvability attribute’s sub-characteristics.

Sub-characteristic Definition

Maintainability
(Analysability
and testability)

Analysability - “Degree of effectiveness and
efficiency with which it is possible to assess
the impact on a product or system of an
intended change to one or more of its parts,
or to diagnose a product for deficiencies or
causes of failures, or to identify parts to be
modified” (International Organization for
Standardization, 2011a)

Testability - “Degree of effectiveness and
efficiency with which test criteria can be
established for a system, product or
component, and tests can be performed to
determine whether those criteria have been
met” (International Organization for
Standardization, 2011a).

This attribute is a combination of
changeability and stability (International
Organization for Standardization, 2011a)
and, according to our criteria is also
associated with the ability to extend a
system. This attribute is the degree to
which a product or system can be
effectively and efficiently modified without
introducing defects or degrading existing
product quality.” (International
Organization for Standardization, 2011a).
“Degree to which a system, product or
component prevents unauthorized access to,
or modification of, computer programs or
data” (International Organization for
Standardization, 2011a).

This attribute has been defined previously

Additional quality sub-characteristics that
are required by specific domains
(Pei Breivold, 2020).

Maintainability
(Modifiability)

Security (Integrity)

Portability
Domain-specific attributes

maintainability attribute, but in evolvability, one should consider
unexpected changes. On the one hand, Rowe et al. (1994) defined
(i) generality (accommodating change), (ii) adaptability, (iii) scal-
ability, and (iv) extensibility as quality attributes that contribute
to evolvability. On the other hand, Pei Breivold (2020) proposed
that (i) analysability, (ii) integrity, (iii) changeability, (iv) exten-
sibility, (v) portability, (vi) testability, and (vii) domain-specific
attributes are sub-characteristics associated with the evolvabil-
ity attribute. All these quality attributes can be mapped to the
ISO/IEC 25010 model, as shown in Table 1, where these attributes
are described.

A sustainable-system architecture must be able to evolve dur-
ing its life cycle: This means in development and production
environments, and this is achieved when the system is prepared
for maintenance and evolution, an attribute that -indirectly- in-
cludes the concepts of longevity and cost-effectiveness (Koziolek,
2011).

This SMS focuses on the technical and economic perspectives
of sustainability. On the technical, this article focuses on the
maintainability attribute achieved through quality attributes es-
tablished in the CPSs architecture (Hammoudi et al., 2018). This
attribute improves the evolution of the systems, decreasing life-
cycle costs and managing technical debt (Kruchten et al., 2012).
From the economic perspective, this SMS focuses on the costs
and incomes associated with the use and implementation of these
quality attributes.

2.3. Self-adaptive cyber-physical systems
Self-adaptation is the ability of a system to modify its be-

havior and/or structure in response to changes in its environ-
ment and user requirements (De Lemos et al, 2013; Weyns

The Journal of Systems & Software 180 (2021) 111010

Autonomic manager

Analyze

Knowledge

Managed element

Fig. 2. MAPE-K feedback loop.
Source: Adapted from Kephart
and Chess (2003).

and Georgeff, 2010). There are several feedback loops for the
implementation of self-adaptive systems used in the design of
CPSs. Typically, the MAPE-K loop is a dominant approach that
allows systems to manage themselves given high-level objectives,
which separates self-adaptation into the following components
(see Fig. 2) (Vizcarrondo et al., 2017).

Monitor: This component collects information by monitoring
context data from sensors and other sources (Seiger et al., 2019),
and -constantly- updates the knowledge component. This infor-
mation serves as the basis of adaptation. The monitor component
also supervises their suppliers and clients to ensure that they
are receiving and not exceeding the agreed-on level of service,
respectively (Kephart and Chess, 2003).

Analyzer: This component performs data analysis, stored on
the knowledge component, to determine if a change is needed
to satisfy the system goals. Plan: If an adaptation is needed, then
the plan component creates a procedure to reach a new tar-
get condition that satisfies the goals (including the intermediate
steps that occur when adapting from one state to another) (Ja-
han et al, 2020). In this component, strategies for translate-
service agreements are needed (Kephart and Chess, 2003). Exe-
cute: The planned procedure recommended by the plan compo-
nent is executed on the managed resources. Knowledge: This is a
shared knowledge-base (Kephart and Chess, 2003) for the other
components. The knowledge component comprises data that the
MAPE-K loop uses during the adaptation strategies.

MAPE-K is a cyclic process, where context and goals are
specified, observed, and managed. Another technique used is
multi-agents systems (MAS), which are autonomous approaches to
solving problems from artificial intelligence (Weyns and Georgeff,
2010). A MAS provides a way to conceptualize adaptive sys-
tems and self-organization of systems defined by interacting au-
tonomous agents, each acting, learning, or evolving -individually-
in response to interactions with their environments (Aguilar et al.,
2005; Dafflon et al., 2019; Perozo et al., 2008).

3. Methodology

The search strategy and the search process used for the articles
are explained as follows.

3.1. Search strategy
This research is a SMS of the methods -currently available-

for the design of the SA-CPSs systems, focused on the SDLC pro-
cess. This research uses the methodology for SMSs proposed by

L. Restrepo, J. Aguilar, M. Toro et al.

Table 2
Groups of terms and phrases.
Group Terms and phrases
G1 (“Embedded Systems” OR “Cyber Physical Systems”

OR “CPSs” OR “Cyberphysical Systems” OR
“Cyber-physical Systems” OR “Internet of Things” OR
"[oT” OR “Connected things” OR “Autonomous
systems” OR “Industrial internet of things” OR
“Intelligent Systems” OR “Industry 4.0” OR “fourth
industrial revolution™)

G2 (“Self-adaptive” OR “Self Adaptive” OR
“Self-adaptiveness” OR “Adaptative” OR “self
Adaptation” OR “self-adaptation”)

G3 (“Tools” OR “Instrument” OR “Device” OR “Strategies”
OR “Methods” OR “Techniques” OR “Frameworks” OR
“Structure” OR “Architecture” OR “Design”)

Kitchenham and Charters (2007). For this research, the following
research questions were defined to provide adequate support for
SDLC.

e (Q1) Which planning strategies were used for SA-CPS?

e (Q2.1) What was the application domain?, (Q2.2) Which were
the specified quality attributes, and (Q2.3) Which specification
techniques were used for SA-CPS?

e (Q3.1) What self-adaptive techniques were used for SA-CPS?,
and (Q3.2) What architecture styles were used for SA-CPS?

e (Q4.1) How self-adaptation was implemented for SA-CPS?,
(Q4.2) How SA-CPS was implemented in the cyber layer, (Q4.3)
physical layer, and (Q4.4) network layer?

e (Q5) How SA-CPS components (e.g., sensors, actuators, servers,
and databases) were integrated?

e (Q6.1) How many application domains were tested? (Q6.2)
How SA-CPS solutions were validated, and (Q6.3) Which quality
attributes were verified?

e (Q7) Which strategies were planned for the maintenance of
SA-CPS?

e (Q8) How technical and economical sustainability was taken
into account at each phase of the SDLC, to develop SA-CPS?

To answer the previous research questions, three groups of
terms and phrases were defined. These terms and phrases were
used in the search process, and are listed in Table 2.

The search string was generated combining the previous
groups of terms and phrases. The search string is the concate-
nation of G1, G2 and G3, showed in Table 2. The boolean search
string used in this research is “G1 AND G2 AND G3”.

The following restrictions to include/exclude publications
were defined. These criteria were developed to find the most
relevant articles to solve the research questions, and to exclude
the articles that do not fit this research.

There are four inclusion criteria (IC), numbered from IC1 to
IC4, as follows. IC1: Journal articles, conference papers, and book
chapters whose titles and abstract are related to frameworks or
architectures for self-adaptive CPSs. IC2: Journal articles, confer-
ence papers, and book chapters published between January 2010
and September 2020. IC3: Journal articles, conference papers, and
book chapters available in electronic form. Finally, IC4: Journal
articles, conference papers, and book chapters in the English
language.

There are two exclusion criteria (EC), numbered from EC1 to
EC2, as follows. EC1: Documents whose methods or techniques
do not apply to frameworks or architectures for self-adaptive
CPSs. EC2: Documents in the form of events, posters, unpublished
works, and secondary studies.

The Journal of Systems & Software 180 (2021) 111010
3.2. Search process

The search process was composed of five stages, based on
the study proposed by Li et al. (2015): (i) selection by title, (ii)
snowballing, (iii) first-results merge (iv) selection by abstract,
and (v) selection by full text. Each stage is detailed below and
summarized in Fig. 3.

Selection by title: The search process used the search strings
in Scopus and Web of Science, and the search was extended by
looking at Google Scholar, as shown in Fig. 3; after, candidate
documents were selected based on the title. Inclusion criteria IC1,
IC2, IC3, and IC4 were applied in this step. At the end of this step,
120 articles remained.

Snowballing: The backward “snowballing” technique was per-
formed to find other —potentially- relevant documents. Snow-
balling consists of checking the references of the previously se-
lected documents (Wohlin, 2014). This process could be iterated
as many as new documents are found; however, only the first
iteration was applied. At the end of this step, 39 new articles were
selected.

First-results merge: All candidate documents were merged for
each research question; however, duplicated studies were found.
A duplicated study is the one that is retrieved from different
search sources (i.e., digital libraries) because of the overlapping
between these sources. Duplicated documents were excluded
at the first stage of scanning, keeping only one version of the
document (the most complete, extended, or recent version). In
the end, 27 duplicated documents were removed. The total of
selected documents, at this stage, is illustrated in Fig. 3.

Selection by abstract: The candidate documents’ abstracts were
analyzed to guarantee that they were related to the desired topic
(i.e., SA-CPSs); at this point, 24 candidate documents remained.

Selection by full text: The previous documents’ full texts were
analyzed and cross-checks were performed by the authors to
validate the inclusion of each document, and as a result, 16
studies remained to build Table 3. Exclusion criteria EC1, and EC2
were applied at this step.

For the 16 documents selected, at the end of the search pro-
cess, it was identified that there is a growing trend in the scien-
tific production of SA-CPSs. Sweden and Italy are the countries
with the largest number of articles. Bures, T. and Gerostathopou-
los, I. are the most productive authors, and the most cited were
do do Nascimento and de Lucena (2017), and Iftikhar et al. (2017).
The subject area of the research is -mainly- in computer science
and engineering. The word-cloud for the search process result is
shown in Fig. 4. The size of each term indicates its frequency or
importance. The most common terms were (i) IoT, (ii) adapta-
tion, (iii) adaptive, (iv) software, (v) architecture, (vi) cyber, (vii)
physical, and (viii) embedded, as they were the focus of research.
Replication package is available in Mendeley repository (Restrepo,
2021).

3.3. Data items and extraction process

In this section, the methodology to review the articles is de-
tailed, which follows the workflow proposed in Fig. 1. In Section
4, the articles related to each stage of the SDLC are reviewed.
In general, the data of each paper was extracted and analyzed
through a cross-check process among the authors. Particular char-
acteristics are taken from each stage, in Fig. 1, through a
cross-check process to validate the inclusion of each character-
istic. These characteristics are detailed in Table 3, where the
characteristics and sub-characteristics to be analyzed, for each
stage, are listed. The characteristics represent some paths that the
reviewed articles, commonly, follow for each stage of the SDLC.

In Table 3, the Planning stage divides the articles that imple-
mented any planning strategy (Yes) and the articles that did not

L. Restrepo, J. Aguilar, M. Toro et al.

Scopus and
Web of
Selection by title Snowballing
N »| selection
Ne—]
Google
Scholar

Results merge Duplication
(159) removal

Selection by (
Abstract >

J t (
e - J

Selection by
I Full text
(24) 16)
Sequence

uatol f
SProcessing gyemplar
y virtual communication Sin
rmance u zat\cn transportation
e[fadaptweengmeermg componentcapabilities

e study
approach It
amework dynamic ciouss NETWOTrK gen ned el

computing software “montomg .,

quality agent goal rnmmue ts

us¢ automation ad a ptatlo n techmques quaniiied

m\,bUI| ings b making “ieton
st S L thln degision communiaions
T osenergy & (haning "
robots availability checking g contro

sensing m|ddlenyyygre t t machlne
' services I n e rn e phySIcal; s

= t
aNd modehmeae

Syste M S 2N dneieie

QOO] S S em optimal

machinery qx antitative alal

md e AICHItECTU refot ih‘teﬁ”ﬂ‘gér“fﬂ;
evah‘atw‘;ﬁ 5 ad a ptlve nashiiot e text computer state

? INg process planning
membedded

of distributed equilit

applications
execution runnmessmatx\/afes pp!
imanintheloop frameworks change

cyberphysicalse
networking efficienc m& msf\mue

ence

Fig. 4. Word-cloud associated with the results of the search strategy.

make it or did not give information about it (No). The Specification
and analysis stage defines the application domain (dependent or
independent of the context), the quality attributes established
in the designed architecture or framework, and identifies how
the requirements of the proposed solution were specified. The
Design stage identifies in which CPS architecture layer the arti-
cles are focusing (Cyber, Network, or Physical), the architecture
style, and the self-adaptation technique used. The Implementation
stage identifies the cyber and physical approaches used by the
reviewed articles, differentiating the articles that used any of the
listed layers and the articles that used another type of layer.
The Integration stage differentiates the articles that integrated

The Journal of Systems & Software 180 (2021) 111010

the physical and cyber layers (Yes) and the articles that did not
make it or did not give information about it (No). The Quality
control stage identifies how articles measure the quality of the
system. In this sense, quality control differentiates the articles
that implemented any unit test and integration test (Yes) and the
articles that did not make it or did not give information about it
(No). The quality control stage differentiates the strategies used
to execute the system tests, and the attributes tested to achieve
the acceptance tests. The Maintenance stage identifies the articles
that implemented any maintenance strategy (Yes) and the articles
that did not make it or did not give information about it (No).

3.4. Threats to validity

There are four threats to the validity of this research. The
strategies to minimize such threats are explained in what follows.
Table 4 lists some biases that were taken into account.

Construction validity: To limit construction threats, several
measures were taken: (i) the search strategy and the search
process used were guided by a well-known methodology pro-
posed in the literature. (ii) in the construction of the search
strings, different terms that could relate to CPSs were taken into
consideration, and (iii) the research questions were answered
according to a categorization scheme, defined in Table 3, through
a cross-check process among the authors.

Internal validity: We searched three online digital libraries, in-
cluding Google Scholar. These libraries cover the majority of high-
quality publications in the field, but the lack of more libraries
may lead to a bias in the identification of primary studies (Zhou
et al., 2016). Furthermore, we used snowballing (Wohlin, 2014)
as a complementary search strategy to reduce the possibility of
missing relevant articles. Also, the search strategy was developed
and reviewed by all the authors. Finally, an explicit statement of
the methods used for the research review is described for the
reader to make an informed assessment of the scientific rigor of
the review and the strength of the review’s inferences.

External validity: All the articles taken into consideration were
selected based on their relevance to the SA-CPSs domain. The
excluded papers may affect the generalizability of our results.
This threat is minimized by the reliability of our research pro-
cess because it is a systematic process that allows replication
(proposed by Li et al. (2015)).

Conclusion validity: To avoid bias in the data extraction pro-
cess, the data was extracted through a cross-check among the
authors. A cross-check minimizes different interpretations of the
data and subjective judgment.

4. Results

This section presents the results divided into each stage of the
SDLC (see a summary in Table 7).

4.1. Planning

The articles do not show -in detail- how the planning stage
was developed in their proposals because it is not usual to present
this type of information in research articles. Nonetheless, it was
identified the following information, for each planning activity,
following the guidelines of Dennis et al. (2014).

Identification of the opportunity: In most of the articles, the
identification of the opportunity to develop the system was made
through a literature review, where challenges associated with
the design of CPS and IoT systems were addressed, such as net-
working settings (Iftikhar et al., 2017), dynamic environment (Lee
et al, 2019), domain dependency (Park and Park, 2019), and
deployment issues (Alkhabbas et al., 2020).

L. Restrepo, J. Aguilar, M. Toro et al.

The Journal of Systems & Software 180 (2021) 111010

Table 3
SDLC characteristics to be analyzed.
Stage Characteristics Sub-characteristic
. Planning Yes
Planning strategy No
Application Dependent
domain Independent
Quality Performance
attributes Scalability
Energy-efficiency
Reliability
Specification and analysis Maintainability
Security
Interoperability
Usability
Requirement System modeling (UML)
specification Natural language
Mathematical specification
Architecture Cyber
Layer Network
Physical
Architecture Cloud-service
style Client-server
Design Edge computing
Layered
N/A
Self-adaptation MAPE-K
technique Agents
Others
Cyber layer Web-application
Web-service
Implementation Component-based
Other
Physical layer Physical components
Model representation
Integration Integration Yes; No
Unit testing Yes; No
Integration Yes
testing No
System tests Simulation
Small-scale
Quality control Real case
Acceptance Adaptability
tests Scalability
Performance
Energy-efficiency
Reliability
. Maintenance Yes
Maintenance -
strategy No

Table 4

Overview of potential biases in the SMS process, based on Cooper (2010), Felson (1992), Janssen (2018), Zhou et al.

(2016).

Bias types

Description

Solutions

Publication bias

Location bias

Language bias

Citation bias

Study selection bias

Tendency to selectively publish
some articles over others (e.g. only
significant effects or large studies).

Tendency to select studies that are
only indexed in electronic
databases.

Tendency to exclusively select
studies based on any language.

Tendency to select studies that
may be relevant based in the
citation results, this may produce a
biased sample of studies.

It means some errors (e.g., related
studies are not chosen or
irrelevant, poor quality studies or
only positive papers are chosen),
which may be found in the search
process (Zhou et al,, 2016).

Researchers cross-check the
completeness of searches and
validate the suitability of each
study for inclusion.

Google Scholar was used as a
source of non-indexed articles.

English was the dominant research
language in the studies from all
databases.

Studies selection is not based on
the citation number avoiding this
type of bias. The selection was
based on the inclusion and
exclusion criteria.

A rigorous search strategy was
defined and applied. Also, to
mitigate misinterpretations
title/abstract, introduction and
conclusions were read before
rejecting or accepting a paper.

L. Restrepo, J. Aguilar, M. Toro et al.

Economic-feasibility evaluation: Articles, in general, do not dis-
cuss development or operational costs, such as consultant fees,
hardware repair, software upgrades, user training, software-
licensing fees, and return on investment (Dennis et al., 2014).
An exception is the research of Trihinas et al. (2018) that defines
that their framework is based on a low-cost adaptive and learning
model. Intangible benefits the system will have were identified as
a higher-quality of the product -directly- associated with quality
attributes (International Organization for Standardization, 2011a)
(also called nonfunctional requirements), defined in the system'’s
architecture.

Organizational-feasibility evaluation: From an organizational
perspective, a feasibility evaluation -such as system acceptance
by the users, and incorporation in the organization or context- is
not discussed in the revised articles.

Technical-feasibility evaluation: From a technical perspective,
risks associated with the technology are not discussed.

In this stage, self-adaptation was defined as an opportunity
to detect context changes from unintentional behaviors within
the physical world to provide appropriate services, enabling a
more reliable process execution. Sustainability -from the tech-
nical perspective- although was not explicitly mentioned, it is
directly associated with the intangible benefits planned. Sus-
tainability —from the economic perspective- was not mentioned,
except Trihinas et al. (2018) that related strategic planning with
the use of low-cost techniques to build inexpensive solutions,
addressing economical sustainability.

4.2. Specification and analysis

The identification of the application domain is a part of the
requirements elicitation in the specification and analysis stage
(Sommerville, 2015). In most of the articles, the application do-
main is independent of the context, which means that the pro-
posed SA-CPSs architectures or frameworks have the full poten-
tial to cover diverse domains, such as smart cities, smart agri-
culture, and smart homes. The exception is the work of Provoost
et al.’s work (Provoost and Weyns, 2019), which presented the
Dingnet architecture ~where mobile embedded systems (i) move
in a city area, (ii) adapt their network settings to ensure reliable
and energy-efficient communication, and (iii) support the design
and evaluation only for the smart-city application domain.

In the requirements elicitation, the functional and quality at-
tributes were gathered from the literature, surveys, tools, or
personal experience. Most articles included the self-adaptability
requirement, one of the search criteria of this SMS. This require-
ment is understood in CPSs as the ability to modify their be-
havior and/or structure in response to changes in their envi-
ronment and user requirements (De Lemos et al., 2013; Weyns
and Georgeff, 2010). The quality attributes can be grouped into
nine characteristics: (i) functional suitability, (ii) reliability, (iii)
performance, (iv) efficiency, (v) usability, (vi) security, (vi) com-
patibility, (viii) maintainability, and (ix) portability, according to
ISO/IEC 25010:2011 (International Organization for Standardiza-
tion, 2011a). Each characteristic is composed of a set of related
sub-characteristics. Quality attributes, in the reviewed articles,
were very varied, as it is shown in Table 5, “Addressed” column.

Eleven articles specified performance, where latency, through-
put, overhead, and CPU-cycles consumed were established to
measure it. Four articles specified the energy efficiency, which
is part of the performance attribute, which -usually- is defined
in IoT devices to expand battery life in devices with intense
processing that increases energy consumption (Xiao et al., 2010).

Four articles specified the scalability, which is part of the
adaptability attribute, and refers to the scalability of the inter-
nal capacity that can be vertical, where hardware and software

The Journal of Systems & Software 180 (2021) 111010

capacity is increased by adding resources, or horizontal, where
more nodes, such as servers or computers, are added to work as
a single logical unit (Rouse, 2007).

Five articles specified the reliability, focusing on the number of
packets lost, the capability to recover after a failure, automated
error handling, and service accuracy.

Four articles specified maintainability, whose definition is pre-
sented in Section 2.2. For the reusability sub-characteristic of
maintainability, articles focused -primarily- on the reusability of
the device-level functionality and components.

Finally, two articles focused on security and one article in
interoperability.

Quality attributes are documented in a process called require-
ments specification, where requirements can be represented in
natural language, structured language, graphical notations such
as Unified Modeling Language (UML) diagrams, and mathemati-
cal specifications (Sommerville, 2015). In the reviewed articles,
three types of specifications of the architecture or framework
were found: (i) Natural language, (ii) System modeling, and
(iii) Mathematical specification.

Natural language: All articles used natural language to explain
the requirements that the proposal will have, and some comple-
mented with an overview figure, such as Park and Park (2019),
Lee et al. (2019), Cui et al. (2013), Iftikhar et al. (2017), Alkhabbas
et al. (2020), Bedhief et al. (2019), Camara et al. (2020).

System modeling: The articles (Park and Park, 2019; Seiger
et al., 2019; do Nascimento and de Lucena, 2017; Gerostathopou-
los et al., 2019; Provoost and Weyns, 2019; Torres et al., 2017;
Alkhabbas et al., 2020; Ramesh Babu and Mohana Roopa, 2017)
used UML diagrams, such as component diagrams, class diagrams,
sequence diagrams and activity diagrams.

Mathematical specification: The articles (Trihinas et al., 2018;
Lee et al., 2019) used mathematical specifications, such as math-
ematical concepts and finite-state machines.

In this stage, self-adaptation was specified as the main re-
quirement of the proposed solutions. Sustainability -from the
technical perspective- is implicit in the specification of main-
tainability, scalability, and security attributes. From the economic
perspective, explicit information was not found, but economic
sustainability can be implicitly associated with the performance
and energy-efficient attributes since it assists the operation costs
and energy costs, respectively.

4.3. Design

Reviewed articles focused on one or more layers of the CPSs
architecture (cyber, network, physical) (Zeadally et al., 2019b). In
most of the reviewed articles, the focus is on the cyber layer. In
the articles (Trihinas et al., 2018; Cui et al., 2013), the framework
or architecture can be applied to the physical layer, such as sen-
sors, actuators, and controllers. In Iftikhar et al. (2017), Provoost
and Weyns (2019), Torres et al. (2017), Bedhief et al. (2019),
the network-layer design is reflected through the management
of issues such as packet losses, delays, and network topology
changes.

In Torres et al. (2017), Alkhabbas et al. (2020), a client-server
architecture is defined where users or devices access servers to
use services. Authors of Park and Park (2019), Alkhabbas et al.
(2020), Camara et al. (2020) defined a cloud architecture where
the software components and services are distributed across the
cloud. In Trihinas et al. (2018), Iftikhar et al. (2017), Alkhab-
bas et al. (2020), Bedhief et al. (2019), an edge-computing ar-
chitecture is used where software components and embedded
systems are placed in networks, and processing and data dis-
semination are over the network. In Cui et al. (2013), Camara
et al. (2020), a layered architecture is used to support scalability.

L. Restrepo, J. Aguilar, M. Toro et al.

Table 5
Quality attributes addressed and tested in the reviewed articles.

The Journal of Systems & Software 180 (2021) 111010

Quality attributes Addressed

Tested

Performance

(2019) and Ramesh Babu and Mohana Roopa (2017)
Energy efficiency
(2019) and Camara et al. (2020)
Scalability
et al. (2020), Bedhief et al. (2019) and Camara et al. (2020)
Vertical -Camara et al. (2020)
Reliability

Maintainability
Ramesh Babu and Mohana Roopa (2017)

Provoost and Weyns (2019) and Torres et al. (2017)
do Nascimento and de Lucena (2017)

Security
Interoperability

Park and Park (2019), Seiger et al. (2019), D’Angelo et al. (2018),
Trihinas et al. (2018), Lee et al. (2019), Gerostathopoulos et al.
(2019), Cui et al. (2013), Alkhabbas et al. (2020), Bedhief et al.

Trihinas et al. (2018), Iftikhar et al. (2017), Provoost and Weyns
Horizontal - Park and Park (2019), Trihinas et al. (2018), Alkhabbas
Seiger et al. (2019), Iftikhar et al. (2017), Provoost and Weyns (2019),

Bedhief et al. (2019), Camara et al. (2020) and D’Angelo et al. (2018)
Park and Park (2019), Seiger et al. (2019), Cui et al. (2013) and

Park and Park (2019), Seiger et al. (2019), Trihinas et al. (2018), Lee
et al. (2019), Gerostathopoulos et al. (2019), Cui et al. (2013),
Alkhabbas et al. (2020), Bedhief et al. (2019) and Ramesh Babu and
Mohana Roopa (2017)

Trihinas et al. (2018), Iftikhar et al. (2017), Provoost and Weyns
(2019) and Camara et al. (2020)

Park and Park (2019), Trihinas et al. (2018), Alkhabbas et al. (2020)
and Bedhief et al. (2019)

Seiger et al. (2019), Iftikhar et al. (2017), Provoost and Weyns
(2019), Bedhief et al. (2019) and Camara et al. (2020)

In D’Angelo et al. (2018), do Nascimento and de Lucena (2017),
Lee et al. (2019), Gerostathopoulos et al. (2019), Kit et al. (2015),
Provoost and Weyns (2019), Seiger et al. (2019), Ramesh Babu
and Mohana Roopa (2017,?), a specific architecture is not raised
because they implement their solution as a software component
or software project.

MAPE-K is the dominant self-adaptation technique in the
design of CPSs. The articles (Seiger et al.,, 2019; D’Angelo et al.,,
2018; Gerostathopoulos et al., 2019; Kit et al., 2015; Iftikhar
et al,, 2017; Torres et al.,, 2017; Alkhabbas et al., 2020; Camara
et al.,, 2020; Park and Park, 2019; Lee et al., 2019; Ramesh Babu
and Mohana Roopa, 2017) used this technique. Provoost and
Weyns (2019) used a simple feedback loop. Bedhief et al. (2019)
used an autonomous manager to adapt a network to an on-
demand application based on the available resources. do Nasci-
mento and de Lucena (2017) used adaptive agents that make
decisions on a controller, which could be a finite-state ma-
chine or a machine-learning technique. Trihinas et al. (2018)
used probabilistic-learning algorithms to reduce data volume
and network traffic between IoT devices and cloud services: The
framework created is embeddable in the core software of IoT
devices.

It was identified that most of the articles focused on the
autonomic-computing paradigm use the MAPE-K feedback loop.

Three articles mentioned paradigms such as context-aware,
which is a feature of self-adaptation where intelligent systems
detect context changes and react based on their environment.

Three articles mentioned machine-learning (ML) paradigm,
where ML techniques are used to perform adaptations. One ar-
ticle addressed the process-aware paradigm, where automated
processes in CPSs require that the effects of the processes in the
environment and the context are considered (Wombacher, 2011).

One article addressed the model-driven engineering paradigm
(D’Angelo et al.,, 2018), where models are used to engineer SA-
CPSs and exploited in all stages of the SDLC. One article addressed
the goal-driven paradigm, where a set of devices with individual
functionalities connect and cooperate temporally to achieve the
user goal (Alkhabbas et al., 2020).

One article addressed the MAS paradigm, to model real-world
systems and managing large and distributed-information sys-
tems.

One article addressed the fog-computing paradigm, to respond
to the requirements in terms of reliability, delay, and scalabil-
ity (Sanchez et al., 2017).

Table 6 presents a summary of paradigms used in the design
stage, identified by the authors of this SMS.

At this stage, self-adaptation is achieved through adaptation
techniques, mainly, the MAPE-K feedback loop. Sustainability -
from the technical perspective- is associated with the design of

software components that can be reused, aiming at the main-
tainability attribute. Technical sustainability is also associated
with the use of layered and cloud-based architecture that al-
lows scalability. Sustainability —-from the economic perspective-
is associated with the design of algorithms that reduce costs in
analysis, data collection and energy consumption.

4.4. Implementation

This section focuses on how the cyber and physical layers
were implemented for this type of system, and what technology
decisions were taken.

In the cyber layer, most of the reviewed articles implemented
their proposals as software components or software projects.
The articles (D’Angelo et al., 2018; do Nascimento and de Lu-
cena, 2017; Lee et al., 2019; Gerostathopoulos et al., 2019; Kit
et al, 2015; Provoost and Weyns, 2019; Seiger et al., 2019)
proposed solutions implemented as Java-projects, mostly using
Eclipse IDE. Also, some of the software projects are available in
the GitHub repository: A great advantage of these projects is that
they can be downloaded and used to experiment in different
application domains. Park and Park (2019) implemented a web-
application where developers can easily (i) upload implemented
components, (ii) search existing components, (iii) register par-
ticipant systems/devices, and (iv) launch virtual machines. This
implementation strategy allows developers to focus on imple-
menting IoT collaboration services without caring about the type
of participating devices. Also, Torres et al. (2017) implemented
a web-application to monitor and request data from sensors as
temperature and humidity. The works of Seiger et al. (2019),
Iftikhar et al. (2017), Camara et al. (2020) implemented a web-
service to be used by external entities, such as services and
applications. In Trihinas et al. (2018), a monitoring framework
was used in a server. In Alkhabbas et al. (2020), a simulator
platform was used in a server. In Bedhief et al. (2019), a network
emulator was used in virtual machines.

In the physical layer, the articles (Park and Park, 2019; Seiger
et al., 2019; Trihinas et al., 2018; Lee et al., 2019; Cui et al., 2013;
Iftikhar et al., 2017; Torres et al., 2017) used physical components
(e.g., sensors, actuators, and controllers) in their implementa-
tions, such as Arduino, Raspberry, smartphones, temperature, and
humidity sensors. In D’Angelo et al. (2018), do Nascimento and
de Lucena (2017), Lee et al. (2019), Gerostathopoulos et al. (2019),
Kit et al. (2015), Iftikhar et al. (2017), Provoost and Weyns (2019),
Alkhabbas et al. (2020), Bedhief et al. (2019), Camara et al. (2020),
Ramesh Babu and Mohana Roopa (2017), a model representation
was used in platforms that simulate the behavior of physical
components.

The communication between these layers was made through
the network with the use of hypertext transfer protocol (HTTP) and

L. Restrepo, J. Aguilar, M. Toro et al.

The Journal of Systems & Software 180 (2021) 111010

Table 6
Paradigms used in the design of self-adaptive CPSs.
Paradigm Articles

Autonomic computing

Park and Park (2019), Seiger et al. (2019), D’Angelo et al. (2018), Lee et al. (2019), Gerostathopoulos et al. (2019), Kit et al.

(2015), Iftikhar et al. (2017), Torres et al. (2017), Alkhabbas et al. (2020), Camara et al. (2020), Ramesh Babu and

Mohana Roopa (2017)
Context-aware
Machine learning
Process-aware
Model-driven engineering
Goal-driven
MAS
Fog computing

Seiger et al. (2019)

D’Angelo et al. (2018)

Alkhabbas et al. (2020)

do Nascimento and de Lucena (2017)
Bedhief et al. (2019)

Park and Park (2019), Ramesh Babu and Mohana Roopa (2017), Bedhief et al. (2019)
Camara et al. (2020), Trihinas et al. (2018), do Nascimento and de Lucena (2017)

representational state transfer (REST) standards, but, especially, a
publish-subscribe network protocol, the message queue telemetry
transport (MQTT) broker was —widely- used.

In this stage, self-adaptation was implemented, mainly, in the
cyber layer. Sustainability —from the technical and economical
perspectives— complies with what is stated in the design stage.

4.5. Integration

In the reviewed articles, it was not explicit the integration
process, but it was common to find the “testbed” concept where
the authors showed how a solution design (or proof-of-concept)
of the proposal would be. A testbed includes an environment
with (i) tools, (ii) software components, (iii) servers, (iv) network
components, (v) physical devices, and (vi) their communication.
Therewith, the authors demonstrate, in a prototype, in some
cases, the integration of the software layers and physical ob-
jects (Park and Park, 2019; Seiger et al., 2019; do Nascimento
and de Lucena, 2017; Trihinas et al., 2018; Lee et al.,, 2019;
Cui et al., 2013; Iftikhar et al., 2017; Torres et al.,, 2017). When
physical devices are not used, the system integration is made
by combining (i) software packages and libraries (Camara et al.,
2020), (ii) simulation platforms for CPSs (Gerostathopoulos et al.,
2019), (iii) network simulators (Kit et al., 2015), (iv) servers, and
(v) virtual machines (Alkhabbas et al., 2020; Bedhief et al., 2019),
so that they can be treated as a unit.

This stage did not provide much information about
self-adaptation, nor sustainability from neither the technical nor
economic perspectives.

4.6. Quality control

The authors of the reviewed articles tested their proposals in
—usually- one specific application domain. do Nascimento and
de Lucena (2017), Trihinas et al. (2018) tested their proposals
in two or more application domains. The most used application
domains for testing were smart cities, smart homes, smart public
security, smart power grid, smart devices, streaming services, and
smart greenhouses.

Unit-testing or component-testing involves verifying that each
unit meets its specification. In the reviewed articles, there is
no evidence of component tests in isolation from the rest of
the system. This type of testing is considered important because
(i) it allows verifying whether the functional and non-functional
behaviors of the component are as designed and specified, (ii) it
helps to reduce risks, (iii) it builds confidence in the component’s
quality, (iv) it finds defects in the component and (v) it prevents
defects (ISTQB, 2018).

The components were combined to integrate systems and to
ensure that the system works properly -focusing on the flow
control and data exchanged among objects- (Dennis et al., 2014),
and to detect defects in the interfaces and the interactions among
them, known as integration testing. In the reviewed articles, end-
to-end (E2E) integration testing -wherein it is verified that a

10

Verification of scenarios

Real-world scenarios

Small-scale

Simulation platforms

o
N
IS
o
[
"
[S)

Papers quantity

Fig. 5. Strategies used to execute and verify the scenarios.

defined set of interconnected systems will perform correctly (Tsai
et al.,, 2001)- was used in Park and Park (2019), D’Angelo et al.
(2018), do Nascimento and de Lucena (2017), Trihinas et al.
(2018), Gerostathopoulos et al. (2019), Bedhief et al. (2019), Ca-
mara et al. (2020).

Almost all articles defined at least one scenario to be tested,
as in Park and Park (2019), Seiger et al. (2019), do Nascimento
and de Lucena (2017), Trihinas et al. (2018), Lee et al. (2019),
Gerostathopoulos et al. (2019), Provoost and Weyns (2019), Tor-
res et al. (2017), Bedhief et al. (2019), Camara et al. (2020), which
should be examined through system testing. System testing can
be performed in different ways. In the reviewed articles, common
strategies to execute and verify scenarios defined for CPSs are the
following (see a summary in Fig. 5).

Simulation platforms are used for complex and complicated
systems, such as CPSs, IoT, and multi-agent systems. In Park and
Park (2019), D’Angelo et al. (2018), do Nascimento and de Lu-
cena (2017), Lee et al. (2019), Gerostathopoulos et al. (2019), Kit
et al. (2015), Iftikhar et al. (2017), Provoost and Weyns (2019),
Alkhabbas et al. (2020), Camara et al. (2020), the validation of
their design was made through simulations of physical models
(representation of real devices), scenarios, and environments.

Small-scale or also called prototyping, is where the scenario to
test is constructed in small size and limited in extent. For Park
and Park (2019), do Nascimento and de Lucena (2017), Lee et al.
(2019), Bedhief et al. (2019), system testing was made through a
small-scale scenario.

Real-world scenarios, where real-world objects are used in real
environments. In Seiger et al. (2019), Trihinas et al. (2018), Torres
et al. (2017), system testing was executed in real-world scenarios.

Acceptance criteria is a kind of acceptance testing associated
with the system’s requirements -such as functional and quality
attributes— defined in the specification and analysis stage, are
verified. Acceptance testing is used to ensure that the behaviors of
the system are as specified (ISTQB, 2018). In the reviewed articles,
maintainability, security, and interoperability were requirements

L. Restrepo, J. Aguilar, M. Toro et al.

-specified in the Specification stage- but it was not found evi-
dence of the validation of these attributes in the quality-control
stage.

Few articles, such as D’Angelo et al. (2018), Lee et al. (2019),
Camara et al. (2020), did not test performance and scalability
attributes due to the scope or limitations of the research. They
reported that, in future investigations, these attributes will be
evaluated. The quality attributes evaluated, in each article, for the
quality-control stage, are listed in Table 5, “Tested” column.

In this stage, self-adaptation was the main objective and re-
quirement tested, to demonstrate the feasibility of the proposals.
This stage did not provide information about sustainability -from
technical and economic perspectives.

4.7. Maintenance

In the reviewed articles, it was identified that the maintenance
activities are not explicitly mentioned, but -implicitly- they were
performed since they are presented as future research. Mainte-
nance could be associated with adaptive maintenance-planning
activities explained as follows.

Planning to improve the implementation of the system: As ex-
amples, Seiger et al. (2019) used alternative algorithms in the
Analyze-and-Plan stages of the MAPE-K feedback loop to re-
duce modeling effort and increase autonomy. Lee et al. (2019)
proposed to improve the decision-making method using ML tech-
niques. Bedhief et al. (2019) proposed to use artificial intelligence
and ML methodologies to improve the autonomous manager.
Provoost and Weyns (2019) proposed to enhance the simulator
using collected data from an experimental context, to bring it
closer to a real setting.

Planning to add functionality and new features: Some works
plan to extend their researches with new functionalities and
features. As an example, Alkhabbas et al. (2020) proposed to
enable scalability to support large-scale IoT environments, and
to extend the approach to consider energy consumption, privacy,
security, and cost reliable deployment topologies for Goal-Driven
IoT Systems (GDSs). D’Angelo et al. (2018) proposed to develop
a validation technique to detect unintended interactions and to
allow modularization and adaptation at run-time.

Planning to continue with the quality-control stage: Some arti-
cles plan to test the quality attributes -initially defined in the
specification and analysis stage-, but did not reach the quality-
control stage. As an example, D’Angelo et al. (2018) proposed
to evaluate the performance and scalability of the tool. Camara
et al. (2020) proposed to explore scalability and performance
measures, such as response time, use, and throughput, as well as
the trade-offs and robustness of their approach.

Planning to expand the application of the approach: Authors
of Park and Park (2019), do Nascimento and de Lucena (2017)
proposed to apply the proposed solution in various domains to
increase domain coverage.

For self-adaptation, it is notable that the researchers plan to
improve the implementation of the MAPE-K feedback loop with
the use of alternative algorithms, such as ML techniques. For
sustainability —from the technical and economic perspectives-
explicit information was not found in this stage.

5. Discussion

This section presents the most important trends and limita-
tions concerning the results from Section 4. Trends and limita-
tions are divided into the stages of the SDLC (see a summary of
limitations in Table 8 and a representation of trends in Fig. 6')

1 An interactive demo of this figure can be downloaded from https://github.
com/LuisaRestrepo/Sustainable-SA-CPSs, where there is more information about
this study.

11

The Journal of Systems & Software 180 (2021) 111010

Planning

At the planning stage, all articles defined the motivation and
identified the opportunity to be addressed. Everyone used at
least one planning strategy, as shown in Fig. 6. No trends were
identified at this stage.

A weakness observed at this stage is the lack of a better
specification about economic aspects such as development costs and
revenues. This specification would serve to help future researchers
to (i) identify the economic feasibility to replicate or to use the
proposed design, (ii) identify the viability in project planning and
technology adoption, and (iii) know the relevance of the design
to the business contexts. Since the focus of the reviewed articles
is on intangible benefits, sustainability —-from the technical and
economic perspective- was not evaluated.

Specification and analysis

In the specification and analysis stage, almost all articles de-
fined that their design can be applied to any application domain.
The first trend is the creation of designs that are not limited
to a particular application domain and the implementation of
generic solutions that allow using diverse devices. Second, as
it is shown in Fig. 6, performance is the most commonly used
attribute when designing SA-CPSs, which coincides with the SLRs
of Muccini et al. (2016) and Musil et al. (2017). Third, attributes
such as energy-efficiency, scalability, and reliability are widely
used. Finally, natural language is the most used technique to
specify system requirements -sometimes- accompanied by UML
diagrams (usually, component diagrams).

Self-adaptability is allowing systems to deal with uncertain-
ties, resulting in a high capacity of maintenance aiming at the
sustainability of the systems from the technical perspective. Sus-
tainability has also been linked with the scalability attribute.
From the environmental perspective, sustainability has been ad-
dressed in the energy-efficient attribute associated with perfor-
mance, and to reduce the environmental impact by reducing the
consumption of energy of the physical devices. Note that there
are trade-offs between performance and energy consumption.

The main weakness identified in this stage is that the quality
attributes associated with the self-adaption and sustainability
-such as security, interoperability, usability, modularity, modi-
fiability, compatibility, testability- are not being considered or
specified in a detailed way. Furthermore, in some cases, it is not
clear how the defined quality attributes will be measured.

Design

For the design stage, the most common trend is to use the
MAPE-K feedback loop, which is consistent with the SLR of Muc-
cini et al. (2016). MAPE-K is applied -mainly- to the cyber layer,
with the implementation of software components. Besides, very
few articles used ML approaches to enhance MAPE-K compo-
nents (Camara et al., 2020; Trihinas et al., 2018; do Nascimento
and de Lucena, 2017).

The weakness observed at this stage is that few articles used
paradigms, such as cloud computing, edge computing and fog
computing. As the focus of most articles is on the cyber layer,
there is a lack of designs that include the physical layer, then
special interfaces or protocols for certain devices have not been
considered. This could imply that the cyber layer may not cor-
rectly accept inputs (e.g., data, control, and parameters) from
the physical layer, or may send incorrect outputs to the physical
layer.

L. Restrepo, J. Aguilar, M. Toro et al.

The Journal of Systems & Software 180 (2021) 111010

Table 7
Summary of the results.
Stage Q1 - Q7: Methods and strategies used Q8 - Sustainability dimensions
Technical Economical
(Q1) Identification of the opportunity in Implicitly associated
Planning the literature. with the identification of Planning to use low-cost

(Q1) Identification of intangible benefits
associated with higher-quality
attributes.

intangible benefits of the
product.

techniques.

(Q2.1) Application domain independent
of the context

(Q2.2) Performance, energy-efficiency,
scalability, reliability, maintainability,
security, and interoperability, as the
specified quality attributes.

(Q2.3) Natural language, system
modeling, and mathematical
specification as the most used
specification techniques.

Specification and analysis

Implicit in the specification of
maintainability, scalability, and
security attributes.

Implicitly associated with the
performance and
energy-efficient attributes

(Q3.1) Self-adaptation is achieved
through adaptation techniques such as
MAPE-k, adaptative agents,
probabilistic-learning algorithms, and
autonomous managers.

(Q3.2) The use of architectural styles
such as cloud, client-server, edge
computing, and layered.

Design

Design of software components
that can be reused
(Maintainability).

The use of layered and cloud-based

architecture (Scalability).

Design of algorithms that
reduce costs in analysis, data
collection, and energy
consumption.

(Q4.1) Self-adaptation was
implemented, mainly, in the cyber layer
as Java-projects.

(Q4.2) The cyber layer was
implemented through software
components, web-application, web
service, and the use of servers and
simulator platforms.

(Q4.3) The physical layer was
implemented mostly as a model
representation, a few with the use of
physical components.

(Q4.4) The network layer was
implemented through the use of MQTT,
REST, and HTTP protocols.

Implementation

It complies with what is stated
in the design stage.

It complies with what is stated
in the design stage.

Integration (Q5) System integration was made by
combining software packages and
libraries, simulation platforms for CPSs,
network simulators, servers, virtual

machines, and physical devices.

No information

No information

(Q6.1) Most proposals were tested in
one specific application domain.

(Q6.2) Simulation platforms, small-scale,
real-world scenarios were the validation
techniques used to test the scenarios.
(Q6.3) Performance, energy-efficiency,
scalability, and reliability were the
verified quality attributes.

Quality control

No information

No information

(Q7) Plan to improve the
implementation of the MAPE-K
feedback loop.

(Q7) Planning to add functionality and

No information

No information

Maintenance new features.
(Q7) Planning to continue with the
quality-control stage.
(Q7) Planning to expand the application
of the approach.
Implementation have disadvantages associated with the use of physical-model

In the implementation stage, the trend is to implement the
proposed solutions as component-based and to use model repre-
sentations for physical components.

The weaknesses observed at this stage are two. First, although
the use of component-based approaches, attributes crucial for
self-adaptation -such as modularity and reusability- were not
directly mentioned and, therefore, it is not established how they
will be measured. Second, the model-representation techniques

12

representations, since physical aspects such as battery life, data

transmission, and failures are not taken into account.

Integration

In the integration stage, it is identified that almost all articles
integrated their solutions with software systems and a few with
physical components. A weakness observed at this stage is the

L. Restrepo, J. Aguilar, M. Toro et al.

Planning strategy

PLANNING

Application domain

Quality attributes

SPECIFICATION
AND ANALYSIS

Requirements specification

The Journal of Systems & Software 180 (2021) 111010

[Planning-ves | Planning-N0 |

| Dependent i Independent |

[~ Encrgy cfficiency | Scalability | Performance J| ~Maintainability |~ Reliobilty | Others |

[Systemumt [Naturallanguage

CPS Architecture layer focus

| Cyber W Network ___J _Physical |

| MAPEK ___J Agents __J _ Others2 |

ll Web-servicc | Componentbased Wl Other |

Physical components ll Model representation

[integration-Yes)| integration-No~|

UnitTesting-Yes UnitTesting-No

| Simulation [l ___ Small-scale __Jj

4
I~
wv
w
o
Architecture style
Self-adaptation technique
z
=}
g Cyberlayer
2z
w
=
=]
o .
S Physical Layer
z
Q
= 5
g Integration
o}
w
=
£
Unit testing
—
o . .
E Integration testing
8
£ .
3 System testing
=)
(=]
Acceptance testing
s}
2
<
o
E Maintenance strategy
<
2

[aC Scalabitty | QC-Performance || QC-Energy efficiency | QC-Relaibiity |

Fig. 6. Trends of the selected articles for designing self-adaptive CPSs.

lack of information on how the components were joined as one large
system.

Quality control

In the quality-control stage, a trend -observed in Fig. 6- is to
simulate the scenarios to evaluate and to achieve system testing.
To achieve acceptance testing, the most tested quality attributes
were scalability, performance, and energy-efficiency.

The main weaknesses observed at this stage are that there is
a lack of information on unit testing (or component testing) and a
lack of integrated testing of the subsystems that together compose
the system. Only a general environment of tests was achieved.
Frameworks and architectures have been tested in a few appli-
cation domains; in most of them, they were simulated. There is
a need to verify the real-world effects and the real-time behavior
of the proposed solutions. Finally, more experimental tests are
needed to measure quality attributes —crucial for self-adaptation-
such as security, usability, testability, maintainability, and inter-
operability of the proposed designs.

13

Maintenance

In the maintenance stage, it is clear that —with the use of the
autonomic paradigm- systems will maintain and adjust their op-
eration for situations like failures in the software or hardware, or
changes in the components at run-time. Nonetheless, no explicit
information was found about the activities carried out to achieve
technical maintenance to increase the useful life and reliability
of the systems. It was identified maintenance activities -such as
planning- to improve and enhance the proposed designs in future
research. For this reason, a weakness observed at this stage is the
lack of information on how technical maintenance can be achieved.

6. Challenges

Given the discussion of the trends and weaknesses, the follow-
ing opportunities for future research were found.

Competitiveness on the market

Competitiveness on the market is an extremely crucial issue due
to the high-volume of embedded systems in the market (Mar-
wedel and Engel, 2016). To affront this demand, the creation

L. Restrepo, J. Aguilar, M. Toro et al.

Table 8
Summary of limitations and weaknesses.
Stage Limitation/Weakness
Planning Lack of a better specification about

economic aspects as development
costs and revenues.

Specification and analysis Quality attributes associated with
the self-adaption and sustainability
are not being considered or

specified in a detailed way.

Design Lack of designs that include the

physical layer

Attributes such as were not directly
mentioned and it is not established
how they will be measured.

The use of physical-model
representations techniques.

Implementation

Lack of information on how the
components were joined as one
large system.

Integration

Lack of information on unit testing
(or component testing).

Lack of integrated testing of the
subsystems that together compose
the system.

Testing in few application domains.
Simulated environments.

Quality control

Lack of information on how
technical maintenance can be
achieved.

Maintenance

of low-cost CPSs should take into account the efficient use of
hardware and software budget and a cost-benefit analysis. Fur-
ther investigations are needed to identify these tangible benefits
associated with the development of SA-CPSs to reach sustainabil-
ity from an economic perspective, and strategies to implement
low-cost SA-CPSs. Examples of such tangible benefits applied
to software systems are (i) sales growth, and (ii) reduction in
information-technology costs, staff, and inventory. A challenge is
how to generalize aspects such as (i) sales growth, and (ii) reduc-
tion in information-technology costs, staff, and inventory (Dennis
et al.,, 2014) to CPSs because there is no sale-and-cost history or
staff-and-inventory records.

Hybrid approaches for feedback loops

The use of hybrid approaches that combine cloud computing,
edge computing, and fog computing for deployment, with the
MAPE-K model, adaptive agents, or other feedback loop mech-
anisms, may provide a suitable approach to mitigate the issues
of scalability, fault-tolerance, performance, and flexibility of SA-
CPS. Examples of articles in which such approaches mitigated
these issues are Kumar and Hanumanthappa (2013), Kang and Yu
(2018), Wang et al. (2019).

Maintenance of quality levels

The execution of self-adaptation activities -in SA-CPSs- can
affect the levels of quality attributes established. Strategies are
needed to allow maintaining the quality levels of the proposed
designs. Examples of such strategies -in software systems- are
a continuous quality-monitoring platform to understand when
the quality is decreasing (Janes et al., 0000), test automation, and
the establishment of metrics to continuously measure quality. A
challenge is how to generalize these aspects for CPSs because
software systems do not consider the physical layer.

14

The Journal of Systems & Software 180 (2021) 111010

Conceptualization of sustainability

System architectures are a major driver for sustainability
(Koziolek, 2011), therefore, it is important to know how to spec-
ify and evaluate sustainability in CPSs to construct robust and
cost-effective systems. A starting point would be to establish a
unified vision of what sustainability is, by building an ontology,
a soft-goal model, or a non-functional requirement (NFR) frame-
work (Chung et al., 2000). Recent work on decision maps for
sustainability provides such an (initial) framework; for instance,
the work of Lago (2019).

Sustainable framework for CPSs

A framework that allows SA-CPSs to be sustainable from eco-
nomical and technical perspectives is needed. Examples of similar
frameworks are the Insure framework to incorporate sustainability
-in the software-engineering process- (Saputri and Lee, 2020),
and the SustainPro framework to implement sustainable de-
signs (Carvalho et al.,, 2013). A challenge is how to generalize
these frameworks for CPSs because existing frameworks do not
consider the sustainability of the physical nor network layers.

Specification of heterogeneous devices

CPSs are composed of heterogeneous devices (Romero et al.,
2015), so a challenge is how to cope with the complexity and
heterogeneity of requirements to fulfill various scenarios. For this
reason, it is important to identify the techniques to manage
requirements and constraints from heterogeneous devices, and
methodologies to implement them in SA-CPSs. This has been
extensively controlled -for software development- with the use
of systematic tools that supports requirement management (Hoff-
mann et al., 2004). A challenge is how to generalize that for CPSs
because existing tools do not consider the different requirements
of the physical devices.

Unit and integration testing

Unit and integration testing can be achieved in the develop-
ment of SA-CPSs. In fact, testbeds were used in the development
of SA-CPSs, but the use of methodologies to reduce the number
of bugs, the time to find and fix bugs, and to improve the quality
of tests were not mentioned. Methodologies used in software
engineering -such as Attribute-Driven Design ADD, test-driven-
development (TDD) (Janzen and Saiedian, 2005) and continuous
integration (CI) practices (Zhao et al., 2017)- allow decreasing the
amount of time it takes to find bugs and to reduce the cost to
fix bugs. Thus, a challenge is how to generalize practices such as
TDD and (CI) for CPSs because (i) testing methodologies do not
consider physical devices and (ii) physical components cannot be
continuously improved as software components.

Specification of quality attributes

The quality attributes allow addressing the architecture defini-
tion of the systems. A correct specification of quality attributes -
such as security, interoperability, modularity, modifiability, com-
patibility, testability- are needed in the development of SA-CPSs
to achieve a complete evaluation of the quality levels. In what
follows, we explain challenges related to some of these attributes.
Security: The enhancement of the security to guarantee the safety
and privacy of the users (Hammoudi et al., 2018) is an important
factor. The security of SA-CPSs is transformed into sustainability
due to the ability to maintain the correct functioning under cyber-
attacks. For that reason, it is important to identify and propose
techniques that successfully allow maintaining the security of the
developed designs.

Maintainability: The easy evolution and ability to change the
systems decreases life-cycle costs and managing technical debt
(Kruchten et al., 2012). For that reason, it is important to identify

L. Restrepo, J. Aguilar, M. Toro et al.

and propose strategies to implement SA-CPSs that successfully
allow maintainability and technical sustainability. Interoperabil-
ity: SA-CPSs depend on integration (Song et al., 2016) due to
the variety and heterogeneity of devices that have to operate
in the environment. It is important to identify interoperabil-
ity techniques and methodologies that allow the integration of
diverse devices and systems (i) across the SDLC and (ii) with
different paradigms (e.g., MAS and SOA) to guarantee the delivery
of services.

7. Conclusions

This SMS presented general strategies used to design SA-CPSs,
at each stage of the SDLC, introduced in Fig. 1. This SMS took
into account the sustainability and self-adaptability of the SA-
CPSs. Sixteen articles were selected for this SMS that presented
a self-adaptive framework or an architecture for SA-CPSs.

This SMS unveiled several trends in the design of SA-CPSs.
First, the designs are not limited to particular application do-
mains. Second, performance was the most commonly used at-
tribute. Third, MAPE-K is the predominant feedback loop ap-
plied to the cyber layer with the use of complement adaptation
strategies. Fourth, the creation of component-based projects for
the development of the designs and the simulation of these
proposed designs. Fifth, sustainability, in SA-CPSs, has been ad-
dressed through self-adaptation, and the use of quality attributes
such as adaptability, scalability, energy-efficiency, vaguely, mod-
ularity and reusability.

This SMS also identified the absence of information related to
the stages of the SDLC. First, the lack of a good specification on
economic aspects in the planning stage, especially, tangible ben-
efits. Second, in the specification and analysis stage, the lack of
inclusion of quality attributes, such as security, interoperability,
modularity, modifiability, compatibility, and testability. Third, in
the design and implementation stage, the lack of designs that
include the physical layer. Fourth, in the integration stage, the
lack of information on how the components were integrated.
Fifth, in quality control, the lack of information on unit testing,
and the lack of integrated testing of the subsystems. Sixth, in the
maintenance stage, the lack of information on how maintenance
can be achieved.

Finally, this SMS identified challenges such as (i) How to
design and evaluate sustainable SA-CPSs, (ii) How to apply unit
and integration testing in the development of SA-CPSs, and (iii)
How to develop feedback loops on SA-CPSs with the integration
of machine-learning techniques.

CRediT authorship contribution statement

Luisa Restrepo: Conception and design of study, Acquisition
of data, Analysis and/or interpretation of data, Writing - original
draft. Jose Aguilar: Conception and design of study, Analysis
and/or interpretation of data, Writing - review & editing. Mauri-
cio Toro: Conception and design of study, Analysis and/or inter-
pretation of data, Writing - review & editing. Elizabeth Suesciin:
Conception and design of study, Analysis and/or interpretation of
data, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

15

The Journal of Systems & Software 180 (2021) 111010
Acknowledgments

The authors would like to thank Vicerectoria de Descubrimiento
y Creacion from Universidad EAFIT. This research was supported
by Universidad EAFIT, Colombia. The authors would also like to
thank David Velasquez for his early comments and suggestions on
this research. All authors approved the version of the manuscript
to be published.

References used in the review

Alkhabbas, F., Murturi, 1., Spalazzese, R., Davidsson, P., Dustdar, S., 2020. A goal-
driven approach for deploying self-adaptive IoT systems. In: Proceedings -
IEEE 17th International Conference on Software Architecture, ICSA 2020.
Institute of Electrical and Electronics Engineers Inc., pp. 146-156. http:
//dx.doi.org/10.1109/ICSA47634.2020.00022.

Bedhief, I., Foschini, L., Bellavista, P., Kassar, M., Aguili, T., 2019. Toward self-
adaptive software defined fog networking architecture for iloT and industry
4.0. In: IEEE International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks, CAMAD. http://dx.doi.org/10.
1109/CAMAD.2019.8858499.

Camara, J., Muccini, H., Vaidhyanathan, K., 2020. Quantitative verification-aided
machine learning: A tandem approach for architecting self-adaptive IoT
systems. In: Proceedings - IEEE 17th International Conference on Software
Architecture, ICSA 2020. Institute of Electrical and Electronics Engineers Inc.,
pp. 11-22. http://dx.doi.org/10.1109/ICSA47634.2020.00010.

Cui, Y., Voyles, R.M., Mahoor, M.H., 2013. ReFrESH: A self-adaptive architecture
for autonomous embedded systems. In: IEEE International Conference on
Automation Science and Engineering. pp. 850-855. http://dx.doi.org/10.1109/
CoASE.2013.6654042.

D’Angelo, M., Napolitano, A., Caporuscio, M., 2018. Cyphef: A model-driven
engineering framework for self-adaptive cyber-physical systems. In: Pro-
ceedings - International Conference on Software Engineering. pp. 101-104.
http://dx.doi.org/10.1145/3183440.3183483.

do Nascimento, N., de Lucena, C., 2017. FloT: An agent-based framework for
self-adaptive and self-organizing applications based on the internet of things.
Inform. Sci. 378, 161-176. http://dx.doi.org/10.1016/j.in5.2016.10.031.

Gerostathopoulos, 1., Skoda, D., Plasil, F.,, Bures, T., Knauss, A., 2019. Tuning self-
adaptation in cyber-physical systems through architectural homeostasis.].
Syst. Softw. 148, 37-55. http://dx.doi.org/10.1016/j.jss.2018.10.051.

Iftikhar, M.U., Ramachandran, G.S., Bollansée, P., Weyns, D., Hughes, D.,
2017. DeltaloT: A self-adaptive internet of things exemplar. In:
Proceedings - 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2017. Institute of Electrical and Electronics Engineers Inc., pp. 76-
82. http://dx.doi.org/10.1109/SEAMS.2017.21, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85025610351&doi=10.1109%2FSEAMS.2017.
21&partnerID=40&md5=461a7294434c88ac3df9c02c491702aa.

Kit, M., Gerostathopoulos, 1., Bures, T., Hnetynka, P. Plasil, F., 2015. An
architecture framework for experimentations with self-adaptive cyber-
physical systems. In: Proceedings - 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2015. Institute of Electrical and Electronics Engineers Inc, pp. 93-
96. http://dx.doi.org/10.1109/SEAMS.2015.28, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84953218659&doi=10.1109%2fSEAMS.2015.
28&partner|D=40&md5=413c60f26d422f5eefa1ld03d5d6e9200.

Lee, E., Seo, Y.-D., Kim, Y.-G., 2019. Self-adaptive framework based on MAPE
loop for internet of things. Sensors (Switzerland) 19 (13), http://dx.doi.org/
10.3390/s19132996.

Park, S., Park, S, 2019. A cloud-based middleware for self-adaptive IoT-
collaboration services. Sensors (Switzerland) 19 (20), http://dx.doi.org/10.
3390/s19204559.

Provoost, M., Weyns, D., 2019. Dingnet: A self-adaptive internet-of-things
exemplar. In: ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. pp. 195-201. http://dx.doi.org/10.1109/SEAMS.2019.
00033.

Ramesh Babu, M., Mohana Roopa, Y., 2017. Component-based self-adaptive
middleware architecture for networked embedded systems. Int. J. Appl. Eng.
Res. 12 (12), 3029-3034.

Seiger, R., Huber, S., Heisig, P., ABmann, U., 2019. Toward a framework for self-
adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18 (2),
1117-1134. http://dx.doi.org/10.1007/s10270-017-0639-0.

Torres, R, Aros, M. Calderén, J.F., 2017. Towards self-adaptation for cyber-
physical systems using a distributed MAPE-k schema over XMPP.
In: 2017 CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies, CHILECON 2017 -
Proceedings. Institute of Electrical and Electronics Engineers Inc., pp. 1-5.
http://dx.doi.org/10.1109/CHILECON.2017.8229533, https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85043266216&doi=10.1109%2FCHILECON.
2017.8229533&partnerID=40&md5=6c03fe 10883fbcfd06c450255d1895ba.

L. Restrepo, J. Aguilar, M. Toro et al.

Trihinas, D., Pallis, G., Dikaiakos, M., 2018. Low-cost adaptive monitoring tech-
niques for the internet of things. [EEE Trans. Serv. Comput. http://dx.doi.org/
10.1109/TSC.2018.2808956.

References

Aguilar, J., Cerrada, M., Mousalli, G., Rivas, F., Hidrobo, F., 2005. A multiagent
model for intelligent distributed control systems. In: Khosla, R., Howlett, R/].,
Jain, L.C. (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 191-197.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N.,
Venters, C.C.,, 2015. Sustainability design and software: The karlskrona man-
ifesto. In: Proceedings - International Conference on Software Engineering.
Vol. 2, IEEE Computer Society, pp. 467-476. http://dx.doi.org/10.1109/ICSE.
2015.179.

Carvalho, A., Matos, H.A., Gani, R., 2013. Sustainpro-a tool for systematic process
analysis, generation and evaluation of sustainable design alternatives. Com-
put. Chem. Eng. 50, 8-27. http://dx.doi.org/10.1016/j.compchemeng.2012.11.
007.

Chantem, T., Guan, N, Liu, D., 2019. Sustainable embedded software and systems.
In: Sustainable Computing: Informatics and Systems. Vol. 22, Elsevier Inc.,
pp. 152-154. http://dx.doi.org/10.1016/j.suscom.2019.05.003.

Chitchyan, R., Groher, 1., Noppen, J., 2017. Uncovering sustainability concerns in
software product lines. J. Softw.: Evol. Process 29 (2), e1853. http://dx.doi.
org/10.1002/smr.1853, http://doi.wiley.com/10.1002/smr.1853.

Chung, L., Nixon, B.A,, Yu, E., Mylopoulos, J., Chung, L., Nixon, B.A., Yu, E.,
Mylopoulos, J., 2000. The NFR framework in action. In: Non-Functional
Requirements in Software Engineering. Springer US, pp. 15-45. http://dx.
doi.org/10.1007/978-1-4615-5269-7_2, https://link.springer.com/chapter/10.
1007/978-1-4615-5269-7_2.

Cooper, H. 2010. Research Synthesis and Meta-Analysis: A Step-By-Step
Approach, fourth ed. In: Applied Social Research Methods Series, Sage
Publications, Inc, Thousand Oaks, CA, US.

Dafflon, B., Moalla, N., Ouzrout, Y., 2019. Cyber-physical systems network to sup-

port decision making for self-adaptive production system. In: International

Conference on Software, Knowledge Information, Industrial Management and

Applications, SKIMA. http://dx.doi.org/10.1109/SKIMA.2018.8631512.

Lemos, R., Giese, H., Miiller, HA. Shaw, M. Andersson,]., Litoiu, M,

Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L.,

Becker, B., Bencomo, N., Brun, Y. Cukic, B., Desmarais, R., Dustdar, S.,

Engels, G., Geihs, K, Goschka, KM, Gorla, A. Grassi, V., Inverardi, P.,

Karsai, G., Kramer,]., Lopes, A., Magee,]., Malek, S., Mankovskii, S., Miran-

dola, R.,, Mylopoulos, J., Nierstrasz, O., Pezzé, M., Prehofer, C., Schifer, W.,

Schlichting, R., Smith, D.B., Sousa, J.a.P., Tahvildari, L., Wong, K., Wuttke, J.,

2013. Software engineering for self-adaptive systems: A second research

roadmap. In: Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7475

LNCS, Springer, Berlin, Heidelberg, pp. 1-32. http://dx.doi.org/10.1007/978-3-

642-35813-5{_}1, https://link-springer-com.ezproxy.eafit.edu.co/chapter/10.

1007/978-3-642-35813-5_1.

Dennis, A., Wixom, B.H., Roth, RM., 2014. Systems analysis and design. In:
Systems Analysis and Design, sixth ed. Wiley Publishing, p. 448. http://dx.
doi.org/10.1201/9781420055948.pt2.

Felson, D.T., 1992. Bias in meta-analytic research.]. Clin. Epidemiol. 45 (8),
885-892. http://dx.doi.org/10.1016/0895-4356(92)90072-U.

Hammoudi, S., Aliouat, Z., Harous, S., 2018. Challenges and research directions for
internet of things. Telecommun. Syst. 67 (2), 367-385. http://dx.doi.org/10.
1007/s11235-017-0343-y, https://link.springer.com/article/10.1007/s11235-
017-0343-y.

Hoffmann, M., Kiihn, N., Weber, M., Bittner, M., 2004. Requirements for re-
quirements management tools. In: Proceedings of the IEEE International
Conference on Requirements Engineering. pp. 301-308. http://dx.doi.org/10.
1109/ICRE.2004.1335687.

International Organization for Standardization, 2011a. ISO/IEC 25010:2011 -
systems and software engineering — Systems and software quality require-
ments and evaluation (square) — System and software quality models.
https://www.iso.org/standard/35733.html.

International Organization for Standardization, 2011b. ISO/IEC/IEEE 42010:2011
- systems and software engineering. architecture description. In: BSOL
British Standards Online. https://bsol-bsigroup-com.ezproxy.eafit.edu.co/
Bibliographic/BibliographicInfoData/000000000030216549.

ISTQB® International Software Testing Qualifications Board, 2018. Foundation
level syllabus . https://www.istgb.org/downloads/syllabi/foundation-level-
syllabus.html.

Jahan, S, Riley, 1., Walter, C., Gamble, R.F., Pasco, M., McKinley, P.K., Cheng, B.H.,
2020. MAPE-K/MAPE-SAC: An interaction framework for adaptive systems
with security assurance cases. Future Gener. Comput. Syst. 109, 197-2009.
http://dx.doi.org/10.1016/j.future.2020.03.031.

16

The Journal of Systems & Software 180 (2021) 111010

Janes, A., Lenarduzzi, V., Cristian Stan, A., 2017. A continuous software quality
monitoring approach for small and medium enterprises, in: Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering
Companion - ICPE '17 Companion, ACM Press, New York, New York, USA
http://dx.doi.org/10.1145/3053600.3053618.

Janssen, W., 2018. Bias in theory and practice: a literature review of bias types
and a case study of bias views at the dutch safety board.

Janzen, D., Saiedian, H., 2005. Test-driven development: Concepts, taxonomy,
and future direction. Computer 38 (9), 43-50. http://dx.doi.org/10.1109/MC.
2005.314.

Jensen, J.C., Chang, D.H., Lee, E.A., 2011. A model-based design methodology for
cyber-physical systems. In: 2011 7th International Wireless Communications
and Mobile Computing Conference. pp. 1666-1671. http://dx.doi.org/10.
1109/IWCMC.2011.5982785.

Kang,], Yu, H, 2018. Mitigation technique for performance degradation of
virtual machine owing to GPU pass-through in fog computing. J. Commun.
Netw. 20 (3), 257-265. http://dx.doi.org/10.1109/JCN.2018.000038.

Kephart, J.0., Chess, D.M., 2003. The vision of autonomic computing. Computer
36 (1), http://dx.doi.org/10.1109/MC.2003.1160055.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering. Technical Report EBSE 2007-001.

Koziolek, H., 2011. Sustainability evaluation of software architectures: A
systematic review. In: CompArch’11 - Proceedings of the 2011 Fed-
erated Events on Component-Based Software Engineering and Software
Architecture - QoSA+ISARCS'11. ACM Press, New York, New York, USA,
pp. 3-12. http://dx.doi.org/10.1145/2000259.2000263, http://portal.acm.org/
citation.cfm?doid=2000259.2000263.

Kruchten, P., Nord, R.L, Ozkaya, I, 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw. 29 (6), 18-21. http://dx.doi.org/10.1109/MS.
2012.167.

Kumar, M., Hanumanthappa, M., 2013. Scalable intrusion detection systems log
analysis using cloud computing infrastructure. In: 2013 IEEE International
Conference on Computational Intelligence and Computing Research, IEEE
ICCIC 2013. IEEE Computer Society, http://dx.doi.org/10.1109/ICCIC.2013.
6724158.

Lago, P, 2019. Architecture design decision maps for software sustainability.
In: Proceedings - 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Society, ICSE-SEIS 2019. pp. 61-64.
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00015.

Lee, E.A., 2008. Cyber physical systems: Design challenges. In: Proceedings
- 11th IEEE Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC 2008. pp. 363-369. http://dx.doi.org/10.1109/
ISORC.2008.25.

Li, Z,, Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 101, 193-220. http://dx.doi.org/10.1016/
j.js5.2014.12.027.

Lin, J., Sedigh, S., Miller, A, 2009. Toward integrated simulation of cyber-
physical systems: A case study on intelligent water distribution. In: 8th IEEE
International Symposium on Dependable, Autonomic and Secure Computing,
DASC 2009. pp. 690-695. http://dx.doi.org/10.1109/DASC.2009.140.

Lin, KJ., Panahi, M., 2010. A real-time service-oriented framework to support
sustainable cyber-physical systems. In: IEEE International Conference on
Industrial Informatics (INDIN). pp. 15-21. http://dx.doi.org/10.1109/INDIN.
2010.5549473.

Marwedel, P., 2018. Embedded System Design : Embedded Systems, Foundations
of Cyber-Physical Systems, and the Internet of Things. Springer Interna-
tional Publishing, http://dx.doi.org/10.1007/978-3-319-56045-8, http://link.
springer.com/10.1007/978-3-319-56045-8.

Marwedel, P., Engel, M., 2016. Cyber-physical systems: opportunities, challenges
and (some) solutions. In: Management of Cyber Physical Objects in the
Future Internet of Things. Springer, pp. 1-30.

Muccini, H., Sharaf, M., Weyns, D., 2016. Self-adaptation for cyber-physical
systems: A systematic literature review. In: Proceedings - 11th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2016. Association for Computing Machinery, Inc, pp.
75-81. http://dx.doi.org/10.1145/2897053.2897069, https://www.scopus.
com/inward/record.uri?eid=2-5s2.0-84974536575&d0i=10.1145%2f2897053.
2897069&partnerID=40&md5=47dab41342a795ec3aab22756f79810f.

Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., Sharaf, M., 2017. Patterns
for self-adaptation in cyber-physical systems. Multi-Disciplinary Engineering
for Cyber-Physical Production Systems: Data Models and Software Solutions
for Handling Complex Engineering Projects. pp. 331-368. http://dx.doi.org/
10.1007/978-3-319-56345-9{_}13.

Pahl, G., Beitz, W., Feldhusen,], Grote, KH., 2007. Engineering Design: A
Systematic Approach. Springer London, pp. 1-617. http://dx.doi.org/10.1007/
978-1-84628-319-2.

Pankowska, M., 2013. Sustainable software: A study of software product sustain-
able development. In: Mechanism Design for Sustainability: Techniques and
Cases. Springer Netherlands, pp. 265-281. http://dx.doi.org/10.1007/978-94-
007-5995-4{_}13.

L. Restrepo, J. Aguilar, M. Toro et al.

Pei Breivold, H., 2020. Using software evolvability model for evolvability analysis.

Perozo, N., Aguilar, J., Terdn, O., 2008. Proposal for a multiagent architecture
for self-organizing systems (MA-SOS). In: Yang, C.C., Chen, H., Chau, M,
Chang, K., Lang, S.-D., Chen, P.S., Hsieh, R., Zeng, D., Wang, F.-Y., Carley, K,
Mao, W., Zhan,]. (Eds.), Intelligence and Security Informatics. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 434-439.

Restrepo, L., 2021. Replication package for: "a sustainable-development approach
for self-adaptive cyber-physical systems life cycle: A systematic mapping
study”. 1, http://dx.doi.org/10.17632/GV66S3X56W.1.

Romero, D., Quinton, C., Duchien, L., Seinturier, L, Valdez, C., 2015. Smar-
tyco: Managing cyber-physical systems for smart environments. In: Lec-
ture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9278,
Springer Verlag, pp. 294-302. http://dx.doi.org/10.1007/978-3-319-23727-
5_25, https://link-springer-com.ezproxy.eafit.edu.co/chapter/10.1007/978-3-
319-23727-5{_}25.

Rouse, M., 2007. What is vertical scalability (scaling up)? - definition from
whatis.com. https://searchcio.techtarget.com/definition/vertical-scalability.
Rowe, D., Leaney, J., Lowe, D., 1994. Defining systems evolvability-a taxonomy

of change. Change 94, 541-545.

Sanchez, M., Aguilar,]., Jerez, M., Mendonca, M., 2017. An extension of the misci
middleware for smart cities based on fog computing.]J. Inf. Technol. Res. 10
(4), 23-41.

Sanchez Aristizabal, A., Sarmiento Garavito, S., 2019. Diagnosis evaluation of
the coffee leaf rust development stage in the colombian caturra variety
integrating remote sensing, wireless sensor networks and deep learn-
ing (Ph.D. thesis). Universidad EAFIT, http://repository.eafit.edu.co/handle/
10784/15427.

Saputri, T.R.D., Lee, S.W., 2020. Integrated framework for incorporating sustain-
ability design in software engineering life-cycle: An empirical study. Inf.
Softw. Technol. 106407. http://dx.doi.org/10.1016/j.infsof.2020.106407.

Shelly, G.B., Rosenblatt, H.J., 2011. Systems Analysis and Design. Cengage
Learning.

Sommerville, ., 2015. Software engineering. 10th. In: Book Software Engineering.
10th, Series Software Engineering. Addison-Wesley.

Song, H., Rawat, D.B., Jeschke, S., Brecher, C., 2016. Cyber-Physical Systems:
Foundations, Principles and Applications. Morgan Kaufmann.

Stankovic, J.A., 2014. Research directions for the internet of things. IEEE Internet
Things J. 1 (1), 3-9. http://dx.doi.org/10.1109/JI0T.2014.2312291.

Stavros, J.M., Sprangel, J.R., 2008. “SOAR” from the mediocrity of status quo
to the heights of global sustainability. In: Innovative Approaches To Global
Sustainability. Palgrave Macmillan US, pp. 11-35. http://dx.doi.org/10.1057/
9780230616646_2.

Tsai, W.T.,, Bai, X., Paul, R, Shao, W., Agarwal, V., 2001. End-to-end integration
testing design. In: Proceedings - IEEE Computer Society’s International
Computer Software and Applications Conference. pp. 166-171. http://dx.doi.
org/10.1109/CMPSAC.2001.960613.

Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2017. MAPE-K as a service-
oriented architecture. IEEE Lat. Am. Trans. 15 (6), 1163-1175. http://dx.doi.
org/10.1109/TLA.2017.7932705.

Wang, C, Gill, C, Ly, C.,, 2019. FRAME: Fault tolerant and real-time messaging for
edge computing. In: Proceedings - International Conference on Distributed
Computing Systems. Institute of Electrical and Electronics Engineers Inc., pp.
976-985. http://dx.doi.org/10.1109/ICDCS.2019.00101.

Weyns, D., Georgeff, M., 2010. Self-adaptation using multiagent systems. IEEE
Softw. 27 (1), 86-91. http://dx.doi.org/10.1109/MS.2010.18.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering -
EASE '14. pp. 1-10. http://dx.doi.org/10.1145/2601248.2601268.

Wombacher, A., 2011. How physical objects and business workflows can be
correlated. In: Proceedings - 2011 IEEE International Conference on Services
Computing, SCC 2011. pp. 226-233. http://dx.doi.org/10.1109/SCC.2011.24.

Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., Yld-Jadski, A., 2010.
A system-level model for runtime power estimation on mobile devices. In:
Proceedings - 2010 IEEE/ACM International Conference on Green Computing
and Communications, GreenCom 2010, 2010 IEEE/ACM International Con-
ference on Cyber, Physical and Social Computing, CPSCom 2010. pp. 27-34.
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.114.

Zeadally, S., Sanislav, T., Mois, G., 2019a. Self-adaptation techniques in cyber-
physical systems (CPSs). IEEE Access 7, 171126-171139. http://dx.doi.org/
10.1109/ACCESS.2019.2956124.

Zeadally, S., Sanislav, T., Mois, G.D., 2019b. Self-adaptation techniques
in cyber-physical systems (CPSs). IEEE Access 7, 171126-171139.
http://dx.doi.org/10.1109/ACCESS.2019.2956124, https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85078403794&d0i=10.1109%2fACCESS.2019.
2956124&partnerID=40&md5=ac0ad 13602e57f214eb6867f0bbfc4a.

17

The Journal of Systems & Software 180 (2021) 111010

Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B., 2017. The impact of
continuous integration on other software development practices: A large-
scale empirical study. In: ASE 2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. Institute of
Electrical and Electronics Engineers Inc., pp. 60-71. http://dx.doi.org/10.1109/
ASE.2017.8115619.

Zhou, X, Jin, Y., Zhang, H., Li, S., Huang, X., 2016. A map of threats to validity
of systematic literature reviews in software engineering. In: Proceedings -
Asia-Pacific Software Engineering Conference, APSEC. IEEE Computer Society,
pp. 153-160. http://dx.doi.org/10.1109/APSEC.2016.031.

Ziillighoven, H., 2005. In: Ziillighoven, H.B.T.0.-O.CH. (Ed.), 12 - The Devel-
opment Process. Morgan Kaufmann, San Francisco, pp. 393-457. http://dx.
doi.org/10.1016/B978-155860687-6/50012-8, http://[www.sciencedirect.com/
science/article/pii/B9781558606876500128.

Luisa Restrepo received a B.Sc. degree in Computer
Science in 2015 and a M.Sc. degree in Engineering
from Universidad EAFIT, Colombia with emphasis on
Software engineering, in 2019. Since 2020, Luisa works
as Adjunct Professor at the Department of Systems
and Informatics Engineering at Universidad EAFIT. Her
research interests include requirements engineering,
assessment of software applications, software reuse,
cyber—physical systems, and data quality.

Professor Jose Aguilar received the B. S. degree in
System Engineering in 1987 (Universidad de Los Andes-
Venezuela), the M. Sc. degree in Computer Sciences in
1991 (Universite Paul Sabatier-France), and the Ph.D
degree in Computer Sciences in 1995 (Universite Rene
Descartes-France). He was a Postdoctoral Research Fel-
low in the Department of Computer Sciences at the
University of Houston (1999-2000) and in the Lab-
oratoire d’Analyse et d’Architecture des Systems of
Toulouse, France (2010-2011). He is a Titular Professor
in the Department of Computer Science at the Universi-
dad de los Andes, Mérida, Venezuela, and contracted professor of the Department
of Systems Engineering of the EAFIT University, Medellin, Colombia. His research
interests include artificial intelligence, industry 4.0, IoT, cyber-physical and
autonomic systems.

Mauricio Toro received a B.Sc. degree in Computer
Science and Engineering from Pontificia Universidad
Javeriana, Colombia, in 2009. Mauricio got a PhD de-
gree in Computer Science from Université de Bordeux,
France with emphasis on Artificial Intelligence, in 2012.
Mauricio was a postdoctoral fellow at the Computer-
Science department at University of Cyprus, during
2013. Since 2014, Mauricio works as Assistant Pro-
fessor at the Department of Systems and Informatics
Engineering and as a researcher of the GIDITIC Group
at Universidad EAFIT. His research interests include
artificial intelligence, industry 4.0, machine learning, computer vision, and
agricultural applications.

Elizabeth Suesciin Monsalve received a B.Sc. degree
in Computer Science from Politecnico Colombiano JIC,
Colombia, in 2004. Elizabeth got a Master and PhD
degree in Computer Science from Pontifical Catholic
University of Rio de Janeiro - PUC-Rio, Brazil with
emphasis on Software Engineering, from 2010 to 2014.
Since 2015, Elizabeth works as Assistant Professor
at the Department of Systems and Informatics En-
gineering and as a researcher of the GIDITIC Group
at Universidad EAFIT. Her research interests include
Software Engineering, DevOps, industry 4.0, Software
Transparency, Intentional Modeling, cyber-physical systems and its applications.

Appendix B
SinSO: An Ontology of Sustainability in Software

43

Applied Ontology

SinSO: An ontology of Sustainability in Software

Manuscript Number:
Full Title:

Short Title:

Article Type:
Section/Category:
Keywords:

Corresponding Author:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:
First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

Abstract:

Suggested Reviewers:

--Manuscript Draft--

AO-230004R1
SinSO: An ontology of Sustainability in Software

Research Article
Regular Submissions
sustainability; domain ontology; Quality attributes; Software Engineering

Jose Aguilar, PhD
Universidad de Los Andes
Merida, Mérida VENEZUELA

Universidad de Los Andes

Luisa Restrepo

Luisa Restrepo
Cesar Pardo
Jose Aguilar, PhD
Mauricio Toro

Elizabeth Suescun

Sustainability in systems refers to applying sustainable principles and practices to
create more resilient, efficient, and equitable systems that promote the well-being of
people and the planet. Sustainability is an essential topic in contemporary software
engineering, and its relationship with the characteristics and properties of a system or
product called quality attributes is still an open question since each researcher has
established their definition of sustainability in software. This has created diverse terms
and concepts for distinct application environments and scopes, creating ambiguity and
misconceptions. This work defines a domain ontology of Sustainability in Software
named SinSO to address these issues. SinSO was implemented in OWL, using
competency-based questions to validate. The findings show that this proposal satisfies
several quality and content requirements. Also, using Protégé and the Hermit
reasoner, we verified that SinSO is consistent since the ontology statements are
coherent and do not lead to conflicting or contradictory conclusions. In addition,
competency questions allowed us to demonstrate that SinSO does fulfill its purpose.
FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in
two case studies, one about software for senior-citizen smart-home, and the other, a
simulator to develop and test smart-city applications, achieving positive outcomes. To
verify its accuracy, completeness, and maintainability, further evaluations of SinSO are
needed in real case studies. We conclude that SinSO can significantly contribute to
reducing ambiguity and enhancing comprehension in this area. Furthermore, SinSO
can be an effective tool for engineers to recognize the concepts and relationships in
the sustainable domain to consider in the systems development life cycle to build
sustainable systems.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response to Reviewers:

REVIEW REPORT
PAPER NUMBER: AO-230004R1
SinSO: An Ontology of Sustainability in Software

Firstly, we want to express our thanks to the reviewers, their comments are much
appreciated and contribute to highly improve this work. We appreciate their guidance
for this revision. All the comments were thoroughly considered in the revised version of
our work, resulting in the following list of changes. We hope this report agrees with the
suggestions. Reviewer’'s comments are in italic letters, our comments in normal text
letters, and the new paragraphs added/modified in the revised version are in red text
letters. Original paragraphs used in response to the reviewers are in blue text letters.

REVIEWER 1

1. General:

A very ambitious paper on an important topic, sustainability in Software. The paper
motivates the need for an ontology of sustainability in software and successfully coins
what the authors mean by the term (software sustainability) with adequate limitations to
other uses of the same term. The ontology is ambitiously evaluated in several steps
with the aim of both with assuring that the ontology contains the right concepts and as
well as achieving desired results with said concepts.

The presentation, especially the evaluation part, needs to be better, the motivations are
there to some extent but it is very hard to follow how the various parts of the evaluation
is carried out and by whom. Quality metrics, quality questions, grading etc. needs more
background, how were they chosen, were there alternatives, was the grading
automatic or done by an expert etc.?

Reply:

We have added comments in the text to respond to all these comments. Later, we will
describe how we respond.

Some general observations that is partly addressed in the paper but can be improved:
2 Literature review:

How was the ontology conceived? Can an argument be made that the most important
sources are covered in a systematic way — and avoid cherry-picking of articles? This is
a journal article where a larger literature review is possible to conduct.

The referenced papers are ok in terms of recent-ness but the reader needs to see a
little more about how these papers were chosen, i.e. what search-terms where used to
find the initial papers, were they read and then their references read until the field was
exhausted? A little more of what process was used to find enough/the right papers
would be valuable.

Reply:

Thanks for your comment. At the beginning of section 4, we have added the next text
to respond to your comment about how the ontology was conceived, how the review of
works was carried out, and what considerations were made about the search, among
other things:

"The conception of SinSO involved several key steps such as defining the scope and
identifying the relevant literature. The scope defined was to identify quality attributes
relevant to the sustainable domain and their relationship with sustainability dimensions.
Particularly, we considered five dimensions of sustainability: environmental, technical,
economic, social, and individual/personal. Also, some quality attributes in these
dimensions are subsumed by the included quality attributes such as Durability,
Dependability (included in Reability), Traceability (included in Accountability),
Survivability, Data Privacy (included in Security), and Adaptation (included in
Maintainability). Thus, the literature review followed the following steps (i) A search
string (see Table 1) was defined to execute in the selected databases (Scopus and
Google Scholar). (ii) The inclusion/exclusion criteria were to include papers published
from 2015 to 2023, English/Spanish language papers, and exclude papers not
available or not accessible. (iii) The resulting paper's title, abstract, and content were

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

reviewed to exclude non-relevant papers. The process started with 128 papers and
finished with 16."

3. Example: Sustainability characteristics are problematized — good but the paper could
benefit from further explanations/elaborations on the topic. Some characteristics are
very vague. e.g. social aspects. Some other aspects could be argued are missing. For
instance legal and regulatory dimensions of software sustainability such as ensuring
that software abide by regulations? Could these be seen dimensions of the social
characteristics mentioned? Or have they been omitted with purpose? Or missed by
mistake or just not deemed important?

Reply:

This example is a mistake, which has been corrected in Table 4 (see social
dimension):

"It is related to the safeguarding of the interests of social communities, groups of
individuals, or organizations. Also, how well software complies with application-specific
laws."

Evaluation:

4. Competency questions: How do we know that these are right ones? A very difficult,
or perhaps impossible, question to answer in full of course but it could be partly
answered if the authors described more. How were these questions conceived? And
by whom? From literature or were experts on software sustainability consulted? Either
is ok even if the latter is better but, as said before, as a reader you need to be able to
follow and assess the process of evaluation more easily.

The evaluation parts are sometimes hard to follow and the terms used sometime
overloaded. What is verification and what is validation and how and by whom it is done
must be better presented, verification is suited to be automated, validation not so much
— it is not evident to me as a reader what parts are automated and what parts are not.
Or maybe both verification and validation was fully automatic, see 6.3. See more in
details below as well.

Reply:

At the beginning of section 5.1, we clarify as the Competency questions are defined:

"To evaluate SinSO, a group of competency questions (CQs) have been defined and
conceived through the literature review, which provides us insights into the relevant
concepts and relationships that should be covered. CQs were refined with
brainstorming sessions between authors to clarify the information and knowledge the
ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer."

5. The evaluation parts are sometimes hard to follow and the terms used sometime
overloaded. What is verification and what is validation and how and by whom it is done
must be better presented, verification is suited to be automated, validation not so much
— it is not evident to me as a reader what parts are automated and what parts are not.
Or maybe both verification and validation was fully automatic, see 6.3. See more in
details below as well.

Reply:

The penultimate paragraph of section 5.3 clarifies this aspect:

"FOCA methodology (Bandeira et al. (2017) defines how to verify each of the questions
to obtain a final grade. In general, the questions should be answered given one of
these grades (25,50,75,100). For example, for the next questions: (i) *'Does the
document define the ontology objective?", (ii) “"Does the document define the ontology
stakeholders?", (iii) “"Does the document define the use of scenarios?", the resulting
values calculated through a consensus process carried out by the authors were
100,100 and 25, respectively, resulting in a mean of 75. The procedure followed was
the same for other questions, and was manually performed.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

The resulting values for each question were used by Equation 1 to determine a general
value of the quality of the system. The result of the total quality is 0.998 (see Equation
2b), and being a result close to 1 according to the FOCA methodology, we can
conclude that SinSO has a high quality in terms of the five roles defined by Bandeira et
al. (Bandeira et al. (2017)):..."

Details:

6. Methondology and REFSENO - how do we know that these are good in
systematizing implementation of ontology in order to evaluate said ontology? No big
deal and a hard question to answer completely of course but perhaps some alternative
(-s) could be mentioned and ruled out?

Reply:

We have added the last paragraph of section 3.2 to respond to this comment:

"There are different methodologies to systematize the implementation of ontologies
such as NeOn Methodology (Suarez-Figueroa et al. (2015)) that proposes a framework
to reuse available ontologies, Software Engineering Ontology Network (SEON) that
provides ontology reusability and integration (Borges Ruy et al. (2016)), or SMO
ontology that is focused on software process and behavior analysis (Barcellos et al.
(2010)). We employ Methontology (Fernandez-Lépez et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)),
an improved version of Methontology. REFSENO allows for (i) exact and consistent
knowledge modeling (in this paper, the conceptual structures are defined using the
class diagram of the Unified Modeling Language-UML); (ii) the construction of an
ontology via the use of identification and detailed characterization of concepts and their
relationships; and (iii) the ontology's validation to assure consistency and applicability
using case studies or instances.} \textcolor{red}{The effectiveness of these
methodologies in systematizing ontology implementation and evaluation depends on
factors such as the expertise of developers, the complexity of the domain, and the
specific goals of the project. Our team has used for a long time with these
methodologies, which adhere to best practices in ontological engineering."

7. “In addition, to enable the evaluation of SinSO and the execution of the competency
questions (CQs), SinSO was populated by creating a series of instances/objects, in
each of the classes, which are referred to..”

Very interesting and well done but it would be good to know how these instances were
created — from any particular domain and if so can this affect the evaluation? In 5.2
there are some examples (of formal axioms expressed in natural language) — these
seem to be domain independent though, good. Under the introduction in chapter 6 is
mentioned (iv) creation of SinSO instances (based on two case articles) — is this the
aforementioned instances? | may misunderstand but some parts of the Implementation
and Evaluation is not completely clear and in what order what it is even done — could
they be better explained/presented?

Reply:

After Figure 2 we added:

"Subsequently, SinSO was filled with a collection of instances/objects from each class
mentioned as individuals in Protégé. These individuals are represented using what is
commonly referred to as “"dummy data" (see Fig. 3) to illustrate the structure and
functionality of the ontology and also to be able to test the axioms and competency
questions."

8. Table 2 page 10 (Goal, Question, Metrics, Grade, Mean in the SinSos component
evaluation) — how was the grade assessed and by whom? How is the scale to be
interpreted 75, 100, 0? Can the table be better explained — who did the evaluation —
who assigned the grades — the language is a bit rough both syntactically and
semantically — the terms and process need to be better explained.

Reply:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

See the answer to question 5, which also answers this question.

9. 6.3 page 12: “Expandability: Expandability refers to the effort required to add new
definitions to an ontology [51]. Since it has not been tailored to specific organisations or
domains, SinSO can be adapted and extended by including and defining new terms, so
that it can be used in specific industry contexts” .

Just a minor but how do we know this? The choice of class structure _could_
potentially invalidate or hinder the incorporation of not yet covered (domain dependent)
concepts should they be deemed to sort under several other classes or invalidate
some already existing relationship etc.? Generally though it is good that the ontology is
domain independent for the point of expandability, agreed.

Reply:

According to your comment, in section 5.4, we have added the next comment:

"...Since it has not been tailored to specific organizations or domains, SinSO can be
customized and enhanced to be used in specific industry scenarios by including and
specifying new terms. Its structure consists of few levels of depth, and adding a new
definition will require only the minimal effort of adding it in the corresponding section
and configuring its properties. Also, new concepts can use multiple inheritance to
handle cases where an entity fits into multiple classes. SinSO can be iterated for
regular updates and revisions as the domain evolves to improve flexibility and allow
multiple classifications and relationships."

10. Figure 5 Results of the Hermit Reasoner: “Ontology processed in 22 ms by
HermiT”. What does this mean? Is it within the boundaries of goals set by
standards/authors etc.? Can these metrics/table-content be explained better?
Reply:

Thanks for your comment. The description of Figure 5 was corrected and the text that
cites Figure 5 improved:

As a result, SinSO did not present errors (see Fig5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms
and the resulting time for the execution). Thus, the reasoner computed the ontology
successfully and did not generate inconsistencies executing all axioms.

11. page 15 “All Axioms were executed in the DL Query feature of Proteg’e and the
average time for the computed results was 8.5ms with a minimum time of 2ms and a
maximum of 15ms for Axiom A3. Thus, the computing time of SinSO is acceptable
according to the authors’ criteria. ”

This section is hard to read and be convinced by — what author’s criteria is referred to
here? What persons did the instantiation? Sustainability experts, the authors (probably)
— more details on a general level on how the instantiation process is done needed —
how it was done needs to be more transparent.

Reply:

According to your comment, the text before Table 3 was modified:

"All Axioms were applied in the DL Query feature of Protégé over the ontology.
Considering the time taken to run the reasoner, the average time for the results was
8.5ms, with a minimum time of 2ms and a maximum of 15ms for Axiom A3. Thus, the
computing time of SinSO is acceptable for the context analyzed, but future works must
test the scalability of the ontology. On the other hand, the main task is to associate the
system's objectives with their corresponding quality attributes to identify which
dimensions of sustainability are being targeted. That implies an instantiation time of our
ontology is necessary, which depends on the size of the project. The instantiation of
these case studies took three days, but it must be taken into account that not all the
information was fully known; we were not part of the projects, and it was based on what
was published in the articles. Therefore, for an associated person to the project, it
should take less time."

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

12. Formalia&Form: Language could be improved in parts, especially in tables, the [8]
reference is lacking year
Reply:

The year was added to the reference and the language was improved.

REVIEWER 2

General:

The paper is an ontology paper. It motivates, describes, and evaluates the SinSo
ontology about sustainability in software. It follows form, in the sense of ticking the
boxes for an ontology paper, but there are a number of content issues as well as a
number of presentation issues, described below. Therefore, | recommend major
revision.

Details

1. Abstract: “Although....” part: it would be better to state what you did, including use
case, rather than what has not been done.

Reply:

Thanks for your comment. The abstract was modified according to your suggestion:

"FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in
two case studies, one about software for senior-citizen smart-home, and the other, a
simulator to develop and test smart-city applications, achieving positive outcomes."

2. The introduction states that “this paper is thus devoted to understanding....”: but is
it? While understanding is needed, that is not the contribution of the paper. Nor does
‘devoted to understand’ answer a research question or solve a problem with evidence.
Reply:

Thanks, we have modified this sentence:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

3. Sect 4.2. While using a methodology is better than none, Methontology and
REFSENO are quite outdated, to put it mildly. If updates thereto were used, it should
be mentioned there, like a quality framework, DOLCE (methontology never even
mentions foundational ontologies).

Reply:

We have added a comment about DOLCE in the last paragraph of section 6:

"In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSQO's categories are specializations of abstract
quality since the ontology components are non-physical objects. DOLCE Relationships
can be reused, such as "“has-part" to ““involves" and "'is related to" SinSO
relationships, and "is-part-of" to "is composed of " and "belongs to" SinSO
relationships"

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Also, we have added the last paragraph of section 3.2 to respond to the comment
about the utilization of Methontology and REFSENO:

"There are different methodologies to systematize the implementation of ontologies
such as NeOn Methodology (Suarez-Figueroa et al. (2015)) that proposes a framework
to reuse available ontologies, Software Engineering Ontology Network (SEON) that
provides ontology reusability and integration (Borges Ruy et al. (2016)), or SMO
ontology that is focused on software process and behavior analysis (Barcellos et al.
(2010)). We employ Methontology (Fernandez-Lépez et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)),
an improved version of Methontology. REFSENO allows for (i) exact and consistent
knowledge modeling (in this paper, the conceptual structures are defined using the
class diagram of the Unified Modeling Language-UML); (ii) the construction of an
ontology via the use of identification and detailed characterization of concepts and their
relationships; and (iii) the ontology's validation to assure consistency and applicability
using case studies or instances.} \textcolor{red}{The effectiveness of these
methodologies in systematizing ontology implementation and evaluation depends on
factors such as the expertise of developers, the complexity of the domain, and the
specific goals of the project. Our team has used for a long time with these
methodologies, which adhere to best practices in ontological engineering."

4. Sect 5: “inherited from the next sub-ontologies”: imported, rather. Abstract quality
does not inherit from NPED, it inheres-in. Then it states that SinSo also can be located
in DOLCE abstract region: but then where is it aligned eventually? Or, rather, | suspect
that different parts of SinSo can be aligned to different DOLCE categories, but
definitely not one at multiple places. Aggregation (p6) in UML is not about strong
dependence, but about parthood; composition: no, not that classes are mandatory, but
the participation in the association is mandatory.

Reply:

We have modified the sentence:

"...In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSO's categories are specializations of abstract
quality since the ontology components are non-physical objects... "

5. Sect 5.1: Web Ontology Language OWL, not Ontology Web Language. Were or
weren’t the competency questions specified upfront? This is not clear now. And
“execution” of CQs? | suspect what’'s meant is the execution of the SPARQL queries
written for the CQs, rather than the CQs themselves.

Reply:

Text changed to “Web Ontology Language”.

Also, at the beginning of section 5.1, we clarify as the Competency questions are
defined:

"To evaluate SinSO, a group of competency questions (CQs) have been defined and
conceived through the literature review, which provides us insights into the relevant
concepts and relationships that should be covered. CQs were refined with
brainstorming sessions between authors to clarify the information and knowledge the
ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer. Subsequently, SinSO
was filled with a collection of instances/objects from each class mentioned as
individuals in Protégé. These individuals are represented using what is commonly
referred to as “"dummy data" (see Fig. 3) to illustrate the structure and functionality of
the ontology and also to be able to test the axioms and competency questions. "

6. As to the ontology: | went to https://github.com/LuisaRestrepo/Sustainable-SA-
CPSs, but it only has figure 1. | had expected at least one OWL file that | could inspect.
Going by the figure and assuming/hoping for a proper encoding in OWL.: the ‘has’

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

between Quality attribute and Objective misses multiplicity constraints, as do some
other associations there among the purple classes. Indicator’'s goalsQuantitative as
string does not appear appropriate as attribute for an ontology (I’'m guessing encoded
as a DataProperty in the OWL file), nor are ”j”. Also, it looks like only a module of SMO
is imported, rather than the whole SMO; please clarify.

Reply:

OWL File was uploaded in the Mendeley data for journals and it was referenced in the
article. The GitHub site is not updated and it will deleted. The next text was added at
the end of section 5.4:

"The SinSO ontology can be downloaded from Gutierrez (2023), to execute queries or
reasoning in Protégé and thus validate its operation."

7. Further, returning to DOLCE mentioned earlier: which of those relations could be
reused? Parthood and proper parthood, likely, for the SinSo’s Involved in and
composed of, respectively, yet they have not been considered.

Figure 2: what would be real instances of, e.g., Operability?

Reply:

We have added a comment about DOLCE in the last paragraph of section 6:

"In the context of the DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) (Borgo et al. (2022)), SinSQO's categories are specializations of abstract
quality since the ontology components are non-physical objects. DOLCE Relationships
can be reused, such as "“has-part" to ““involves" and "is related to" SinSO
relationships, and "is-part-of" to "is composed of " and "belongs to" SinSO
relationships"

Also, after Figure 2 we added the next text to clarify the source of information:

"Subsequently, SinSO was filled with a collection of instances/objects from each class
mentioned as individuals in Protégé. These individuals are represented using what is
commonly referred to as ~"dummy data" (see Fig. 3) to illustrate the structure and
functionality of the ontology and also to be able to test the axioms and competency
questions."

8. Sect 5.2: on the formal axioms always being true: no, not necessarily, it may also be
false. The deductive reasoner infers implicit information, not “new” (though it may be
new to the user). Figure 3: “has participant some Economical” economical *what*, or:
the name ideally would include ‘dimension’ in the name in order to disambiguate the
adjective.

Reply:

We have modified the sentence to:

"Formal axioms are logical expressions used to specify constraints in the ontology"
Also, we have added dimension to the figure and axioms. See Figure 4 and Table 6.
9. Were there any novel modelling challenges that were solved? How does the
alignment to DOLCE look like exactly? What's the current content in terms of size, DL
fragment?

Reply:

See the response to your comment 4, which is related to this comment. In addition, we
have added the following sentence in section 4.1:

"...As a result, each SinSO concept was converted into a class, each attribute into a

data property via domains, and each relationship into an object property. DL fragment
size of SinSO is as follows: logical axioms - 284, declaration axioms - 149, class cout -

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

49, object property - 17, data property - 17, individuals - 66, subclass relationships - 67,
and disjoint classes — 8."

10. Sect. 6.1: the reader is still left wondering about the CQ development, on whether
that was done before for scoping or only for evaluation after the development of the
ontology. Please clarify.

Reply:

Competency questions were moved to the evaluation section since they were used to
evaluate ontology after development.

11. Sect 6.2: The validation is done with the FOCA methodology, but reference 49 is
incomplete. Why this one specifically? While it may perhaps be useful, there are some
pertinent details missing to make much sense of this section. For instance, a “Grade”
of “75” for goal 1: where does that once from/why/how? Of question Q4: imposing a
“maximum ontology commitment” means what exactly? | understand ontological
commitment, but ‘maximum’? Similarly, from “The criteria to calculate...”: out of context
it does not seem very meaningful, and likewise for the numbers plugged into the
formula.

Reply:

Thanks for your comment. A paragraph is added explaining the process in the
penultimate paragraph of section 5.3:

"FOCA methodology (Bandeira et al. (2017) defines how to verify each of the questions
to obtain a final grade. In general, the questions should be answered given one of
these grades (25,50,75,100). For example, for the next questions: (i) “'Does the
document define the ontology objective?", (ii) “"Does the document define the ontology
stakeholders?", (iii) "Does the document define the use of scenarios?", the resulting
values calculated through a consensus process carried out by the authors were
100,100 and 25, respectively, resulting in a mean of 75. The procedure followed was
the same for other questions, and was manually performed.

The resulting values for each question were used by Equation 1 to determine a general
value of the quality of the system. The result of the total quality is 0.998 (see Equation
2b), and being a result close to 1 according to the FOCA methodology, we can
conclude that SinSO has a high quality in terms of the five roles defined by Bandeira et
al. (Bandeira et al. (2017)):..."

12. Sect 6.3: p11 claims consistency thanks to the (textual??) definitions, terms, and
relations, but that alone would then not suffice for evidence. As such the “as a result” is
not clear either: result of what? And fig 5 presumably shows the output of the whole
ontology, not just one axiom “A1”. Further, Hermit will not report on redundancies;
there exist limited (and by now old) non-standard reasoning services for that. The last
sentence of this section is vague, lacking evidence (if that's even possible) and does
not relate to the logic, so if it is important, it needs clarification and precisification.
Reply:

In section 5.4, we have improved the definition of consistency:

"Consistency: A definition is consistent if the individual purpose is consistent and no
conflicting sentences can be deduced using other definitions and axioms (Gémez-
Pérez (2001)). The authors checked the definition of each term and its connections to
ensure consistency, to identify inconsistencies and misinterpretations."

Also, the description of Figure 5 was corrected and the text that cites Figure 5
improved:

"As a result, SinSO did not present errors (see Fig5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms
and the resulting time for the execution). Thus, the reasoner computed the ontology
successfully and did not generate inconsistencies executing all axioms."

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

13. Sect 6.4: the authors probably did not “instantiate” the use cases’ systems with the
ontology, but instantiated the entities in the ontology, or used the ontology in
annotations. Those detailed descriptions on p14 don’t add much. Maybe it is meant as
a quasi natural language rendering of the diagram or of some axioms, but that then
would be duplication of information and then either the figure or the formalisation will
do as compared to this imprecision. And “execution” of axioms is unlikely the right
term.

Reply:

Detailed descriptions explain how it was operationalized each attribute associated with
a dimension for each domain. It is clarified in section 5.5.3:

"For domain 1 (senior-citizen smart-home case study) and domain 2 (DingNet
simulator), formal axioms and relevant CQs were executed (see Table 2). In the case
studies, each quality attribute was operationalized for each dimension.

Below is the process followed:"

Also, the word “execution” was changed to “application”.

14. Conclusions. “SinSo is a valuable contribution”: users will decide that, not the
authors if there’s no ample evidence. “can serve as a useful tool...”: perhaps, but that
has not been shown in the paper, so that conclusion cannot be drawn from the data
presented (the authors may hope for it, envision it, or expect it or some such
description, but “can” is too strong a claim).

Reply:

Sections | (introduction), VI (discussion) and VII (Conclusions) have been modified
according to this comment. For example, see the antepenultimate paragraph added in
the introduction:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

Also, it has been eliminated “SinSo is a valuable contribution”. The new first paragraph
in the conclusion is:

"This paper presents SinSO, a formal representation of knowledge in the domain of
sustainability in software that can be used by software engineers or researchers, and
serves as a structured model for organizing and representing. One of the primary
objectives for developing SinSO was to overcome the discrepancies and uncertainty in
sustainability language. SinSO contributes to reducing ambiguity and boosting
understanding in this domain. SinSO can also be used to help in software
engineering."

15. Table 5. column 2: clarify whether that is the domain or range, or whether the “-”
was intended to separate them rather than having a multi-word term.
Reply:

The text has been changed to “Domain-Range”

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

16. Table 6: are they intended to be all axioms in the ontology? Then, in the
Description logic column: it's \sqsubseteq not \subseteq and \sqcup rather than U; the
hasQAS is not in table 5; the DL query queries for something else than what'’s stated in
the second column, such as A1 having isComposedOf in the query but does not
appear in the axiom. This table needs some careful checking and verification or
correcting.

Reply:

The sentence “it must possess” was changed to “it must be composed of”. For
example,

"For any domain to be sustainable, it must be composed of the attributes of
maintainability or portability or evolvability or scalability."

17. Presentation

The paper is formatted incorrectly, misses authors’ institute, keywords never go as
Introduction section, there are many grammatical infelicities that easily could have
been picked up by MS word or Grammarly or the like (e.g., “it was integrated all these”,
“it is presented the”), typesetting infelicities (text---text for dashes, ** for opening
quotes), has images and tables whose text are hardly readable in print (esp. tables 4
and 5), and captions that don’t make the images self-contained. All that has to be
corrected. Currently, it gives a negative impression of a previously rejected, here
recycled, paper that the authors were too fed up with to finalize, which is not
publishable in this form.

Reply:

The next actions were carried out:

formatted corrected according to journal template.

*Authors’ institute added and keywords relocated.

*The English of the document was improved.

*Opening quotes corrected

*Captions were improved

*For Tables 4 and 5, we have improved the size and adjusted the columns.

Associate Editor:

Thanks for making this effort to investigate the notion of sustainability in software and
considering Applied Ontology as a publication channel. As the reviewers state, the
topic is most significant and timely, but as they also argue the paper needs
considerable improvements to be publishable. Thus, the decision is major revision.
Please carefully take into account all the feedback from reviewers. | would point out
three issues that seem to be the most critical ones.

1. The foundation for the ontology. Firstly, the foundation of the ontology needs to be
strengthened. The ontology is primarily based on a literature review. However, for this
purpose, the review would need to be a systematic review. There should also be a
discussion, including motivations, on which notions you decided to include in the
ontology, which ones you considered but did not include, and which ones you deemed
to be subsumed by the included notions. In particular, this pertains to the dimensions of
sustainability.

Reply:

We have made several changes, based on reviewer comments, to respond to this
comment. For example, see the response to comment 2 of reviewer 1.

2. The competency questions. Secondly, the sources of the competency questions
need to be made explicit. Competency questions should be viewed as functional
requirements on an ontology. Therefore, the sources of the competency questions are
essential and must be made clear.

Reply:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Additional Information:

Question

By submitting this article | agree with the
I0S Press Author copyright agreement,
the IOS Press Privacy Policy, and the IOS
Press Ethics Policy.

Authors publishing a paper with 10S
Press should certify that: (i) all those
mentioned in the list of authors have
contributed significantly to the paper

Again, we have responded to those comments from the reviewers. See the response
to comment 4 of reviewer 1 and the response to comment 5 of reviewer 2.

3. Evaluation. Thirdly, the evaluation needs to be clarified. As one of the reviewers
pointed out, the claim that the ontology can serve as a useful tool is not supported by
the paper. The evaluation appears to be more of a proof-of-concept for the use of the
ontology, and the conclusions that can be drawn from it need to be clarified.

Reply:

Sections | (introduction), VI (discussion) and VII (Conclusions) have been modified
according to this comment. For example, see the antepenultimate paragraph added in
the introduction:

"This paper proposes an ontology focused on the key sustainability factors (Carver et
al. (2021)). SinSO is a generic ontology that could be useful for providing adequate
terminology to support and lead the implementation of sustainable software projects.
This ontology presents terms, concepts, and relationships to support the development
of sustainable software systems. For sustainable software development, an ontology
exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al. (2023)),
our ontology SinSO focuses on the characteristics related to each dimension of
sustainability, allowing (i) knowing what characteristics to implement to focus on a
certain dimension of sustainability, (ii) identifying if the application impacts some of the
dimensions of sustainability, (iii) knowing what is needed to achieve sustainability in all
its dimensions."

Or the first paragraph of Conclusions:

"This paper presents SinSO, a formal representation of knowledge in the domain of
sustainability in software that can be used by software engineers or researchers, and
serves as a structured model for organizing and representing. One of the primary
objectives for developing SinSO was to overcome the discrepancies and uncertainty in
sustainability language. SinSO contributes to reducing ambiguity and boosting
understanding in this domain. SinSO can also be used to help in software
engineering."

Also, section 5 has been enriched with more details, with clarifications, among other

things.

4. Furthermore, the presentation is not satisfactory as shown by, e.g., many
grammatical errors and some incomplete references. If you decide to resubmit, please
take these comments into account, but also all the more detailed comments by both
reviewers.

Reply:

The English of the document and the references have been improved.

The Authors

Response

Yes

| confirm and consent.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

according to the IOS Press Authorship
Policy; (ii) no person who has made a
significant contribution has been omitted
from the list of authors or acknowledged
persons;

<p>

In accordance with the above excerpt
from the <a
href="https://www.iospress.nl/service/auth
ors/ethics-policy/" target="_blank">I0S
Press ethics policy, authors cannot
be added to or omitted from the author list
of the submission after it has been
accepted.

<p>

Please select ‘I confirm and consent.’ to
acknowledge that you have submitted
your manuscript in accordance with these
guidelines, and that all subsequent
changes to the author list require a signed
approval from all authors and from the
Editor(s) in Chief.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Manuscript

o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Click here to

access/download;Manuscript;Luisa__ SinSO___ Applied_Ontol

Applied Ontology 0 (0) 1 1
10S Press

SinSO: An Ontology of Sustainability in
Software

Luisa Restrepo ?, César Pardo ad Jose Aguilar ab.cx Mauricio Toro? and Elizabeth Suesctin ®

& GIDITIC Research Group, EAFIT University, Medellin, Colombia
E-mails: lrestr61 @eafit.edu.co, esuescul @eafit.edu.co

b CEMISID, University of the Andes, Mérida, Venezuela

E-mail: jlaguilarc @eafit.edu.co; aguilar@ula.ve

¢ IMDEA Network Institute, Madrid, Spain

E-mail: jlaguilarc @eafit.edu.co; aguilar@ula.ve

4 GTI Research Group, University of Cauca, Popaydn, Cauca
E-mail: cpardoc @ eafit.edu.co

Abstract. Sustainability in systems refers to applying sustainable principles and practices to create more resilient, efficient,
and equitable systems that promote the well-being of people and the planet. Sustainability is an essential topic in contemporary
software engineering, and its relationship with the characteristics and properties of a system or product called quality attributes is
still an open question since each researcher has established their definition of sustainability in software. This has created diverse
terms and concepts for distinct application environments and scopes, creating ambiguity and misconceptions. This work defines
a domain ontology of Sustainability in Software named SinSO to address these issues. SinSO was implemented in OWL, using
competency-based questions to validate. The findings show that this proposal satisfies several quality and content requirements.
Also, using Protégé and the Hermit reasoner, we verified that SinSO is consistent since the ontology statements are coherent and
do not lead to conflicting or contradictory conclusions. In addition, competency questions allowed us to demonstrate that SinSO
does fulfill its purpose. FOCA methodology allowed us to evaluate SinSO quality. Also, SinSO was used in two case studies, one
about software for senior-citizen smart-home, and the other, a simulator to develop and test smart-city applications, achieving
positive outcomes. To verify its accuracy, completeness, and maintainability, further evaluations of SinSO are needed in real
case studies. We conclude that SinSO can significantly contribute to reducing ambiguity and enhancing comprehension in this
area. Furthermore, SinSO can be an effective tool for engineers to recognize the concepts and relationships in the sustainable
domain to consider in the systems development life cycle to build sustainable systems.

Keywords: Sustainability, Domain Ontology, Quality attributes, Software Engineering

1. Introduction

Sustainability is the practice of “fulfilling today’s societal needs without compromising the ability of
future generations to meet their own needs" (Stavros and Sprangel (2008)). In engineering, sustainable
development can be defined as the selection and execution of iterative and incremental processes that
promote the long-term, low-cost, and minimal-effort development of innovations (Pankowska (2013)).
Sustainable development has become an important topic in contemporary software engineering. There
is a growing interest in understanding what sustainability means in this field and what it entails and
implies. Since maintenance, evolution, and adaptation can be extremely expensive for organizations due

*Corresponding author. E-mail: jlaguilarc@eafit.edu.co; aguilar@ula.ve.

1570-5838/$35.00 © 0 — IOS Press. All rights reserved.

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1+

0o J o U w N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o s W NN PO W 0 d oYy U W NN PO W 0 oYy U WD RO W Yy U W NN RO W

2 L. Restrepo et al. / SinSO

to the continuous and fast evolution of technologies (Jansen et al. (2011)), sustainability development
emerges as a potential solution to these demands because it allows the consideration of these aspects
using iterative and incremental approaches. These approaches aid in the long-term development of
innovations at a low cost and with minimal effort (Pankowska (2013)).

Sustainability within Software Engineering, from the perspective of the longevity of the software
artifact (rather than environmental sustainability), is essential and not fully understood. The literature has
inconsistencies in the terminology used to define Software Sustainability. This is because each researcher
has established a definition of sustainability in software. Sometimes, these definitions and their linked
concepts can be the same as mentioned by other authors but using different terms. For instance, to refer
to the software’s energy performance and the amount of energy resources used, authors used words
like performance efficiency (Khalifeh et al. (2020)), energy efficiency (Sobhy et al. (2016); Kocak and
Alptekin (2019); Kocak et al. (2015)), energy consumption (Garcia-Bernd et al. (2021)), performance
and efficiency (Sobhy et al. (2016)). For this case, the term adopted in this paper was energy efficiency.

When software contributes to sustainability, it is called Sustainability by software e.g., remote work for
reducing physical travel to minimize carbon emissions. Sustainability in software refers to incorporating
sustainable practices during the software development process for sustainable designs like reducing
resource consumption, user experience, etc. (Condori-Fernandez et al. (2019)). In this paper, we are
concerned with Sustainability in Software, in which the objective is the software itself.

On the other hand, ontologies define knowledge structures and promote a shared understanding of a
domain, task, or application (Chandrasekaran et al. (1999); Mendonga et al. (2020); Gonzalez-Eras et al.
(2022)). By creating an ontology for Sustainability in Software, we can decrease the inconsistencies and
facilitate information sharing in the sustainability domain, thus making assumptions over this domain
explicit. An ontology is also helpful in analyzing knowledge and relationships in this domain.

This paper proposes an ontology focused on the key sustainability factors (Carver et al. (2021)).
SinSO is a generic ontology that could be useful for providing adequate terminology to support and
lead the implementation of sustainable software projects. This ontology presents terms, concepts, and
relationships to support the development of sustainable software systems. For sustainable software
development, an ontology exists called OntoSuSD. In contrast to OntoSuSD of Zada et al. (Zada et al.
(2023)), our ontology SinSO focuses on the characteristics related to each dimension of sustainability,
allowing (i) knowing what characteristics to implement to focus on a certain dimension of sustainability,
(ii) identifying if the application impacts some of the dimensions of sustainability, (iii) knowing what is
needed to achieve sustainability in all its dimensions.

This paper is structured as follows. Section 2 features a literature review on the ontologies of software
sustainability. Section 3 presents the basis of ontologies and sustainability in software, the methodology
used, and the goals associated with creating an ontology. Section 4 introduces SinSO. An evaluation
with the FOCA methodology (Bandeira et al. (2017)) of the ontology is presented in Section 5. Based
on the outcomes of using this ontology, we present, in Section 6, the strengths and limitations of SinSO.
Finally, conclusions and future work directions are presented in Section 7.

2. Related Work

In search of the literature, We discovered that the majority of essential contributions related to software
and ontologies have been focused on industrial applications (Huang et al. (2019); Giovannini et al.
(2012)), sustainable urban transport (Moskolai et al. (2019); Giret et al. (2018)). Energy management

o 0 J o0 s W N

BB D D D W W W W W W WwWwWwWwNNDNDNDNDNNNNDN NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O WV dOo U WN R O WO doe s W N RO

O 0 J o U W N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o U W NP O W 0 d oYy U W NN PO W e oYy U WD O VW Yy U W NN PO

L. Restrepo et al. / SinSO 3

(Hippolyte et al. (2016); Brizzi et al. (2016); Saba et al. (2015); Hamdaoui and Maach (2019); Sayah
et al. (2020)). These subjects are beyond the scope of this paper.

However, the following works are related to the topics that support this proposal. First, Khalilef et
al. (Khalifeh et al. (2020)) linked and classified the eight most essential quality characteristics of
the ISO/IEC 25010 product quality model for the environmental, economic, and social dimensions
of sustainability. Second, Condori-Fernandez and Lago (Condori-Fernandez and Lago (2019)) and
Condori-Fernandez et al. (Fernandez et al. (2019)) identified relevant quality attributes to the economic,
technical, environmental, and social dimensions of sustainability by using case studies. Third, Kern et
al. (Kern et al. (2018)), Kokak, Alptekin, and Bener (Kocak and Alptekin (2019); Kogak et al. (2015)),
and Garcia-Berna ef al. (Garcia-Berna et al. (2021))identified attributes associated to the environmental
dimension. Fourth, Nazir ef al. (Nazir et al. (2020)) focused on individual sustainability challenges.

On the other hand, Sobhy et al. (Sobhy et al. (2016)) presented a case study to explain how
decision-makers and architects might use a diverse cost-value approach to think about sustainability.
Aljarallah and Lock, in 2019 (Aljarallah and Lock (2019)), studied the occurrences of software-
sustainability characteristics in the literature and concluded that the most frequent characteristics
are maintainability, portability, usability, and efficiency, followed by reliability, reusability, security,
durability, and extensibility. Raisian et al. (Komeil Raisian (2022)) identified green measurements
based on environmental, social, and economic dimensions in a software product linked to productivity,
usability, resource efficiency, and others. Quispe and Condori (Quispe and Condori (2022)) list the
quality characteristics contributing to each technical, environmental, economic, or social dimension.
Finally, Paybarjay et al. (Paybarjay et al. (2023)) collected criteria for evaluating supplier development
according to social, economic, and environmental dimensions.

From these papers, it is identified the following five conclusions. First, authors classified quality
attributes in standard sustainable dimensions; however, in some papers, this classification is omitted,
or papers did not cover all five dimensions (environmental, social, economic, technical, and individual).
Second, the authors associate different sustainable quality attributes with one or more dimensions. Third,
quality models, such as ISO/IEC 25010 and ISO/IEC 9126, have been used to characterize software
sustainability because some sustainable quality attributes refer to the same concept, such as modifiability
and changeability attributes. Fourth, the individual dimension is mentioned in some papers as a personal
dimension. Fifth, no works propose ontologies with terminology, concepts, and relationships between
them, which would contribute to the topic of software sustainability.

For the previous reasons, this paper integrated all these concepts into SinSO, an ontology that offers
adequate, consistent terms to facilitate and lead the execution of sustainable software projects.

3. Background
This section presents the background on sustainability in software and ontologies.
3.1. Sustainability in Software

Sustainable development in engineering can be characterized as the selection and execution of iterative
and incremental methods that encourage long-term innovation creation Pankowska (2013).

Becker et al. (Becker et al. (2015)) stated that sustainability has to be understood on a set of five
dimensions: (i) economic, (ii) individual, (iii) environmental, (iv) technical, and (v) social. Koziolek
(Koziolek (2011)) stated that sustainability at least compromises the quality attributes of (i) portability,

O 0 J o U W N

BB D D D W W W W W W WwWwWwWwNNDNDNDNDNNNNDN NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O WV dOo U WN R O WO doe s W N RO

O 0 J o U W N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o U W NP O W 0 d oYy U W NN PO W e oYy U WD O VW Yy U W NN PO

4 L. Restrepo et al. / SinSO

(i1) evolvability, and (iii) maintainability. These three quality criteria are detailed further below
depending on their sub-characteristics.

Maintainability: ISO/IEC 25010 International Organization for Standardization (2011) described this
feature as a product’s or system’s ability to support maintenance tasks such as repairs, improvements,
or adaptation to environmental changes. Also included in maintainability is the ability to apply updates
and upgrades. This characteristic is broken into five subcharacteristics: (I) testability, (i) modifiability,
(iii) analyzability, (iv) reusability, and (v) modularity. Maintainability is also related to evolvability.

Portability: Tt is defined as the “degree of effectiveness and efficiency with which a system, product, or
component can be transferred from one hardware, software, or other operational or usage environment
to another” by ISO/IEC 25010 International Organization for Standardization (2011). This characteristic
is broken into three subcharacteristics: (i) replaceability, (ii) installability, and (iii) adaptability.

Evolvability: According to Rawe Rowe et al. (1994), it is a quality that affects a system’s capacity
to adjust to changes in its requirements during its lifespan while spending as little money as feasible
and retaining architectural integrity. According to Pei and Crnkovic Pei Breivold (2020), this attribute
is comparable to the attribute of maintainability, but in the case of evolvability, one should take
unanticipated changes into account.

The System-Development Life-Cycle (SDLC) includes a vital procedure for designing a system’s
architecture, and a system’s architecture’s quality qualities substantially influence how long it will last
Koziolek (2011); Chitchyan et al. (2017). A sustainable architecture must also be adaptable throughout
its lifespan. This entails creating a system that is ready for upkeep and development. Indirectly included
in this final quality are the ideas of durability and cost-effectiveness Koziolek (2011).

3.2. Ontologies and their representation

The knowledge of a particular topic is formalized or determined using ontologies (Studer et al. (1998);
Guarino et al. (2009)) in such a detailed and broad manner that apps and groups of people may share
data(Gomez-Perez et al. (2004)). Ontologies provide a common vocabulary solving issues such as
data integration (Keet (2018)). Ontologies have been used in different computer science fields such as
artificial intelligence, database and information systems, and software engineering, mainly for the need
to promote software reuse at a higher level of abstraction than only programming code and to lessen the
disproportionate costs of software maintenance (Guizzardi (2005)).

Ontologies can be classified as application, high-level, information, and domain ontologies, among
others (Studer et al. (1998); Corcho et al. (2006); Fensel (2004); Roussey et al. (2011)). A domain
ontology is the sort of ontology explored in this study that enables the expression of conceptualizations
in a particular context (Studer et al. (1998); Negri et al. (2017); Arp et al. (2015)) through the following
processes: (i) knowledge capture (Fensel (2004)), (ii) concept definition and relationship definition about
the activities occurring in the domain, and (iii) theory and principle definition (Gomez-Perez et al.
(2004)).

There are different methodologies to systematize the implementation of ontologies such as NeOn
Methodology (Sudrez-Figueroa et al. (2015)) that proposes a framework to reuse available ontologies,
Software Engineering Ontology Network (SEON) that provides ontology reusability and integration
(Borges Ruy et al. (2016)), or SMO ontology that is focused on software process and behavior analysis
(Barcellos et al. (2010)). We employ Methontology (Fernandez-Lopez et al. (1997)) since it is widely
used to define ontologies in several disciplines, and REFSENO (Tautz et al. (1998)), an improved version
of Methontology. REFSENO allows for (i) exact and consistent knowledge modeling (in this paper, the

O 0 J o U W N

BB D D D W W W W W W WwWwWwWwNNDNDNDNDNNNNDN NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O WV dOo U WN R O WO doe s W N RO

0o J o U w N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o b W NP O W 0oy W N R O VW Yy W N RO LV Yy W N RO v

L. Restrepo et al. / SinSO 5

conceptual structures are defined using the class diagram of the Unified Modeling Language-UML); (ii)
the construction of an ontology via the use of identification and detailed characterization of concepts and
their relationships; and (iii) the ontology’s validation to assure consistency and applicability using case
studies or instances. The effectiveness of these methodologies in systematizing ontology implementation
and evaluation depends on factors such as the expertise of developers, the complexity of the domain, and
the specific goals of the project. Our team has used for a long time with these methodologies, which
adhere to best practices in ontological engineering.

4. SinSO: An ontology of Sustainability IN Software

The conception of SinSO involved several key steps such as defining the scope and identifying the
relevant literature. The scope defined was to identify quality attributes relevant to the sustainable domain
and their relationship with sustainability dimensions. Particularly, we considered five dimensions of
sustainability: environmental, technical, economic, social, and individual/personal. Also, some quality
attributes in these dimensions are subsumed by the included quality attributes such as Durability,
Dependability (included in Reability), Traceability (included in Accountability), Survivability, Data
Privacy (included in Security), and Adaptation (included in Maintainability). Thus, the literature review
followed the following steps (i) A search string (see Table 1) was defined to execute in the selected
databases (Scopus and Google Scholar). (ii) The inclusion/exclusion criteria were to include papers
published from 2015 to 2023, English/Spanish language papers, and exclude papers not available or not
accessible. (iii) The resulting paper’s title, abstract, and content were reviewed to exclude non-relevant
papers. The process started with 128 papers and finished with 16

Table 1
Search string used for the literature review
(“ sustainability” OR “ sustainable”) AND (“ Architecture" OR “ Design" OR “ framework" OR “

Nonfunctional Requirement" OR “ Quality requirement" OR “ quality attribute") AND (“ software") AND
NOT (“Domain-specific languages" OR “Embedded" OR “Internet of things")

We pursue the following two goals to develop Sustainability in Software Ontology (SinSO). First,
synonyms and homonyms, terminology location, and identity identification. Second, integration of the
concepts discovered in the analyzed literature. These objectives can be met by using a shared ontology
that represents the domain of software sustainability. The ontology must explain all concepts, providing
clear and straightforward definitions for terms and identifying the links between them. In this research
area, an ontology can serve as a foundation to support the development of sustainable systems.

SinSO is a formal representation of knowledge in software sustainability, which software engineers
or researchers can use. This ontology serves as a structured model for organizing and representing
information about sustainability in software, which is implemented in the Protégé tool to provide
functionalities to visualize and query the ontology and to support reasoning and inference. SinSO
approaches quality attributes, aspects of great relevance for the sustainable domain, defining them
as a measurable characteristic that quantifies how effectively a system satisfies particular qualitative
requirements such as performance, maintainability, security, etc. Some concepts were imported
from Measurement, and Software-Measures ontologies are components of the Software-Measurement
Ontology (SMO) (Pardo et al. (2012)). These sub-ontologies define and explain the main aspects of the
definition of a software measure and the terminology associated with software measurement.

0 J o U W N

BB D s D W W W W W WWwWwWwWwNNNDNDNDNNNNDNDNN R R R R R R R R e o
o s W N R O W O Jd oS W N R O WV dOo U WN R O WO doe s W N RO

0o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

6 L. Restrepo et al. / SinSO

Fig. 1 shows a graphical representation in UML of the concepts and relationships established in SinSO.
Each color identifies a group of terms in the ontology; for example, grey is for sustainability dimensions.
Appendix 8.1 presents, in detail, the concepts of SinSO in Table 4 and the relationships of SinSO in Table
5.

Relationships of SinSO were adapted from UML class diagrams (Larman (2012)): (i) Association
establishes a relationship between classes, (ii) Directed association refers to a directional relationship,
(iii) Aggregation means that a child concept is not strongly dependent on a parent concept, (iv)
Composition means that a child concept is strongly dependent on a parent concept, which allows
establishing that concepts are mandatory, and (v) Inheritance means that a child concept is a specific
parent concept.

Data properties were added to the concepts, and they can be extended. For example, all quality
attributes at least have a description data property that describes their objectives, and SMO sub-ontology
classes have the respective data properties as an identifier. Child concepts inherit data properties from
parent concepts.

A few concepts demand specific attention from the ontology’s definitions. As a result, we expanded
the description and analysis of some words, such as resource efficiency and energy efficiency, since
they are mentioned in most of the reviewed articles, and some articles only focus on one of them. (1)
Resource efficiency: the concept in some papers is not mentioned explicitly, sometimes its derivatives
are used such as materials reused, waste materials discarded, water reuse (Konys (2018)), water, energy,
or food sustainability (Babaie et al. (2019)), since papers usually focus in a specific resource, especially,
the energy resource, for that reason, it was separated in a sub-concept. Resource efficiency covers all
types of resources in the ontology. (2) Energy efficiency: this concept is mentioned in papers such
as sustainable energy (Giovannini et al. (2012)), performance efficiency, energy efficiency, energy
consumption (Garcia-Berna et al. (2021)), and performance or efficiency (Kern et al. (2018)). However,
our ontology refers to “under specified parameters, the software’s energy performance level and the
amount of energy resources used" based on (Kocak and Alptekin (2019)).

4.1. Implementation

SinSO was implemented in the Web Ontology Language (OWL), using the Protégé editor (version
5.5.0). Protégé allows for the creation of ontologies using OWL. As a result, each SinSO concept was
converted into a class, each attribute into a data property via domains, and each relationship into an
object property. DL fragment size of SinSO is as follows: logical axioms - 284, declaration axioms -
149, class cout - 49, object property - 17, data property - 17, individuals - 66, subclass relationships - 67,
and disjoint classes - 8.

4.2. Formal axioms

Basic predicates and axioms of SinSO are listed in Table 6, in Appendix 8.3. “Formal axioms are
logical expressions used to specify constraints in the ontology" (Corcho et al. (2005)). Each formal
axiom was described in natural language after the expression was translated into first-order logic, and,
finally, the DL query expression was executed in the Description Logic (DL) Query feature of Protégé.
The reasoner allows inferring new information from an ontology using queries in description logic.

O 0 J o U W N

BB DWW W WWwWwWwWwWwWwNNNDNDNDNDNDNDNDNN R R R R R R R e e e
N R O VW ® Jd oUW RN R O WO d oUW N R O WV W do U s W N R O

43

0o J o s w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO

°|’ Y Legend
1 Quality Attribute |<>
&
I |<> []
1 Objective
\153.\\
specified for - identifier. string | ———ha: Concept
. - name: string o -
Domain Meas Indicator
ure - 50
- identifier: string - 1 Optains__1| - identifier. sting Associalion
| 1) ~identifier: string veme. <ting
- name: strin - R
‘ ility || Ci ‘ pect lg - name: string .
‘ I | - Objective: siring uses ransformation Directed
invelves . association
Authenticity Integrity
Fuctional Suitability M nt o
- identifier. tring
- Description: string
- name: string Agregation
Portability I\ o
|- Description: string .
-—
1
has
e — Composition
| Adaptability | | Replaceability | ~identifier. string belangs “’j
| | | Functienal correciness - name: string D
[- valug: int Type of Scale
S contributes to~ - dentir string nremance
| e B 1N 1 O
Scalability ’7 g - name: string Color conventions
3 Description string 1% H - Description: string involves ! =
i e P £\ :
s composed of SCET . [coexstence | [ity
—contributes fo - - Description” string 4 Z’ | ‘ | ‘ =
1.] Security
S Performance
invalve:
| Description: string | - Description: string Portability
N contributes to involves
I I ‘l | Time behaviour | | Resource utilization ‘ ‘ Reliability |
[Reusapity | | [anahzabimy | || - Description string | Evolvability
. | || | A
. n i
} } } } } | Energy efficiency : Usability
Changeability Usability ivolve Reliability
=| - Description: string |- Description- string
T = Performance
=] Stability PpiopE Learnability
T - -
% - Description: string) has impact | I ‘ 1 ‘ I |
2 Compatbil
1 ‘ ‘ Operability || User error protection ‘ patbity
o \ I \
Wb i \ Wantanabity
|- Descriplion: siring ‘ Environmental | Technical ‘ | Ecenomical ‘ ‘ Social | | Individual/Personel |
% il [[] [Fuctonal Sutzbity
I |

Fig. 1. An ontology of Sustainability in Software (SinSO)
S. Evaluation

The evaluation of SinSO was divided into five phases: (i) application of competence questions; (ii)
application of axioms; (iii) component validation modeled in Protégé; (iv) quality validation through
metrics; and, finally, (v) creation of SinSO instances based on two scientific papers.

5.1. Application of competence questions (CQs)

To evaluate SinSO, a group of competency questions (CQs) have been defined and conceived through
the literature review, which provides us insights into the relevant concepts and relationships that should
be covered; CQs were refined with brainstorming sessions between authors to clarify the information
and knowledge the ontology needed to capture and represent. These competency questions represent
functional requirements that SinSO should be able to answer. Subsequently, SinSO was filled with a

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o s w N

B N T = S OO e O R O S L O R O B O O N O O R O S S R L S L S S S o T e e e N e R e e B
o U W NP O W 0 oYy U W N PO W 0 oYy U WD RO VW Yy U WD R O W

8 L. Restrepo et al. / SinSO

SPARQL query: MEmE

PREFIX SINSO: <http/ifiwww.semanticweb.org/ontologies/sinso#=
SELECT DISTINCT ?dimension WHERE {
P04 SINSOspecifiedFor ?Domain.
?Domain SINSC:identifier "domaini1”™
OPTIONAL { ?QA SINSO:isComposedOf | SINSCrinvolves 7d}
?d SINSO:haslmpact ?dp.
?dp rdftype ?dimension . }

dimension
Technical
Social

Fig. 2. SPARQL application example for competency question 9 with dummy data.

collection of instances/objects from each class mentioned as individuals in Protégé. These individuals are
represented using what is commonly referred to as “dummy data" (see Fig. 3) to illustrate the structure
and functionality of the ontology and also to be able to test the axioms and competency questions..

To apply CQs expressed in natural language, it was necessary to formalize them by using the SPARQL
Protocol And Resource description framework Query Language (SPARQL) (Wisniewski et al. (2019)).
This language is employed for locating and modifying data in RDF format and is used to consult an
ontology using Protégé. A synopsis of the application of these CQs is shown in Table 7 (see Appendix
8.4).

As an example, using the instances of Fig. 3 and the SPARQL Query of Protégé, we want to answer
the competency question CQ9 — “What are the dimensions of sustainability impacted by domain 1?" (see
Table 7). Fig. 2 shows that technical and social dimensions are impacted by domain 1, which coincides
with what is expected. This result indicates that CQs can be used to verify requirements’ satisfiability
using the knowledge recovered through the SPARQL query feature of Protégé. Thus, all CQs were
successfully tested through a result verification using the instances created.

5.2. Application of axioms

Fig. 3 shows instances of some concepts of SinSO. This paper evaluates the axiom Al as an example,
using DL queries. The axiom A3 defines that (see Table 6 in the Appendices section): “For any domain
to be economically sustainable, it must be composed of the attributes of Modifiability or Portability or
Functionality Sufficiency or Compatibility or Capability or User Error Protection or Learnability", with
the DL Query feature of Protégé, the reasoner concludes that domain 1 is the only one that complies with
the axiom statement (see Fig.4). It is correct since domain 2 is associated with the operability attribute,
and domain 3 has no attributes associated.

5.3. Ontology-components validation

To evaluate ontology components, Bandeira et al. ’s FOCA methodology (Bandeira et al. (2017))
was applied in this evaluation process. FOCA methodology uses the Goal, Question, Metric (GQM)
approach to evaluate ontology components in conjunction with a statistical model to validate ontology
quality. FOCA is comprised of three steps: Ontology-type verification (i), question verification (ii), and
quality verification (iii) (Bandeira et al. (2017)).

0 J o U w N

BB D W W W W W W W W W W NDNDNDNDNN NN N R R R R R R R R e o
o s W N R O W O Jd oS W N R O W O dOo U WN R O WO d oS W N RO

0o J o s w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO 9

l # domaint] ‘ Qdurltamz | [0‘ ﬁnmaina J
, : N .
0QA1]«—{ QQ‘AZ]——{ .Q{\B]'-%OQ‘M ""**{QOAS
! | \ \
¥ 't A 3
[‘0 Modifiability] [’0 Integrity1] [@ Modularity1 ” 4 Operabiiity1]
[| |
[Modifiability | [' Integrity J [Modularity] | Operabilty |

Fig. 3. Ontology instances example with dummy data.

Query (class expression)

Domain and (hasQAS some
(QualityAttribute
and
isComposedOf some
(({ Modifiability or Portability }) and (hasimpact some Economical))
or
involves some
(({ FunctionalSuitability or Compatibility or Performance or UserErrorProtection or Learnability))
and (hasimpact some (Economical and isComposedOf some Dimension)))))

Execute| Add to ontology

Query results
Direct superclasses (1 of 1)

Domain

Instances (1 of 1)
.domaim

Fig. 4. Formal axiom application example for axiom 4 with dummy data.

For ontology-type verification, SinSO is considered a domain ontology. For this reason, and according
to the FOCA methodology, SinSO is Type 1 — a task or domain ontology.

For Question verification, Table 2 summarizes how GQM was utilized in this step. Question
verification comprises five objectives, twelve questions, and six metrics that can be used to assess the
validity of a domain ontology. Bandeira ef al. (Bandeira et al. (2017)) provided precise validation criteria
for each of the questions, allowing analyzing whether or not an ontology fulfills the goal of the question
by assigning a corresponding number from O to 100 (e.g., 25, 50, 75, 100). Finally, the average of each
target is computed using the scores obtained by each of the objectives-related questions.

The quality of an ontology must be calculated for quality verification. (Bandeira et al. (2017) offered
two methods for performing this calculation: total quality and partial quality. Total quality verification
was selected for this work because it enables consideration of the five knowledge representation
roles (“substitution, ontological commitments, intelligent reasoning, efficient computation, and human
expression"). The beta-regression model proposed by Ferrari et al. (Ferrari and Cribari-Neto (2004)) is
used to compute an ontology’s overall quality. Beta-regression is a data modeling technique that has

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

10 L. Restrepo et al. / SinSO

Table 2

SinSO’s component evaluation results

Goal Question Metric Grade Mean
Q1. Were the competency questions 1. Completeness 75

1. Check if the ontology defined? 91.66
complies with Substitute . ’
Q2. Were the competency questions 1. Completeness 100
answered?
Q3. Did the ontology reuse other 2. Adaptability 100
ontologies?
2. Check if the ontology Q4. Did the ontology impose 3. Conciseness 0
complies with Ontological 4 maximum ontological 0
Commitments commitment?
Q5. Are the ontology properties 4. Consistency 100
coherent with the domain?
3. Check if the ontology Q6. Are there contradictory 4. Consistency 100
complies with Intelligent axioms? 100
Reasoning Q7. Are there redundant axioms? 3. Conciseness 100
4. Check if the ontology Q8. Did the reasoner bring 5. Computational 100 100
complies with Efficient modeling errors? efficiency
Computation Q9. Did the reasoner perform 5. Computational 100
quickly? efficiency
5. Check if the ontology Q10. Is the documentation 6. Clarity 87.5
complies with Human consistent with modeling? 62.5
Expression Q11. Were the concepts well 6. Clarity 100
written?
QI12. Are there annotations in the 6. Clarity 0

ontology that show the definitions
of the concepts?

exp{ —0.44-+0.03(Covy x5b);+0.02(Cove XCo);+0.01(Covg xRe);+0.02(Covc,, ><C,,)l_—().66L Exp; —25(0.1xNI); }

= 1
I Lexp{ —0.44+0.03(Covy x55);+0.02(Cove xCo);+0.01(Covg XRe);+0.02(Covey, XCI;)ifo,GGLExpi725(O.1 N, } (D
. exp{—0.44+0.03(91.66x 1)+0.02(50 X 1)+0.01(100x 1)+0.02(100 x 1) —0.66 x 0—25(0.1x 0) } (2a)
H= T exp{—0.4440.03(91.66 x 1)F0.02(50 1) +0.01 (100 1)+0.02(100 X 1)—0.66 x0—25(0.1x 0) }

—~ exp{6.31
i ULl S (2b)

1+ exp{6.31}

been submitted. This model’s output ranges between 0 and 1 (see Equation 1).

The following are the criteria used to calculate total quality. First, Covy is the average grade achieved
from Goal 1 (see Table 2). Second, Cov¢ is the average grade achieved from Goal 2 (see Table 2).
Third, Covg is the average grade achieved from Goal 3 (see Table 2). Fourth, Cov¢ p is the average grade
achieved from Goal 4 (see Table 2). Fifth, LExp is the variable that corresponds with the evaluator’s
experience. If the evaluator considers themself a person with vast experience in ontologies, the value of
LExp is 1. Otherwise, the value is 0. Sixth, N/ is 1 only if the evaluator cannot answer all the questions.
Seventh, Sb = 1, Co = 1, Re = 1, Cp = 1 because the total quality considers all the roles (Sb -
Evaluate the ontology in terms of substitute, Co - in terms of Ontological Commitment, Re - in terms
of Intelligent Reasoning, and Cp - in terms of Efficient Computation). The Human Expression role is
implied in the Equation since it refers to the evaluator’s knowledge and ability to respond to all queries.

FOCA methodology (Bandeira et al. (2017)) defines how to verify each of the questions to obtain a

0 J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U W N

B R D D DWW W W W W W W W W NDNDNNDNDNDNDNNN R R R R R R R R
o U W NP O W 0 d oY U W N PO W 0 Yy U WD PO VW Yy U W NN RO W

L. Restrepo et al. / SinSO 11

final grade. In general, the questions should be answered given one of these grades (25,50,75,100). For
example, for the next questions: (i) “Does the document define the ontology objective?", (ii) “Does the
document define the ontology stakeholders?", (iii) “Does the document define the use of scenarios?", the
resulting values calculated through a consensus process carried out by the authors were 100,100 and 25,
respectively, resulting in a mean of 75. The procedure followed was the same for other questions, and
was manually performed.

The resulting values for each question were used by Equation 1 to determine a general value of the
quality of the system. The result of the total quality is 0.998 (see Equation 2b), and being a result close
to 1 according to the FOCA methodology, we can conclude that SinSO has a high quality in terms of
the five roles defined by Bandeira et al. (Bandeira et al. (2017)): (i) Substitute: there is a coherence
between documentation, which contains the competency questions, the main terms and the objectives
of the ontology, and concepts model the real world. (ii) Ontological commitments: definitions were
well presented in the specific domain, consistent with the documentation. (iii) Intelligent Reasoning:
A reasoner can run the ontology without producing inconsistencies. (iv) Efficient computation: the
computational efficiency of the ontology is satisfactory because an appropriate response time was
achieved for the results presented in Fig. 5, and (v) Human expression: ontology is easy to understand
for users with domain expertise, but it may require some learning and practice for new persons in the
field.

5.4. Ontology-quality validation

To evaluate ontology quality, the following five criteria were assessed, as proposed by Gomez et al.
(G6émez-Pérez (2001)):

Consistency: A definition is consistent if the individual purpose is consistent and no conflicting
sentences can be deduced using other definitions and axioms (Gémez-Pérez (2001)). The authors
checked the definition of each term and its connections to ensure consistency, and to identify
inconsistencies and misinterpretations.

The graphic representation —using UML notation— may aid in gaining a deeper understanding of the
knowledge modeled, and, finally, the consistency of SinSO was validated with the Hermit reasoner of
Protégé (Motik et al.). As a result, SinSO did not present errors (see Fig. 5, which presents the results of
Hermit Reason that indicate the ontology did not present errors executing all axioms and the resulting
time for the execution). Thus, the reasoner computed the ontology successfully and did not generate
inconsistencies executing all axioms.

Completeness denotes the extent, degree, amount, or coverage with which the knowledge in a user-
independent ontology covers real-world information Gémez-Pérez (2001). SinSO adequately covers
the context of sustainability as a quality attribute, as listed in Appendix 8.1, but further completeness
assessment is required. In this sense, SinSO covers the most essential terms to help you learn and
comprehend this subject. In addition, CQs were created and applied using test cases to assess compliance
with ontology criteria.

Conciseness: An ontology is considered concise if it does not include any definitions that are unneeded
or worthless (Gémez-Pérez (2001)). SinSO does not present redundancies between existing terms and
their representations since the authors validated the definitions and concepts that compose SinSO through
cross-checking to avoid useless reports. On the other hand, the scope of the ontology is clear, and we
focused on core aspects.

Expandability: Expandability refers to the effort required to add new definitions to an ontology
(Gémez-Pérez (2001)). Since it has not been tailored to specific organizations or domains, SinSO can

o o J o0 s W N

BB D D D W W W W WwWWwWwWwWwNNDNNNDNDNNNND NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O W dOo U WN R O WO doe s W N RO

0o J o s w N

B N T = S OO e O R O S L O R O B O O N O O R O S S R L S L S S S o T e e e N e R e e B
o U W NP O W 0 oYy U W N PO W 0 oYy U WD RO VW Yy U WD R O W

12 L. Restrepo et al. / SinSO

INFO 12:28:14 Pre-computing inferences:

INFO 12:28:14 - class hierarchy

INFO 12:28:14 - object property hierarchy
INFO 12:28:14 - data property hierarchy
INFO 12:25:14 - class assertions

INFO 12:28:14 - object property assertions
INFO 12:28:14 - data property assertions
INFO 12:25:14 - same individuals

INFO 12:28:14 Ontclogies processed in 22 ms by HermiT
INFO 12:28:14

Fig. 5. Results of Hermit Reasoner

be customized and enhanced to be used in specific industry scenarios by including and specifying
new terms. Its structure consists of few levels of depth, and adding a new definition will require only
the minimal effort of adding it in the corresponding section and configuring its properties. Also, new
concepts can use multiple inheritance to handle cases where an entity fits into multiple classes. SinSO
can be iterated for regular updates and revisions as the domain evolves to improve flexibility and allow
multiple classifications and relationships.

Sensitiveness: Sensitivity describes how minor changes in a definition affect the set of well-defined
attributes that are already assured (Gémez-Pérez (2001)). SinSO should not be overly sensitive to
minor modifications in existing reports since definitions are primarily based on quality models, such
as ISO/IEC 25010 and ISO/IEC 9126, and these do not usually change much over time.

The SinSO ontology can be downloaded from Gutierrez (2023) to execute queries or reasoning in
Protégé and thus validate its operation.

5.5. Application of SinSO

To test the applicability of SinSO in a natural context, two articles from the literature on the
development of cyber-physical systems were selected to instantiate them with our ontology and thus
evaluate SinSO. The selection process is described below.

5.5.1. Case studies definition

To select the case studies, the methodology for systematic literature reviews in software engineering
proposed by Kitchenham et al. (Kitchenham and Charters (2007)) was used to find the articles used to
define them, which should have the following characteristics: (i) Articles on the development or design
of cyber-physical systems (ii) Articles that mention software-quality attributes, (iii) Articles that mention
software-quality measures or metrics and, finally, (iv) Articles that applied their research to real-context
cases.

According to these characteristics, the following search string was used:

(“Embedded” OR “cyberphysical” OR “Cyber-physical” OR “Cyber Physical” OR “CPSs” OR
“IoT” OR “Internet of Things” OR “Connected things") AND (“Architecture” OR “Design” OR
“framework” OR “Nonfunctional Requirements” OR “Quality requirements” OR “quality attributes”)
AND (“software”) AND NOT (“Domain-specific languages” OR “Embedded”).

Publications are subject to the following restrictions, which are used as inclusion criteria (IC) to
refine the search (numbered from IC1 to IC3): ICI: Articles, book chapters, and conference papers

0 J o U w N

BB D W W W W W W W W W W NDNDNDNDNN NN N R R R R R R R R e o
o s W N R O W O Jd oS W N R O W O dOo U WN R O WO d oS W N RO

0o J o U W N

B R D D DWW W W W W W W W W NDNDNNDNDNDNDNNN R R R R R R R R
o U W NP O W 0 d oY U W N PO W 0 Yy U WD PO VW Yy U W NN RO W

L. Restrepo et al. / SinSO 13

published after 2014. IC2: Articles, book chapters, and conference papers available in electronic form.
IC3: Articles, book chapters, and conference papers in the English language.
The search was divided into three sections, based on Li et al. (Li et al. (2015)):

(i) Selection by title: Scopus and Google Scholar search strings were utilized in the search process.
The candidate documents were then chosen based on their titles. This step used the inclusion criteria
IC1, IC2, and IC3. There were 128 articles left at the end of this step.

(ii) Selection by abstract: The abstracts of the selected articles were examined to ensure that they
were associated with the necessary qualities. There were 13 candidate documents left at this time. Most
of the articles were discarded because they did not implement the solution in a real case study or did not
give enough evidence of the results in terms of quality attributes.

(iii) Selection by full text: The entire contents of the prior papers were studied, and the writers
performed cross-checks to justify the inclusion of each article; as a result, only two articles remained.
Finally, one paper that discusses sustainable-dimension results and another that does not were selected
in order to compare the ability of the ontology to cover the notions presented in each of them.

The selected articles are described below.

5.5.2. Case studies selected

A senior-citizen smart-home case study, implemented by Saputri and Lee (Saputri and Lee (2021)),
was selected. The system allows older people to customize their home’s settings, interact socially with
family members or neighbors, and send emergency notifications via a panic button. Once an emergency
occurs, the system automatically notifies the selected family member and health care center. Cloud
technology, a health monitor, security control, an emergency detector, and remote health care help
are among the features they employ (Saputri and Lee (2021)). In this case study, Saputri and Lee
captured stakeholders’ goals and their measurements based on stakeholder information (enterprise chief
executive officers [CEOs], users, software developers, medical facility staff, and sustainability experts)
and mapped these goals with sustainability dimensions and some quality attributes.

The DingNet simulator, developed by Provoost and Weyns (Provoost and Weyns (2019)), was the
other article selected. The simulator facilitates the development and testing of smart-city applications
using fixed and mobile motes that collect and transmit data to gateways in urban areas such as forests,
open spaces, and building areas. The authors did not provide information about the sustainability
dimensions; this data was taken directly from the article.

5.5.3. Instantiation of case studies

For the first case study, the authors adopted the GQM (goal, question, metric) approach for the
requirements elicitation phase. This allowed instancing SinSO: goals were instanced in SinSO as
objectives, metrics and measurements as measures and sizes, and quality attributes were extracted
from this information based on the definitions presented in Appendix 8.1. Fig. 6 shows a complete
instantiation describing the domain, listing all quality attributes, the associated objectives, indicators,
measures, and measurements according to our ontology.

For the second case study, the quality attributes defined were instanced as the quality attributes. The
scenarios described by the authors were instanced in SinSO as objectives, and finally, the metrics as
measurements.

For domain 1 (senior-citizen smart-home case study) and domain 2 (DingNet simulator), formal
axioms and relevant CQs were executed (see Table 3). In the case studies, each quality attribute was
operationalized for each dimension. Below is the process followed:

O 0 J o U W N

BB D D D W W W W WwWWwWwWwWwNNDNNNDNDNNNND NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O W dOo U WN R O WO doe s W N RO

0o J o U w N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o s W NN PO W 0 d oYy U W NN PO W 0 oYy U WD RO W Yy U W NN RO W

14 L. Restrepo et al. / SinSO

Technical dimension

Domain 1 achieves technical sustainability by measuring and proposing support for different
platforms (interoperability), providing correct monitoring results (reliability), reducing the complexity
of the setting preference and monitoring temperature features (Maintainability), proposing decoupling
the methods (Modifiability), providing a scalable system (Adaptability), capturing response time in the
software’s source code (time Behaviour). Domain 2 achieves technical sustainability by measuring and
controlling the messages lost between motes (Reliability).

Environmental dimension

Domain 1 achieves environmental sustainability by reducing the energy consumption of the home
system (Energy efficiency) and measuring the level of reusability of the project as Reusable Reusable
with some effort, or Not Reusable (Reusability). Domain 2 achieves environmental sustainability by
minimizing the energy consumption of the motes (Energy efficiency).

Economical dimension

Domain 1 achieves economic sustainability by optimizing utility costs such as controlling the
execution and invocation time of methods in the software’s source code (performance) and identifying
the number of adaptable elements (Adaptability). Domain 2 achieves economic sustainability since it
balances resources at gateways (Resource utilization).

Social dimension

Domain 1 achieves social sustainability by supporting user social interaction of elders with
family members or neighbors (Usability), measuring and proposing support for different platforms
(Interoperability). Domain 2 achieves social sustainability by measuring and controlling the messages
compromised between motes (Security).

Individual/Personal dimension

Domain 1 achieves individual/personal sustainability by providing preference settings such as
temperature, lighting, and energy usage (Usability). Domain 2 did not achieve unique/personal
sustainability.

According to the results reported by Saputri and Lee Saputri and Lee (2021), for each sustainability
dimension in the senior-citizen smart-home case study, the environmental, technical, economic, and
social dimensions are achieved, this is consistent with our results in the application of axioms A2, A3,
A4, and A5. The exception is the individual-personal dimension (application of axiom a6), where authors
associate it with performance attributes. Also, results indicate that both case studies impact sustainability
dimensions, except domain 2, which does not impact the individual-personal dimension. Finally, results
show that domain 2 is not sustainable since it did not meet the logical expression given by formal axiom
Al. This process made it possible to evaluate the ontology and demonstrate that it can identify the
dimensions of sustainability achieved by a domain.

All Axioms were applied in the DL Query feature of Protégé over the ontology. Considering the time
taken to run the reasoner, the average time for the results was 8.5ms, with a minimum time of 2ms and
a maximum of 15ms for Axiom A3. Thus, the computing time of SinSO is acceptable for the context
analyzed, but future works must test the scalability of the ontology. On the other hand, the main task is to
associate the system’s objectives with their corresponding quality attributes to identify which dimensions
of sustainability are being targeted. That implies an instantiation time of our ontology is necessary, which
depends on the size of the project. The instantiation of these case studies took three days, but it must be
taken into account that not all the information was fully known; we were not part of the projects, and

0 J o U W N

NDNNDNDNNDNDND NN R R R R R R R R 2o
O 0 J o b W NP O W O J o s W NP O

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO 15

Table 3
Results from the instantiation of case studies
Question Result
Domain 1 Domain 2
Domain is sustainable (A1) Yes No

2 Attributes that impact (dimension):
2.1 Technical (CQ8) Interoperability, Reliability
Reliability,
Maintainability,
Modifiability,
Adaptability,
Time Behaviour

2.2 Environmental (CQ8) Energy efficiency, Energy efficiency
Reusability
2.3 Economical (CQ8) Performance, Resource utilization
Adaptability
2.4 Social (CQ8) Usability; Security
Interoperability
2.5 Individual/Personal (CQS8) Usability None
3 Dimensions impacted (CQ9) Technical, Individual-Personal, — Technical, Social,
Social, Environmental, Economical Environmental,
Economical
4 Attributes that contribute to Modifiability None
Evolvability (CQ11)

it was based on what was published in the articles. Therefore, for an associated person to the project, it
should take less time.

6. Discussion

There is ambiguity and variation in the terminology connected with sustainability in papers that focus
on this issue. As a result, this proposal has been developed to provide a general view of valuable concepts
from a software engineering perspective for specifying systems where sustainability is an essential
requirement. Its architecture must be guided by this and the conditions that compose it. SinSO is an
approach that aims to codify knowledge. However, it is limited by the concepts explored here.

From this perspective, SinSO’s quality was evaluated by applying different methods. The results show
that this proposal passes various quality criteria. Furthermore, using the Protégé editor and the Hermit
reasoner, it was determined that SinSO is consistent. Also, the CQs allowed us to evaluate its results and
demonstrate that SinSO does fulfill its purpose. As a result, SinSO was satisfactorily assessed and is now
ready to be used in future projects. In addition, SinSO is shared openly, and other authors or researchers
can evolve it.

Finally, SinSO can be integrated into ontologies that include agile methodologies such as OntoAgile
(Ortega Ordodez et al. (2019)) or OntoSuSD (Zada et al. (2023)), particularly into the concepts that
describe the behavior or quality attributes to implement in the system. For example, SinSO can be
integrated with OntoAgile in the product concept to describe the artifacts to be developed or with
OntoSuSD as a specialization of the sustainability goals as a specific way to achieve those goals for
each sustainable dimension. In the context of the DOLCE (Descriptive Ontology for Linguistic and

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U w N

B D D DWW W W W W W W W W NDNDNNDNDNDNDNNND R R R R R R R R e
o s W NN PO W 0 d oYy U W NN PO W 0 oYy U WD RO W Yy U W NN RO W

16 L. Restrepo et al. / SinSO

Cognitive Engineering) (Borgo et al. (2022)), SinSO’s categories are specializations of abstract quality
since the ontology components are non-physical objects. DOLCE Relationships can be reused, such as
“has-part" to “involves" and “is related to" SinSO relationships, and "is-part-of" to "is composed of "
and "belongs to" SinSO relationships.

7. Conclusions and Future Work

This paper presents SinSO, a formal representation of knowledge in the domain of sustainability in
software that can be used by software engineers or researchers, and serves as a structured model for
organizing and representing. One of the primary objectives for developing SinSO was to overcome the
discrepancies and uncertainty in sustainability language. SinSO contributes to reducing ambiguity and
boosting understanding in this domain. SinSO can also be used to help in software engineering.

We also recognize that our approach does not address all of the issues in this domain, and requires
some improvements. Instead, it lays the groundwork for future research that will assist in formalizing
and synthesizing sustainable software methods. For example, some papers include measures (Saputri
and Lee (2020); Calero et al. (2013); Oyedeji et al. (2018)) that allow the evaluation of sustainability in
software. These listed measurements and metrics could be merged into SinSO, specifically in the SMO
sub-ontology, but more information is needed about indicators and scales of software measurement.

Even though the validation enabled us to achieve encouraging results, further evaluations are needed in
real case studies to verify the real-time implementation of SinSO, particularly its accuracy, completeness,
and maintainability. This would allow reinforcing the results achieved so far. Furthermore, SinSO
may serve as the conceptual basis of future work to build a supporting method to develop sustainable
systems by providing conceptual clarity, facilitating domain analysis, enabling knowledge integration,
and supporting decision-making. Future work can also focus on the non-functional requirements
framework (NFR) (Chung et al. (2000)) application to identify trade-offs between NFRs, with a focus on
sustainability, e.g., determining whether having a low energy-consuming system may affect the system’s
scalability.

8. Appendices
8.1. Definition of the terms and relationships of SinSO

The precise definitions of the concepts included in SinSO, presented in Table 4, are ordered
alphabetically and organized in the following way: columns one and two show the concept being
described and its type (SinSO or SMO concept), then column three shows the definition of the concepts
in SinSO. Finally, column four shows the source where the concept has been adopted or adapted. Some
values used in the fourth column can be either:

e Defined from [source]; the concept has been defined from a source that does not provide a particular
definition, that is, the concept has been defined without highlighting, changing, or complementing
an existing term, but the work presented in it has been key to establishing a definition.

e New [term]; the concept is used in SinSO or has a new meaning in this proposal.

e Cited in [resource]; a resource has cited the concept and is not the original resource. The term has
not been modified.

o 0 J o0 s W N

BB D D D W W W W W W WwWwWwWwNNDNDNDNDNNNNDN NN R R R R R R R e e e
o s W N R O W O Jd oS W N R O WV dOo U WN R O WO doe s W N RO

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO

Table 4

Definition of the terms in SinSO

17

Term Type Definition Resource
Accountability SinSO The extent to which an entity’s actions can be traced back to the entity. Defined from International Organization for Standardization (2011)
Adaptability SinSO The extent to which a product or system may be successfully and efficiently adapted for new or changing Defined from International Organization for Standardization (2011)
hardware, software, or other operational or consumption settings.
Analyzability SinSO The degree of efficacy and efficiency with which it is feasible to assess the influence of an intended Defined from International Organization for Standardization (2011)
modification to one or more of a product’s parts on the product or system, or to diagnose a product for
defects or causes of failure, or to identify parts to be modified.
Appropriateness SinSO The degree to which users can determine whether a product or system is suitable for their needs. Defined from International Organization for Standardization (2011)
recognizability
Authenticity SinSO The extent to which a subject’s or resource’s identification may be proven to be the one claimed. Defined from International Organization for Standardization (2011)
Capacity SinSO The degree to which the maximum limits of a product or system parameter meet requirements. Defined from International Organization for Standardization (2011)
Changeability SinSO The capability of the software product to enable a specified modification to be implemented. Defined from Standardization (2001)
Co-existence SinSO Degree to which a product can perform its required functions efficiently while sharing a common Defined from International Organization for Standardization (2011)
environment and resources with other products, without detrimental impact on any other product.
Compatibility SinSO The degree to which a product, system, or component may communicate information with other products, Defined from International Organization for Standardization (2011)
systems, or components while sharing the same hardware or software environment.
Confidentiality SinSO The extent to which a product or system ensures that data is only accessible to those who have been granted Defined from International Organization for Standardization (2011)
access.
Domain SinSO The application domain is where the developed software system will be used, and it heavily influences how Ziillighoven (2005)
a project is planned and carried out.
Dimension SinSO An aspect or feature of sustainability is referred to as a dimension, which includes many components New
relating to environmental, social, technical, individual, and economic factors.
Economic SinSO It is concerned with stakeholders” investments for the long term and high return on investment. Cited in Malik and Khan (2018)
Energy efficiency SinSO Under specified parameters, the software’s energy performance level, and the amount of energy resources Cited in Kocak and Alptekin (2019)
consumed.
Environmental SinSO It assures that no harmful effects on the environment occur during software engineering processes. Defined from Malik and Khan (2018)
Evolvability SinSO Attribute bear on the ability of a system to accommodate changes in its requirements throughout the Defined from Rowe et al. (1994)
system’s lifespan, with the least possible cost, while maintaining architectural integrity.
Functional SinSO Degree to which the facilitate the of specified tasks and objectives. Defined from International Organization for Standardization (2011)
appropriateness
Functional SinSO The degree to which a product or system produces the desired outputs with the required precision. Defined from International Organization for Standardization (2011)
correctness
Functional SinSO When employed under specific conditions, the degree to which a product or system offers functions that ~ Defined from International Organization for Standardization (2011)
suitability meet stated and implied needs.
Indicator SMO The defined calculation method and scale in addition to the model and decision criteria in order to provide Cited in De Los Angeles Martin and Olsina (2003)
an estimate or evaluation of a calculable concept concerning defined information needs.
Individual SinSO It is concerned with software engineers’ well-being by providing them with education, knowledge, Defined from Malik and Khan (2018)
methodologies, and tools to help them maintain their expertise, competencies, and abilities while increasing
their productivity.
Integrity SinSO The degree to which a system, product, or p protects s or data from Defined from International Organization for Standardization (2011)
unauthorized access or change.
Interoperability SinSO The degree to which two or more systems, products, or components can exchange and utilize that Defined from International Organization for Standardization (2011)
information.
Learnability SinSO The extent to which specified users may use a product or system to achieve given goals of learning to use Defined from International Organization for Standardization (2011)
the product or system effectively, efficiently, risk-free, and satisfactorily in a specified context of usage.
Maintainability SinSO The ease and speed with which the intended maintainers can update a product or system. Defined from International Organization for Standardization (2011)
Measure SMO Activity uses a metric definition to produce a measure’s value. Defined from De Los Angeles Martin and Olsina (2003)
Measurement SMO The defined pp h and the scale. (A approach is either a Defined from Pardo et al. (2012)
measurement method, function, or analysis model).
Modifiability SinSO Degree to which a product or system can be effectively and efficiently modified without introducing defects Defined from International Organization for Standardization (2011)
or degrading existing product quality.
Modularity SinSO Degree to which a system or computer program is of discrete c s such that a change to Defined from International Organization for Standardization (2011)
one component has minimal impact on other components.
Objective SMO Specific, measurable, and desirable goals set for quality attributes to ensure that the software or system New
meets the desired level of quality.
Operability SinSO The degree to which a product or system contains features that make it simple to use and control. Defined from International Organization for Standardization (2011)
Performance SinSO Under certain parameters, performance is measured about the amount of resources used. Defined from International Organization for Standardization (2011)
efficiency
Portability SinSO The ease with which a system, product, or component can be moved from one hardware, software, or other Defined from International Organization for Standardization (2011)
perati or ption envi to another.
Quality attribute SinSO A property of a work product or goods by which its quality will be judged by some stakeholder or Defined from ISIXSIGMA
stakeholders
Reliability SinSO The degree to which a system, product, or component performs specified functions over a specified amount Defined from International Organization for Standardization (2011)
of time under specified conditions.
Replaceability SinSO The extent to which a product can replace another defined software product in the same environment for the Defined from International Organization for Standardization (2011)
same purpose.
Resource SinSO The degree to which a product’s or system’s amounts and types of resources consumed when performing Defined from International Organization for Standardization (2011)
utilization its activities fulfill criteria.
Reusability SinSO The extent to which an asset can be employed in more than one system or the construction of other assets. Defined from International Organization for Standardization (2011)
Scalability SinSO Scalabilitymmeasures’s ability to increase or decrease performance and cost in response to changes in Defined from Gartner (2021)
application and system processing demands.
Scale SMO A set of values with defined properties. Cited in Pardo et al. (2012)
Security SinSO The extent to which a product or system safeguards information and data so that people or other products Defined from International Organization for Standardization (2011)
or systems have data access appropriate to their types and levels of authorization.
Social SinSO It is related to safeguarding the interests of social communities, groups of individuals, or organizations. Cited in Malik and Khan (2018); Fernandez et al. (2019)
Also, how well software complies with application-specific laws.
Stability SinSO The capacity of the software product to avoid unanticipated impacts from software modifications. Defined from Standardization (2001)
Technical SinSO It is focused on developing software while managing changing technical needs and maintaining the Defined from Malik and Khan (2018)
software’s longevity.
Testability SinSO The degree of efficacy and efficiency with which test criteria for a system, product, or component can be Defined from International Organization for Standardization (2011)
defined and tests done to assess whether those criteria have been satisfied.
Time behavior is SinSO The degree to which a product’s or system’s response and processing times and throughput rates fulfill Defined from International Organization for Standardization (2011)
behaviour requirements when performing its functions.
Type of Scale SMO Different ways data is collected and categorized to represent certain attributes or variables. Defined from International Organization for Standardization (2011)
Usability SinSO The extent to whichsspecific users may utilize a product or systemomplish specific goals with effectiveness, Defined from International Organization for Standardization (2011)
efficiency, and satisfaction in a specific context of use.
User error SinSO Degree to which a system protects users against making errors. Defined from International Organization for Standardization (2011)

protection

0 J o U w N

0o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

18 L. Restrepo et al. / SinSO
8.2. Relationships of SinSO

Relationships are presented in Table 5. In the first column, relationship names; in the second column,
the concepts involved in the relationship are defined; and the third column describes the relationship
among the concepts in natural language.
8.3. Formal Axioms of SinSO.
8.4. Competency questions for SinSO expressed in SPARQL.

Table 7 lists eleven CQs with their respective query. The prefix added was
http://www.semanticweb.org/ontologies/sinso#>.

0 J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO

Table 5
Relationships in SinSO

19

Name Domain-Range Description
is related to Quality attribute-Dimension A quality attribute could be related to a di ion. A di ion could be d with a quality attribute.
is composed of Quality attribute-Maintainability A quality attribute is composed of maintainability. Mai is a quality attribute.

is composed of
is composed of
is composed of
involves

is composed of
is composed of
is composed of
is composed of
is composed of
is composed of
belongs to
contributes to
contributes to
contributes to
contributes to
contributes to

Quality attribute-Evolvability
Quality attribute-Portability
Quality attribute-Scalability
Quality attribute-Security
Accountability-Security
Confidentiality-Security
Authenticity-Security
Integrity-Security
Adaptability-Portability
Replaceability-Portability
Scalability-Adaptability
Portability-Evolvability
Integrity-Evolvability
Analyzability-Evolvability
Testability-Evolvability
Modifiability-Evolvability

is sed of
is posed of y
is sedof Modifiability-)

is composed of
is composed of

Modularity-Maintainability
Testability-Maintainability

belongs to Changeability-Modifiability
belongs to Stability-Modifiability

is composed of Envi Dimensi

is d of Technical-Di

is composed of Economical-Di

is d of Social-Di

is composed of
involves

is composed of
is composed of
is composed of
is composed of
involves

is composed of
is composed of
is composed of

Individual-Dimension

Quality attribute-Usability
Appropriateness recognizability-Usability
Operability-Usability

User error protection-Usability
Learnability-Usability

Quality attribute-Performance

Time behaviour-Performance

Resource utilization-Performance
Capacity-Performance

is d of
involves
is composed of
is composed of
involves

involves

Energy i utilization
Quality attribute-Compatibility
Co-existence-Compatibility
Interoperability-Compatibility
Quality attribute-Reliability

Quality attribute-Fuctional Suitability

is composed of Functional appropriateness-Fuctional
Suitability
is composed of Functional cc Fuctional Suitability

has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact
has impact

Functional suitability-Economic
Functional suitability-Technical
Compatibility-Social
Compatibility-Technical
Compatibility-Economic
Learnability-Economic

User error protection-Economic
Usability-Individual
Usability-Social

Time behaviour-Technical
Performance-Economic
Realiability-Technical

Resource utilization-Environmental
Integrity-Technical
Security-Social
Portability-Technical
Portability-Economic

has impact Evolvability-Technical
has impact Scalability-Technical
has impact Reusability-Environmental
has impact Modifiability-Environmental
has impact Maintainability-Technical
has impact Modifiability-Economic
hasObjective Quality attribute-Objective
specified for Quality attribute-Domain

i Objective-Indicator
Obtains Indicator-Measure
uses Measure-Measurement
transformation Measurement-Measurement
hasScale Measurement-Scale

A quality attribute is composed of evolvability. Evolvability is a quality attribute.
A quality attribute is composed of portability. Portability is a quality attribute.
A quality attribute is p of ility. is a quality attribute.
A quality attribute involves security. Security is a quality attribute.
Accountability is composed of security.
Confidentiality is composed of security.
Authenticity is composed of security.
Integrity is composed of security.
Adaptability is composed of portability.
Replaceability is composed of portability.

belongs to adaptability attribute. ility has a scalability subcharacteristic.
Portability contributes to the evolvability attribute. Evolvability is associated with portability.
Integrity contributes to the evolvability attribute. Evolvability i:
Analyzability contributes to the evolvability attribute. Evolvability is associated with analyzability.
Testability contributes to the evolvability attribute. Evolvability is associated with testability .
Modifiability contributes to the evolvability attribute. Evolvability is associated with modifiability.

sociated with integrity.

is composed of

Analyzability is composed of maintainability
Modifiability is sed of maintainabili
Modularity is composed of maintainability
Testability is d of maintainabili
Ch bility belongs to ifiability attribute. Modifiability has the subcharacteristic.
Stability belongs to modifiability attribute. difiability has the stability subcharacteristic.
Envi 1 is composed of di ot

hnical is d of di
E ical is cq d of di

Social is composed of dimension
Individual is composed of dimes
A quality attribute involves usability. Usability is a quality attribute.
Appropriateness recognizability is composed of usability.

Operability is composed of usability.

User error protection is composed of usability.

Learnability is composed of usability.

A quality attribute involves performance. Performance is a quality attribute.
Time behavior is composed of performance.

Resource utilization is composed of performance.

Capacity is composed of performance.

Energy efficiency is composed of resource utilization attributes.

A quality attribute involves compatibility. Compatibility is a quality attribute.
Co-exi is d of cc ibility.

ions.

ility is composed of

A quality attribute involves reliability. Reliability is a quality attribute.
A quality attribute involves functional suitability. Functional suitability is a quality attribute.
Functional appropriateness is composed of functional suitability.

Functional correctness is composed of functional suitability.

Functional suitability attribute has an impact in the Economic dimension.
Functional suitability attribute has an impact in the Technical dimension
Compatibility attribute has an impact in the Social dimension

Compatibility attribute has an impact in the Technical dimension
Compatibility attribute has an impact in the Economic dimension
Learnability attribute has an impact in the Economic dimension

User error protection attribute has impact in the Economic dimension
Usability attribute has an impact in the Individual dimension

Usability attribute has an impact in the Social dimension

Time behavior attribute has an impact in the Technical dimension
Performance attribute has an impact in the Economic dimension
Realiability attribute has an impact in the Technical dimension

Resource utilization attribute has an impact in the Environmental dimension
Integrity attribute has an impact in the Technical dimension

Security attribute has an impact in the Social dimension

Portability attribute has an impact in the Technical dimension

Portability attribute has an impact in the Economic dimension

Evolvability attribute has an impact in the Technical dimension

Scalability attribute has an impact in the Technical dimension

Reusability attribute has an impact in the Environmental dimension
Modifiability attribute has an impact in the Environmental dimension
Maintainability attribute has an impact in the Technical dimension
Modifiability attribute has an impact in the Economic dimension

A quality attribute has an objective to fulfill. Objectives are associated with quality attributes.
Quality attributes are specified for a specific domain.

An Objective has one or more indicators. An indicator is related to an objective.

An indicator obtains a measure. A measure is related to an indicator.
A measure is expressed in one unit of A unit of

Every measurement can have a scale. A scale may serve to define more than one measure.

is used to express one or more measures.
Two measurements can be related by a transformation function; the kind of function will depend on the scale types of the scales.

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

20

L. Restrepo et al. / SinSO

Table 6
Formal axioms

Axiom Descriptive logic (Predicate) DL Query (Protégé)

Al For any domain to be sustainable, it Dominio C 3 Domain and (hasQAS
must be composed of the attributes of hasQAS.Maintainability L some (QualityAttribute and
maintainability or portability or evolvability =~ 3 hasQAS.Portability LI (isComposedOf some (Evolvability
or scalability. 3 hasQAS.Evolvability L or Maintainability or Portability or

3 hasQAS.Scalability Scalability))))

A2 For any domain to be technically sustainable, =~ Dominio [(3 Domain and (hasQAS
it must be composed of the following hasQAS.Maintainability LI some (QualityAttribute and
attributes: Maintainability or Portability = 3 hasQAS.Portability LI isComposedOf some (((
or Integrity or Functional suitability or 3 hasQAS.Integrity LI Maintainability or Portability
Compatibility or Temporal behavior or 3 hasQAS.FunctionalSuitability LI or Scalability or Evolvability))
Reliability or Scalability or Evolvability , 3 hasQAS.Compatibility LI and (hasImpact some Technical))
and impact technical dimension. 3 hasQAS.TimeBehaviour ~ or involves some (((Integrity

LI 3 hasQAS.Reliability U or FunctionalSuitability or
3 hasQAS.Scalability LI 3 Compatibility or TimeBehaviour or
hasQAS.Evolvability) Reliability)) and (hasImpact some
N (3 hasImpact.Technical) N (Technical and isComposedOf
(3 isComposedOf.Dimension) some Dimension)))))

A3 For any domain to be economically Dominio [(3 Domain and (hasQAS
sustainable, it must be composed of the hasQAS.Modifiability LI some (QualityAttribute and
attributes of Modifiability or Portability or 3 hasQAS.Portability LI isComposedOf some («(
FunctionalitySufficiency or Compatibility 3 hasQAS.FunctionalSuitability LI Modifiability or Portability
or Performance or UserErrorProtection 3 hasQAS.Compatibility LI) and (hasImpact some
or Learnability , and impact economic 3 hasQAS.Performance LI Economical)) or involves some
dimension 3 hasQAS.UserErrorProtection L [« FunctionalSuitability or

3 hasQAS.Learnability) N Compatibility or Performance

(3 hasImpact.Economical) N or UserErrorProtection or

(3 isComposedOf.Dimension) Learnability)) and (hasImpact some
(Economical and isComposedOf
some Dimension)))))

A4 For any domain to be environmentally —Dominio [(3 Domain and (hasQAS
sustainable implies that it possesses the hasQAS.Modifiability LI some (QualityAttribute and
attributes of Modifiability or Reusability = 3 hasQAS.Reusability L isComposedOf some (((
or Resource Utilization, and impact 3 hasQAS.ResourceUtilization) N Modifiability or Reusability
enviromental dimension (3 hasImpact.Environmental) N or ResourceUtilization

(3 isComposedOf.Dimension)) and (hasImpact some
Environmental)) or involves
some (((ResourceUtilization)) and
(hasImpact some (Enviromental
and isComposedOf some
Dimension)))))

A5 For any domain to be socially sustainable, Dominio C (3 hasQAS.Security LI Domain and (hasQAS some
it must be composed of the attributes of 3 hasQAS.CoExistence LI (QualityAttribute and (involves
Security or Co-Existence or Usability, and 3 hasQAS.Usability) N some ((Security or CoExistence or
impact social dimension (3 hasImpact.Social) N Usability) and (hasImpact some

(3 isComposedOf.Dimension) (Social and isComposedOf some
Dimension)))))

A6 For any domain to be individual-Personel — Dominio C (3 hasQAS.Usability) Domain and (hasQAS some
sustainable, it must be composed of the N (QualityAttribute and (involves
attribute of Usability, and impact individual ~ (3 hasImpact.Individual-Personel) ~ some (Usability and (hasImpact
dimension N some (Individual-Personel

(3 isComposedOf.Dimension) and isComposedOf some
Dimension)))))

A7 Any attribute of sustainable quality must be QualityAttribute [3 QualityAttribute and (hasObjective

measurable , must have an objective and
indicator,r and uses measures

hasObjective.Objective N
3 hasIndicator.Indicator N
3 obtains.Measurement N
3 uses.Measure

some (Objective and (hasIndicator
some (Indicator and (obtains
some (Measure and (uses some
Measurement)))))))

0 J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO

Table 7
Competency questions expressed in SPARQL.
Competency Query SPARQL Query
CQl1 What quality attributes must a
system include to be technically SELECT DISTINCT ?ga ?gas WHERE { ?ga rdfs:subClassOf ?restriction
sustainable? OPTIONAL{?gas rdfs:subClassOf ?ga .}
?restriction2 owl:onProperty SINSO:shouldHas
?restriction2 owl:someValuesFrom ?ga.}
cQ2 What quality attributes are
recommended to be included SELECT » WHERE
in a system to make it technically {{SELECT DISTINCT ?ga ?gas WHERE { ?ga rdfs:subClassOf ?restriction
sustainable? ?gas rdfs:subClassOf ?ga . ?restriction2 owl:onProperty SINSO:mayHas
?restriction2 owl:someValuesFrom ?ga.
?gas rdfs:subClassOf ?h
?h owl:someValuesFrom SINSO:Technical . }}UNION({
SELECT DISTINCT ?ga ?gas WHERE { ?ga rdfs:subClassOf ?restriction
OPTIONAL{?gas rdfs:subClassOf ?ga .}
?restriction2 owl:onProperty SINSO:mayHas
?restriction2 owl:someValuesFrom ?ga.
?restriction owl:someValuesFrom SINSO:Technical .}}}
CcQ3 ‘What quality attributes should a
system include to be technically SELECT ?ga WHERE { ?ga rdfs:subClassOf ?restriction
sustainable? ?restriction owl:onProperty SINSO:hasImpact
?restriction owl:someValuesFrom SINSO:Technical. }
CQ4 ‘What quality attributes may or
should a system include to be SELECT ?ga WHERE { ?ga rdfs:subClassOf ?restriction
economically sustainable? ?restriction owl:onProperty SINSO:hasImpact
?restriction owl:someValuesFrom SINSO:Economical. }
CcQs ‘What quality attributes may or
should a system include to be SELECT ?qa
socially sustainable? WHERE { ?ga rdfs:subClassOf ?restriction
?restriction owl:onProperty SINSO:hasImpact
?restriction owl:someValuesFrom SINSO:Social.}
CQ6 What quality attributes may or
should a system include to be SELECT ?ga WHERE {
environmentally sustainable? ?ga rdfs:subClassOf ?restriction
?restriction owl:onProperty SINSO:hasImpact
?restriction owl:someValuesFrom SINSO:Environmental . }
CcQ7 ‘What are the objectives assigned to
the application domain “domain1”? SELECT » WHERE { ?QA SINSO:specifiedFor ?Domain.
OPTIONAL { ?QA SINSO:hasObjective ?0Objective.}
?Domain SINSO:identifier ""domainl"" }
CQ8 What quality attributes does
domain! contain to be technically SELECT DISTINCT ?A ?dimension WHERE { ?QA SINSO:specifiedFor ?Domain.
sustainable? ?Domain SINSO:identifier ""domainl""
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves 2d.}
?d SINSO:hasImpact ?dp. ?d rdf:type ?A
?dp rdf:type ?dimension . FILTER(?dimension = SINSO:Technical) }
CQ9 What are the dimensions of
sustainability impacted by the SELECT DISTINCT ?dimension WHERE { ?QA SINSO:specifiedFor ?Domain.
domainl domain? ?Domain SINSO:identifier ""domainl""
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves 2d.}
?d SINSO:hasImpact ?dp. ?dp rdf:type ?dimension . }
CQl10 What are the 5 quality attributes
that have the greatest impact on ~ SELECT ?class (AVG(2value) AS ?avg) WHERE { ?0A SINSO:specifiedFor ?
domain1? Domain.
?QA SINSO:hasObjective ?Objective.
OPTIONAL { ?Domain SINSO:identifier ""domainl""}
?0bjective SINSO:hasIndicator ?Indicator
?Indicator SINSO:obtains ?Measure
OPTIONAL { ?Measure SINSO:uses ?Measurement}
OPTIONAL {?Measurement SINSO:hasScale ?Scale} ?Scale SINSO:value ?
value
OPTIONAL { ?QA SINSO:isComposedOf | SINSO:involves ?2d.}
?d a ?class. FILTER (?value >=1)} GROUP BY ?class ORDER BY DESC(?
value) LIMIT 5
CQ11 ‘What attributes for domainl

contribute to the evolvability of the
system?

SELECT DISTINCT ?d WHERE { ?QA SINSO:specifiedFor ?Domain.
?QA SINSO:hasObjective ?Objective.
?Domain SINSO:identifier ""domainl"" OPTIONAL {

?0QA SINSO:isComposedOf | SINSO:involves 2d.}
?d a ?class. ?d SINSO:contributesTo ?evo. }

21

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO

22

o — ~N ™ - fe} o ~ w o o — N [42] S mn o ~ w o o — N o S wn o ~ oo} o o — N o - wn
— N o < n el -~ [e0) [} — — — — — — — — — — ~N N N N ~N N N N N ~N s s8] ™ ™o ™M™ o [s2] ™ ™ o < < < - < <
soueysuy ONIuUI(L S
I
3L 13d pasBAIEP 10U S310W L0 elep abejusdlad
SAeMBJED UBaMRq SJBUIPIO0D ‘SABMBIED & S32UN0Sa)
B Jad 5908553 J¢ oz £LaNpaIg0
10 Jaquinu Jad $89.N0: GZUBWaINSEB 7 QZUBWRINSESN gzainseapy v|A 0LioEIpul I £18M28IG0 _ 7 LAundes _ a0
ssiusues) I = o
10 Jaquinu Jad S8jow £Q PaWNSU0d Jamod 7 JE— P Z1oMpelao Buydwes ‘sajow Jopey buipeaids ‘sajow samod 1depy 190
J1un 3w 3d 150] sabessall o 3BejusdIad _ sajow Bumas Jamod jdepy fao
Buweu Jaynuap! 7 aweu Jaynuspl
o i _|A “zamsean I aoapul I LLenpela0 i ZhousnyaA0Ieu3 _ anpala0 adaouog
i _|A zamnsean I Liojeapul I 013A300 zZimgeney _
PAWNSUOD JaMod sasn sulejqo Joeaipuisey enalgosey
sabessaw 10 18NBug Zulewop
;
Buweu culguiop 1 0 snpsiqo sweu| Jayquap
utgwog 1daouo |
Qoue)suf QWOY Mews ‘9 ‘S
LAmqeidepy
Tonseen e
pre—
o] pree—
P
p—
T
BNpSIG0 3d83u0)
Lo
— comsean seinauRvAIEND
L oo
p— oo

jou sem 1doouod SIY) 0S ‘SIIpNIS Ised AY) AQ USAIS SJUSWAINSEIW) UI PUNOJ 10U 1M S9[edS “A11adoid 1oynuapt oY) yiim pajerdosse
sam3y ay) SurAuedwiodor sa[qe) Ay} Ul Pa[IeIop Ik duBIsUl Yoes J0j sanaadord oy, ‘weiSerp [euonelal e ur sdrysuonefar 1oy) pue
saoue)sur 9y} Sunuasaidar ‘939101 UL PAOUR)SUL 9I9M SIIPNIS ASBI 3SAY) MOY —A[[BIdUaS— moys ‘G'g xipuaddy ur ¢/ 31 pue 9 1

"SaouDIsul Kpnis asv) ¢’

— N O < 1 W ~ 0 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

42

43

44

45

46

46

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO 23

References

Aljarallah, S. & Lock, R. (2019). A Comparison of Software Quality Characteristics and Software Sustainability Characteristics.
In ACM International Conference Proceeding Series. doi:10.1145/3386164.3389078.

Arp, R., Smith, B. & Spear, A.D. (2015). Building Ontologies with Basic Formal Ontology. The MIT Press.
doi:10.7551/mitpress/9780262527811.001.0001.

Babaie, H., Davarpanah, A. & Dhakal, N. (2019). Projecting Pathways to Food-Energy-Water Systems Sustainability Through
Ontology. Environmental Engineering Science, 36(7), 808-819. doi:10.1089/ees.2018.0551.

Bandeira, J., Bittencourt, L.I., Espinheira, P. & Isotani, S. (2017). FOCA: A Methodology for Ontology Evaluation. Technical
report, arXiv. https://arxiv.org/abs/1612.03353.

Barcellos, M.P., Falbo, R.d.A. & Rocha, A.R. (2010). A Well-Founded Software Process Behavior Ontology to Support
Business Goals Monitoring in High Maturity Software Organizations. In 2010 14th IEEE International Enterprise
Distributed Object Computing Conference Workshops (pp. 253-262). doi:10.1109/EDOCW.2010.15.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N. & Venters, C.C. (2015). Sustainability
Design and Software: The Karlskrona Manifesto. In Proceedings - International Conference on Software Engineering
(Vol. 2, pp. 467-476). doi:10.1109/ICSE.2015.179.

Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S. & Guizzardi, G. (2016). SEON: A Software
Engineering Ontology Network. In E. Blomqyvist, P. Ciancarini, F. Poggi and F. Vitali (Eds.), Knowledge Engineering and
Knowledge Management (pp. 527-542). Cham: Springer International Publishing.

Borgo, S., Ferrario, R., Gangemi, A., Guarino, N., Masolo, C., Porello, D., Emilio, S. & Vieu, L. (2022). DOLCE: A Descriptive
Ontology for Linguistic and Cognitive Engineering. Applied ontology, 1(17), 45-69.

Brizzi, P., Bonino, D., Musetti, A., Krylovskiy, A., Patti, E. & Axling, M. (2016). Towards an ontology driven approach for
systems interoperability and energy management in the smart city. In 2016 International Multidisciplinary Conference on
Computer and Energy Science, SpliTech 2016. doi:10.1109/SpliTech.2016.7555948.

Calero, C., Bertoa, M.F. & Moraga, M.A. (2013). A systematic literature review for software sustainability measures. In 2073
2nd International Workshop on Green and Sustainable Software, GREENS 2013 - Proceedings (pp. 46-53). IEEE Computer
Society. doi:10.1109/GREENS.2013.6606421.

Carver, J.C., Cosden, LA, Hill, C., Gesing, S. & Katz, D.S. (2021). Sustaining Research Software via Research Software
Engineers and Professional Associations. In 2021 IEEE/ACM International Workshop on Body of Knowledge for Software
Sustainability (BoKSS) (pp. 23-24). doi:10.1109/BoKSS52540.2021.00016.

Chandrasekaran, B., Josephson, J.R. & Benjamins, V.R. (1999). What are ontologies, and why do we need them? /EEE
Intelligent Systems and Their Applications, 14(1), 20-26. doi:10.1109/5254.747902.

Chitchyan, R., Groher, I. & Noppen, J. (2017). Uncovering sustainability concerns in software product lines. Journal of
Software: Evolution and Process, 29(2). doi:10.1002/smr.1853.

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., Chung, L., Nixon, B.A., Yu, E. & Mylopoulos, J. (2000). The NFR Framework
in Action. In Non-Functional Requirements in Software Engineering (pp. 15-45). Springer US. doi:10.1007/978-1-4615-
5269-7{_}2. https://link.springer.com/chapter/10.1007/978-1-4615-5269-7_2.

Condori-Fernandez, N. & Lago, P. (2019). Towards a software sustainability-quality model: Insights from a multi-
case study. In Proceedings - International Conference on Research Challenges in Information Science (Vol. 2019-
May). doi:10.1109/RCIS.2019.8877084. https://ieeexplore-ieee-org.ezproxy.eafit.edu.co/stamp/stamp.jsp ?tp=&arnumber=
8877084.

Condori-Fernandez, N., Lago, P., Luaces, M. & Catala, A. (2019). A Nichesourcing Framework applied to Software
Sustainability Requirements. In Proceedings - International Conference on Research Challenges in Information Science
(Vol. 2019-May). doi:10.1109/RCIS.2019.8877000.

Corcho, O., Fernandez-Lopez, M. & Goémez-Pérez, A. (2006). Ontological engineering: Principles, methods, tools and
languages. In Ontologies for Software Engineering and Software Technology (pp. 1-48). Springer Berlin Heidelberg.
doi:10.1007/3-540-34518-3{_} 1.

Corcho, O., Fernandez-Lopez, M., Goémez-Pérez, A. & Lopez-Cima, A. (2005). Building legal ontologies with
METHONTOLOGY and WebODE. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Vol. 3369 LNAI, pp. 142-157). Springer Verlag. doi:10.1007/978-3-540-
32253-5_9. https://link.springer.com/chapter/10.1007/978-3-540-32253-5_9.

De Los Angeles Martin, M. & Olsina, L. (2003). Towards an ontology for software metrics and indicators as the foundation for
a cataloging Web system. In Proceedings - 1st Latin American Web Congress: Empowering our Web, LA-WEB 2003 (pp.
103-113). Institute of Electrical and Electronics Engineers Inc. doi:10.1109/LAWEB.2003.1250288.

Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. In Ontologies.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-09083-1{_}2. http://link.springer.com/10.1007/
978-3-662-09083-1_2.

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

24 L. Restrepo et al. / SinSO

Fernandez, N.C., Lago, P., Luaces, M.R., Places, A.S. & Folgueira, L.G. (2019). Using participatory technical-action-research
to validate a software sustainability model. In CEUR Workshop Proceedings (Vol. 2382).

Fernandez-Lépez, M., Gomez-Perez, A. & Juristo, N. (1997). METHONTOLOGY: from ontological art towards ontological
engineering. Engineering Workshop on Ontological Engineering (AAAI97).

Ferrari, S.L.P.P. & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics,
31(7), 799-815. doi:10.1080/0266476042000214501.

Garcia-Berna, J.A., Fernandez-Aleman, J.L., Carrillo de Gea, J.M., Toval, A., Mancebo, J., Calero, C. & Garcia, F.
(2021). Energy efficiency in software: A case study on sustainability in personal health records. Journal of Cleaner
Production, 282, 124262. doi:https://doi.org/10.1016/j.jclepro.2020.124262. https://www.sciencedirect.com/science/article/
pii/S0959652620343079.

Gartner (2021). Information Technology Glossary - Definition of Scalability. https://www.gartner.com/en/
information-technology/glossary/scalability.

Giovannini, A., Aubry, A., Panetto, H., Dassisti, M. & El Haouzi, H. (2012). Ontology-based system for supporting
manufacturing sustainability. Annual Reviews in Control, 36(2), 309-317. doi:10.1016/j.arcontrol.2012.09.012.

Giret, A., Julian, V., Carrascosa, C. & Rebollo, M. (2018). An ontology for sustainable intelligent transportation systems
(Vol. 887, pp. 381-391). Springer International Publishing. doi:10.1007/978-3-319-94779-2_33.

Gomez-Perez, A., Ferndndez-L6pez, M. & Corcho, O. (2004). Ontological Engineering: With Examples from the Areas of
Knowledge Management, e-Commerce and the Semantic Web. In Ontological Engineering. Springer-Verlag. doi:10.1007/1-
85233-840-7{_} 1.

Goémez-Pérez, A. (2001). Evaluation of ontologies. International Journal of Intelligent Systems, 16(3), 391-
409. doi:10.1002/1098-111X(200103)16:3<391::AID-INT1014>3.0.CO;2-2. https://onlinelibrary.wiley.com/doi/10.1002/
1098-111X(200103)16:3%3C391::AID-INT1014%3E3.0.CO;2-2.

Gonzalez-Eras, A., Santos, R.D., Aguilar, J. & Lopez, A. (2022). Ontological engineering for the definition of a COVID-19
pandemic ontology. Informatics in Medicine Unlocked, 28, 100816. doi:https://doi.org/10.1016/j.imu.2021.100816. https:
/Iwww.sciencedirect.com/science/article/pii/S2352914821002811.

Guarino, N., Oberle, D. & Staab, S. (2009). What Is an Ontology?. In S. Staab and R. Studer (Eds.), Handbook on Ontologies
(pp. 1-17). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-92673-3_0.

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. Telematica Instituut / CTIT.

Gutierrez, L.ER. (2023). SINSO Ontology. Mendeley Data, 1. doi:10.17632/YGV49PB4DX.1.

Hamdaoui, Y. & Maach, A. (2019). Ontology-Based Context Agent for Building Energy Management Systems. In M.
Ezziyyani (Ed.), Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (pp. 131-140). Cham: Springer
International Publishing.

Hippolyte, J.L., Howell, S., Yuce, B., Mourshed, M., Sleiman, H.A., Vinyals, M. & Vanhee, L. (2016). Ontology-based demand-
side flexibility management in smart grids using a multi-agent system. In /EEE 2nd International Smart Cities Conference:
Improving the Citizens Quality of Life, ISC2 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc.
doi:10.1109/1SC2.2016.7580828.

Huang, C., Cai, H., Xu, L., Xu, B., Gu, Y. & Jiang, L. (2019). Data-driven ontology generation and evolution towards intelligent
service in manufacturing systems. Future Generation Computer Systems, 101, 197-207. doi:10.1016/j.future.2019.05.075.

International Organization for Standardization (2011). ISO/IEC 25010:2011 - Systems and software engineering ”Systems
and software Quality Requirements and Evaluation (SQuaRE)” System and software quality models. https://www.iso.org/
standard/35733.html.

ISIXSIGMA Quality Attribute Definition. https://www.isixsigma.com/dictionary/quality-attribute/.

Jansen, A., Wall, A. & Weiss, R. (2011). TechSuRe: A method for assessing technology sustainability in long lived software
intensive systems. In Proceedings - 37th EUROMICRO Conference on Software Engineering and Advanced Applications,
SEAA 2011 (pp. 426-434). doi:10.1109/SEAA.2011.66.

Keet, C.M. (2018). An Introduction to Ontology Engineering. https://people.cs.uct.ac.za/~mkeet/files/OEbook.pdf: University
of Cape Town. http://hdl.handle.net/11427/28312.

Kern, E., Hilty, L.M., Guldner, A., Maksimov, Y.V., Filler, A., Groger, J. & Naumann, S. (2018). Sustainable software
products: Towards assessment criteria for resource and energy efficiency. Future Generation Computer Systems, 86, 199—
210. doi:10.1016/j.future.2018.02.044.

Khalifeh, A., Farrell, P., Alrousan, M., Alwardat, S. & Faisal, M. (2020). Incorporating sustainability into software projects: a
conceptual framework. International Journal of Managing Projects in Business, 13(6), 1339-1361. doi:10.1108/IJMPB-12-
2019-0289.

Kitchenham, B. & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.
Technical report EBSE 2007-001, Keele University.

Kocak, S.A. & Alptekin, G.I. (2019). A utility model for designing environmentally sustainable software. In CEUR Workshop
Proceedings (Vol. 2541).

0 J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L. Restrepo et al. / SinSO 25

Kogak, S.A., Alptekin, G.I. & Bener, A.B. (2015). Integrating environmental sustainability in software product quality. In
CEUR Workshop Proceedings (Vol. 1416, pp. 17-24).

Komeil Raisian, A.D. Jamaiah Yahaya (2022). Green Measurements for Software Product Based on Sustainability Dimensions.
Computer Systems Science and Engineering,41(1),271-288. doi:10.32604/csse.2022.020496. http://www.techscience.com/
csse/v41n1/44795.

Konys, A. (2018). An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain. Sustainability, 10(2).
doi:10.3390/su10020300. https://www.mdpi.com/2071-1050/10/2/300.

Koziolek, H. (2011). Sustainability evaluation of software architectures: A systematic review. In CompArch’11 - Proceedings of
the 2011 Federated Events on Component-Based Software Engineering and Software Architecture - QoSA+ISARCS’11 (pp.
3-12). New York, New York, USA: ACM Press. doi:10.1145/2000259.2000263. http://portal.acm.org/citation.cfm?doid=
2000259.2000263.

Larman, C. (2012). Applying UML and patterns: an introduction to object oriented analysis and design and interative
development. Pearson Education India.

Li, Z., Avgeriou, P. & Liang, P. (2015). A systematic mapping study on technical debt and its management. Journal of Systems
and Software, 101, 193-220. doi:10.1016/j.js5.2014.12.027.

Malik, M.N. & Khan, H.H. (2018). Investigating Software Standards: A Lens of Sustainability for Software Crowdsourcing.
IEEE Access, 6, 5139-5150. doi:10.1109/ACCESS.2018.2791843.

Mendonga, M., Perozo, N. & Aguilar, J. (2020). Ontological emergence scheme in self-organized and emerging systems.
Advanced Engineering Informatics, 44, 101045. doi:https://doi.org/10.1016/j.ae1.2020.101045. https://www.sciencedirect.
com/science/article/pii/S1474034620300148.

Moskolai, J.N., Houe, R.N., Karray, M.H. & Archimede, B. (2019). Ontology based approach for complexity management
in the design of a sustainable urban mobility system. In Conference Proceedings - IEEE International Conference on
Systems, Man and Cybernetics (Vol. 2019-Octob, pp. 3223-3228). Institute of Electrical and Electronics Engineers Inc.
doi:10.1109/SMC.2019.8914648.

Motik, B., Shearer, R., Glimm, B., Stoilos, G. & Horrocks, I. HermiT Reasoner: Support. http://www.hermit-reasoner.com/
support.html.

Nazir, S., Fatima, N., Chuprat, S., Sarkan, H., Nurulhuda, F. & Sjarif, N.N.A. (2020). Sustainable software engineering:
A perspective of individual sustainability. International Journal on Advanced Science, Engineering and Information
Technology, 10(2), 676—683. doi:10.18517/ijaseit.10.2.10190.

Negri, P.P., Souza, V.E.S., de Castro Leal, A.L., de Almeida Falbo, R. & Guizzardi, G. (2017). Towards an Ontology of Goal-
Oriented Requirements. CIbSE, 94, 469-482.

Ortega Ordofiez, W.A., Pardo Calvache, C.J. & Pino Correa, F.J. (2019). OntoAgile: an ontology for agile software development
processes. DYNA, 86(209), 79-90-. doi:10.15446/dyna.v86n209.76670. https://revistas.unal.edu.co/index.php/dyna/article/
view/76670.

Oyedeji, S., Seffah, A. & Penzenstadler, B. (2018). Classifying the measures of software sustainability. In CEUR Workshop
Proceedings (Vol. 2286, pp. 19-25).

Pankowska, M. (2013). Sustainable software: A study of software product sustainable development. In Mechanism Design for
Sustainability: Techniques and Cases (pp. 265-281). Springer Netherlands. doi:10.1007/978-94-007-5995-4{_}13.

Pardo, C., Pino, FJ., Garcia, F., Piattini, M. & Baldassarre, M.T. (2012). An ontology for the harmonization of multiple
standards and models. Computer Standards and Interfaces, 34(1), 48-59. doi:10.1016/j.csi.2011.05.005.

Paybarjay, H., Fallah Lajimi, H. & Hashemkhani Zolfani, S. (2023). An investigation of supplier development through
segmentation in sustainability dimensions. Environment, Development and Sustainability. doi:10.1007/s10668-023-03198-
w.

Pei Breivold, H. (2020). Using Software Evolvability Model for Evolvability Analysis. Mdlardalen University.

Provoost, M. & Weyns, D. (2019). DingNet: A self-adaptive internet-of-things exemplar. In ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (Vol. 2019-May, pp. 195-201). IEEE Computer Society.
doi:10.1109/SEAMS.2019.00033. https://ieeexplore.ieee.org/document/8787065.

Quispe, M. & Condori, N. (2022). Extending the Sustainability-Quality Model for supporting the design of Persuasive Software
Systems. In Anais do XXV Congresso Ibero-Americano em Engenharia de Software (pp. 158—172). Porto Alegre, RS, Brasil:
SBC. doi:10.5753/cibse.2022.20970. https://sol.sbc.org.br/index.php/cibse/article/view/20970.

Roussey, C., Pinet, F., Kang, M.A. & Corcho, O. (2011). An introduction to ontologies and ontology engineering. In Advanced
Information and Knowledge Processing (Vol. 1, pp. 9-38). Springer London. doi:10.1007/978-0-85729-724-2{_}2. https:
/Mink.springer.com/chapter/10.1007/978-0-85729-724-2_2.

Rowe, D., Leaney, J. & Lowe, D. (1994). Defining systems evolvability-a taxonomy of change. Change, 94, 541-545.

Saba, D., Laallam, F.Z., Hadidi, A.E. & Berbaoui, B. (2015). Optimization of a Multi-source System with Renewable Energy
Based on Ontology. In Energy Procedia (Vol. 74, pp. 608-615). doi:10.1016/j.egypro.2015.07.787.

Saputri, T.R.D. & Lee, S.W. (2020). Integrated framework for incorporating sustainability design in software engineering life-
cycle: An empirical study. Information and Software Technology, 106407. doi:10.1016/j.infsof.2020.106407.

0 J o U w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0o J o U w N

10
11
12
13
14
15
16
17
18

20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

26 L. Restrepo et al. / SinSO

Saputri, TR.D. & Lee, S.-W. (2021). Integrated framework for incorporating sustainability design in software engineering
life-cycle: An empirical study. Information and Software Technology, 129. doi:10.1016/j.infsof.2020.106407.

Sayah, Z., Kazar, O., Lejdel, B., Laouid, A. & Ghenabzia, A. (2020). An intelligent system for energy management in smart
cities based on big data and ontology. Smart and Sustainable Built Environment. doi:10.1108/SASBE-07-2019-0087.

Sobhy, D., Bahsoon, R., Minku, L. & Kazman, R. (2016). Diversifying software architecture for sustainability: A value-based
perspective (Vol. 9839 LNCS, pp. 55-63). ResearchGate. doi:10.1007/978-3-319-48992-6_4.

Standardization, 1.O.f. (2001). ISO/IEC 9126-1:2001, Software engineering “Product quality” Part 1: Quality model. https:
/Iwww.iso.org/standard/22749.html.

Stavros, J.M. & Sprangel, J.R. (2008). “SOAR” from the Mediocrity of Status Quo to the Heights of Global Sustainability. In
Innovative Approaches to Global Sustainability (pp. 11-35). Palgrave Macmillan US. doi:10.1057/9780230616646{_}2.

Studer, R., Benjamins, V.R. & Fensel, D. (1998). Knowledge Engineering: Principles and methods. Data and Knowledge
Engineering, 25(1-2), 161-197. doi:10.1016/S0169-023X(97)00056-6.

Sudrez-Figueroa, M.C., Go6mez-Pérez, A. & Ferndndez-Lopez, M. (2015). The NeOn Methodology framework:
A scenario-based methodology for ontology development. Applied Ontology, 10, 107-145. 2.
doi:10.3233/A0-150145.

Tautz, C., Tautz, C. & von Wangenheim, C. (1998). REFSENO. A Representation Formalism for Software Engineering
Ontologies. IESE-Report. Kaiserslautern: ResearchGate.

Wisniewski, D., Potoniec, J., Lawrynowicz, A. & Keet, C.M. (2019). Analysis of Ontology Competency Questions and their
formalizations in SPARQL-OWL. Journal of Web Semantics, 59, 100534. doi:10.1016/j.websem.2019.100534.

Zada, 1., Shahzad, S., Ali, S. & Mehmood, R.M. (2023). OntoSuSD: Software engineering approaches
integration ontology for sustainable software development. Software: Practice and Experience, 53(2), 283-317.
doi:https://doi.org/10.1002/spe.3149. https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3149.

Zillighoven, H. (2005). 12 - The Development Process. In H.B.T.-O.-O.C.H. Ziillighoven (Ed.), Object-Oriented Construction
Handbook (pp. 393-457). San Francisco: Morgan Kaufmann. doi:https://doi.org/10.1016/B978-155860687-6/50012-8. http:
/Iwww.sciencedirect.com/science/article/pii/B9781558606876500128.

0 J o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Corrections

Click here to access/download
Dataset
Corrections.pdf

Appendix C

NFR-Based framework para el analisis de la
sostenibilidad en sistemas ciberfisicos (CPS)

84

NFR-BASED FRAMEWORK PARA EL ANALISIS DE LA
SOSTENIBILIDAD EN SISTEMAS CIBERFISICOS (CPS)

Cesar Augusto Arce Vargas
Universidad EAFIT

Medellin - Antioquia - Colombia

Abstract- El anélisis de la sostenibilidad en los sistemas ciberfisicos
(CPS) y su relacion con los requisitos no funcionales se ha convertido
en uno de los aspectos mas criticos en la actualidad. La diversidad de
contextos, conceptos, criterios de diseio y puntos de vista de los
disenadores e investigadores puede generar ambigiiedades y dificultar
la determinacién o medicion de la sostenibilidad de los sistemas. Para
abordar esta problematica, este trabajo plantea una herramienta
metodologia cuyo principal objetivo es representar la sostenibilidad
mediante el NFR Framework, y esclarecer los atributos que
contribuyen para su futura operacionalizacion. A través del anélisis y
la enumeracion de los requisitos no funcionales, se propone formular
una serie de interrogantes que, al ser resueltos, permitan identificar
aspectos primordiales en el marco de la sostenibilidad y evaluarlos en
escalas de relevancia definidas de acuerdo al contexto. El disefiador y
su equipo de trabajo podrian utilizar este modelo para establecer
métricas que indiquen las relaciones y los niveles de contribucion de
cada uno de los requisitos no funcionales en favor de la sostenibilidad.
Aunque la ponderacion final recae nuevamente en el disefiador y su
equipo, el modelo propuesto permite documentar, estandarizar y
definir en forma detallada el proceso realizado y la escala de valoracion
aplicada.

1. Introduccion

La estructura tecnologica de los sistemas basados en IOT (Internet de
las cosas) comtinmente conocidos como sistemas Ciberfisicos o CPS
(Cyber Physical Systems), integran recursos computacionales
(Software) y dispositivos fisicos (Hardware) como sensores y
actuadores en procesos con diversas areas de aplicacion tanto en la
industria, como la agricultura, salud y en general procesos con
marcado impacto social, ecologico y econémico en la sociedad actual
entre otras [1]. La sostenibilidad de los sistemas o capacidad de
perdurar y preservar su funcion durante un periodo de tiempo
prolongado es uno de los principales retos a afrontar en un mundo
globalizado y en continua evolucion. Mejorar la capacidad productiva
en diferentes sectores de la economia, velar por un positivo impacto
ecoldgico, econdmico y social desemboca en un aumento significativo
en la complejidad y diversidad de aplicaciones de los sistemas
ciberfisicos; convirtiéndose estos aspectos en el centro de atencion de
multiples trabajos e investigaciones [2]; Es alli donde el analisis de los
requisitos no funcionales toma una marcada relevancia, velar por la
seguridad, asegurar el rendimiento, garantizar la escalabilidad y la
calidad se transforman en premisas fundamentales que deben ser
inherentes al sistema. Nuestra contribucion se centra en plantear una
herramienta metodolégica que nos permita analizar los aspectos
relacionados con un interrogante central: ¢cémo representar las
contribuciones de los requisitos no funcionales y la posible
operacionalizacion en el marco de la sostenibilidad en los CPS? En este
contexto, se utiliz6 como herramienta principal la ingenieria de
requisitos y mas especificamente el enfoque en los requisitos no
funcionales y su injerencia en el disefio, implementacion y posterior
evaluacion de la sostenibilidad de los CPS [3].

Asi mismo, considerar los requisitos funcionales “Declaraciones de los
servicios que debe proporcionar el sistema, de la manera en que este
debe reaccionar a entradas particulares y de como debe comportarse
en ciertas situaciones. En algunos casos también pueden declarar
explicitamente lo que el sistema no debe hacer” [4], los requisitos no
funcionales o restricciones de los servicios y funciones ofrecidas por el
sistema, se caracterizan por no estar vinculados directamente a las
funciones del sistema, sino a sus propiedades. Asi como las
caracteristicas del hardware de los CPS no son suficientes para una
adecuada resolucion de disefio; Se requiere de un modelo
arquitectonico en el que los servicios se puedan implementar
facilmente de acuerdo con la demanda y que al mismo tiempo
satisfagan requisitos especificos sin dejar de lado la sostenibilidad del
sistema.

Como eje metodologico para el estudio de la sostenibilidad de los CPS,
usaremos el método GQM-O (Goal, Question, Metric -
Operationalization). Este método se centra en lograr una métrica o
conjunto de ellas que permitan medir o evaluar el cumplimiento de los
objetivos o requisitos no funcionales del sistema. La propuesta del
presente trabajo se desarrolla inicialmente identificando un conjunto
de NFR centrales a partir de los cuales, se identifican otros posibles
NFR para finalmente elaborar una serie de preguntas o interrogantes
encaminados en determinar o evaluar su grado de cumplimiento u
operacionalizacion. Seguido esto, se procede a especificar las medidas
que deben ser tomadas con el fin de responder a esos interrogantes y
finalmente poder realizar una evaluacion de la conformidad o grado de
cumplimiento de las métricas establecidas [5][6]. La presente
propuesta que se basa en el GQM-O se divide en 4 niveles principales
asi:

1. Elnivel conceptual "Goal" implica establecer métricas y relaciones
a través de objetos o conjunto de referentes especificos,

identificados mediante analisis desde multiples perspectivas en un
ambiente previamente definido.

2. En el nivel operativo “Questions”: se elabora un conjunto de
preguntas que permiten definir o especificar las caracteristicas que
el sistema debe cumplir en término de los NFR centrandose en una
caracteristica o meta especifica.

3. Nivel cuantitativo “metrics”: Establecer un conjunto de métricas
que permitan evaluar cada una de las respuestas asociadas a las
diferentes metas, mediante escalas previamente especificadas por
el disenador. En el contenido de esta propuesta se recomienda
usar escalas de ponderacion acordes a las premisas o
especificaciones del disefno.

4. Nivel Operacionalizacion “Operationalization”. La definicion de
indicadores y la recoleccion de datos para evaluar la sostenibilidad
del sistema en relacion con los requisitos no funcionales
establecidos. Se establecen los procedimientos para recopilar,
analizar e interpretar los resultados y poder asi, obtener una
evaluacion objetiva y sistematica de los atributos relacionados con
la sostenibilidad.

Ademas de la introduccién, el documento estd conformado por 5
secciones principales. Secciébn II Marco Teorico: describe los
conceptos principales y las tecnologias en el marco de los CPS. Secciéon
III. Trabajos relacionados: Menciona los documentos destacados y de
mayor contribucién en la propuesta. La seccion IV Anélisis de la
sostenibilidad: Describe en detalle el modelo planteado, su evolucioén,
objetivos, caracteristicas principales y pasos para su aplicacion.

Seccion V Conclusiones: Se destacan las contribuciones principales y
posibles trabajos futuros. Por altimo, la seccion VI: Referencias.

2. Marco tedrico

El concepto de “Industria 4.0” originado en Alemania, ha planteado
un nuevo modo de organizar y disenar los procesos productivos y en
general todos los procesos en la sociedad moderna, apoyandose en
herramientas computacionales, dispositivos electréonicos y sistemas
intercomunicados que operen de forma auténoma. Desde este punto
de vista, se plantea el modelo de los denominados sistemas
inteligentes que se centran en atender de una mejor manera las
necesidades de los usuarios gracias fundamentados en una mayor
flexibilidad y en la continua optimizacion de recursos [7]. En este
contexto, la transformacion de los procesos productivos, se centraliza
en una comunicaciéon continua e instantanea en tiempo real entre
puestos de trabajo, componentes y herramientas en donde se
instauran procesos puntuales de analisis y captura de datos en un
marco centrado en la optimizacion de procesos y recursos [3] [8].

— ‘ BIG Data |<—{ Resources —l
Mass
Customatization

A Autonomous ing Sy l
Suppliers —— » o —_— e
Customers

|’ Logistic] l Robots] | Sensors] [-SDPriming ‘ |Actuamrs | | Materials] Cumumcations:

Cloud Computing

Cyber Security | «——»

Figura 1. Modelo de Ecosistemas Industriales [11].

Existen maultiples definiciones sobre el concepto, si bien todas
coinciden en los mismos puntos centrales, partiremos de la definicion
de la fundacién americana de la ciencia NFS (National Science

Foundation). Los “CPS son construidos a partir de la integracion
transparente de componentes fisicos y computacionales, que permitan
superar a los simples sistemas integrados actuales en cuanto a
capacidad, adaptabilidad, escalabilidad, resiliencia, seguridad y
usabilidad.” [1].

Podria decirse que los CPS tienen el potencial de enriquecer todos los
procesos donde son utilizados debido a la integracion de diferentes
tecnologias. Conforme a la evaluacion realizada por Guio Avilade [9],
en los modelos de ecosistemas basados en CPS aplicados a los procesos
industriales (Figura 1), podemos evidenciar la incorporacién de
componentes como la Ciberseguridad aplicada a procesos todo tipo
sistemas, siempre enfocados en la consecucion de una mayor robustez,
un mejor y duradero ciclo de vida. Otros recursos como el Cloud
Computing, BIG Data y el uso de recursos sostenibles como las
energias limpias (Edlica, solar, geotérmica, entre otras.) en conjunto
con materiales alternativos, incrementan las posibilidades de
aplicacion y su consecuente impacto social y econémico sobre las
poblaciones objeto de estos sistemas. Encontramos aplicaciones en
campos tan diversos como: Dispositivos médicos, sistemas de vida
asistida, sistemas de control de trafico, control de procesos
productivos, conservacion de energia, control de infraestructuras
criticas, vigilancia y control de recursos, comunicaciones, robdtica
industrial, telemedicina, sistemas de defensa y en general todo tipo de
sistemas inteligentes. El difundido concepto de Smart City toma atn
maés fuerza en aplicaciones de mantenimiento, espacios publicos y
otros servicios que facilitan que las ciudades sean ain mucho mas
sostenibles, con un menor costo de administracion y un resultado mas
satisfactorio para todos [9].Las ciudades inteligentes son un claro
ejemplo de como los sistemas ciberfisicos se utilizan para recopilar,
analizar y utilizar datos en tiempo real utilizando mediante tecnologias
de la informacién y las telecomunicaciones (TIC) con el proposito
fundamental de mejorar la calidad de vida de sus habitantes y

optimizar los servicios urbanos. Como podemos ver, en la Figura 2 se
representan algunos de estos servicios como la movilidad inteligente,
en la que los CPS se aplican para mejorar la movilidad y el tréafico
utilizando sensores, camaras y todo tipo de sistemas de control. O en
el caso de la sociedad inteligente, en donde se aplican los CPS en
modelos de gestion de residuos optimizando los modelos de
recoleccién buscando evitar las acumulaciones y efectos indeseados
derivados de ello.

Smart Movility

Systems Integration

Smart Society
@ Smart energy
Semicondutors,

materials and
equipments

Desing]
Technology CP§ Smart Production

Smart health

Figura 2. CPSy el concepto de ciudad inteligente.

Los requisitos no funcionales o NFRs son aquellos que describen la
calidad del sistema y su funcionamiento en conformidad a su
operacion, en la Figura 3 podemos su division tres grupos principales:
1. los requisitos del producto en donde se especifican los criterios de
usabilidad, eficiencia y seguridad entre otros, 2. los requisitos de la
organizacion relacionados con el medioambiente, aspectos
operacionales y de desarrollo, y por altimo 3. los requisitos externos
que se relacionan con las regulaciones, la legislacion, ética y lo
concerniente a la legislacion. Otro ejemplo de ellos son los requisitos

de desempefio, caracteristicas de interfaz, condiciones de
funcionamiento y atributos de calidad. Es asi como los NFRs juegan
un rol decisivo en el analisis del cumplimiento o no del sistema. Asi, la
adecuada especificacion de los NFRs es considerada como una de las
partes mas criticas y sensibles en el disefio, anédlisis y posterior
evaluacion de los CPS [10].

Product Organizational External
Requirements Requirements Requirements

‘ Regulatory ‘ ‘ Ethical ‘

Efficiency

Dependability
Requirements

Security
Requirements

‘ Requirements

q q

Environmental
Requirements

Usability
Requirements

Performance Space
Requirements Requirements

Legislative
Requirements

Operational
Requirements

Development
Requirements

Safety/Security
Requirements

Accounting
Requirements

Figura 3. Topologia de los Requisitos No Funcionales segtin
su proposito [11].

Antes de iniciar con el proceso de disefio de un sistema basado en
software, resulta extremadamente importante entender y determinar
los NFRs. Asi mismo, documentarlos adecuada y sisteméaticamente;
esto con el fin de poder realizar una adecuada evaluacién para
finalmente determinar su grado de cumplimiento. Recordemos que el
no cumplimiento de los NFRs no es un indicador del funcionamiento
del sistema, pero si indica el grado de cumplimiento de las expectativas
en el sistema y si cumple con lo que se espera de él.

3. Trabajos relacionados

Existen numerosos estudios centrados en los CPS con enfoques
variados sobre la sostenibilidad. Entre que han tenido una influencia
significativa en el desarrollo de la propuesta, destaca el articulo
titulado "SinSO: Anontology of Sustainability in Software" [12]. En
este articulo se aborda la sostenibilidad y su relacion con los atributos
de calidad del software estableciendo una ontologia en el dominio de
la sostenibilidad. Esta ontologia proporciona una herramienta
fundamental para el anélisis e identificacion de las relaciones de los
atributos de calidad, al tiempo que ofrece una terminologia que
respalda la implementaciéon de proyectos de software sostenibles. Su
objetivoes reducir las inconsistencias y facilitar el intercambio de
informacion entre los disefiadores y otros actores involucrados. SinSO
abarca el dominio sostenible en sus aspectos de alto nivel,
estableciéndose como concepto fundamental en cuanto a calidad [12].

El articulo "Extending The NFR Framework with Measurable Non-
Functional Requirements"[13], propone una herramienta basada en
graficos de interdependencia para cerrar la brecha entre los NFR y su
posterior implementacién. En este documento, se utilizaran los
conceptos y herramientas graficas presentadas en [13] para
representar los NFR del sistema objeto de estudio. En este marco de
trabajo, los NFR se representan como “softgoals”, o metas flexibles en
espafiol. Estas abarcan cualidades como amigable, confidencial,
seguro en las transacciones o de facil mantenimiento, las cualidades
no admiten definiciones obvias debido a su naturaleza cualitativa.
Estas metas flexibles son denotadas “meta nebulosa” o “FuzzyGoals”
ya que no tienen un criterio claro de satisfaccion, y en muchos casos,
dependen de la precepcion del evaluador. Segin se establece en el

articulo “Softgoals are satisfaced, ratherthan satisfied” [17], es decir,
son operacionalizados a través de la funcionalidad del sistema.

El articulo realizado por MohdFahrul Hassan en el documento titulado
“A Decision Tool for Product Configuration Designs based on
Sustainability Performance Evaluation” [14] propone un analisis de
la sostenibilidad del proceso productivo centrado en la sostenibilidad
del desempeiio. En este estudio, se establecen siete etapas o fases a
considerar usando Analytic Hierarchy Process (AHP) (Figura 4);En la
primera fase se identifican los elementos principales relacionados con
la sostenibilidad del sistema y sus correspondientes métricas,
posteriormente en la segunda fase, se establecen pesos a cada uno de
ellos, posteriormente, en la tercera fase, se define el producto a ser
evaluado y poderlo asi subdividir en sus componentes bésicos,
plantear diferentes alternativas de diseno a partir del analisis
morfolégico, ponderar y por tltimo plantear un diseno final a partir de
los componentes basicos que cumpla las metas de sostenibilidad
deseadas.

A partir de este modelo metodoldgico, se logr6 implementar un
software cuyo proposito central es el de evaluar en forma sencilla el
proceso y por otro lado facilitar la toma de decisiones. los 46 factores
preponderantes introducidos en Gupta et al. (2010) [15] se establecen
como las métricas de sostenibilidad centrales. De aqui se infiere que el
modelo metodoldgico descrito, aplica en el analisis de la sostenibilidad
de los CPS. En resumen, el modelo metodolégico descrito y su
correspondiente software constituyen una herramienta clave en el
analisis de la sostenibilidad de los CPS, al proporcionar una evaluaciéon
sencilla, basada en métricas relevantes y el fomento de practicas mas
sostenibles en beneficio de las organizaciones.

Stage 1: Identify the sustainability elements and the sustainability metrics

v

Stage 2: Determine the weights of each sustainability metric

v

Stage 3: Define the product to be evaluated

v

Stage 4: Extract the product into a basic component and generate alternative
configuration designs based on morphological analysis theory

v

Stage 5: Determine the weights of each alternative configuration design with
regard to each sustainability metric

v

Stage 6: Configure the basic components with desired configuration design into a
complete product

v

Stage 7: Calculate the product configuration sustainability score

Figuragq. A Decision Tool for Product Configuration
Designs based on Sustainability Performance Evaluation
methodology [15].

Por otro lado, en la reflexién “Desafios en el diseno de sistemas cyber
fisicos” publicada por John C. Chandy, se analizan los desafios de
previsibilidad y confiabilidad en el hardware y software involucrado en
los CPS. Para ellos, hasta el programa mas sencillo pierde su
predictibilidad y confiabilidad ya que los sistemas no expresan los
aspectos mas esenciales. Por ejemplo, si el programa pierde la
sincronizacion de reloj, podria ejecutarse correctamente pero no

realizar las funciones para las cuales fue disenado en el entorno del
CPS [8]. En dicha reflexion, se menciona como los sistemas se han
caracterizado por su previsibilidad y fiabilidad con estandares
elevados. Adicional a esto los CPS incrementa el nivel de exigencia
debido a las posibles aplicaciones en procesos criticos que no pueden
presentar paros indeseados y mucho menos carecer de confiabilidad.
Es asi como en esta reflexion, podemos identificar una serie de
criterios o caracteristicas que pueden resultar criticos en el analisis de
la sostenibilidad de los CPS en la presente propuesta.

El proceso metodologico reportado por Capelli sobre Software
Transparency [16], en el cual se establece un modelo metodologico
para el analisis, ponderacion y posterior evaluacion de la transparencia
del software como requisito no funcional (NFR).Plantea la
identificacion de metas centrales (Goals) como la usabilidad,
auditabilidad y accesibilidad, entre otros; Posteriormente, se
identifican metas derivadas que se enlazan a cada una de las metas
principales y finalmente sustentarlas a partir de su contribucién con el
objetivo principal, en este caso la transparencia. Para la presente
propuesta, utilizamos el modelo metodologico reportado por Capelli
[16] como herramienta principal de modelado para las diferentes
metas que contribuyen a la sostenibilidad del CPS. Adicional a eso, la
propuesta de Capelli [16] se fundamenta en el libro elaborado por
Chung [17] sobre requisitos no funcionales (NFR) en donde se propone
una lista de NFRs a ser contemplados en el proceso de disefio y
posterior anélisis de los sistemas. Uno de los principales conceptos es
el de los “Softgoals” Metas Flexibles que deberian ser alcanzadas y
que ayudan a representar los objetivos y al mismo tiempo poder
evaluar su grado de cumplimiento. El modelo ofrece una estructura
para representar y guardar los procesos de disefio y razonamiento en
graficos llamados “softgoal interdependency graphs (SIGs)”. En estos
graficos se recopilan las consideraciones del disefio y su
interdependencia representando los softgoals como nubes, ubicado en

la parte superior del SIG los softgoals de mayor jerarquia y mediante
lineas su interdependencia; Para finalmente, mediante el uso de
etiquetas, establecer el grado de cumplimiento. En esta propuesta, se
aplica el modelo de representacion mediante los denominados SIGS
Chung [17] con enfoque en anélisis de la sostenibilidad de los CPS.

Por dltimo y como documento guia: “A sustainable-
developmentapproachforself-adaptivecyber—physicalsystem’s life
cycle: A systematic mapping study” [10] en el cual se identifican
dimensiones relacionadas con la sostenibilidad y sus diferentes
relaciones. Este documento describe un modelo sistematico de mapeo
cuyo fin es el de analizar diferentes metodologias en el marco de
desarrollo de CPS autoadaptables con enfoque en la sostenibilidad. En
este se plantea una descripcion general de las estrategias utilizadas
para el desarrollo de SA-CPS “Self Adaptive CPS”, las brechas
encontradas en cada etapa del SDLC “System-DevelopmentLife-
Cycle”y el enfoque dado al analisis de especificaciones, considerando
aspectos como: ¢Quién usara el sistema?, équé debe hacer el sistema?
y ¢donde sera utilizado?; que son considerados de vital importancia al
realizar el acercamiento con enfoque en la sostenibilidad de los CPS.

En conjunto, estos documentos han enriquecido la propuesta actual al
proporcionar conceptos y enfoques que contribuyen a los aspectos de
sostenibilidad en los sistemas ciberfisicos. Sin embargo, ninguno de
ellos establece un modelo metodolégico que permita medir o
determinar el cumplimiento de los Requisitos No Funcionales (NFRs).
El articulo "SinSO: Anontology of Sustainability in Software"
propone una ontologia en el dominio de la sostenibilidad en el
software, lo cual resulta fundamental para analizar e identificar las
relaciones entre los atributos de calidad y respaldar la implementacion
de proyectos de software sostenible. No obstante, es importante tener
en cuenta que podria haber limitaciones en la adaptabilidad de esta
ontologia a contextos especificos que vayan mas allad del ambito del
software. Por otro lado, el articulo "Extending The NFR Framework

with Measurable Non-Functional Requirements" presenta una
herramienta basada en gréaficos de interdependencia que ayuda a
cerrar la brecha entre los NFRs y su implementacion, facilitando su
representacion y comprension. Sin embargo, es importante tener en
cuenta que la evaluacion de las metas flexibles puede resultar
complicada debido a su naturaleza cualitativa y subjetiva. En resumen,
si bien estos documentos han aportado valiosos conocimientos, atin se
requiere el desarrollo de un modelo metodologico que permita medir
y determinar el cumplimiento de los NFRs en relacién con la
sostenibilidad en los sistemas ciberfisicos.

4. Enfoque en la sostenibilidad

Conforme a lo encontrado en el mapeo sistematico de la literatura
realizada se evidencia la existencia de una marcada heterogeneidad al
definir sostenibilidad pero con variadas formas de ser abordada;
siendo en multiples ocasiones relacionada con el concepto de
desarrollo sostenible introducido por Brundtland Commission (1987)
[3]y que se define como “El desarrollo que cumple las necesidades del
presente sin comprometer la capacidad de generaciones futuras de
cumplir con sus propias necesidades”[3]. La ontologia propuesta en
[12] denominada como SINSO reduce la ambigiiedad en el dominio de
la sostenibilidad al establecer una terminologia clara para respaldar la
implementacion de proyectos de software y evaluar su efectividad
mediante la revision de 5 criterios: Consistencia, Completitud,
Concision, Expansibilidad y Sensibilidad. La sostenibilidad en los CPS
integra tanto el disefio del sistema como su implementacion,
operacion y disposicion final, integrando aspectos sociales en el ciclo
de vida del sistema, esto sin descuidar las consideraciones ambientales
y/o econémicas [18]. Sin embargo, no podemos dejar de lado aspectos
inherentes a la calidad de los sistemas como son su confiabilidad y

seguridad, sobre todo si consideramos que los CPS inevitablemente
haran parte de procesos de alto impacto y en muchos casos de vital
importancia para las actividades cotidianas de la sociedad. En esta
propuesta se plantea una herramienta metodologica para el analisis
que permita representar, evaluar y ponderar el grado de sostenibilidad
de los CPS desde aspectos denominados metas flexibles o “softgoals”.
Para el planteamiento de estas metas, debemos aclarar interrogantes
como ¢Qué significa que el sistema sea sostenible?, ¢cuales serian las
caracteristicas principales que contribuyen a la sostenibilidad? y mas
importante ain ¢Cémo podemos medir o determinar los niveles de
sostenibilidad?

Por ser la sostenibilidad un atributo de calidad del sistema, la
consideramos como un NFR. Decir si un sistema es o no sostenible de
forma tacita resulta muy complicado, sin embargo, podemos
determinar niveles o grados de cumplimiento de dicho atributo. En el
marco de los NFR [17] y la ontologia propuesta en SINSO [12]
abordaremos 5 atributos principales o softgoals considerados como
Fiable, Seguro, Economico, Ecolégico y Social los cuales contribuyen
directamente a la sostenibilidad. El hecho de que SINSO [12] cubra de
manera adecuada el contexto de la sostenibilidad como atributo de
calidad, proporciona una base confiable para el desarrollo de software.
El no tener definiciones ambiguas, contribuye a plantear disenos mas
claros, concisos, fiables y en consecuencia menos vulnerables. Por otro
lado, la eficiencia y optimizacion de recursos propuesta en SINSO [12],
apunta al desarrollo de sistemas econémicos y de facil mantenimiento;
asi mismo, la profunda comprensiéon de los conceptos implica poder
analizar y determinar el impacto ecolégico de las soluciones y por ende
minimizar su impacto negativo. Finalmente, SINSO [12] contribuye a
una comprension ampliada de la sostenibilidad, lo que permite
considerar aspectos sociales y la inclusion del anélisis del impacto en
las comunidades en los procesos de desarrollo de soluciones.

Para la representacion de la presente propuesta, utilizamos el modelo
de Sistemas de Interaccion Grafica (SIGs). Estos sistemas estan
compuestos por nodos y enlaces, donde los nodos, o sofgoals,
representan los objetivos que deben cumplirse en un contexto
determinado. Los enlaces determinan la contribuciéon o aporte que
puede ser positivo (helps) o negativo (faults, failures). Siguiendo el
estdndar de representacion utilizado en [17], las contribuciones
pueden ser de descomposicion fuerte (AND), de especializacion (OR),
de descomposicion suave (some) o de ayuda en la consecucion de la
meta (Help). Ademas, se utilizan flechas continuas para representar la
contribucién realizada por un SoftGoal y flechas discontinuas para
representar la correlacion.

Para establecer métricas a las diferentes contribuciones, se emplea la
representacion mediante signos. La satisfaccion positiva se representa
con el signo (+), mientras que la satisfaccion positiva fuerte se
representa con (++). Por otro lado, la contribucion negativa se
representa con el signo (-) y la contribucion negativa fuerte con (--). A
partir de los NFRs identificados y representados en la ontologia se
establecen las bases para la propuesta, tal como se muestra en la
Figura 5.

En esta figura se plantea el SIG general de la sostenibilidad,
incluyendo las contribuciones de descomposicion (AND) de los
diferentes softgoals relacionados. El SIG resultante presenta 5 nodos
centrales: Fiable, Seguro, Econémico, Ecologico y Social. Mas adelante
desglosamos cada una de estas metas en sus correspondientes
subnodos derivados y especifica en forma detallada la contribucion
que realiza cada uno de ellas a la meta superior y por ende al objetivo
central de Sostenibilidad.

Help(+) H“'p(*) HO'P(') Help(¥) HelpC Cllclo de Vida

Fiable Ecologlco
Help(+)

Help(+)
Hc\p(')
Sostembmdad Help(+)

Segurldad
Seguro e‘p(‘)
Help(+) N) Social
m Responsabilidad

Help(+)
Econémico
I
Helpt+) Legalidad

Help(+)

Help(+)

Help(+)

Modernizacién

Efectividad

Help(+)

Mantenibilidad

Help(+)

Modularidad

ft p Contribuciones
Explicito Help Ayuda . +: Sal?sfacc@c?n Pos@l?va
. Some Descomposicion Suave ++: Satisfaccion Positiva Fuerte
Implicito - - - - - > AND Descomposicién Fuerte -1 Satisfaccion Negativa
OR Especializacion --: Satisfaccion Negativa Fuerte

Figura 5. Metas de la sostenibilidad.

Para la elaboracion y adaptacion de las definiciones de cada una de las
metas planteadas en este documento, se tomaron en cuenta las
referencias citadas en [10], [12], [13], [17]. Es importante destacar que
se contextualizaron las definiciones con un enfoque en la
sostenibilidad de los sistemas ciberfisicos (CPS). Si bien el analisis
centra principalmente en el &mbito del software, algunos requisitos no
funcionales (NFR) se enfocan en el componente fisico, ya que se
considero relevante para este estudio.

Comencemos con las definiciones en el contexto de la sostenibilidad y
los marcos de referencia de los NFR que contribuyen, como se detalla
a continuacion:

Fiable: Relacionado con los indicadores centrados con el
comportamiento del sistema ante la presencia de fallos en sus
componentes o alteraciones en sus condiciones normales de
operacion.

Seguro: Relacionado con los indicadores centrados con el
comportamiento del sistema ante la presencia de ataques externos,
intentos de alteracion o divulgacion no deseada de datos.

Econdmico: Relacionado con los indicadores centrados en el
impacto econémico, mas especificamente en aspectos como son la
disminucion de tiempos de produccion, el aumento de productividad,
el ahorro de energia y el cumplimiento de especificaciones.

Ecolégico: Relacionado con los indicadores centrado en el impacto
que tiene el sistema (Positivo o Negativo) sobre el medio ambiente y
en general en los ecosistemas con los que interactia. (Manejo de
recursos renovables y energias limpias).

Social: Relacionado con los indicadores centrados en el impacto del
sistema sobre las actividades humanas o en los grupos sociales
directamente involucrados.

En el modelo metodoldgico propuesto, se deben plantear interrogantes
a ser evaluados por el disefiador del CPS en el momento de ponderar
el grado de cumplimiento o satisfaccion de la sostenibilidad del
sistema objeto de estudio y de conformidad con cada uno de los
SoftGoals previamente estipulados, para posteriormente establecer
una escala de validacion conforme a la relacion de las metas de
sostenibilidad y el objetivo principal del sistema. La ponderacién de

los NFR sera por criterio del disenador a partir de la importancia o
peso del NFR dentro del contexto del sistema; Es decir, si la meta
primordial del CPS es la sostenibilidad ambiental, por encima de otros
aspectos secundarios como la sostenibilidad econ6mica, se dara mayor
peso ponderado al cumplimiento de las metas ecologicas.

Prosigamos con el anilisis detallado de las metas principales y sus
metas relacionadas o de segundo nivel. Siendo estas ultimas las
encargadas de operacionalizar la sostenibilidad. Es importante
destacar que cada meta directamente asociada a la sostenibilidad tiene
metas asociadas que se representan en niveles inferiores y que, al
analizar estas metas secundarias, obtenemos una vision mas completa
sobre el grado de cumplimiento de la sostenibilidad.

4.1. Fiable

Como primer paso analizamos la Fiabilidad y sus metas relacionadas
o de contribucién positiva. En [19], [20] se indica que la fiabilidad en
un sistema es afectada por una serie de amenazas denominadas fallas
(“faults”), errores (“errors”) y faltas (“failures”). La falta es un evento
que ocurre cuando el servicio entregado se desvia del servicio esperado
o servicio correcto; un error es aquella parte del estado del sistema que
pueda causar una falta de servicio y una falla es definida como la causa
hipotética de un error. Un error también se define como la parte total
del estado del sistema que conlleva a faltas subsecuentes de servicio.
Las diversas formas en la que un sistema puede dejar de proporcionar
un servicio se denominan modos de falla (“failure modes™) [20]. Los
usuarios esperan que sus dispositivos funcionen de forma continua y
bajo las especificaciones para las que fue concebido. Por ejemplo, el
usuario de un vehiculo espera que este se comporte conforme a sus
expectativas de funcionamiento, consumo de combustible y de

seguridad para sus ocupantes. En el caso de los CPS, esas expectativas
se incrementan debido a que, como ya se habia mencionado, son
utilizados en aplicaciones criticas. Por otro lado, los CPS se enfrentan
a entornos no predecibles en su totalidad, operan en ambientes que
deberian ser altamente controlados. Sin embargo, deben contar con
una marcada resiliencia ante condiciones inesperadas y al mismo
tiempo adaptarse a los errores en sus componentes o subsistemas. El
reto se centra en obtener la mejor configuracion e interrelacion de una
serie de componentes seleccionados cuidadosamente en una
plataforma de hardware especifica. En general, los CPS se centran en
procesos de monitoreo y realimentacién de variables involucradas en
los subsistemas y su influencia sobre el resultado final del proceso.

Existen innumerables aplicaciones que atafien a actividades criticas
en las cuales interferencias externas o alteraciones en la seguridad
resultan en consecuencias catastroéficas, por lo que la fiabilidad es uno
de los aspectos més importantes a considerar. Es asi como se plantea
analizar el softgoal (FIABLE) desde 4 metas implicitas que realizan
una contribucion positiva o ayudan a la meta superior y son: Traceable,
Mantenible, Protegido y Estable. (Figura 6.).

Help(+)

Help(+)

Traceable

Help(+)

Mantenible

SoftGoal Interdependencia Contribuciones
Explicito Help Ayuda) + Sat!slaccix?n Positiva
. Some Descomposicion Suave ++: Satisfaccion Positiva Fuerte
Implicito - - - - - - AND Descomposicion Fuerte -1 Satisfaccion Negativa
OR Especializacion -: Satisfaccion Negativa Fuerte

Figura 6. SoftGoals— Fiable

Continuando con el procedimiento establecido, se plantean las
siguientes definiciones contextualizadas a los CPS y nuestro abordaje
para los softgoals relacionados en el segundo nivel:

- Traceable: capacidad del sistema para rastrear el origen de los
datos, seniales y en general la informaciéon relacionada con su
operatividad.

- Mantenible: capacidad del sistema de ser reparado
completamente a nivel operacional dentro de los parametros
temporales establecidos. Debe contar con herramientas de
monitoreo que permitan rastrear completamente el sistema a nivel
operaciones en un periodo de tiempo acorde a los procedimientos
establecidos en el diseno.

- Protegido: Capacidad de operar sin generar consecuencias sobre
el usuario o el medio ambiente.

- Estable: Capacidad del sistema de operar aun ante fallos en sus
componentes. El sistema cuenta con opciones o alternativas para
garantizar su operatividad.

Una vez identificados los SoftGoals y sus relaciones con la meta
superior, se debera plantear una serie de interrogantes con objetivo de
dilucidar en forma més especifica los objetivos con el proposito de fijar
métricas que permitan establecer niveles o grados de cumplimiento de
la meta. En la Figura 7 se ilustran un ejemplo de preguntas “Questions”
relacionado con el SoftGoal Fiable que lleven a la operacionalizacion:

V_A V Fiable

/ | / R
Traceable Mantenible Protegido Estable
e se cuenta con ~ i (~s Elsistemaensu ~ En caso de falos se
protocolos de « Se tienen protocolos funcionamiento cuenta con sistemas
CoMuNicacion seguros? de mantenimiento puede generar redundantes?
« lainformacién tiene establecidos? akgun tipo de o 128 vaniaciones en
parimetros que * en caso de fallos 12Cto Nocivo los parametros de
. PErmAan CONOCR! Su xsien armas que . sobre 105 Q funcionamiento
J orgen?] Deamian tomar] usuarios? | generan blogueos o
« los componentes del medidas « antefalios o calidad del sistema?
sistoma estdn oporlunamenta? interrupciones del « on caso de fallas
claramente o los tempos de sistema. se genera reiterativas se tienen
identificados? reparacion estan akgin bpo de planes de
« seBeva registro de daramente efecto andémalo contingencia?
errores o establecidos? sobre el usuario o o elsistema es
_ interrupciones? - el medio? - favinia?

Figura 7. Catalogo - Fiable.

La evaluacion de los interrogantes y su consecuente ponderacién por
niveles de prioridad o relevancia, depende del &mbito de la aplicacion
y de los objetivos centrales. Por ejemplo, analicemos el caso de la
estabilidad ante fallos; se plantean interrogantes como éen caso de
fallos se cuenta con sistemas redundantes?, el cumplimiento o no de
esta caracteristica dependeréa del nivel de disponibilidad operativa del
sistema. Es decir, si la aplicacion es un sistema critico (sistema que
debe funcionar en forma ininterrumpida) como por ejemplo un equipo
de vida asistida en una unidad de cuidados intensivos o un sistema de
control de tréfico, este parametro tendra una consideracion prioritaria
y su cumplimiento de caracter obligatorio. Por otro lado, en otro
ambito de aplicaciones en donde se puedan presentar fallos del
sistema bajo condiciones de temporalidad (Interrupciones por
periodos de tiempo), podria darse que este atributo no sea
fundamental u obligatorio.

4.2. Seguro

La intrinseca relacion entre hardware y software trae como
consecuencia que los conceptos clasicos relacionados con la seguridad
como son, confidencialidad, integridad y disponibilidad tomen
renovada validez sobre las especificaciones de los CPS [5]. Resulta
necesario analizar el impacto de ataques o interferencias externas
sobre el sistema y su efecto sobre el funcionamiento y las posibles
consecuencias que acarrearia sobre los procesos criticos que éste
realiza y en consideracién a la no homogeneidad de las funciones
realizadas por los componentes involucrados. La creciente
conectividad de los CPS ha introducido nuevos retos relacionados con
la seguridad, més atn cuando los sistemas utilizan redes publicas
como el internet para la transmisiéon de parametros e informacién con
la consecuente susceptibilidad ante posibles ciberataques [21].

Comunmente las redes de CPS estan conformadas por una serie de
elementos que interactian entre si de maneras complejas y
cambiantes. Dichos sistemas, mezclan una variada gama de
componentes como por ejemplo PLC (Controlador logico
programable), sensores, actuadores, dispositivos de red y protocolos
industriales de comunicacion cuyo objetivo en muchos casos, es
realizar labores cotidianas de vital importancia y elevado impacto en
los procesos productivos [3]. Para analizar las caracteristicas de
seguridad del sistema se plantea caracterizar el sistema desde 3
metasflexibles que ayudan o contribuyen a la meta principal (Figura
8): Integro, Disponible y Confidencial.

Help(+)
Help(t)
Disponible Confidencial
SoftGoal Interdependencia Contribuciones

Explicito Help Ayuda N + Sat?sfacc?c:m Pos?t@va
B Some Descomposicion Suave ++: Satisfaccion Positiva Fuerte

Implicito - - - - - > AND Descomposicién Fuerte -t Satisfaccion Negativa
OR Especializacion - Satisfaccion Negativa Fuerte

Figura 8. SoftGoals - Seguro

Teniendo como especificacion para cada uno de los softgoals
relacionados de segundo nivel, se plantean las siguientes definiciones:

- Integro: capacidad del sistema de garantizar que la informaciéon
no se vea alterada por medios externos, gestionar los usuarios,
componentes del sistema y sus roles. Entendiendo como usuarios a
las personas y a los componentes del sistema que requieran de
servicios.

- Disponible: capacidad del sistema de continuar operando de
manera adecuada incluso en presencia de ataques o perturbaciones
externas no deseadas. El sistema continde su funcionamiento sin
sufrir degradaciones en cuanto a accesos, esté en capacidad de
ofrecer los recursos que requieran los usuarios autorizados cuando
estos los necesiten (Garantizar accesibilidad a elementos
autorizados).

- Confidencial: capacidad del sistema de garantizar la proteccién
de la informaci6n y protecciones contra divulgaciones no deseadas.
El sistema debe contar con mecanismos de control de acceso que
aseguren la confidencialidad de la informacion.

De la misma forma que la Fiabilidad y en concordancia con la
metodologia propuesta GQM, en la Figura 9 se indican las preguntas
sugeridas con enfoque en seguridad del sistema y su posterior
ponderacion por niveles de prioridad o relevancia.

Integro

= Los datos simacenados
estan protegidos contra
cambios indeseadas?

« semaniiene la
integridad de 12
informacién ante
intentos de cambios no
deseados

= Tiene herramientas de
gestion de usuarios?

= cuenta con copias de
seguridad de Ia
informacion?

Disponible

original?

- Puede funcionar .
conforme a su disefio

« puede resistir atagues? P

- estolerante a fallos? L -

» el sistema puede -
funcionar de forma
ininterrumpida?

« presenta degradacion en

_ cuantoa accesos?

Confidencial

La informacicn esta
protegida?

Hay posibilidad de
divuigaciones
accidentales?
Cuenta con
mecanismes para
encriptar la
infermacion?

= Tiene mecanismos

para identficar
atagues o genera
alertas?

Figura 9. Catalogo — Seguro

Con enfoque en la seguridad se pueden analizar multiples aspectos,
pensemos por ejemplo en las métricas sobre proteccion de acceso a la
informacion, fiabilidad, seguridad o los niveles y alcances dependen
del ambito de aplicacion. No tendria las mismas consideraciones una
aplicacion de conteo electoral que una de informacién climatica. Sin
embargo, es conveniente reiterar que el grado de cumplimiento y las
métricas relacionadas dependen exclusivamente del dominio de
aplicacion y de los criterios del disenador en la identificacion y
ponderaciéon de los NFR. Al analizar la interrelacion de metas de
fiabilidad y seguridad, se logro6 establecer una notoria interrelaciéon y
correlacion entre las diferentes metas de donde surgieron nuevas
metas con otros tipos de contribuciones. Para la elaboracion del SIG
resultante, utilizaremos “Some +” y “Help +” [17]. Indicando mediante
AND aquellos de mayor obligatoriedad o compromiso, “Help +” los
que realizan algin aporte positivo y con “Some +” los que contribuyen
en menor grado o de menor obligatoriedad relativa que los denotados
por And.

Some(+)

Fiable Seguro

Some(+)

Resiliente

Help(+)

Some+)

Mantenible

Some(+)
Soms(-)

Configurable

Help(#+

Disponible

Scme(+)

Traceable

Some(-

Escalable

Consistente

SoftGoal lependencia C
Explicito Help Ayuda » + Sanslaccu?n Positiva
) Some Descomposicion Suave ++: Satisfaccion Positiva Fuerte
Implicito - - - - - > AND Descomposicion Fuerte -1 Satisfaccion Negativa
OR Especializacion == Satisfaccion Negativa Fuerte

Figura 10. Interaccion SoftGoals Fiable — Seguro

Durante el presente analisis, se pudo identificar que incluso entre las
metas flexibles del nivel superior, existen relaciéon de contribucion,
como se muestran en la Figura 10. A partir de este analisis, se pueden
derivar conceptos y plantear preguntas relevantes como:

Configurable: Indicador de la capacidad del sistema a ser
configurado o modificado en sus parametros de funcionamiento,
protocolos de comunicaciéon y tecnologias compatibles. Se analizan
aspectos como:

- Parametrizable: ¢cuenta con modelos empleados para establecer los
parametros de funcionamiento, definicién de variables, pardmetros
de comunicacion y estandares de operacion?

- Comunicacion: ¢tiene claramente establecidos y parametrizados los
medios y protocolos de comunicacion aceptados por el sistema?

- Modularidad: ¢cuenta con catalogo de patrones de modelado y tipos
de tecnologias compatibles?

Escalable: capacidad de adaptacion y respuesta de un sistema con
respecto al rendimiento del mismo a medida que aumentan de forma
significativa el nimero de usuarios. Se analizan aspectos como:

- Adaptable: éestan claras las especificaciones y el grado de flexibilidad
del sistema ante cambios en los parametros o condiciones de
funcionamiento, adiciones de funciones o componentes?

- Arquitectura: éSe puede especificar el efecto del incremento de
componentes o funciones sobre la arquitectura del sistema? éLa
arquitectura se adapta ficilmente o es necesario cambiarla
completamente ante la adicién de componentes o funciones?

- Modelo de escalamiento empleado: ¢Se pueden anadir facilmente
nuevos recursos (escalamiento horizontal) o es necesario reemplazar
el recurso (escalamiento vertical)?

Preciso: Indicador de la precision del sistema en cuanto a la
repetitividad de los datos arrojados por los elementos de medicion
(variacion causada por el dispositivo de medicion) y su
reproducibilidad (variacion causada por el sistema de medicion),
directamente relacionado con la integridad y disponibilidad. Realiza
contribucién con la disponibilidad e integridad del sistema.

- Repetitividad: élos datos medidos por un elemento del sistema son
iguales si se repiten en diferentes instantes de tiempo bajo las mismas
condiciones de operacion?

- Reproducibilidad: ¢las mediciones realizadas por diferentes
componentes con iguales -caracteristicas y bajo las mismas
condiciones de operacion son iguales?

Flexible: Indicador de los niveles de flexibilidad del sistema. Afecta
directamente la estabilidad y disponibilidad del mismo. Ayuda a

determinar qué tan flexible es el sistema ante los posibles fallos y por
ende como afectaria la estabilidad y disponibilidad del mismo.

- ¢Ante la presencia de fallos en componentes o indisponibilidad de los
mismos, se cuenta con medios alternativos para suplir la necesidad?

-¢écuenta con mecanismos o0 componentes que aseguren el
funcionamiento continuo?

Resiliente: capacidad de adaptarse, recuperarse y mantenerse en
niveles adecuados de funcionamiento después de una falla. Se evaltian
aspectos como:

- Andlisis de estado: ¢Est4 estandarizada la informaciéon que define el
estado del sistema?, <{estan definidas las cadenas de
obsolescencia?,ése tienen planes de contingencia ante fallas o
comportamiento andémalo?, éen caso de falla el sistema sigue
operando?

- Testeo: ¢ése tienen planes y cronograma de testeo?, ése analizan los
test realizados y se toman medidas a partir del analisis cualitativo del
problema?

- Verificacion: éSe tienen parametros de verificacion?, ¢Se realiza
verificacion automatica del estado de componentes?, ése analizan los
resultados?, ¢Se tienen medidas de contingencia?, écuenta con
protocolos de reemplazo?

Consistente: Indicador de la consistencia del sistema ante la
presencia de ataques o incursiones no deseadas. Relacionado
directamente con la integridad y estabilidad del mismo.

- Analisis: ¢élos datos arrojados por el sistema pierden consistencia o
validez ante la presencia de ataques externos?

- Indicadores: ¢ése tiene indicadores del grado de afectacién que
producen los ataques externos sobre la integridad del sistema?

Accesible: Indicador de los niveles de accesibilidad del sistema,
siendo primordial en relacién a la confidencialidad.

- Verificacion: éCuenta con protocolos de autenticaciéon de usuarios?,
¢Presenta un esquema basado en redes seguras?, {Se garantiza la
confidencialidad de la informacién?

Traceable: Cuenta con procedimientos preestablecidos y

autosuficientes que permiten conocer el histérico en un momento
dado.

Auditable: Tiene mecanismos que permiten revisar, evaluar y
controlar los recursos que intervienen en el sistema.

- Verificacion: ¢Se lleva registro de acciones realizadas por los
usuarios?, ¢se lleva registro de intrusiones no deseadas?, ¢Se lleva
registro de fallos o eventos an6malos?, ¢Cuenta con alarmas para
fallos, intrusiones o funcionamiento por fuera de los parametros
establecidos?

4.3. Ecologico

Para abordar la sostenibilidad de los CPS con enfoque en impacto
ecologico, vale la pena recordar la preocupacion mundial por integrar
las variables ecologicas con las econdémicas, dando origen a conceptos
como eco desarrollo, desarrollo integrado, crecimiento organico y
multiples acepciones del término “desarrollo sostenible”. Entendiendo
“Desarrollo sostenible es el desarrollo que satisface las necesidades de
la generacion presente sin comprometer la capacidad de las
generaciones futuras para satisfacer sus propias necesidades” [22]. En
su libro Ecological Economics Principles and Applications H. Daly
[23], plantea “una sociedad sostenible es aquélla en la que: los
recursos no se deben utilizar a un ritmo superior al de su ritmo de

regeneracién, no se emiten contaminantes a un ritmo superior al que
el sistema natural es capaz de absorber, los recursos no renovables se
deben utilizar a un ritmo mas bajo que el que el capital humano creado
pueda reemplazar al capital natural perdido” [23]. Teniendo esto
como premisa, los CPS tienen un compromiso ineludible con la
sostenibilidad y deben propender por el desarrollo sostenible. El
concepto 6R (Reducir, reusar, reciclar, recuperar, redisenar y
remanufacturar) analizado por Jawahir IS [24] plantea una serie de
elementos que pueden ser aplicados al analisis de la sostenibilidad en
la implementacion y uso de los CPS. Entendiendo que el analisis parte
desde el impacto de la implementacidén, asi como el impacto generado
por su uso y disposicion final. “Un hacha puede ser fabricada con acero
reciclado, pero ser utilizada para talar un bosque” [25]. Para evaluar
la sostenibilidad del CPS con enfoque en el impacto ecoldgico se tienen
los siguientes SoftGoals (Figura 11):

Help(+)

Help(+)

Help(+)
Ciclo de vida

SoftGoal Interdependencia Contribuciones

Explicito Help Ayuda) - Salfsl‘al:cu?n F'oslt!va
. Some Descomposicién Suave ++: Satisfaccion Positiva Fuerte

Implicito - - - - - - AND Descompaosicién Fuerte -: Satisfaccion Negativa
OR Especializacion -=: Saltisfaccion Negativa Fuerte

Help(+)

Figura 11. SoftGoals - Ecologico.

Para cada uno de los softgoals relacionados con Ecologico los cuales
estan relacionados directamente con la parte fisica del CPS tenemos:

Eficiencia: Se consideran aspectos relacionados al balance entre el
impacto ecoldgico y la eficiencia de operacion del sistema como son:

Consumo energético: uso de materiales y recursos renovables, y en
general el balance entre operacion del sistema y el impacto generado.

Impacto: Especificaciones del impacto directo sobre el medio
ambiente en donde opera el sistema y desechos generados por el CPS.

Ciclo de vida: Se centra en evaluar los aspectos relacionados con el
reciclaje, disposicion final de desechos, re-manufactura de
componentes, re-uso y desensamble. Impacto regional y global del
sistema en todas sus etapas del ciclo de vida. Realiza procesos limpios
y eco-sostenibles.

Conforme con la metodologia propuesta GQM, en la Figura 12 se
indican las “Questions” sugeridas con enfoque Ecologico.

Eficiencia Efecto Impacto

- Tiene métricas sobre =+ E ‘s
= garantiza uso impacto ambiental> i
« Esta definida la ! / u
dispasicion final de R
c

« Genera afectacion
sobre ofros

entes? ecosistemas?
P matoitams? - Se tiens registro de
: N caml

2 Reci = e
- Ut materiales - P - Sepueden L ganeredes
reciciagos y de < remanutacturar
forma eficiente . Tie componentes?
- aprovechamiento? - Tiene establecidos
« Genera emisiones? modalas

drsposicion final?

Figura 12. Catalogo - Ecolégico

4.4. Econémico

En el analisis de los CPS Econdémicamente Sostenibles [10], nos
centraremos en verificar en tiempo y espacio el cuamplimiento de unos
objetivos econdmicos de progreso adecuados y centrados en promover
la productividad, competitividad y el crecimiento econémico; siempre
en un marco eficiente de acumulacion y distribuciéon equitativa de
riqueza. Para ello, nos enfocaremos en la mejora de los tiempos de
produccién, rentabilidad, eficiencia energética, uso de recursos
renovables, manufactura por demanda y reducciéon del desperdicio.
Los NFR relacionados con el impacto econémico se representan en la
Figura 13 como:

Help(+)
Help(+)

Help(+)

Help(+)

Durabilidad Modularidad Mantenibilidad, Efectividad
SoftGoal Interdepend i Contribuci
Explicito Help Ayuda o +: Satisfaccién Positiva
. Some Descomposiciéon Suave ++: Satisfaccién Positiva Fuerte
Implicito - - - - - » AND Descomposicién Fuerte -1 Satisfaccion Negativa
OR Especializacion --i Satisfaccion Negativa Fuerte

Figura 13. SoftGoals - Economico.

Durabilidad: Relacionado con el tiempo de vida 1til operativa del
sistema directamente relacionado con el retorno de la inversion y su
rentabilidad.

Modularidad: la propiedad que permite subdividir un sistema en
partes mas pequenias (moédulos), cada uno de las cuales es tan

independiente como sea posible, facilitando el reemplazo sin afectar el
sistema en general.

Mantenibilidad: Desde el punto de vista fisico, relacionado con los
costos de mantenimiento y operacion del sistema (eficiencia de
operacion). Desde el punto de vista del software, relacionado a la
capacidad de evolucionar del sistema.

Efectividad: Indicador de la medida del avance tecnologico generado
por el sistema y las oportunidades de nuevas aplicaciones. Impacto
sobre el fomento de la equidad econémica.

Modernizacion: Indicador de la capacidad del sistema de ser
actualizado utilizando los mismos componentes (retso) sin alterar su
estructura general.

En la Figura 14 se indican algunas “Questions” sugeridas para el
analisis con enfoque en la meta Econdémico.

'\,, Econdémico <
S EEEENe D
// \\
Durabilidad Modularidad Martennisdad efectividad Modernizacion
i = Disefio es El sistema
S;‘L,-:;;on de modular? - El s|§tema se nuege
. tiempo de vida « Se pueden - Son medibles y constituye actualizar .
atir? faciimente dlaros los costos un avance faciimente
« Tiene reemplazar de tecnologico? Se
estimaciones médulos mantenimiento? « Genera posibilita el
sobre retorno de defectuosos? son medibles y impacto rehuso?
la inversion? « un moduio claros los costos medibles en e se pueden
+ Que factores puede operativos? pro ce ia afadir
afectan la configurarse igualdad nuevas
rontahiSdad? para otras econémica ? funciones?
funciones? -

Figura 14. Catalogo Economico

4.5. Social

Para el enfoque social [10], el estudio se centra en garantizar en tiempo
y espacio, por un lado, la coherencia, aceptacion y conservaciéon del
sistema de valores e integracion de la poblacion, y, por otro lado, la
reduccion de la pobreza y desigualdades sociales y en general, la feliz
convivencia y bienestar de la poblacién. El CPS con enfoque Social se
centra en mejorar las condiciones de vida de un grupo social, resolver
problemas, suplir necesidades, generar impacto positivo en todos los
sectores y en general sobre la actividad humana. Esto sin dejar de lado
los aspectos culturales, legales y politicos inherentes al entorno donde
opera el CPS. Los NFR identificados con el aspecto social se muestran
en la Figura 15:

Help(+)

Help(+)

Help(+) Help(+)

Seguridad Responsabilidad Legalidad
SoftGoal Interdependencia Contribuciones
Explicito ——— Help Ayuda) +: Salisfaccion Positiva
. Some Descomposicion Suave ++: Satisfaccion Positiva Fuerte
Implicito - - - - - > AND Descomposicion Fuerte -1 Satisfaccion Negativa
OR Especializacion --: Satisfaccion Negativa Fuerte

Figura 15. SoftGoals - Social.

Seguridad: Se establece para proteger la integridad del sistema, su
informacion, su funcionamiento ante ataques y/o accesos no

autorizados. Por otro lado, contribuye a evitar posibles consecuencias
sobre las personas o usuarios del sistema.

Efecto: Indicador de medida del impacto sobre la calidad de vida y el
bienestar del entorno social relacionado con el sistema.

Responsabilidad: Indicador de la responsabilidad ética y los niveles de
promocion de equidad, participaciéon y desarrollo comun. Relacion
entre el sistema y el entorno cultural.

Legalidad: Indicador del cumplimiento de leyes y regulaciones
relacionadas con el sistema en todo su ciclo de vida.

En la Figura 16 se indican algunas “Questions” sugeridas para el
analisis con enfoque en la meta Social.

— Social <
< I
- A3
e .
e N
- ~
e \._\
S ~.
~
= " £ Responsabilidad Lagakdad
egurida acto
- = Existen
- S;f:;z‘::;;‘”effg - Afecta ol - s’a‘:‘"::;:;i regulaciones en
sitivamen g cuanto a su
. forma segura? :z‘ef promy vﬁ!a'%g" equitativa de todos operacion?
* Gonera aigan grupa social objeto? los componentes - cumpie con las
il . - Disminuye las - normativas
sobre el usuario e een « tiene concordancia vigantes?
- faciita los « genara bienastar <on las costumbres
procesos Sociarr ¥ el entomo concordancia
cognitives? cultural con las polticas
del entorno
social?

Figura 16. Catalogo Social

Como podemos evidenciar, los NFR relacionados con el impacto
ecoldgico, econémico y social no pueden estar desligados unos de otros
y acarrean compromisos ineludibles para el diseniador del CPS. En la

Figura 17, representamos el SIG resultante con el compendio de los
tres enfoques (Economico, Ecologico y Social).

Modularidad

Durabilidad

i
1
1 Mantenibilidad
1
H r Econémico Helo(+) Efectividad
] Help(+)I
‘\ 1l Cliclo de vida ‘_/\%
~o ~ v
e D
) A

Help(+) Help(+)

Help(+)

- Social
Ecolégico Responsabilidad A3 !
1S) g

......
So Ecme(+) Vi Help(+)
Help(+)

Help(+),

———

Help(+)

Help(+)

y e
)
P
___________ Seguridad

SoftGoal Interdependencia Contribuciones
Explicito Help Ayuda o + Sat@sfacc?t?n Pos?u:va
. Some Descomposicién Suave ++: Satisfaccién Positiva Fuerte
Implicito - - - - - > AND Descomposicién Fuerte = Satisfaccién Negativa
OR Especializacion --: Satisfaccion Negativa Fuerte

Figura 17. Relacién entre SIG Ecol6gico, Econémico y
Social.

5. Evaluacion del NFR-BASED FRAMEWORK para el
analisis de la sostenibilidad en sistemas CiberFisicos
(CPS)

Para la evaluacion del NFR- Based Framework propuesto se utilizo la
técnica de Grupo Focal. Esta técnica consiste en reunir un grupo de
profesionales con conocimientos en el area con el proposito de conocer
su opinion y obtener resultados cuantitativos que permitan identificar

oportunidades de mejora para el objeto de estudio. Para la realizacion
del grupo focal se aplicaron las directrices definidas en [26]:

1. Planeamiento de objetivos y elaboracion de materiales.
2. Reclutamiento del grupo de discusion.
3. Sesion de debate y captura de opiniones de los participantes.

4. Analisis de la informacion y reporte de resultados.

5.1. Planteamiento de la investigacion

En esta fase se definié como objetivos del grupo focal poder conocer la
opinidn sobre los aspectos del modelo propuesto con respecto a su
comprensibilidad, aplicabilidad, idoneidad y completitud; y al mismo
tiempo identificar posibles mejoras. Continuando con los lineamientos
definidos en [26], se prepararon los materiales, guia procedimental,
mecanismos de socializacion y formalizacion de documentos,
herramientas de captura y registro de resultados y métodos de anélisis
de los resultados obtenidos.

5.2. Reclutamiento

Para el proceso de reclutamiento de los participantes y definicion de
elementos principales del grupo focal [26], se extendi6 la invitacion a
los ingenieros pertenecientes al grupo de investigacion del area de
sostenibilidad en la universidad EAFIT y a los profesores de la
universidad del Quindio de la facultad de ingenieria que trabajan en
desarrollo de software y gestion de proyectos. Finalmente, el grupo
conformado para la realizacion del grupo focal estuvo compuesto por

profesionales con experiencia y conocimiento en diferentes areas de la
ingenieria de software. En la tabla 1, se describe su perfil:

ID ESTUDIOS OCUPACION

1 Ingeniero de sistema Docente Maestria Ingenieria
Msc - PHD Ingenieria Universidad EAFIT

2 Ingeniero de sistemas Estudiante Doctorado
Msc - Candidato. PHD | Universidad EAFIT

3 Ingeniero de sistemas Docente Maestria Ingenieria
Msc - PHD Ingenieria Universidad EAFIT

4 Ingeniero de sistemas Universidad EAFIT
Msc Ingenieria

5 Ingeniero Electrénico Docente/Director facultad
PHD Ingenieria de ingenieria Universidad
del Quindio.
6 Ingeniero Electrénico Director Maestria
Msc Ingenieria Universidad del Quindio.

Tabla1. Perfil profesional de los participantes del grupo
focal.

Entre los elementos utilizados en el proceso se incluyo6:

- Fechay hora de realizacion: Para la seleccion de la fecha se compartio
con 4 semanas de antelacién a los participantes un DOODLE con
diferentes opciones de horario.

- Lugar y duracién: Se opt6 por realizarlo de forma virtual, esto dado
que los participantes estan radicados en diferentes ciudades (Madrid
(Espana), Medellin y Armenia en Colombia). La duracion estimada
para la realizacion es de 1Hora.

- Tema a tratar: con 2 semanas de anticipacion se hizo entrega a los
participantes de un resumen del NFR-BASED FRAMEWORK PARA
EL ANALISIS DE LA SOSTENIBILIDAD EN SISTEMAS
CIBERFISICOS con el proposito de brindar informacién acerca del
modelo planteado y contextualizarlos adecuadamente acerca de la
propuesta.

- Protocolo de captura y registro de informacion: Se diseni6 un
cuestionario de google con el fin de evaluar la propuesta desde los 4
aspectos centrales previamente establecidos en los objetivos del grupo
focal (Comprensibilidad, Aplicabilidad, Idoneidad, Completitud y dos
preguntas abiertas de opinion); teniendo como opciones de respuesta
una escala de ponderacion de 1 a 5 puntos, siendo 5 que esta
totalmente de acuerdo y 1 totalmente en desacuerdo.

- Protocolo de ejecucion: Para la sesion del grupo focal se defini6 el
siguiente cronograma:

1. Bienvenida a los participantes

2. Presentacion del estudiante y el director de la propuesta.
3. Presentacion de los participantes invitados.

4. Exposicién y contextualizaciéon de la propuesta.

5. Sesion de preguntas.

6. Aplicacion de la encuesta.

7. Agradecimientos y despedida.

5.3. Ejecucion

En la fecha y hora planteada se dio inicio a la agenda establecida para
el grupo focal conforme al protocolo de ejecuciéon previamente
planteado. Una vez finalizada la presentacion de la propuesta se dio
espacio a 20 minutos para preguntas e intervenciones por parte de los
participantes. Al finalizar el espacio de preguntas, se procedié a
compartir el cuestionario de validacion disefiado para evaluar la
propuesta desde los 4 aspectos centrales previamente descritos, a
continuacién, se muestra el set de preguntas realizadas para cada uno
de estos aspectos a evaluar:

Comprensibilidad:

P1. ¢Considera que el modelo planteado es de facil comprensiéon?

P2. ¢Considera que cada uno de los SoftGoals son de facil
comprension?

P3. éConsidera que las relaciones de interdependencia y contribuciéon
entre cada uno de los SoftGoals propuestos son comprensibles?

Aplicabilidad

P4. De acuerdo con su experiencia: ¢Considera que los SoftGoals
definidos en el NFR framework son apropiados y pueden aplicarse con
éxito?

Ps5. ¢Considera que el esfuerzo requerido para la aplicacién del NFR
framework esta en concordancia con los resultados esperados?

Idoneidad

P6. cConsidera que los SoftGoals propuestos son relevantes para el
analisis de la sostenibilidad de los sistemas ciberfisicos?

P7. éConsidera que el modelo propuesto cumple con su objetivo
principal en el analisis de la sostenibilidad de los sistemas ciberfisicos?

P8. éConsidera que el modelo propuesto sirve de referencia para
proyectos relacionados con los sistemas ciberfisicos?

P9. éConsidera que las relaciones de interdependencia y contribucién
entre cada uno de los SoftGoals propuestos son adecuadas?

Completitud

P10. éDe acuerdo con su experiencia: éConsidera que el modelo
propuesto es completo para el alcance del objetivo propuesto?

P11. ¢Considera que el modelo de valoracion generado brinda
elementos necesarios para llevar a cabo una valoracion de grado de
sostenibilidad del CPS?

P12. éConsidera que el modelo propuesto brinda elementos que
permitan identificar oportunidades de mejora relacionadas con la
sostenibilidad de los CPS?

Preguntas Abiertas

P13. ¢Considera que se deben agregar, eliminar o modificar elementos
(SoftGoals, relaciones, contribuciones) de la propuesta?

P14. ¢Tiene algtin comentario adicional acerca de la propuesta?

5.4. Analisis de resultados

Una vez finalizado el diligenciamiento del cuestionario de validacion
por parte de los participantes, se procedi6 al analisis de los resultados
obtenidos, donde la ponderacién de los resultados corresponde a una
calificaciéon de 1 a 5 siendo 5 que esté totalmente de acuerdo y 1 que

esta totalmente en desacuerdo Tabla 2.

Valor

Interpretacion

Totalmente en desacuerdo

Parcialmente en desacuerdo

Parcialmente de acuerdo

Medianamente de acuerdo

Totalmente de acuerdo

Tabla 2. Escala de ponderacion.

5.4.1. Preguntas cerradas: para las doce (12) preguntas cerradas
denominadas como P1 a P12, se obtuvieron los siguientes resultados

en la Tabla 3 y Figura 19:

Opciones de respuesta / Total de votos obtenidos

Pregunta | Totalmente | Medianamente | Neutro | Medianamente | Totalmente

en en desacuerdo de acuerdo de acuerdo
desacuerdo

P1 6 Votos

P2 2 Votos 4 \otos

P3 6 Votos

P4 2 Votos 4 Votos

P5 4 Votos 2 Votos

6 Votos

2 Votos

4 Votos

1 Votos

5 Votos

2 Votos

4 Votos

1 Votos

5 Votos

2 Votos

4 Votos

6 Votos

Tabla 3. Respuestas al cuestionario

Como se observa en la Tabla 5, la cantidad de votos que obtuvo cada
una de las preguntas denotadas como P1 hasta P12 ninguno de los
aspectos planteados fue considerado con una calificacién menor a 4,
todos los participantes indicaron respuestas con puntajes entre 4 y 5.
En la Figura 19 se indican en color rojo las preguntas evaluadas con
puntaje 5 (Totalmente de acuerdo) y en azul las preguntas evaluadas

con puntaje 4 (medianamente de acuerdo).

6 -

i

Q’\-Q'\«Q"JQFQ%Q‘OQ’\Q%Q%,@N

Figura 19. Consolidado de respuestas.

Conforme a los resultados, podemos concluir que los participantes
tuvieron una opinion favorable acerca del NFR-BASED
FRAMEWORK PARA EL ANALISIS DE LA SOSTENIBILIDAD EN
SISTEMAS CIBERFISICOS acerca de la comprensibilidad del modelo,
su aplicabilidad, idoneidad y completitud. La pregunta P5 (¢Considera
que el esfuerzo requerido para la aplicacion del NFR framework esta
en concordancia con los resultados esperados?) Es la de menor nivel
de aceptacién con cuatro respuestas con puntuacion de 4 y dos
respuestas con puntuaciéon de 5. Las demas preguntas tienen una
aceptacion 5 puntos para la totalidad de participantes y las restantes
oscilan entre porcentajes del 68 al 93 por ciento con puntaje de 5.
Ninguna de las preguntas obtuvo puntajes inferiores a 4 puntos de
ninguno de los participantes.

5.4.2 Preguntas Abiertas

Paralas dos preguntas abiertas planteadas se obtuvieron las siguientes
respuestas:

P13. ¢Considera que se deben agregar, eliminar o modificar elementos
(SOFT GOALS, relaciones, contribuciones) de la propuesta?

Respuestas Obtenidas:

Siento que los Softgoals son comprensibles siempre y cuando uno ya
tenga un background en sistemas entonces pueden ser modificados
para que sea un poco mas facil la comprensién para alguien externo a
este ambiente por lo demés excelente.

No considero que se deban agregar o modificar aspectos.

Me parece que cumple con el alcance del proyecto, estA muy bien
explicado, estructurado y resulta muy ttil a la hora de operacionalizar
estos atributos en el desarrollo de estos sistemas.

Considero que con el tiempo se iran agregando nuevos softgoals
asociados a la sostenibilidad, por lo tanto, se puede considerar que el
framework escalara con el tiempo.

Me parece que son muy pertinentes.

Tabla 4. Respuestas a la pregunta 13 (P13).

Con respecto a las respuestas podemos indicar que:

En primer lugar, se destaca que los Softgoals propuestos son
comprensibles para aquellos con experiencia en sistemas, lo cual es
positivo. Sin embargo, se sugiere realizar modificaciones para facilitar
la comprension por parte de personas externas a este &mbito. Esto es
importante para asegurar que la propuesta sea accesible y
comprensible para un puablico méas amplio. En cuanto a agregar o
modificar aspectos, las respuestas indican que no se considera
necesario realizar cambios en este momento. Los participantes
consideran que la propuesta actual cumple con el alcance del proyecto,
estéd bien explicada y estructurada, y resulta atil para operacionalizar
los atributos de sostenibilidad en el desarrollo de sistemas ciberfisicos.

Esta retroalimentacion positiva valida la solidez y relevancia de la
propuesta tal como esta planteada; Ademas, se destaca la perspectiva
de que con el tiempo se iran agregando nuevos softgoals asociados a
la sostenibilidad en concordancia con una conciencia de la evolucion y
dinamismo de los requisitos de sostenibilidad en el campo de los
sistemas ciberfisicos. La capacidad de escalar y adaptarse a medida
que surgen nuevos desafios y criterios de evaluacion es un aspecto
valioso que asegura la vigencia de la propuesta en el futuro. En
resumen, las respuestas obtenidas refuerzan la pertinencia, al tiempo
que proporcionan sugerencias constructivas para mejorar su
comprension.

Estos comentarios son valiosos para futuras revisiones vy
actualizaciones.

P14. ¢Tiene algtin comentario adicional acerca de la propuesta?

Respuestas Obtenidas:

Seria importante volver a revisar los RNF como ciclo de vida y efecto.
Debe quedar mas explicito las contribuciones de trabajos anteriores
en la propuesta como un todo.

Para mi es un poco confuso la definicién de las relaciones cuando
mencionas que es una descomposicion fuerte se podria mencionar en
términos mas naturales o que implica que sea fuerte. Por lo demés se
entendio6 perfectamente.

Excelente propuesta, muy bien presentada.

Una propuesta muy coherente y completa que establece una base para
la proyecciéon de un modelo orientado a la estimacién de tendencias
en el marco de los diferentes requerimientos y vida util operativa de
los sistemas ciberfisicos.

Tabla 5. Respuestas a la pregunta 14 (P13).

En resumen, las respuestas proporcionan comentarios valiosos para
mejorar aspectos especificos de la propuesta, como la revision de los
RNF y la claridad en la definiciéon de las relaciones. Sin embargo, en
general, las respuestas son positivas y respaldan la solidez y coherencia
de la propuesta, destacando su presentacion y el potencial para
establecer un modelo que estime las tendencias en sistemas
ciberfisicos.

5.5. Acciones de mejora:

A partir de los resultados obtenidos en el grupo focal y de los
comentarios planteados por el panel de expertos, se realizaron los
ajustes y las aclaraciones planteadas tanto en la contribucion de los
trabajos anteriores como en la aclaraciéon del concepto de contribucion
fuerte utilizado en los SIGs para la representacion da las relaciones de
los diferentes SoftGoals. Asi mismo, se aclar6 el Softgoal de Seguridad
dentro del campo social ya que este se relaciona a las afectaciones que
puede tener el sistema sobre los usuarios o personas que lo rodean a
diferencia del Softgoal Seguro el cual se relaciona con la
disponibilidad, confidencialidad e integridad del sistema.
Adicionalmente, se clarifico, mejoro y adapto las definiciones y
explicaciones de los requisitos no funcionales y las relaciones
utilizadas en los modelos de representacion, con el proposito que sean
mas accesibles y comprensibles para personas externas al ambito del
software. Estas acciones de mejora buscan abordar las areas de
oportunidad identificadas en las respuestas, enfocindose en la
claridad y comprensién de los conceptos, asi como en la inclusién
adecuada de contribuciones de trabajos anteriores. Al implementar
estas acciones, se fortalecid la propuesta y se optimizo su calidad y
relevancia en relacion con los comentarios recibidos.

6. Conclusiones

En esta propuesta se describen una serie de requisitos no funcionales
(NFR) que pueden servir como base para aquellos que ensefian o
implementan CPS, determinen y evalien la sostenibilidad desde la
etapa de diseno hasta la implementacion final.

El modelo propuesto se constituye como una herramienta de elevada
utilidad y versatilidad en el proceso de especificacion, anélisis,
ponderacion y evaluacion de la sostenibilidad en los CPS.

A partir del SIG planteado, el disenador del CPS podra establecer
cuales son las metas centrales del CPS en pro de la sostenibilidad y al
mismo tiempo determinar indicadores sobre las demas metas
secundarias. Uno de los retos mas importantes en el disefio e
implementacién de los CPS es poder determinar los grados de
asertividad en el alcance de los requisitos no funcionales (NFR)
inherentes al sistema y que finalmente seran preponderantes en el
éxito del mismo.

Si bien crear marcos tedricos para el analisis de la sostenibilidad es un
objetivo primordial en la actualidad, un gran desafio sera fomentar la
adopcion de sostenibilidad en el disefio de los sistemas y en general
para las diferentes aplicaciones de la ingenieria.

La sostenibilidad no se puede afrontar como una serie de elementos a
ser contemplados, es mas bien como un compendio de caracteristicas
o especificaciones que interactiian y se relacionan entre si para el logro
de un objetivo mayor.

El modelo metodologico planteado y los SIGs resultantes podran servir
de herramienta de analisis en el planteamiento de otros enfoques de
estudio en el campo de los CPS.

7. Trabajos futuros

En los trabajos futuros se propone ampliar y refinar la metodologia
existente con el objeto de abordar de manera exhaustiva la
sostenibilidad de los sistemas ciberfisicos en contextos
organizacionales especificos, como industrias o sectores sociales
particulares. Esta ampliacion permitiria comprender cémo la
metodologia puede adaptarse y personalizarse para satisfacer las
necesidades y requisitos especificos de diversos entornos o

aplicaciones. Ademas, se consideraria la inclusiéon de posibles nuevos
criterios, métricas o enfoques de evaluacion. Como parte de los
trabajos futuros, seria fundamental instanciar un ejemplo practico que
permita aplicar la metodologia en un escenario real. Esto serviria como
caso de estudio para validad la efectividad y aplicabilidad del modelo
propuesto. La instanciacion de este ejemplo proporcionaria una base
concreta para demostrar la utilidad y relevancia de la metodologia en
situaciones especificas.

8. Referencias

[1] O. Givehchi, K. Landsdorf, P. Simoens and A. W. Colombo,
“Interoperabilityfor Industrial Cyber-Physical Systems: An Approach
for Legacy Systems,” IEEE Transactions on Industrial Informatics,
vol.13, num. 6, pp. 3370-3378, Dec. 2017. DOI:
10.1109/TI1.2017.2740434.

[2] K. Joshi, A. Venkatachalam, I.H. Jaafar, 1.S. Jawahir, a new
methodology for transforming 3R concept into 6R for improved
sustainability: Analysis and case studies in product design and
manufacturing, Proc. IV Global Conf. On Sustainable Product
Development and Life Cycle Engineering: Sustainable Manufacturing,
October 3-6, Sao Paulo, Brazil. (2006).

[3] Thomas, A., Haven-Tang, C., Barton, R., Mason-Jones, R., Francis,
M., &Byard, P. (2018). Smart Systems implementation in UK food
manufacturing companies: A sustainability = perspective.
Sustainability, 10(12), 4693

[4] Sommerville, 1., & Velazquez, S. F. (2011). Ingenieria de software.

[5] Basili, V. R.; Weiss, D. M. (November 1984). "A Methodology for
CollectingValid Software Engineering Data". IEEE Transactionson
Software Engineering. SE-10 (6): 728—-738.

[6] Mairiza, Dewi&Zowghi, Didar&Nurmuliani, Nur. (2010). An
investigation into the notion of non-functional requirements.
Proceedings of the ACM Symposiumon Applied Computing. 311-317.

10.1145/1774088.1774153.

[7]1 F. Perez, E. Irisarri, D. Orive, M. Marcos, and E. Estevez, “A CPPS
Architecture approach for Industry 4.0,” in 2015 IEEE 2oth
Conference on Emerging Technologies & Factory Automation (ETFA),

2015, pp. 1—4.

[8] J. C. Chandy. Desafios en el disefio de sistemas Cyber-Fisicos. Ing.
USBMed, ISSN: 2027-5846, Vol 1, No. 1, pp. 6-14. Jul-Dic 2010.

[9] Guio Avila, H. A. (2015). Evaluacién de las caracteristicas de un
sistema de informacién con base en la norma ISO/IEC 9126-1.
SIGNOS - Investigacién En Sistemas de Gestion, 5(2), 33.

[10] Restrepo L, Aguilar J, Toro M, Suescin E. A sustainable-
development approach for self-adaptive cyber—physical system’s life
cycle: A systematic mapping study. J SystSoftw.
2021;180(111010):111010.

[11] Clements P, Escalona MJ, Inverardi P, Malavolta I, Marchetti E.
Exploiting software architecture to support requirements satisfaction
testing. En: Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering
- SIGSOFT/FSE ’11. New York, New York, USA: ACM Press; 2011.

[12] Restrepo L, Pardo C, Aguilar J, Toro M, Suescin E, SinSO:
Anontology of Sustainability in Software (2015).

[13] Anton Yrjonen, Janne Merilinna. Extending the NFR Framework
with Measurable Non-Functional Requirements. VTT Technical
Research Centre of Finland, January 2009.

[14] Hassan, M. F., Saman, M. Z. M., Sharif, S., &Badrul, O. (2014). A
decision tool for product configuration designs based on sustainability
performance evaluation. Advanced Materials Research, 903, 384—

3809.

[15] A. Gupta, R. Vangari, A.D. Jayal, 1.S. Jawahir, Priority evaluation
of product metrics for sustainable manufacturing, Proceedings of the
20th CIRP Design Conference, Nantes, France. (2010) 631-641.

[16] Leite, Capelli, J.C.S. do P., Cappelli, C. "Software Transparenz."
WIRTSCHAFTSINFORMATIK, vol. 52, no. 3, pp. 119-132, 2010.

[17] Chung, L., Nixon, B.,, Yu, E. and Mylopoulos,J. “Non-
Functional Requirements in Software Engineering”, Kluwer
Academic Publishers, 2000.

[18] M. Charter, U. Tischner, Sustainable Solution: Developing
Products and Services for the Future, Sheffield, UK, Greenleaf
Publishing, 2001.

[19] AVIZIENIS A., LAPRIE J_C., RANDELL B. y LANDWEHR C.
Basic concepts and taxonomy of dependable and secure computing.
IEEE Transaction on dependable and Secure Computing Vol. 1, issue
1, pp 11-33, IEEE 2004.

[20] LAPRIE J.C. Dependability: Basic Concepts and terminology.
IFIP WG 10.4 - Dependable Computing and Fault Tolerance, August

1994.

[21] B. Galloway and G. P. Hancke. Introduction to industrial control
networks. IEEE Communications Surveys&Tutorials, 15(2):860—880,
2013.

[22] ONU. (1987). Nuestro Futuro Comun. Informe de la Comision
Mundial sobre el Medio Ambiente y el Desarrollo. Informe
Brundtland.

[23] DALY, H.; FARLEY, J. (2004). Ecological Economics: Principles
and Applications. Island Press. Washington DC.

[24] Jawahir IS, Bradley R. Technological elements of circular
economy and the principles of 6R-based closed-loop material flow in
sustainable manufacturing. Procedia CIRP. 2016; 40:103—-8.

[25] Raturi A, Penzenstadler B, Tomlinson B, Richardson D.
Developing a sustainability non-functional requirements framework.
En: Proceedings of the 3rd International Workshop on Green and
Sustainable Software - GREENS 2014. New York, New York, USA:
ACM Press; 2014.

[26] M. Mendoza, C. Gonzalez, and F. Pino, “FocusGroup como
Proceso en la Ingenieria de Software: Una Experiencia desde la
Practica,” Dyna, vol. 80, no. 1, pp. 51-60, 2013.

Appendix D

Toward a conceptual framework for designing
sustainable cyber-physical system architectures: A
systematic mapping study

139

ISSN 2712-0554
Heritage and Sustainable Development Original Research
Vol. 5, No. 2, September 2023, pp.253-279
https://doi.org/10.37868/hsd.v5i2.226

Toward a conceptual framework for designing sustainable cyber-
physical system architectures: A systematic mapping study

Luisa Fernanda Restrepo Gutierrez I* Pablo Bernal Moreno !, Elizabeth Suesciin Monsalve !, Jose
Aguilar Castro '3, César Jesus Pardo Calvache *

L GIDITIC Research Group, EAFIT University, Medellin, Colombia

2 CEMISID, University of the Andes, Mérida, Venezuela

* Dept. Automatic, University of Alcala, Alcala de Henares, Spain

* GTI Research Group. University of Cauca. Popayan, Cauca, Colombia

* Corresponding author E-mail lrestré | @eafit.edu.co
. sEEERENEE

TR Y e RN R] AN NN NN NN NI N AN NI NN NN NI N AN I NN NN NN I NN NN AN SN NS NN NN NENANENNNEEE

Received Jun. 1, 2023 Abstract
Revised Sep. 8, 2023
Accepted Sep. 14,2023 Cyber-physical systems (CPS) represent devices whose components enable

interaction between machines and processes. One of the biggest challenges of these
systems today is the ability to adjust to changes at the time of execution as they are
implemented in environments with a multidimensional complexity, this challenge
is currently addressed from the design of the systems themselves by integrating
sustainability. With this problem in mind, the present document describes a
systematic mapping study of the literature with the goal of demonstrating the
current panorama of the frameworks, designs, and/or models used at the time of
initiating the development of a cyber-physical system. As a result, it has been
concluded that there is a lack of guidelines to construct sustainable, and evolvable
cyber-physical systems. To address these issues, a framework for designing
sustainable CPS architectures is outlined.

© The Author 2023. Keywords: Cyber-physical systems, Framework, Design, Sustainability,
Published by ARDA. Architecture, Architecture design

1. Infroduction

“Cyber-physical systems (CPS) are integrations between computation and physical processes™ [1]. These
systems control the physical processes, and in turn, these processes affect the CPS algorithms. In comparison
to traditional embedded systems, CPS are evolving to be more dvnamic, modular, and scalable, increasing
dependence on software to such an extent that today it is normal to speak of software-intensive cyber-physical
systems [2]. For this reason, new-generation CPS come with great challenges in relation to software design and
implementation, in part due to the immense diversity of the platforms on which they must be implemented and
the immense diversity in their applicability [3]. Another important issue for CPS is sustainability, due to the
physical nature of these systems. A sustainable software design must account for component obsolescence and
upgrades, as well as allow for the replacement and introduction of new components in a deployed system with
minimal impact on the existing applications [4]. Traditional approaches such as designing for the worst-case
scenario will not be useful with these new challenges and the new requirements are security, reliability,
sustainability, efficiency, and predictability of the software and the system. Given these challenges. a systematic

This work is licensed under a Creative Commons Attribution License (https://creativecommons org/licenses/by/4.0/) that allows others @ @ |
to share and adapt the material for any purpose (even commercially). in any medium with an acknowledgement of the work's authorship
and initial publication in this journal.

253

HSD Vol. 5, No. 2, September 2023, pp.253- 279

mapping study (SMS) was carried out with the main objective of identifying related works and from its analysis
establishing the main models, frameworks, and/or architectures to additionally propose a framework for
designing sustainable CPS architectures that help to solve the problems raised where sustainability is addressed.

Apart from this introductory section, the study is structured in the following manner: In Section 2, we describe
the developed research process and specify the study's research topics. Section 3 provides the findings and
solutions to the posed questions along with a discussion and outlines a framework with which to address the
principal issues identified regarding sustainable CPS, and finally, Section 4 outlines the conclusions and next
work.

2. Research method

A systematic mapping study (SMS) of literature is a method used to identify, assess, and synthesize current
knowledge on the subject issue. The present SMS was carried out following the protocols and methods
established in [5], [6]. and different tools such as Parsifal (https://parsif.al) and Microsoft Excel were used to
manage the selected works. The search strategy is described in the following subsections (see Figure 1). Provide
enough information to allow the work to be duplicated. Any previously published methods should be
acknowledged with reference. While only relevant alterations must be stated.

Stages
. Inclusion/ i
Research Search 5 Quality g Research
) exclusion g Search ?
questions strategy S criteria : questions
1t e criteria s conduction : i
definition definition T definition resolution
definition
Research ||Search strings Search Quality Relevant Results
questions and sources criteria criteria studies SRS

Outcomes
Figure 1. Planning activities carried out in the SMS, taken from [5], [6]
2.1. Research questions definition

This SMS's main objective was to evaluate the state of the art in designing CPS architectures with a certain
emphasis on sustainability. With this objective in mind, five research questions were formulated to inquire about
strategies, methodologies, and/or frameworks used for both the design of software architectures and CPS
architectures. Additionally, we aimed to establish a relationship between architecture definitions and
sustainability:

+« Q1. What kind of strategies, methods, and/or frameworks are used for the design of software
architectures?

« Q2. What types of modeling strategies and patterns exist to represent software architectures?

« Q3. What kind of strategies, methods, and/or frameworks are used for the design of cyber-physical
system architectures?

« Q4. What types of modeling strategies and patterns exist to represent cyber-physical systems?

* Q5. Is there a link between the definition of architecture and sustainability?

2.2. Search strategy definition

We established three search strings containing specific terms and sentences for the search process.
Subsequently, we fine-tuned the search strings by incorporating additional keywords found in relevant studies
related to our research area. The keyword list that was utilized to locate an answer to the research queries is
shown in the definitive search strings presented in Table 1.

254

HSD Vol. 5, No. 2, September 2023, pp.253- 279

For each of the selected databases, this process was narrowed down and further refined: ACM, Google Scholar,
Scopus, ISI Web of Science, IEE Digital Library, Elsevier and Springer as shown in Table 2.

Table 1. Definitive Search Strings

Research
Questions

Search Strings

(Software) AND (framework OR architecture OR structure OR model OR frameworks)
Ql&Q2 AND (methodologies OR approach OR methodology OR method OR concept) AND
(agroindustry OR agricultural OR agricultural industry OR rural industry)
(cyber-physical OR embedded OR IoT OR Internet of things) AND (Systems) AND (self-
adaptive OR adaptable OR flexible OR adaptivity) AND (framework OR architecture OR
Q3&Q4 structure OR model OR frameworks) AND (methodologies OR approach OR methodology
OR method OR concept) AND (agroindustry OR agricultural OR agricultural industry OR
rural industry)
Q5 (framework OR architecture OR structure OR model OR frameworks) AND (Sustainability)

Table 2. Search strings utilized for each database:

Data Base

Search String

ACM

Google Scholar

Scopus

ISI Web of Science

IEE Digital Library

Elsevier

(Cyber-physical software OR Embedded software OR Software Systems) AND
(Framework OR Architecture OR Structure OR Model OR Frameworks) AND (Self
adaptive OR Adaptable OR Flexible OR Adaptivity) AND (Methodologies OR
Approach OR Methodology OR Method OR Concept)

allintitle: Systems Software Framework OR Architecture OR Methodologies OR
Model “Cyber physical” allintitle: Adaptive Framework OR Architecture OR
Methodologies OR Model "Cyber physical” allintitle: Adaptive Framework OR
Architecture OR Methodologies OR Model "Embedded systems™ allintitle: software
Framework OR Architecture OR Methodologies OR Model "Embedded systems”
allintitle: architecture sustainable “cyber physical” allintitle: architecture sustainable
“software™ allintitle: Systems Software Framework OR Architecture OR
Methodologies OR Model

("Cyber-physical software” OR "Embedded software” OR "Software Systems”)
AND (“Framework™ OR "Architecture” OR "Structure” OR "Model”) AND (”Self
adaptive” OR "Flexible” OR "Adaptivity””) AND ("Methodologies” OR "Approach”
OR "Methodology” OR “Concept”)

TI=(Cyber-physical Architecture®) OR TI(Software Architecture®)

("Cyber-physical software” OR "Embedded software” OR "Software Systems”)
AND ("Framework™ OR "Architecture” OR "Structure” OR "Model”) AND (”Self
adaptive” OR “Flexible” OR "Adaptivity”) AND ("Methodologies” OR "Approach”
OR "Methodology” OR "Concept”)

(Cyber-physical software OR Embedded software OR Software Systems) AND
(Framework OR Architecture OR Structure OR Model OR Frameworks) AND
(Self adaptive OR Adaptable OR Flexible

OR Adaptivity) AND (Methodologies OR

Approach OR Methodology OR Method

OR Concept)

HSD Vol. 5, No. 2, September 2023, pp.253- 279

2.3. Inclusion/exclusion criteria definition

The inclusion and exclusion criteria were established in Table 3 y 4. The criteria were devised to identify the
most pertinent papers that could provide answers to the research questions while excluding those that
are not relevant to this field or do not contribute to solving the research inquiries. Conversely, articles
meeting any of the exclusion criteria listed in Table 4 were disregarded.

Table 3. Inclusion criteria

Data Base Search String
IC1 Articles, chapters, dissertations, books, and lectures published since 2010
12 Articles, dissertations, book chapters and conferences presenting methods, models, and
representations of cyber-physical and software systems.
IC3 Articles, chapters, dissertations, book, and conferences with titles related to software
architectures
1c4 Articles, chapters, dissertations, book, and conferences whose title, abstracts, and
conclusions contain one or more keywords.
Table 4. Exclusion Criteria
Data Base Search String
EC1 Articles, dissertations, book chapters and conferences whose domain is a subject
other than software engineering or development.
EC2 Articles, dissertations, book chapters and conferences published before 2010.
EC3 Duplicate articles, book chapters, dissertations, and conferences.
EC4 Articles, dissertations, book chapters and conferences whose texts are not available or

accessible.

2.4. Quality criteria definition

A questionnaire was developed to gauge the quality of the selected studies. It employed a scoring system with
three values: 1 for 'Yes,' 0.5 for 'Partially,' and 0 for No.' These values were carefully calibrated to ensure that
studies with negative scores were not disregarded for future research. The evaluation process involved assessing
the information gathered from each database search, including the title, abstract, and keywords, to determine
the inclusion of studies among the relevant ones. This evaluation was conducted by the authors, who then
thoroughly analyzed the resulting studies to choose those who satisfied at least one of the listed criteria outlined
in Table 5.

Table 5. Quality assessment of studies according to inclusion criteria

Ref IC1 IC2 IC3 1C4 Total
[7] 1 1 0.5 1 35
(8] 1 0 1 1 3
[9] 1 1 1 1 4
[10] 1 1 1 1 4
[11] 1 0.5 1 1 35
[12] 1 1 0 1 3
[13] 1 1 1 1 4
[14] 1 1 0.5 1 35
[15] 1 0 1 1 3
[1] 1 0.5 0 1 2.5
[16] 1 1 0 1 3
[17] 1 1 1 1 4
[18] 1 1 1 1 4

HSD Vol. 5, No. 2, September 2023, pp.253- 279

Ref IC1 IC2 IC3 1C4 Total
[19] 1 0 1 1 3
[20] 1 0 1 1 3
[21] 1 0 1 1 3
22] 1 0.5 1 1 35
2] 1 1 0.5 1 35
[23] 1 1 0.5 1 35
[24] 1 1 1 1 4
[25] 1 1 0.5 1 35
[4] 1 1 1 1 4
[26] 1 1 1 1 4
[27] 1 1 1 1 4
[28] 1 0 1 1 3
[29] 1 1 1 1 4
[30] 1 1 0 1 3
[31] 1 1 0 1 3
[32] 1 1 1 1 4
[33] 1 1 1 1 4
[34] 1 0 1 1 3
[35] 1 0 1 1 3
[3] 1 1 0.5 1 35
[36] 1 1 1 1 4
[37] 1 0.5 1 1 3.5

2.5. Search conduction

The data extraction strategy aims to maintain consistency across all selected studies by employing uniform data
extraction criteria. This involves streamlining their classification using potential answers corresponding to each
of the research questions, as outlined in Table 6.

Table 6. Classification Scheme

Research Question Answers

QL. What kind of strategies, methodologies and/or frameworks are . Software Architecture
used for the design of software architectures? b. Methodology
c. Software Design

Q2. What types of representations exist to represent software s Software Representations
architectures? b. Software Systems

Q3. What kind of strategies, methodologies and/or frameworks are & Cyber-physical Architecture
used for the design of cyber-physical system architectures? b. Methodology
c. Cyber-physical Design

Q4. What types of representations exist to represent cyber-physical a. Cyber-physical Representations

systems? b. Cyber-physical Systems

Q5. Is there a link between the definition of architecture and a. Sustainable Architecture
sustainability? b. Sustainable Systems
c. Adaptivity

Information from the chosen primary studies was collected and organized based on the following specifications:
basic details (title, author, year), summary, and relevant aspects crucial for addressing the research questions.
These pertinent aspects included definitions, characteristics, types, methods, models, frameworks, and

257

HSD Vol. 5, No. 2, September 2023, pp.253- 279

applications in both the private and the public sector. Table 7 lists the studies that were chosen, a total of 35.
Initially, a context search and data collection were carried out using the databases mentioned in Table 2 with
the strategy described in the search strategy section, as well as a search through other means (teachers, peers,
etc.). Afterward, three iterations were conducted to fine-tune the method used to search each database. Table 8
displays the outcomes achieved following the execution of the search strings in each database, along with the
quantity of studies that were gathered from various sources.

Regarding the quality criteria, each study's overall quality score is determined by the sum of scores obtained for
each question, resulting in a value ranging from 0 to 6. Table 5 shows the findings of the studies' evaluation in
accordance with the quality assessment questions. The studies selected were those with a score higher than 3.
Figure 2 summarizes the study selection process with the corresponding values for each stage of the SMS, and
results are described in the section that follows.

Table 7. Contribution of main studies

Ref Ql Q2 Q3 Q4 Qs
[7] ¥ - X - X
[8] X X X % :
[9] % - 4 -
[10] X X x - ¥
[11] X X 54 ¥ -
[12] X - X - -
[13] X X P4 = X
[14] - X - X X
[15] X 2 g :
[1] - X - X -
[16] X " : X :
[17] = X X X -
[18] e X . X :
[19] X : - X .
[20] ’ X 2
[21] X - . . -
22] 3 3 X % :
[2 - X . X -
[23] : X 2) < X
[24] X X 4 - %
[25] X - x X -
[4] % : 4 X -
[26] X x X - X
[27] X X % %
[28] X - X - -
[29] X X p.4 = X
[30] - X - X -
[31] X 2 p4 g X
[32] X . X X X
[33] X X X 2 X
[34] X : - X -
[35] X : X > X
[3] . X - X .
[36] X s X = X
[37] X - - X -

HSD Vol. 5, No. 2, September 2023, pp.253- 279

Table 8. Classification scheme

Pertinent
Source Found Pertinent Duplicates without Total
Access
Other sources 20 18 0 0 18
LM 39 16 10 2 4
Google -
Seliolii 850 29 21 | 5
Scopus 40 20 10 7 3
ISI i)
Web of Science 15 6 = 0 1
IEEE
Digital 100 15 10 2 3
Library
Elsevier 22 10 8 l 1
Overall 1086 114 64 13 35
Number of records or Number of records or
information found by other information found in SMS
sources (n=20) (n=1066)
[v |
Number of pertinent records
found (n=114)
!
v v

Number of records or
information found after
elimination of duplicates
(n=64)

[|
h J

Total number of records
which access was not
available (n=13)

Total number of records
selected for the research
(n=35)

Figure 2. SMS results

3. Results and discussion
The outcomes for each of the identified research topics are shown below.

3.1. First question: What kind of strategies, methods, and/or frameworks are used for the design of
software architectures?

A system's software architecture is a set of structures essential for understanding and analyzing the system. It
encompasses software elements, their interrelationships, and associated properties. It comprises software
elements [8] and it is important for a variety of reasons, from carrying out the quality attributes, seeing the
qualities of the system, and seeing the system constraints, to being the basis for the evolution of the system.
Seeing the importance of software architectures, we agree that the design of these is vital for a system to function
properly and meet its objectives, in the design of architectures, decisions are made to transform the purpose,
requirements, constraints, and other concerns in structures which are used to guide the project [37].

259

HSD Vol. 5, No. 2, September 2023, pp.253- 279

So, what to do when starting the activity of designing architecture? It may seem an infinitely complex task, but
over the years design principles have been developed whose function is to guide (rather than force) the creation
of high-quality designs. These concepts are oriented to the achievement of specific quality attributes
(modifiability, availability, scalability, among others) and work as the building blocks from which the structures
that are built that make up the architecture [37]. Ultimately, if the structure is poorly founded, the architecture
does not matter much [34]. Table 9 explains the relevant design principles and patterns found in the main
studies.

These practices work as the cornerstone for the design of software architecture since they provide a transfer of
knowledge about architectures used throughout the history of software development [37]. Although these
practices are primarily employed during the architectural design phase, it is important to note that their
application extends beyond this specific phase. Architecture is a pervasive process that transverses the complete
life cycle, from the risk identification phase to the delivery in each iteration of software development. In the
same way that these practices are the cornerstone for the design of architectures, there are some strategies that
within the software development community are taken as basic and necessary for this type of study. The
strategies found will be described as follows:

1) 4+1 Model: Software architecture encompasses various aspects such as abstraction, decomposition,
composition, style, and aesthetics. Describing a software architecture involves using a model that consists of
various points of view or perspectives. To tackle large and complex architectures effectively, a proposed model
comprises five main views: A model is used to describe a software architecture with many viewpoints or
perspectives is used. A suggested model has five key viewpoints that can efficiently handle huge and
complicated architectures: (i) The logical view: Represents the design's object model, particularly when object-
oriented design is used. The concurrency and synchronization features of the design are captured by the process
view (ii). (iii) The physical view: Highlights the distributed nature of the software and describes how it maps
onto the hardware. (iv) The development view: Explains how the software is stafically organized within its
development environment. (v) The "+1" view: Encompasses architecture decisions, organized around the four
previous views, and illustrated through selected use cases or scenarios. These scenarios play a crucial role in
shaping architecture as it evolves over time [10].

2) Top Down: This method starts with the complete system at its most fundamental level before beginning a
process of breakdown and gradually descending into more precise layers. At the beginning, the highest level of
abstraction is present. The design gets more specific as the deconstruction goes along until the component level
is reached [24]. The public interfaces of these components have a significant role in the design even when the
intricate design and implementation details are not directly engaged. We can make inferences about how
components will interact with one another thanks to public interfaces [24].

3) Bottom Up: In contrast to the top-down approach, this alternative method starts with the necessary
components required for the solution. The design then progresses upwards, moving into higher levels of
abstraction. Components behave as building components, collaborating to produce other components,
eventually resulting in larger structures. This iterative process continues until all requirements are fulfilled. In
contrast to the top-down approach that begins with a predefined high-level structure, the bottom-up approach
doesn't have an upfront architecture design. Instead, architecture gradually emerges as more work is
accomplished, adapting, and evolving with each step of the process. Consequently, this is also known as
emergent design or emergent architecture [24].

4) Domain Driven Design: This style of strategic design provides development teams and business analysts with
guidance on how to break down the domain of their software system into sub-areas known as “bounded
contexts” [27]. Under domain-driven design, the software code's structure and language are aligned with the
business domain. Within a bounded context, all business language concepts are clearly and unambiguously
defined. There are concepts in every domain that can be uniquely assigned to a bounded context, on the other
hand, the same concept can exist with a slightly different definition in two separate bounded contexts.

260

HSD Vol. 5, No. 2, September 2023, pp.253- 279

Table 9. Practices to design

Principle

Description

Single responsibility
principle

Open-closed principle

Liskov substitution
principle

Interface segregation
principle

Dependency inversion
principle

Reuse/ReleaseEquivalence

Principle

Common closure principle

Common reuse principle

Separation of concerns

Inversion of control

Cloud native

On premise infrastructure

SRP works as active reasoning of Conway’s law: The social structure of the
organization to which it belongs has a considerable influence on the appropriate
structure for a software system [34]. It implies that each software module has a
single (and unique) cause to change.

OCP aims for software systems to be easy to update by allowing behavior to be
modified by adding new code rather than changing current code [34].

LSP states that to build software systems from interchangeable parts, such parts
must follow a contract that implies that each part can be substituted for any other
[34].

ISP seeks that designers avoid dependency on things (modules, components,
classes, objects, among others) which are not used [34].

According to DIP, code implementing high-level regulations should not rely on
code implementing low-level details [34]. The details should depend on the
policies and not the other way around.

REP component cohesion principle (along with CCP and CRP) dictates that for
software components to be reusable they must be traceable through a release
process and have corresponding release numbers [34].

CCP states that components should not have multiple reasons for change, thus
providing an incentive to group classes that will most likely change for the same
reason into a single component [34], thereby minimizing release related workload.

According to CRP, classes and modules that are frequently reused together belong
to the same component [34]. This ensures that the dependency is more manageable
and avoids unnecessary deployments due to erroneous dependencies.

It states that any system should be separated into different sections that address a
concern. Architects build layered architectures to cut down on incidental coupling,
creating isolation layers [20].

IoC It is a design principle in which the flow of execution of a program is reversed
with respect to traditional programming methods, desired responses are specified
leaving the architecture to carry out the actions required to reach that response, it
is not the same as dependency inversion [34].

The cloud-native principles encompass a set of core ideas and practices that guide
the development and deployment of applications in cloud environments. These
principles include microservices architecture, containerization, dynamic
orchestration, and DevOps practices, among others.

The key design is that infrastructure is located within the organization’s premise
which provides customizability, security control, data privacy, cost control but
requires a comprehensive disaster recovery plan, regular maintenance, updates,
and upgrades, and internal expertise in server administration [28].

Other patterns

Description

Unit of work pattern

Control is maintained over everything done during a negotiation transaction that
may affect the database [35] so that changes to the database and the resolution of
concurrency problems can be coordinated.

261

HSD Vol. 5, No. 2, September 2023, pp.253- 279

Gateway pattern

Mapper pattern

Layer supertype pattern

MVC

An object that encapsulates access to an external system or resource [35]. This
avoids having several system resources accessing external resources on their own
and facilitates the understanding of the code.

An object that establishes communication between two independent objects [35].
This avoids the creation of unnecessary dependencies between entities.

A type that acts as a ruler of all types in its layer [35]. In other words, a parent
element that contains the set of types in common of its children, so that they
inherit from it without the need to repeat code/structure.

Model-View-Controller is a method of organizing code's key functions into nicely
arranged boxes. This makes considering your app, revisiting it, and sharing it with
others easier and cleaner. The model component represents real-world objects, the
view part is everything that interacts with the user, and the controller part serves
as a bridge between the view and the model, receiving user input and choosing
what to do with it.

Other Methods

Description

Invariant Refinement
Method

Attribute Driven Design

Model-Based Design

Model Driven
Development

It is a goal-oriented design process that generates low-level restrictions that are
operationalized by system components [23]. It is based on the concept of
iteratively refining system objectives. Unlike other object-oriented methodologies,
IRM focuses on the system components and how they contribute to the
achievement of the goals.

ADD is a method composed of different strategies, these strategies or steps are the
following: (1). Select a system element to design, (2). Determine the
Architecturally Significant Requirements (ASRs) for the element of interest, (3).
Create a design solution for the selected piece. (4). Inventory remaining
requirements and choose the next iteration's input (5). Repeat until all ASRs are
satisfied. The result of this procedure is not an architecture that is complete in
every aspect, but an architecture in which the fundamental design approaches have
been picked and vetted [8].

Models are used throughout the manufacturing process (design, simulation, code
creation, and verification). It enables early validation and verification, which
serves as a foundation for automated software synthesis [16].

It is based on the idea that domain models should be created from which the code
is generated automatically.

Developers create a platform-independent model (PIM) that is combined with a
platform-definition model (PDM) to generate code [22]. PIM would be the
realization of the functional requirements while PDM would be the quality
attributes and platform specifics.

5) Attribute-driven design (ADD): ADD is an approach for developing software architectures that take into
account the software's quality attributes. It is a step-by-step architecture design method that relies on an iterative
process of selecting a specific part of the system to design. Subsequently, suitable architectural styles, patterns,
and tactics are chosen to fulfill important architectural requirements for that part. Each ADD iteration's outcome
may be saved in a separate view packet [13]. Since ADD is a sequential, five-step method [8]. These are: (i)
Choose a specific element of the system to be designed. (ii) Determine the architecturally important criteria
(ASRs) for the chosen element. (iii) Generate a design solution tailored to the selected element. (iv) Assess and
document remaining requirements while determining the next iteration's input. (v) Repeat steps | to 4 until all
the ASRs have been adequately addressed. Keeping a record of the design chronology, including the sequence
of decisions made, can be valuable for future reference or when modifications to a design decision are needed.

262

HSD Vol. 5, No. 2, September 2023, pp.253- 279

By examining the decisions made before and after a particular choice, it becomes easier to assess the potential
impact and necessity of modifying subsequent design decisions.

6) Clean Architecture: This architecture is based on the concept of the “Dependency Rule”, which dictates that:
“Source code dependencies must point only inward, toward higher-level policies.” as shown in 3. In the
architectural principle being discussed, information within an inner circle must remain oblivious to anything in
an outer circle. Specifically, code in an inner circle should not reference the names of entities declared in an
outer circle, such as classes, variables, functions, or any additional specified software entity. Similarly, an inner
circle should not use data formats stated in an outer circle., especially if these formats are generated by a
framework located in an outer circle. The purpose of this principle is to maintain clear and strict boundaries
between different circles of the system, promoting better modularity and separation of concerns [28].

~ ™)

The Clean Architecture

Controllers

|| Enterprise Business Rules
| | Application Business Rules
[| Interface Adapters

| | Frameworks & Drivers

Figure 3. Clean architecture proposed by Robert Martin [28]

3.2. Second question: What types of modeling strategies and patterns exist to represent software
architectures?

There are no excellent or terrible architectures, these are simply more or less suitable for the objective required
by the system, in this sense each system has a unique architecture that meets (or does not) the objective of the
system [22]. Considering the above, the representations for software architectures and their types depend on the
objective of the system, and as this is unique for each system, but there are some representations (better-called
architecture patterns) that help with the creation of these designs, they help by creating an outline that allows
the user to define a structure (or schema) for any software system. Also, one of the stronger benefits (if not the
strongest) is that these patterns and models are reusable, this refers to a predefined set of subsystems, roles, and
responsibilities that are offered by the system. Listing all of these is a task that is beyond the scope of this work,
however, through the systematic mapping studies, some representations were found that (for this approach)
were considered the most relevant.

1) C4 Model: It is a graphical notation used to model the architecture of software systems, based on a structural
decomposition of the system into containers and components, It leverages UML (Unified Modeling Language)
and/or ERD (Entity-Relationship Diagrams) for a more detailed decomposition of the architectural building
blocks. This model documents the architecture by showing multiple points of view, these are organized by
hierarchical level: Context diagrams (level 1), Container diagrams (level 2), Component diagrams (level 3) and
Code diagrams (level 4). Figure 4 shows this hierarchy.

263

HSD Vol. 5, No. 2, September 2023, pp.253- 279

System Context

sers and system dependencies,

Overview first

Containers

all shape of the architecture and technology chaices

Components Zoom and
Components and thelr interactions within a container filter

Details
on demand

Figure 4. C4 Model proposed by Neal Ford et al. [20]

2) UML: Unified Modeling Language is a pictorial language used to make software blueprints [20]. It is used
to visually represent, specify, build, and document a software system. The parts are like components that can
be connected in various ways to form a complete UML picture, known as a diagram, there are many types of
diagrams, the most known are: Class diagrams, Component diagrams, Use-Case diagrams, Activity diagrams,
and Sequence diagram. Understanding the various diagrams is crucial for implementing knowledge in real-life
systems. These diagrams fall into two main categories: Structural Diagrams and Behavioral Diagrams, each of
which comprises several subcategories.

3) Layered Architecture Pattern: As its name says, it separates the architecture into different layers. The most
common usage of this pattern involves four distinct layers: presentation, business, persistence, and database.
However, it is not limited to these specific layers, and users have the flexibility to include additional layers,
such as an application layer, service layer, data access layer, or any other layer as needed for their application.

This pattern is notable for its clear distinction of roles for each layer within the application, and each layer is
marked as closed. This implies that a request must pass through the layer directly beneath it before reaching the
subsequent layer. Another significant concept of this pattern is "layers of isolation," which allows modification
of components within one layer without impacting the other layers. This ensures a modular and maintainable
design, promoting flexibility and ease of development. Figure 3 shows the basic structure of this pattern.

Presentation Layer [Cnmpunent] [Cumponent] [Component]
Business Layer [Compunent] [Cnmpunent] [Componen‘(]
Persistence Layer [Component] [[omponent] [Cumpunent]
Database Layer

Figure 5. Lavered architecture proposed by Neal Ford et al. [20]

4) Service Oriented Architecture (SOA): SOA (see Figure 6) is a strategy that focuses on discrete services
instead of an indivisible unit called monolithic design. Services adhere to common interface standards and an
architectural pattern, enabling seamless integration into new applications with ease. The utilization of service
interfaces promotes loose coupling, allowing them to be called without requiring extensive knowledge of their
underlying implementation. This, in turn, minimizes dependencies between applications, facilitating flexibility

264

HSD Vol. 5, No. 2, September 2023, pp.253- 279

and modularity across the system. This interface is a service contract between the service provider and the
service consumer [20].

! 1

[
[
N D
[

: i :

Databases

Figure 6. Service oriented architecture (SOA) [38]

5) Server-less: A recent change in the equilibrium of software development is the use of server-less architectures
where the server-side logic and infrastructure management are abstracted away from developers [20]. Key
characteristics of serverless architectures include: (i) Incremental change: involve redeploying code, as all the
infrastructure concerns are abstracted away under the "serverless" framework. (ii) Guided change via fitness
functions: Due to the criticality of coordination between services, developers can anticipate composing a higher
share of overall fitness functions. These functions must operate in relation to various integration points to keep
third-party APIs aligned and do not deviate from expected behavior. (iii) Appropriate coupling: There are two
main meanings for serverless FaaS (Function as a service) and BaaS (Backend as a service), architects should
have a deep understanding of the two to have the appropriate coupling in the system.

6) Micro-services Architecture Pattern: Micro-services are independently releasable services based on a
business domain with the purpose of being technologically and functionally independent. A service encapsulates
functionality and links it to additional services via networks, then the designer constructs a more sophisticated
system from these building blocks [29] as shown in 7. How should a micro-service architecture be defined? The
documented requirements, like with any software development endeavor, serve as the beginning point but with
the twist of decomposing these into services. The architecture of an application is designed to manage and
process requests. The initial step in defining this architecture involves extracting and distilling the application's
requirements into the core requests it must handle. Subsequently, the second step is to determine the
decomposition of these requests into distinct services. The final stage in designing the application's architecture
is to determine the API (Application Programming Interfaces) for each service [33].

Microservices adopt a "share nothing" architecture, where each service operates independently removing
technical coupling. This approach enables granular changes, as the main objective is to isolate domains through
physically bounded contexts, emphasizing a thorough knowledge of the problem domain. Consequently, the
fundamental building block of this architecture is the service itself, making it a model of evolutionary
architecture. A significant advantage of this approach is that if one service requires evolution, such as changing
its database schema, no other service is impacted. This is because services are not permitted to have knowledge
of each other's implementation details, ensuring a high degree of isolation, and promoting a more robust and
flexible system. Of course, the creators of the altering service will need to transmit the identical data via the
point of integration between the services, giving the developers of the calling service the luxury of being
unaware of the change [20].

The main advantage of this architectural style lies in its complete avoidance of coupling at the technical
architecture layer. However, individuals who criticize coupling typically refer to” inappropriate coupling.”,
indeed, a software system with absolutely no coupling would lack functionality and capabilities. The concept
of "share nothing" essentially translates to "avoiding entangling coupling points." While microservices promote
low coupling, there are essential aspects that still require sharing and coordination, such as tools, libraries,
frameworks, and more. For instance, functionalities like logging, monitoring, service discovery, etc., need to be
shared and implemented consistently across microservices. Failing to include crucial monitoring capabilities for

265

HSD Vol. 5, No. 2, September 2023, pp.253- 279

a service could lead to disastrous consequences during deployment. In a microservices architecture, a service
that cannot be effectively monitored may become invisible and difficult to manage, resembling a "black hole"
within the system. Hence, proper coordination and sharing of essential components are vital for the success and
operability of microservices.

Microservice

Microservice Micraservice

Figure 7. Microservices architecture proposed by S. Newman [29]

7) Cloud Native: The general term to define cloud computing is: “Cloud computing is the on-demand delivery
of compute power, database storage, applications, and other IT resources through a cloud services platform via
the internet with pay-as-you-go pricing.”; however, this merely scratches the surface of what it takes to become
cloud-native. Even if it is the most mature service available, there is much more to it than simply utilizing the
underlying cloud architecture [26]. Both automation and application are critical in this process. The cloud's API-
driven design facilitates extensive scale automation, enabling not only the creation of individual instances or
systems but also the seamless rollout of an entire corporate landscape without any human intervention. As a
result, cloud-native architecture heavily relies on the approach employed to design a particular application,
ensuring its compatibility and optimal utilization within the cloud environment.

8) Data Centered Architecture: Is an architectural style in which the data is designed first, followed by the
design, creation, and use of applications. The architecture focuses on the movement of information within the
organization, and then modifies the workflows to improve that movement. The method necessitates a full
understanding of the data: where it originated, who owns it, what is the master and what is a copy, who uses it
and how, how long it must be held, when it must be archived, how confidential it is, and so on [39].

9) Component Based: This approach places significant emphasis on separating concerns related to the
functionality of a system. It revolves around a reuse-based methodology, involving the definition,
implementation, and composition of loosely coupled, independent components into cohesive systems.
Structured as a collection of components services, can be both isolated using hardware and/or software
techniques or combined into a single address space [36], thus deriving a configuration from a collection of high-
level services described by the developers. One of the many benefits is the creation of widely reusable software
components.

10) Three Layer Framework: is a component-based approach that enables software components to
autonomously arrange their interactions and accomplish a system's main objective [12]. This architecture
arranges applications into three distinct logical and physical computing layers: the presentation layer,

266

HSD Vol. 5, No. 2, September 2023, pp.253- 279

responsible for the user interface; the application layer, where data is processed; and the data layer, dedicated
to storing and managing the application's data. One of the key advantages is that each layer has its own
infrastructure, allowing for parallel development by separate teams. Additionally, each layer can be updated or
scaled independently without causing any disruptions to the other layers. This separation of concerns enables
efficient and flexible development and maintenance of the system.

11) Rainbow Framework: It keeps track of a running software system's runtime properties using an abstract
model [15]. It evaluates the model for a violation of constraint and carries out modifications to the operating
system. In principle, externalized control mechanisms separate the concerns of functionality from the concerns
of “exceptional behaviors”, providing several benefits, including analysis, modularity, applicability to legacy
systems, and reuse. One of Rainbow's goals is to offer a low-cost method for integrating self-adaptation features
into a variety of systems.

12) KAMI Framework: System designers check a model against the required requirements and utilize the
model's structure to guide the implementation process. If the model's parameters do not align with the actual
system behavior, it is possible that the software will not work as expected, resulting in unsatisfactory outcomes
or failures. To address this challenge, run-time adaptation of non-functional properties becomes essential. This
adaptation allows the system to dynamically adjust its behavior to match the real-world conditions, accounting
for potential differences or environmental changes. Consequently, models for non-functional requirements
should coexist and continuously interact with the system's implementation during run time to ensure accurate
and effective performance. So, the Kami Framework continuously updates the reliability parameter and building
performance models based on data collected during runtime [15].

13) Kieker Framework: This Framework comprises two main components: the monitoring part and the analysis
part. In the monitoring phase, monitoring probes gather measurements, which are represented as monitoring
records. These monitoring records are then passed to a configured monitoring log or stream by a monitoring
writer. Monitoring readers ingest pertinent monitoring records from the monitoring log or stream for analysis
and send them via a set of programmable analysis plugins with a pipe and filter architecture. Kieker, which
focuses on application-level monitoring, contains monitoring probes for gathering timing and trace information
from distributed program executions [15].

14) Bus-based Software: Bus-based software is based on SOA and refers to a software architecture or design
pattern that utilizes a bus-like structure for communication and integration between different software
components or services promoting low coupling between components since it is not necessary for the source of
an event to be aware of where, how, or why this information will be handled. Then, SOA is a higher-level
architectural concept, while bus-based software is a specific implementation approach for communication and
integration [1].

3.3. Third question: What kind of strategies, methods, and/or frameworks are used for the design of
cyber-physical system architectures?

The description that follows encompasses strategies, methodologies, and frameworks that are directly aligned
with the research objectives of this paper. It is acknowledged that the range of available options extends beyond
those discussed here, the following descriptions highlight the most pertinent approaches.

1) MAPE-K: A fundamental paradigm for this type of system, especially when self-adaptation is required (as
in the case of this study) is the MAPE-K feedback loop. whose acronym translates as Monitor, Analyze, Plan
and Execute over a shared Knowledge [7] (see Figure 8). It is the integration of distributed computing resources
with self-management capabilities that can adapt to unexpected changes while concealing inherent complexity
from operators and customers. This method draws its inspiration from the autonomic nerve system of the human
body, which regulates vital bodily processes (including blood pressure and heart rate) automatically and without
conscious thought.

267

HSD Vol. 5, No. 2, September 2023, pp.253- 279

MAPE-K-based Self-healing Framework for Sensor Data

hnnlyu Plan

Moni:ot
Camected
Sensor
l -J:::mJ data
Managed sensors Wamant,

Figure 8. MAPE-K Loop proposed by Paolo Arcaini et al. [7]

2) 5C: Known as five-level it consists of the following levels: Connection, Conversion, Cyber, Cognition, and
Configuration see Figure 9 [16]. At each level of the hierarchy, distinct analytical procedures are employed to
extract valuable information and system knowledge from the data. Various analytical procedures are used to
aggregate data from lower levels, and crucial high-level information is passed back down the hierarchy. To
create a CPS in production system-based manufacturing, a 5-level structure known as the 5C architecture offers
a clearly stated rule. This sequential workflow approach ensures a more detailed and transparent construction
of a CPS. In this context, advanced interconnection is vital for the gathering of real-time data, facilitating the
connection between the physical world and specific processes while incorporating feedback from cyberspace.
This seamless integration allows for enhanced control and optimization of CPS operations.

Level 5. Configuration

Level 4. Cognition

Level 3. Cyber

Level 2. Conversion

Level 1. Connection

Figure 9. 5C architecture proposed by Ioan Dumitrache et al. [16]

3) Safe State Space: When the controller is unable to maintain control of the controlled plant inside a specified
a subset of its Safe State Space (SSC), a cyber-side failure occurs in a CPS [36]. This technique directs the user
or application engineer in the specification of a set of restrictions (Safety Space Constraints) that to be regarded
operationally safe, the plant must meet certain criteria. A system is in a safe state space if the plant satisfies the
SSCs at the present time, this helps the system know if there is any need to apply some controller input and/or
helps to mitigate the consequences of a mistake input hence maintaining the correct performance of the plant
and thus achieving adaptive fault tolerance.

4) Self Aware Monitoring: Current efforts to enhance automated systems' efficiency, collaboration, and
resilience in the industrial sector underscore the significance of self-awareness within these systems. Self-
awareness allows a system to keep track of itself and its surroundings to better analyze its position and produce
more suitable judgments [35]. This methodology is applied to the architecture as a logical layer to keep track of
the system's health deterioration, but some studies have found that it was possible to implement as an agent in

268

HSD Vol. 5, No. 2, September 2023, pp.253- 279

a multi-agent architecture [11] or in a more typical hierarchical architecture thus giving the system the ability
to keep track of its own internal and external conduct to make sound decisions.

5) Cognitive Systems Architecture: A cognitive architecture's purpose is to construct a framework for
developing human-like intelligence in systems; they give a framework that allows a system to evolve over time
by incorporating perception, reasoning, action, and learning mechanisms [35]. Cognitive systems frequently
exhibit social behavior to overcome problems caused by poor environmental perception and the inability to
accomplish global tasks separately, involving communication, collaboration, and negotiation. This method is
used in cognitive radio networks to increase spectrum sensing performance by collaborating selectively with
numerous remote sensors and optimize radio frequency spectrum utilization.

6) Dynamic Clustering Architecture: Effective communication among system components is pivotal for
achieving efficient performance in distributed systems. Clustering was developed in response to the requirement
to adjust to growing industrial control systems' high complexity and dynamic nature [35]. Every cluster
represents a dynamically formed community of intelligent system components collaborating to gather sufficient
information for problem-solving. Each cluster member possesses a set of algorithms enabling problem
recognition and solution discovery.

7) Invariant Refinement Method for Self-Adaptation: The idea is to evolve on the idea of IRM by identifying
and mapping applicable configurations to make it adaptable to given situations this is done by developing design
alternatives for achieving system requirements so they can be employed for architecture adaption at run-time.
Three recurring steps are used in self-adaptation [7]: (1) Determine the present circumstance. (ii) Choose one of
the available configurations. (iii) Reconfigure the architecture to match the chosen configuration.

8) Model-Based Software Development Method for Automotive Cyber-Physical Systems: The primary
workflow of MoBDAC's development comprises four key steps. First, It entails deriving software specifications
from system specifications. Second, modeling tools are utilized to construct models in the problem domains
(MPD), which are then subjected to simulation for verification purposes. Third, the MPD is transformed into
models in the implementation domains (MID). Finally, the MID is employed to generate the actual code for the
system. It should be noted that system specifications are used to extract non-functional needs as well as
interactions with the physical environment. Analysis tools employ non-functional requirements to determine
whether the software's non-functional requirements are satisfied, and the information on the interaction with the
physical environment is used by MID to generate correct code [22]. Figure 10 illustrates the MobDAC
architecture.

Physical

Non-function | System . environment
extraction specifications ~~__extraction
) Function B
| _extraction ~
Vs oy T
Non-Functional Physical Environment
Concern Table Software specifications Concern Table
Modeling
. A4
Models in problem domains - E I‘Im:r
Model [
l * | transformation
| Analysis tools b Models in implementation domains |-
Code
generation

> Code |

Figure 10. MoBDAC Architecture proposed by Zhigang Gao et al. [22

269

HSD Vol. 5, No. 2, September 2023, pp.253- 279

3.4. Fourth question: What types of modeling strategies and patterns exist to represent cyber-physical
systems?

Representing cyber-physical systems requires modeling strategies and patterns that can capture the complex
interactions between physical process and computational components [14]. Here are some modelling strategies
and patterns used to represent CPS:

1) Traditional Hierarchical Architecture: Most traditional manufacturing methods fall into this category. These
systems are based on centralized and staggered control techniques, offering efficient outputs due to their
optimization capabilities. However, their rigid multilevel structure hinders agile responses to potential
variations. Hierarchical architectures, such as pyramid-like Computer Integrated Manufacturing (CIM),
demonstrate limited autonomy, making the system susceptible to disturbances and resulting in weak responses
when facing disruptions. This rigidity raises the development expenses and results in a system that is difficult
to maintain [14] even though it produces a system with maintainability issues it also refers to a systematic way
of thinking, working, and communicating.

2) Multi Agent System (MAS): The core of this design are the autonomous components, known as agents, that
are taught to collaborate through negotiation protocol structures [11]. MAS approach eliminates every kind of
hierarchy, granting all power to the essential modules. By removing the system's hierarchical links, the
components work together equally, instead of designating subordination and supervisory connections, the
consequence is a flat design [14] (See Figure 11).

3) Holonic Manufacturing System (HMS): HMS is made up of holons that are autonomous, intelligent, flexible,
dispersed, and cooperative. With this design, the production process is driven by the product cases themselves,
leading to complete decentralization of coordination through holons. Manufacturing based on holarchies (levels
of holons) anticipates future actions, in contrast to previous decentralized setups and utilizes proactive efforts
to avoid coming problems [14]. Therefore, one of the most promising aspects of HMS is their ability to represent
a change from wholly hierarchical to hetero-hierarchical structures.

(™
Agent 1 Agent 2
Communication
Channel
Output (Action) Output (Action)
Inference Inference
Engine Engine

Input

(Sensors) (Sensors)
DataBase (Rules) DataBase (Rules)

Information
Field
(Agent 2)

Information Field
of Large Scale Infrastructure

Figure 11. MAS Architecture proposed by Sagit Valeev et al. [40]

270

HSD Vol. 5, No. 2, September 2023, pp.253- 279

4) Traditional Embedded System (TES): Regarding the physical world, TES implements an asymmetric control
relationship [31], only the computational processes launch the monitor-and-control interaction with the
application but not vice versa. TES emphasizes the importance of an integrated software framework in which
basic adaption functionality is linked with high-level application functionalities which preclude quick
incremental software changes and configurations.

5) Adaptive Fault Tolerance (AdaFT): AdaFT framework consists of two major parts: the first approach
concentrates on generating the sub-spaces and employing a machine learning technique for sub-space
classification. On the other hand, the second approach utilizes the subspace classifier's outputs and conducts
system simulation alongside reliability analysis. AdaFT applies the adaptive fault-tolerance technique after
taking the physical side data of the controlled plant as input, ensuring the same level of safety as the conventional
way while maintaining the most effective use of computing resources, thereby improving the computing
platform's long-term reliability [25].

6) SAMBA: “SAMBA s logical unit of an entity is an Autonomous Cooperating Object (ACO)” [35] (see Figure
10). Each ACO autonomously learns the nuances of its surroundings and the options available to it. Moreover,
it displays social conduct as it interacts with other ACOs within the same surroundings. When deciding on
actions to execute, it considers its own goals, the environmental situation, and demands from other ACOs. The
collective conduct of the ACOs derives from their interactions, giving rise to the overall global behavior of the
system.

7) Reconfiguration Framework for distributed embedded systems for Software and Hardware (ReFrESH):
ReFrESH is a four-layer framework designed to facilitate self-adaptation in both hardware and software
components (see Figure 13). Its layers are (i) the Resource Laver, which provides actual hardware resources as
well as capability indicators to aid robot actions, (ii) the Interface Layer, which offers component interfaces for
driving and requesting hardware resources, (iii) the Component Layer, which consists of task-execution
components, an evaluator, and an estimator to evaluate the performance of running and incoming components,
and lastly, (iv) The management unit Task Layer produces configuration candidates and select a suitable setup
to carry out one or more jobs [15].

Task and Process
Description of ACO
R e T Ty P s e s Tpmmme e an e e o s g
I) | |
| External Managers |_| Alarm/ :
| of Other Entities | | External Manager L |
[|1 (Negotiation, ogger |
o= == — - == = [: Resources) 7 I
|
I
| |
| |
| Self-Aware Health Internal Manager/ I
I Monitoring Module Cognitive Unit :
|
I I
| T l I
|
: Operation Module/Driver |
| |
| Aco I :
| |
: Controller :
| t * :
: Sensors Actuators |
| |
| Components |
| B e ————————eee e p—zerehl |
Ent|tv 1

Figure 12. SAMBA Framework proposed by Lydia Siafara [35]

271

HSD Vol. 5, No. 2, September 2023, pp.253- 279

Application Software Adaptation Software

Task Layer Decider, ' +.. Decider IGenerale" ---Generatemr :

Evaluator(EV) | Estimator(€s) |1

CETTOW N T B |

]
1
L]
I
]
I
]
]
I
]
]
) |
1 wes wen i wnn
]
1
I
i
]
]
I
]
]
]
I

B - it - e (v - 0
iuwanJ e [HWEX, | El"mu.xl w Ewgsm‘ I[,MES
m e wex, | E Irmsvﬂ__"] iuwfvr__J I"mﬂg,]‘l HWES,

Component Layer

Interface Layer r SmsorlA_:tum_r Drhaels_ l l Utility Drivers]

Resource taver | | €#U | | FpGA | | sensors/actuators | | Memory | | power |

Figure 13. 4-layer framework proposed by Yanzhe Cui et al. [15]
3.5. Fifth question: Is there a relation between the definition of architecture and sustainability?

With the increasing software dependency of cyber-physical systems, a noticeable trend has emerged wherein
control tasks are shifted from isolated controllers to an integrated computation platform. Historically, enormous
always-on redundancy was used to assure consistent controller efficiency [36]. In numerous cases, the controlled
plant operates deep within its permitted state space, which means that minor controller failures do not result in
malfunction of the controlling plant. This encourages a flexible approach to maintaining sustainability.

In systems engineering, sustainability refers to adopting and implementing iterative and incremental
methodologies that foster the long-term development of technologies at a low cost and with reduced effort,
seeing this as an important aspect of which the development of both software and cyber-physical systems is
migrating to sustainable development which at the same time is related to architecture. Sustainability entails the
creation of products that are both technically sound and economically beneficial. Even though sustainability has
typically been linked to the environmental aspect, its significance is growing in the broader context of
engineering, including software engineering. For software systems integrated info Cyber-Physical Systems
(CPS), sustainability is closely tied to nonfunctional attributes, especially maintainability, and nonfunctional
attributes with sustainability dimensions.

“There are five dimensions of sustainability: (i) environmental, (ii) social, (iii) economic, (iv) technical, and (v)
individual” [32]. Restrepo et. al. [32] define that a sustainable-system architecture is attained after the system
is ready for maintenance and evolution., an attribute that -indirectly- encompasses the ideas of lifespan and cost-
effectiveness. Due to the constant evolution of these systems, the attribute of self-adaptation or adaptability
comes in as a necessity. Self-adaptation is considered an essential characteristic of systems that function in
dynamic environments and manage operating situations that are continually changing [7].

To attain high quality and versatility in manufacturing processes, high-efficiency production demands a high
level of adaptability, and reactivity [35]. In efforts to shorten the lead time, past approaches have emphasized
automated manufacturing environments that are strict and deterministic that aim to reduce operational
disruptions. Nevertheless, with the rising structural complexity of manufacturing systems, driven by the
inclusion of more CPS and heterogeneous components distributed, the determinism of manufacturing processes
is diminishing, and requires an adaptive approach to gain (or maintain) sustainability without decreasing its
flexibility.

Considering that CPS is implemented in dynamic environments, with several variables where uncertainty
dominates, it is clear the need to have in mind an architecture that gives priority to sustainable development, not

272

HSD Vol. 5, No. 2, September 2023, pp.253- 279

only in its design but throughout the entire life cycle of the system. In the event of a new and unexpected
occurrences, the system will adapt accordingly not only the items' existing statuses, but also their future plans,
while efficiently communicating these revised plans with all relevant users. Users should be given updated plans
to help them manage their tasks and provide feedback (engineers, workers, drivers, among others.) [23].
Control-theoretic feedback loops are frequently used to achieve adaptability [31] to process system outputs in
relation to actuator signals produced by the controller. These designs have remarkable resistance to change and
may be continuously altered to their surroundings [14].

A relationship between the definition of architecture and sustainability does exist since self-adaptation is
accomplished through the implementation of adaptation techniques, such as the MAPE-K feedback loop. From
a technical standpoint, sustainability is related to the creation of reusable software components, with a focus on
achieving the maintainability attribute. Economic sustainability is related with the development of algorithms
that lower expenses in analysis, data collection, and energy use [32]. Technical sustainability is also linked to
the utilization of layered, microservices, and cloud-based architectures, which enables scalability of the system.

Discussion, challenges, and gaps

Designing of software architectures: Architecture design practices bring benefits for technology heterogeneity
but the consulted literature reports challenges at the level of system complexity, changing requirements,
security, scalability, and maintainability. Designing software architectures can be complex and challenging
since involves making a wide range of decisions than can have an impact in the quality of the software system
also because there are numerous options available [12], [41], designers must carefully evaluate and select the
most appropriate technologies, patterns, and approaches. To address these challenges a framework could be
designed to help select the best framework for a certain domain or specific feature requirement, also making
decisions at the design level, adopting best practices, continuous improvements of design, and the use of a robust
process can help.

Representations of software architectures: Software representations face several challenges such as consistency
between representations that lead to misunderstandings, communication problems, inadequate representation or
documentation, and implementation errors, also software representations can be time consuming and resource
intensive, managing different versions can be complex, and representation of non-functional aspects are
overlooked or not visible to stakeholders. To address these challenges management solutions, flexible
representations, automatic tools, and best practices can help to reduce the problems.

Designing of CPS architectures: Designing CPS presents challenges both computational and physical elements,
as these systems require high degree of scalability and monolithic architectures may not always be well-suited
for CPS because the lack of modularity, scalability issues, inefficient use of resources, and other. To address
these challenges to propose a framework that consider hybrid approaches may provide a more suitable solution,
achieving better component heterogeneity. high interoperability, low power consumption, also employ robust
designs approaches through co-engineering, which involves collaboration between different disciplines can help
with these challenges. These disciplines may include software engineers and domain specialists.

Representations of CPS: Represent CPS is challenging due to real-time constraints and behaviors, also because
involves a mix of hardware, software, sensors, etc., there are no standards that allow the homogeneous
representation of components, interdisciplinary, and in many cases lack of modeling tools for physical and
computational aspects, also representations have limited extensibility to other domains since often require
domain-specific knowledge, to address these challenges modular an adaptable representation could be proposed.

Architecture and sustainability: The gap found in the literature was a lack of guidelines for constructing
sustainable and evolvable CPS has significant implications for the development and long-term viability of these
complex systems since (i) developers face a greater challenge when designing and implementing CPS than can
result in ad-hoc solutions leading to longer development cycles. and higher costs. (ii) Sustainability is a critical
aspect especially in the resource utilization such as energy consumption and responsible use of resources, also

273

HSD Vol. 5, No. 2, September 2023, pp.253- 279

there is an environmental impact and designing without sustainability can lead to consume more resources and
contributing to environmental issues. (iii) Without guidelines maintaining and updating CPS over time becomes
more difficult and error-prone can lead to systems that quickly become obsolete or require resources to adapt.
To address these challenges a conceptual framework focused on sustainability for the design of CPS
architectures can be proposed, also consider the entire life cycle of the systems [32] to show a holistic approach
that considers the social, environmental, technical, and ethical aspects of sustainability.

3.6. Towards a conceptual framework for designing sustainable CPS architectures

Methodological proposals must address the product life cycle, requirements, technologies, domains,
adaptability, and execution contexts, among other challenges, having correspondence between what you want
to build and how you are going to build the solution, there are traditional and conservative architectural
proposals and others that emerge to respond to current challenges where design frameworks provide flexibility,
agility for changes, adaptability, scalability, high evolution, technological independence. reduce coupling,
among others. traditionally, as evidenced in the SMS, the architectural design of software and CPS has been
performed using monolithic structures where the functional aspects are coupled and subject to the same solution,
generating long-term problems at the level of evolution, changes in requirements, technology, and others.
Having detected the need to create agile solutions that respond to flexible, modular designs and a reduced
development effort from the field of software architectural design, microservices architectures have gained
popularity since they propose a structure that better meets the characteristics of the challenges and in real
environments, have better behavior and provide advantages such as modularity, versatility, and small code base
[32]. Knowing the methodological and architectural design implications and the different gaps to approach CPS,
we identified the opportunity to embrace the characteristics of this proposal in the context of the architectural
design of CPS, so with the following proposal we take the first step and represent what would be a framework
that addresses the best practices that the literature is offering us.

The proposal proposes a conceptual framework that makes visible the domain and its decomposition, where it
is important to isolate the domain via physical contexts, this approach emphasizes to fill this good practice of
software development to the context of the CPS since it allows to understand the domain of the problem. The
basic structure and the highest level of this proposal are shown in Figure 14, each section will be explained
below.

Resource Section Buginess Section

[Actuators][Sensors][Hardware] ['"PUUO'—"P“'} """" { Bgs;:f:s J

Extarnal Services

Utility Dnivers

Actuator
Drivers

Sensor Drivers

— 1

=]
-% Domaln Tasks Components. Domain Tasks Components. Domain Tasks Components
7] Health Heslth . Heallh
o l Manager |, Companent E ['Managur } [L'“"""mam m] Manager l Gemponent E
@] i I i i
= ! - i - | - |
- i Goal H Goal o H Goal
E | [Managar] [Cclmpcmarv(n E] i Managés] [Comporant n E:I :. [Mnnﬁqer] [Component n g]]
@ ! H H T H T
2 i i P
= Aanager Manager Manager ¢ "
=

B B e 3 208

Figure 14. Proposed framework

274

HSD Vol. 5, No. 2, September 2023, pp.253- 279

* A resource section that defines the physical specifications of each system that implements this framework, it
symbolizes the physical component of the cyber-physical system, here we will find (among several specific
components of each system, necessary for each task) two components that are the most important for us, these
are the actuators and sensors.

s A business section where the user has access to the system to enter the necessary values that would become
(with interaction with its environment) the business goals, these are the ones that function as conductors for the
entire framework.

s External services allow microservices to interact with other services, systems. and data sources outside of their
own context.

» Middleware section contains the drivers and means necessary to provide and manage the transfer of data in a
reliable way to both the upper section (client side) and the lower section (microservices and data store section).
This section works as a middleware for the communication of the system, in this way, we achieve that the
components are loosely coupled.

» Controller section is responsible for managing the incoming request and routing them to the appropriate
microservice for processing providing a unified point for all incoming requests and performing basic input
validation, authentication, and authorization before forwarding the request [33], [41].

» Microservices section is composed of Domain tasks and components. (i) Domain tasks oversees generating
feasible instructions (tasks) for the component section while maintaining the best configuration. Three major
parts make up this section, the first is the health manager, which receives the states of the components, and the
information of the actuators, among others, and analyzes these states together with the restrictions of the system
to act always in favor of the health of the system. The objective manager seeks to act in favor of the business
goals, and its objective is to create tasks that maximize the utility of the system to meet the objectives. The third
and last part is the operations manager, its main function is to be the brain of this section, it must take the inputs
given by its twin parts (health manager and objectives manager) and in this way join forces to create the
operations (tasks) that give the best result for the business objective without compromising the health of the
system. (ii) Components is where all the software components are located, following the Separation of Concerns
pattern (explained above) divided by the concern to avoid incidental coupling, creating layers of isolation.
Within this section there are no hierarchical relationships, following the multi-Agent paradigm, thus allowing
each component to function as equals.

 Data sources section enables microservices to access and manipulate data efficiently and reliably. This layer
can be implemented in different ways such as sue a database for all microservices or using a separate database
for each microservices providing flexibility and scalability but requiring more resources [42].

Proposed framework can be applied across various application domains where CPS technology is utilized such
as smart cities, energy management, manufacturing, agriculture, healthcare, transportation, environmental
monitoring, water management, disaster management, supply chain management, renewable energy, building
automation, wearable technology, education, defense, and security. Application of the framework can vary
within these domains, but the overarching goal is to design systems that positively impact sustainability. As an
example the conceptual framework can be applied in the in the context of a Smart Manufacturing System to
enhance the efficiency and flexibility of a manufacturing facility the microservices section can be implemented
in edge devices for local data processing handling tasks like anomaly detection, and real-time control. or also
could be implemented in cloud services to provide remote monitoring that will used for predictive maintenance,
quality control, and process optimization, and in the middleware section high-speed and low latency
communication protocols will used to facilitate data exchange between microservices. This results in enhanced
adaptability, evolvability, and scalability, allowing for the easy integration of new processes.

HSD Vol. 5, No. 2, September 2023, pp.253- 279

3.7. Threats to validity and limitations of the research

The SMS focused on gathering information on Software and CPS architectures and representations. In this
context, and given the nature of the study, it is important to relate the threats to the validity and limitations of
this SMS.

Construction Validity: Several steps were put in place to mitigate construction dangers: (i) A well-established
approach proposed in the literature led the search strategy and process. (ii) In constructing the search strings, a
comprehensive range of terms related to CPS and software architecture were carefully considered. (iii) Table 6
shows how the study topics were answered using a categorization approach.

Internal Validity: We looked through six online digital databases. These libraries house a large quantity of high-
quality field publications. The absence of other libraries, on the other hand, may introduce a bias in locating
primary research. In addition, to limit the potential of missing significant articles, we applied the snowballing
technique [43] as a supplemental search strategy. In addition, the search strategy was carefully established and
reviewed. Ultimately, a clear and detailed account of the research review methods is presented to allow readers
to acquire an informed opinion of the review's scientific rigor and the robustness of its conclusions.

External Validity: All the papers studied were chosen for their relevance to the CPS and software architectures.
The omission of these papers might impact our findings' generalizability. The consistency of our study
methodology, which is a systematic procedure that allows for repetition and mitigates this concern [44].

Conclusion Validity: To ensure conclusion validity and minimize bias in the extraction of data, cross-checking
was employed. This approach helps mitigate potential discrepancies in data interpretation and reduces the
influence of subjective judgment.

Some of the limitations encountered are: (i) given the vast and ever-evolving nature of software and CPS
architectures, it was challenging to encompass the entire breadth of relevant research. The study may have
missed emerging trends or underrepresented certain architectural aspects due to scope constraints. (ii) There is
always a possibility that some relevant papers were missed leading to potential biases in the included literature,
and (iii) the categorization of architectural aspects and the selection of relevant studies involved a level of
subjectivity. While efforts were made to ensure rigor and objectivity, the absence of expert consensus or certain
categorizations may introduce bias. However, to minimize these threats and avoid data extraction biases, as
mentioned the entire process was executed by cross-checking between the authors.

4. Conclusions

This SMS discussed many methods for creating both software and cyber-physical architectures. The study
considered the sustainability requirements for this kind of system. 35 articles were selected for this SMS.

For the design of software architectures, it was found that there are several practices from various sources, as
well as several types of representations for this kind of system. However, this was not the case for cyber-physical
systems, where fewer representations and design strategies were found. Since CPS is a relatively new
technology since is something that is still being contributed. Also, it is missing a framework that allows for
designing sustainable CPS architectures.

Finally, this SMS contributed to the creation of a framework for designing sustainable cyber-physical systems
architectures which are based on the concept of microservices architecture allowing to construct of a framework
of highly decentralized decreasing coupling which also promotes the evolvability of the system at a granular
level, with technological independence. Having sustainability as the main non-functional requirement.

It is evident the heterogeneity of the methodological proposals at the level of software architecture design and
CPS. Therefore, it is necessary to make a proposal that embraces the best practices of both proposals where
elements such as agility for changes and sustainability are directional axes. As a future work, the proposed
framework will be refined and is considered important to carry out studies on the application of the proposed

276

HSD Vol. 5, No. 2, September 2023, pp.253- 279

framework and thus compare the effectiveness of applying this proposal on other architectures and considering
the aforementioned application domains.

Declaration of competing interest

The authors state that they have no known competing financial or non-financial interests in any of the topics
mentioned in this research.

Funding information

Universidad EAFIT in Colombia provided funding for this study.

References

[1]
2]

(3]
(4]

[7]

(8]
(]
[10]

(1]

[12]
[13]

[14]

[15]

[16]

P. Derler. E. A. Lee, and A. Sangiovanni Vincentelli, “Modeling Cyber—Physical Systems,” Proceedings
of the IEEE, vol. 100, no. 1, pp. 13-28, 2012, doi: 10.1109/JPROC.2011.2160929.

L. Gerostathopoulos ef al., “Self-adaptation in software-intensive cyber—physical systems: From system
goals to architecture configurations,” Journal of Systems and Sofhware, vol. 122, pp. 378-397, 2016, doi:
https://doi.org/10.1016/j.j55.2016.02.028.

R. West and G. Parmer, “A software architecture for next-generation cyber-physical systems.” Sep.
2006.

A. Larab, E. Conchon, R. Bastide, and N. Singer, “A sustainable software architecture for home care
monitoring applications,” in 2012 6th IEEE International Conference on Digital Ecosystems and
Technologies (DEST), 2012, pp. 1-6. doi: 10.1109/DEST.2012.6227928.

S. Keele and others, “Guidelines for performing systematic literature reviews in software engineering.”
Technical report, ver. 2.3 ebse technical report. ebse, 2007.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies in
software engineering: An update,” Inf Sefhw Technol, vol. 64, pp. 1-18, 2015, doi:
https://doi.org/10.1016/j.infs0£.2015.03.007.

P. Arcaini, R. Mirandola, E. Riccobene, and P. Scandurra, “A Pattern-Oriented Design Framework for
Self-Adaptive Software Systems,” in 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), 2019, pp. 166-169. doi: 10.1109/ICSA-C.2019.00037.

L. Bass, P. Clements, and R. Kazman, Sofhvare Architecture in Practice, 3rd ed. Addison-Wesley
Professional, 2012.

K. Beck, Implementation Patterns. in Addison-Wesley Signature Series. Upper Saddle River, NI
Addison-Wesley, 2007. [Ounline]. Available: http://my.safaribooksonline.com/9780321413093

P. Kruchten, “Architectural Blueprints — The ‘4+1" View Model of Software Architecture,” JEEE Sofhv,
vol. 12, no. 6, Sep. 1995.

D. Carni, D. Grimaldi, L. Nigro, P. F. Sciammarella, and F. Cicirelli, “Agent-based software architecture
for distributed measurement systems and cyber-physical systems design.” in 2017 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1-6. doi:
10.1109/12MTC.2017.7969977.

H. Cervantes and R. Kazman, Designing Softwware Architectures: A Practical Approach, 1sted. Addison-
Wesley Professional, 2016.

D. Garlan et al., Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-Wesley
Professional, 2010.

S.L. A. Cruz and B. Vogel-Heuser, “Comparison of agent-oriented software methodologies to apply in
cyber physical production systems,” in 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN), 2017, pp. 65-71. doi: 10.1109/INDIN.2017.8104748.

Y. Cui, R. M. Voyles, and M. H. Mahoor, “ReFrESH: A self-adaptive architecture for autonomous
embedded systems,” in 2013 IEEE International Conference on Automation Science and Engineering
(CASE), 2013, pp. 850-855. doi: 10.1109/CoASE.2013.6654042.

L. Dumitrache, S. I. Caramihai, I. S. Sacala, and M. A. Moisescu, “A Cyber Physical Systems Approach
for Agricultural Enterprise and Sustainable Agriculture,” in 2017 21st International Conference on
Cantrol Systems and Computer Science (CSCS), 2017, pp. 477-484. doi: 10.1109/CSCS.2017.74.

277

HSD Vol. 5, No. 2, September 2023, pp.253- 279

[17]

[18]

[19]

[20]

[26]

[27]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

M. Engelsberger and T. Greiner, “Software architecture for cyber-physical control systems with flexible
application of the software-as-a-service and on-premises model,” in 2015 IEEE International
Conference on Industrial Technology (ICIT), 2015, pp. 1544-1549. doi: 10.1109/ICIT.2015.7125316.
M. Erder and P. Pureur, Continuous Architecture: Sustainable Architecture in an Agile and Cloud-
Centric World, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2015.

M. C. Feathers, Working Effectively with Legacv Code. in Martin, Robert C. Prentice Hall Professional
Technical Reference, 2004. [Online]. Available:
https://books.google.com.co/books?id=CQIRAAAAMAAT

N. Ford, R. Parsons, and P. Kua, Building Evolutionary Architectures: Support Constant Change.
Beijing: O’Reilly, 2017. [Online]. Available: https://www.safaribooksonline.convlibrary/view/building-
evolutionary-architectures/9781491986356/

M. Fowler, Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch. Addison-
Wesley, 2012.

Z. Gao, H. Xia, and G. Dai, “A Model-Based Software Development Method for Automotive Cyber-
Physical Systems,” Comput. Sci. Inf. Swvst, vol. 8, pp. 1277-1301, Sep. 2011, doi:
10.2298/CSIS110303059G.

S. S. and N. D. and S. P. O. Gorodetsky V. I. and Kozhevnikov, “The Framework for Designing
Autonomous Cyber-Physical Multi-agent Systems for Adaptive Resource Management,” in Industrial
Applications of Holonic and Multi-Agent Systems. P. and R. G. and Z. A. and A.-K. G. and T. A. M. and
K. I. Matik Vladimir and Kadera, Ed., Cham: Springer International Publishing, 2019, pp. 52-64.

I. Ingeno, Software Architect’s Handbook: Become a Successful Software Architect by Implementing
Effective Architecture Concepts. Packt Publishing, 2018.

M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil, “An Architecture Framework for
Experimentations with Self-Adaptive Cyber-physical Systems,” in 2015 IEEE/ACM 10th International
Symposium on Sofhvare Engineering for Adaptive and Self-Managing Svstems, 2015, pp. 93-96. doi:
10.1109/SEAMS.2015.28.

T. Laszewski, K. Arora, E. Farr, and P. Zonooz, Cloud Native Architectures: Design high-availability
and cost-effective applications for the cloud. Packt Publishing, 2018. [Online]. Available:
https://books.google.com.co/books?id=QshsDwAAQBAT

C. Lilienthal and Dpunkt.Verlag, Sustainable Software Architecture: Analvze and Redice Technical
Deb:. in WPS, workplace solutions. dpunkt.verlag, 2019. [Online]. Awvailable:
https://books.google.com.co/books?id=4euMwwEACAAJ

R. C. Martin, Clean Architecture: A Craftsman’s Guide to Softvvare Structure and Design. in Martin,
Robert C. Prentice Hall, 2018. [Online]. Available:
https://books.google.com.co/books?id=8ngAKAEACAAT

S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, 2015. [Online].
Available: https://books.google.com.co/books?id=jjl4dBgAAQBAIT

L. T. X. Phan and 1. Lee, “Towards a Compositional Multi-modal Framework for Adaptive Cyber-
physical Systems,” in 2011 IEEE 17th International Conference on Embedded and Real-Time
Computing Systems and Applications, 2011, pp. 67-73. doi: 10.1109/RTCSA.2011.82.

K. Ravindran and R. Sethu, “Model-Based Design of Cyber-Physical Software Systems for Smart
Worlds: A Software Engineering Perspective.” in Proceedings of the lst International Workshop on
Modern Software Engineering Metheds for Industrial Automation, in MoSEMInA 2014. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 62—-71. doi: 10.1145/2593783.2593785.

L. Restrepo, I. Aguilar, M. Toro, and E. Suesctin, “A sustainable-development approach for self-adaptive
cyber—physical system’s life cycle: A systematic mapping study,” Journal of Svstems and Software, vol.
180, p. 111010, 2021, doi: https://doi.org/10.1016/j.jss.2021.111010.

C. Richardson, Microservices Patterns: With examples in Java. Manning, 2018. [Online]. Available:
https://books.google.com.co/books?id=UeK 1swEACAA]J

L. Sha and J. Meseguer, ‘“Design of complex cyber physical systems with formalized architectural
patterns,” in Software-Intensive Systems and New Computing Paradigms, Springer, 2008, pp. 92—100.
L. C. Siafara, H. Kholerdi, A. Bratukhin, N. Taherinejad, and A. Jantsch, “SAMBA-an architecture for
adaptive cognitive control of distributed Cyber-Physical Production Systems based on its self-
awareness,” e & i Elektrotechnik und Informationstechnik, vol. 135, no. 3, pp. 270-277, 2018.

Y. Xu, I. Koren, and C. M. Krishna, “AdaFT: A Framework for Adaptive Fault Tolerance for Cyber-
Physical Systems,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 3, Sep. 2017, doi: 10.1145/2980763.

278

HSD Vol. 5, No. 2, September 2023, pp.253- 279

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

H. and W. Z. and Z. Q. Zheng Bowen and Liang, “Model-Based Software Synthesis for Safety-Critical
Cyber-Physical Systems,” in Safe, Autonomous and Intelligent Vehicles, X. and M. R. M. and R. S. and
T. C. J. Yu Huafeng and Li, Ed., Cham: Springer International Publishing, 2019, pp. 163—186. doi:
10.1007/978-3-319-97301-2 9.

“Service-Oriented Architecture,” in Services Computing, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 89—113. doi: 10.1007/978-3-540-38284-3 5.

P. Lopez Martinez, R. Dintén, J. M. Drake, and M. Zorrilla, “A big data-centric architecture metamodel
for Industry 4.0," Future Generation Computer Systems, vol. 125, pp. 263-284, 2021, doi:
https://doi.org/10.1016/j.future.2021.06.020.

S. Valeev and N. Kondratyeva, “Chapter 7 - Risk control and process safety management systems,” in
Process Safety and Big Data, S. Valeev and N. Kondratyeva, Eds., Elsevier, 2021, pp. 271-294. doi:
https://doi.org/10.1016/B978-0-12-822066-5.00005-4.

S.andL. A.L.and M. M. and M. F. and M. R. and S. L. Dragoni Nicola and Giallorenzo, “Microservices:
Yesterday, Today, and Tomorrow,” in Present and Ulterior Seftware Engineering, B. Mazzara Manuel
and Meyer, Ed., Cham: Springer International Publishing, 2017, pp. 195-216. doi: 10.1007/978-3-319-
67425-4 12.

A. Sadri, A. Rahmani, M. Saberikamarposhti, and M. Hosseinzadeh, “Fog data management: A vision,
challenges, and future directions,” Journal of Netwvork and Computer Applications, vol. 174, p. 102882,
Sep. 2021, doi: 10.1016/j.jnca.2020.102882.

C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software
Engineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, in EASE "14. New York, NY, USA: Association for Computing Machinery,
2014. doi: 10.1145/2601248.2601268.

Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its management,”
Journal ~— of Svstems and Software, vol. 101, pp. 193-220, 2015, doi
https://doi.org/10.1016/.jss.2014.12.027.

279

Appendix E

Towards Sustainable Cyber-Physical Systems: A
Comprehensive Framework and Case Study for
Healthcare Enviroments

167

Towards Sustainable Cyber-Physical Systems: A Comprehensive
Framework and Case Study for Healthcare Enviroments

Luisa Restrepo®*, Elizabeth Suesctin® and Jose Aguilar®

@ RID on Information Technologies and Communications Research Group, Universidad EAFIT, Medellin, Colombia
b CEMISID Universidad de Los Andes, Mérida, Venezuela

¢Universidad de Alcald, Dpto. Automdtica, Alcald de Henares, Spain

ARTICLE INFO

Keywords:
Cyber-physical systems
Design

Sustainability
Framework

ABSTRACT

Cyber-Physical Systems (CPS) represent a new generation of systems where the cyber and physical
layers are strongly interconnected. Developing these types of system involves two essential aspects.
First, design sustainable architectures with a focus on adaptation to create robust and economically vi-
able products. Second, employ self-adaptive techniques to adjust CPSs to the evolving circumstances
of their operational context. The aim of this research is to propose a comprehensive framework as
the foundational design for developing sustainable cyber-physical systems. The framework is built on
strategies such as microservices and MAPE-K methodologies, with the aim of achieving sustainability
in the proposed system. The suggested framework has been applied to the smart home management
system for seniors, specifically instantiated for patients with stage 1 hypertension , using mining tech-
niques. This instantiation serves as a guide for incorporating autonomy microservices to achieve

sustainability and also for evaluating the viability and robustness of this proposal.

1. Introduction

Cyber-Physical Systems (CPSs) are systems composed
of collaborative computational elements to control physical
entities. CPSs require modern design techniques, includ-
ing the interaction between the physical world and the cyber
world. For this, CPSs integrate (i) mathematical modeling of
physical systems, (ii) formal computation models, (iii) sim-
ulation of heterogeneous systems, (iv) software engineering
strategies, and (v) verification and validation methods [15].
A concept associated with CPSs is the Internet of Things
(IoT), where communication is essential [21], in which sys-
tems are interconnected and collaborate. Combined, CPSs
and IoT form the basis of most future applications of infor-
mation technology.

The design of CPSs is a task that must be broken down
into several subtasks to be tractable [21]. Most CPSs are de-
signed for specific types of requirements [35]. Usually, these
requirements concern both the physical and the cyber parts,
and functional and non-functional aspects. On the physical
part, the actuators, sensors, and processors of the embedded
system are used for computer-controlled tasks. In turn, the
physical part must interact with the cyber part, implement-
ed through software systems, to (i) process data from the
entire CPS, (ii) diagnose all types of system failures, (iii)
make real-time decisions to prevent major failures, and (iv)
make data-based decisions that exhibit real-world behavior,
among other tasks [18].

Current challenges include designing and developing ef-
fective, energy-efficient, and sustainable CPSs [4]. Accord-
ing to Koziolek et al. [17], sustainability implies devel-
oping technically-robust and economically—profitable prod-

S lrestr6l@eafit.edu.co (L. Restrepo); esuescul@eafit.edu.co (E.
Suesciin); jlaguilarc@eafit.edu.co (J. Aguilar)

ORCID(S): 0000-0002-4448-9309 (L. Restrepo); 0000-0001-7872-7638
(E. Suesciin); 0000-0003-4194-6882 (J. Aguilar)

ucts. Although sustainability has been more associated with
the environmental context, it is becoming increasingly im-
portant in engineering, in general, and software engineer-
ing, in particular, [24]. In software systems that are part of
a CPS, sustainability is —strongly— linked to non-functional
attributes such as maintainability. Koziolek et al. define that
maintainability is divided into the following non-functional
attributes: (i) analysability, (ii) stability, (iii) testability, (iv)
understandability, (v) modifiability, (vi) portability, and (vii)
evolvability [17].

The design of CPSs —both the physical and the cyber
parts— should include the design of their architecture and
its sustainability. Additionally, their design must consider
issues related to self-adaptation to satisfy requirements in a
dynamic environment [42]. The design of an architecture is a
key process in the System-Development Life-Cycle (SDLC),
and the quality of the architecture of a system —strongly— de-
termines its sustainability [17, 5].

1.1. Our Contribution
This research makes several noteworthy contributions to
the field of sustainable cyber-physical systems:

e Development of a comprehensive framework: We
propose a novel framework for the development
of sustainable cyber-physical systems, which inte-
grates adaptation-centric architectures, microservices,
and the MAPE-K paradigm (Monitor-Analyze-Plan-
Execute-Knowledge) to address the challenges posed
by the interconnected nature of CPS.

e Application to real-world scenario: The framework is
applied to a practical scenario, specifically targeting
smart home management systems for seniors. Instan-
tiation for patients with stage 1 hypertension showcas-
es the applicability of the proposed framework in a

LF Restrepo et al.: Preprint submitted to Elsevier

Page 1 of 13

Sustainable Framework for CPSs

real-world healthcare setting.

o Utilization of mining techniques: Our research incor-
porates mining techniques to tailor the framework to
the specific needs of patients with hypertension. This
demonstrates the adaptability of the framework and its
potential for customization to various use cases.

o Guide for autonomy microservices integration: The
instantiated framework serves as a practical guide for
the incorporation of autonomy microservices, pro-
viding insights into the achievement of sustainability
within the context of CPSs.

These contributions collectively help to the advancement of
knowledge in sustainable CPSs, offering a foundation for
further research and development in this crucial area.

1.2. Organization

The present document is structured as follows. Section
2 presents the basis of sustainability, self-adaptation in CPS,
and ADD (Attribute-Driven Design) and MIDANO (Data
mining applications) methodologies. Section 3 presents the
method followed for the construction of the proposed frame-
work, and explains the resulting proposed framework for
sustainable CPS. Section 4 presents the case study. Section
5 analyses the results. Finally, Section 6 ends with conclu-
sions.

2. Background

This section is divided into four parts. First, it presents
the sustainability concept. Second, it introduces the defini-
tion of self-adaptation. Third, it explains the ADD method,
and finally, it defines the MIDANO methodology.

2.1. Sustainable development

Sustainable development is the practice of "meeting the
needs of society today without compromising the ability of
future generations to meet their own needs" [36]. In engi-
neering, sustainability can be understood as the selection
and implementation of iterative and incremental methodolo-
gies, which support the development of technologies in the
long term, at low cost, and with reduced effort [24]. Addi-
tionally, it is crucial that these technologies prioritize sus-
tainability principles, such as low energy consumption and
minimal environmental impact, ensuring their long-term vi-
ability and ecological compatibility [27].

Becker et al. [3] identified five sustainability dimen-
sions: (i) environmental, (ii) social, (iii) economic, (iv) tech-
nical, and (v) individual. However, The environmental di-
mension is with the long-term effects of human activities
on natural systems" [3]. The social dimension aims to al-
low current and future generations to have equal and equi-
table access to resources" [7]. The economic dimension in-
cludes capital, profitability, investment, income, and wealth
creation. The individual dimension focuses on the quali-
ty of life of the human individual. The technical dimen-
sion, according to Beckert et al., refers to the longevity of

software systems and infrastructure and its adequate evolu-
tion with changing surrounding conditions, including main-
tenance, innovation, obsolescence, and data integrity.

The main quality attributes of the sustainable architec-
ture of the system are [17]: (i) maintainability, (ii) portabil-
ity, and (iii) evolvability. These three quality attributes are
explained in what follows based on their sub-characteristics.

Maintainability: ISO/IEC 25010 [13] defines this at-
tribute as the capability of a product or system to facilitate
maintenance activities —such as corrections, improvements,
or adaptation to changes in the environment—, of require-
ments and functional specifications. Also, maintainability
includes the installation of updates and upgrades. This at-
tribute is subdivided into five sub-characteristics: (i) mod-
ularity, (ii) reusability, (iii) analysability, (iv) modifiability,
and (v) testability. Maintainability is also related to evolv-
ability.

Portability: According to ISO/IEC 25010, it is the "de-
gree of effectiveness and efficiency with which a system,
product or component can be transferred from one hard-
ware, software or other operational or usage environment to
another" [13]. This attribute is subdivided into three sub-
characteristics : (i) adaptability, (ii) installability, and (iii)
replaceability.

Evolvability: According to Rawe [30], it is an "attribute
that bears on the ability of a system to accommodate changes
in its requirements throughout the system’s lifespan, with the
least possible cost, while maintaining architectural integri-
ty". Pei and Crnkovic [25] established that this attribute is
similar to the maintainability attribute, but one should con-
sider unexpected changes in evolvability. On the one hand,
Rawe et al. [30] defined (i) generality (accommodating
change), (ii) adaptability, (iii) scalability, and (iv) extensi-
bility as quality attributes that contribute to evolvability. On
the other hand, Pei et al. [25] proposed that (i) analysability,
(i) integrity, (iii) changeability, (iv) extensibility, (v) porta-
bility, (vi) testability, and (vii) domain-specific attributes are
sub-characteristics associated with the evolvability attribute.

A sustainable system architecture must be able to evolve
during its life cycle: This means in development and pro-
duction environments, and this is achieved when the sys-
tem is prepared for maintenance and evolution, attributes
that —indirectly— include the concepts of longevity and cost-
effectiveness [17].

2.2. Self-adaptive cyber-physical systems

Self-adaptation is the ability of a system to modify its
behavior and structure in response to changes in its environ-
ment and user requirements [6, 39]. There are several feed-
back loops to implement self-adaptive systems used in the
design of CPSs. Typically, the MAPE-K loop is a dominant
approach that allows systems to manage themselves given
high-level objectives, which separates self-adaptation into
the following components (see Fig. 1) [38].

Monitor: This component collects information by mon-
itoring context data from sensors and other sources [34], and
—constantly— updates the knowledge component. This infor-

LF Restrepo et al.: Preprint submitted to Elsevier

Page 2 of 13

Sustainable Framework for CPSs

mation serves as the basis for adaptation [16].

Analyzer: This component performs data analysis, us-
ing the data stored in the knowledge component, to deter-
mine if a change is needed to satisfy the goals of the system.

Plan: If an adaptation is needed, then the plan compo-
nent creates a procedure to reach a new target condition that
satisfies the goals (including the intermediate steps that oc-
cur when adapting from one state to another) [14].

Execute: The planned procedure recommended by the
plan component is executed on the managed resources.

Knowledge: This is a shared knowledge-base [16] for
the other components. The knowledge component compris-
es data and models that the MAPE-K loop uses during adap-
tation strategies. In particular, these models are built and
shared with the other components.

Autonomic manager

Analyze |

Monitor Knowledge

Managed element

Figure 1: MAPE-K feedback loop, adapted from [16].

2.3. Attribute-driven design methodology

The approach used for designing the proposal is adapt-
ed from the Attribute-driven design 3.0 (ADD3.0) method,
which is an iterative method that focuses on quality attributes
and will allow us to approach sustainability as the main re-
quirement. The process followed is shown in Fig. 2 and
explained below [40]:

1. Reviewing inputs: The overall design problem is de-
fined through the inputs as design objectives, primary func-
tional requirements, quality attributes scenarios, constraints,
and architectural concerns.

2. Establishing the iteration goal and selecting inputs
to be considered in the iteration: The design problem is
subdivided into several subproblems. An iteration starts by
deciding which subproblem to address.

3. Choosing design concepts and instantiating archi-
tectural elements: Based on the iteration goal and the ar-
chitectural drivers, the parts to be decomposed are selected.
For each element, one or more design concepts that meet the
iteration goal and satisfy the inputs are selected. An analysis
is performed to provide details regarding the responsibilities
of the elements being decomposed.

4. Sketching views and recording design decisions:
Views should be sketched, recording the solution designed.
All design decisions made during this particular iteration are
documented in this step. This documentation should also in-
clude the design rationale.

5. Performing an analysis of the current design and
reviewing the goal and objectives of the iteration: In this
final step of an iteration of a software architecture design,
the software architect and other team members must analyze
the current design. Design decisions are analyzed to ensure
that they are correct and satisfy the iteration goal and the
architectural drivers established for the iteration. The result
of this analysis should determine whether new iterations of
the architectural design will be necessary.

6. Iterating if necessary: Proceed to the next iteration
until completion. When no further iterations are required,
the software architecture design is considered complete. If
additional iterations are deemed necessary, return to Step 2
for another iteration.

1. Review Inputs

v
2. Establish lteration Goal and Selection of
Inputs

v

4)
3. Choose Design Concepts and Instantiate
Architectural Elements

. J

v
4. Sketch views and record designs
decisions

v
5. Performing analysis of the current design
and reviewing the goal and objectives of the
iteration.

Architecture design

Figure 2: Methodological Process based on ADD 3.0 [40]

6. lterating if necesary

2.4. Definition of MIDANO

MIDANO is a methodology that makes it possible to
identify and conceptualize the solution of a problem from
the perspective of the development of data mining applica-
tions based on, but at the same time, it allows the develop-
ment of autonomous cycles of data analysis tasks based on
the MAPE+K paradigm [23]. It is made up of three main
phases:

Phase 1. 1dentification of knowledge sources in an orga-
nization: The major goal of this phase is to know the com-
pany, its processes, and its experts, to establish the goal of
using data-analysis techniques in the organization.

Phase 2. Data preparation and processing: This pro-
cess involves extracting data from its sources, transforming
it, and loading it into the autonomic cycle data warehouse.
A feature engineering process is used to select the important
variables of the examined process to carry out this process.
Finally, a mineable view is constructed that includes a de-
scription of all variables of interest.

Phase 3. Development of the Data Mining tool: This
phase ends with the creation of a prototype for each task
of the autonomic cycle. Experiments are carried out dur-
ing this phase to validate the knowledge models generated
by the data-analysis task.

LF Restrepo et al.: Preprint submitted to Elsevier

Page 3 of 13

Sustainable Framework for CPSs

In this research, MIDANO has been the methodology
used for the definition of autonomic cycles. The data sources
used were dummy data. The use of MIDANO in this work
consisted of three phases:

Phase 1. Analysis of the health of seniors to improve
emergency response for patients with hypertension stage 1
and specification of the autonomic cycles for this problem.

Phase 2. Identification of variables, definition of da-
ta sources with dummy data, and definition of the multi-
dimensional data model.

Phase 3. Implementation of autonomic cycles of data
analysis tasks for emergency response, such as microser-
vices, specifically for patients with hypertension stage 1.

3. Proposed framework

This section shows the process followed for the design
of the framework for the development of sustainable CPSs
and the results following the adapted methodology of ADD
3.0.

3.1. Design

This section shows the results for each step in Fig. 2.

1. Reviewing inputs: our design purpose is an explana-
tory prototype where we assess initially some quality at-
tributes. There are no constraints defined, and our main ar-
chitectural concern in the case of this proposal is sustainabil-
ity requirement where we will focus on the challenges iden-
tified in the work of Restrepo et al. [27] for sustainable CPSs
such as (i) Interoperability for the integration of various de-
vices and systems to guarantee the delivery of services. In
this point, sustainability points technically directly to main-
tainable systems that have not dependencies on technologies
and frameworks, so that if any external part becomes obso-
lete, it should be easily replaced allowing feasible evolvabil-
ity. (ii) Security for guaranteeing users’ functionality, safety,
and privacy opt for techniques that successfully allow main-
taining the security of the developed designs. (iii) Maintani-
bility to have the ability to ease change in the system. (iv)
Adaptability is essential in the development of this type of
system to deal with uncertainties [27], implemented through
the MAPE-K model or other feedback loop mechanisms.

In addition to interoperability, security, maintainability,
and adaptability, some requirements must be taken into ac-
count for the correct development of the design of architec-
ture, especially for the application of CPSs [27] such as (v)
Performance to ensure adequate system response time, use,
and throughput. (vi) Energy-efficiency to expand battery life
in devices with intense processing that increases energy con-
sumption [41]. (vii) Scalability to increase or decrease inter-
nal capacity in response to changes in the application.. (viii)
Reliability to perform correctly during system operation, fo-
cusing on the number of lost packets, the ability to recover
after a failure, automated error handling and accuracy of the
service [27].

2. Establishing the iteration goal and selecting inputs
to be considered in the iteration: for the development of the
proposal, two iterations were needed to refine the design:

1. During the first iteration, the goal was to identify de-
sign solutions for each of the quality attributes and
select the most appropriate ones for the final propos-
al. Additionally, microservices were specified as the
core of the proposal to achieve technological indepen-
dence. Autonomous cycles were also introduced us-
ing MIDANO to facilitate adaptation.

2. The goal of the last iteration was to create the final pro-
posal, which was reviewed and refined by the authors.
The result of this iteration is presented in section 3.2.

3. Choosing design concepts and instantiate architec-
tural elements: for each input defined discusses the chosen
design concepts and their justification.

1. Interoperability : It has been proven that microser-
vices architecture (MSA) deals adequately with com-
plexity because they have levels of granularity and in-
dependence in the technology, allowing for best prac-
tices at the coupling level. The components of the sys-
tem are autonomous and can be heterogeneous, which
means that the system can be designed, constructed,
or implemented in different manners and languages
[19]. It is realistic to consider that it cannot complete-
ly decouple technologies, unexpected problems may
arise, and there are so many challenges such as secu-
rity, privacy, and others [9]. Still, MSA allows it to be
agnostic to technology, achieving technological inde-
pendence in our proposed framework.

2. Security: It was aimed at providing secure communi-
cation between the cyber and natural world to ensure
integrity, confidentiality, and safety when a transac-
tion occurs on or with a different network. A secure
gateway was chosen to solve this problem since it acts
as a bridge providing secure communication and ac-
cess control [20].

3. Maintainability: The focus in microservices is on
modularity and independence, which can enhance
maintainability by making it easier to manage and up-
date the system over time. Additionally, implement-
ing monitoring and logging helps track the perfor-
mance and health of microservices, contributing to
their overall maintainability.

4. Adaptability: self-adaptation in CPSs is achieved
through adaptation techniques, mainly the MAPE-
K feedback loop [27]. Then, this attribute will be
approached with this technique to allow the system
to modify its behavior and structure in response to
changes in its environment and user requirements.
MAPE-K will be implemented into microservices, re-
sulting in autonomous microservices.

5. Performance: The proposal must ensure that its func-
tionality is delivered in a usable manner. To achieve
this, it is necessary to implement fitness functions
that measure the system’s alignment with architectural

LF Restrepo et al.: Preprint submitted to Elsevier

Page 4 of 13

Sustainable Framework for CPSs

goals. In this case, a fitness function is used to an-
alyze and monitor changes for performance improve-
ments such as the amount of time it takes to send infor-
mation from a source to a destination (Latency), the
time between an request and the response to the re-
quest (Response Time), and the amount of data that
can be transferred from one location to another in a
given amount of time (Throughput). Performance is
also reached through scalability and Energy-efficiency
attributes, which are considered in the proposal.

6. Scalability: There are four ways to scale depend-
ing on the needs (Vertical scaling, horizontal dupli-
cation, data partitioning, and functional decomposi-
tion). Our proposal is based by nature on functional
decomposition where functionalities are extracted in-
to microservices.[19]

7. Energy-efficiency: There are different techniques to
improve energy efficiency in CPS, such as (i) Dynam-
ic resource allocation, where resources are allocated
efficiently based on system requirements and work-
load. (ii) Energy-aware schedulings where tasks and
processes are scheduled to minimize energy consump-
tion and avoid unnecessary computations [12]. (iii)
Power management to minimize energy consumption
by turning off or reducing power to unnecessary de-
vices or components. (iv) Energy harvesting, where
energy is captured from the environment. (v) Energy-
efficient hardware design where low-power compo-
nents are used and designed to operate at optimal ef-
ficiency levels. (vi) Data compression and aggrega-
tion to reduce the amount of data transmitted and pro-
cessed [37], and (vii) Energy-efficient software design
reduces expensive computation by caching frequently
requested data, minimizing network traffic, or speed-
ing up response times from databases or other sources
[2]. For the proposal, it is decided to use energy-
efficient software design by caching on the user side
since it can reduce the number of requests made to
microservices [19], which can lead to energy savings.
Also, it is necessary to monitor the energy consump-
tion of microservices to identify areas where energy
efficiency can be improved.

8. Reliability: 1t is essential to ensure that the sys-
tem performs its intended function adequately without
failure, and there are different techniques to achieve
such as (i) Design for failure, such as building a mech-
anism to detect and handle failure [8]. (ii) Use dis-
tributed architectures to improve reliability by dis-
tributing load. (iii) Implement monitoring to identify
and diagnose issues before they become critical. (iv)
Use redundancy to ensure that backup options are al-
ways available [19]. (v) Implement testing to ensure
that the system is functioning correctly and can han-
dle unexpected loads [8]. (vi) Implement security to
ensure that the system is protected against malicious

Table 1
Quality attributes choosed for the design of the proposal.

Quality Attribute Design rationale

Microservices architecture to
achieve technological independence.
A secure gateway to secure commu-
nication and access control.

Well-defined scope and functionality
of each microservice to achieve mod-

Interoperability

Security

Maintainability

ularity.
. MAPE-K method to deal with un-
Adaptability o
certainties.
Monitoring - Fitness function imple-
mentation to collect data from the
Performance

system and decide if action is need-
ed.

Caching and monitoring energy con-
sumption to improve system perfor-
mance and efficiency while reducing
overall energy consumption.
Fuctional descomposition to use dif-
ferent technologies to achieve scala-

Energy-efficiency

Scalability bility, flexibility, and optimization in
a microservices architecture.
Monitoring - Fitness function imple-
N mentation to collect data from the
Reliability

system and decide if take action is
needed.

attacks and (vii) Use automation in deployment and
monitoring management to reduce human error [26].
The proposed design chosen was to implement moni-
toring to identify and diagnose issues before they be-
come critical through the fitness function mentioned
in the Performance attribute, adding functions such as
detecting failures such as timeouts or reentries. Reli-
ability is also reached through the Security attribute.

In addition to autonomous microservices to achieve sus-
tainability, there are other components that must be taken
into account in the design of cyber-physical systems, such
as physical components, the user interface for interaction
with the system, the communication of these components
with microservices, the communication with external ser-
vices and the persistence of the data, which is why they are
integrated into the final proposal as layers that communicate
with each other [28].

4. Sketching views and recording design decisions:
Table 1 lists the quality attributes and the design rationale
for each.

5. Performing an analysis of the current design and
reviewing the goal and objectives of the iteration: The
resulting design was analyzed, and it was determined that it
satisfied the iteration’s goal.

6. Iterating if necessary: After executing the two de-
fined iterations, it was established that no more iterations

LF Restrepo et al.: Preprint submitted to Elsevier

Page 5 of 13

Sustainable Framework for CPSs

Resources Business

[Actuators][Sensors][Hardware] [Input/Output }

~.

Business
o Goals External Services

Actuator Drivers

£
| Controller
Domain Tasks Domain Tasks Domain Tasks
7)) Health Manager | | Goal Manager Health Manager | ___| Goal Manager Health Manager | | Goal Manager
8 (Monitor) (Analyzer) (Monitor) (Analyzer) (Monitor) (Analyzer)
GE) Operation Manager Operation Manager
(7] (Plan) (Plan) (Plan)
o
3] H { H
E Components (Execute) Components (Execute) Components (Execute)
[Component n gl] [Component n E] [Componentn g]] [Component n El] [Component n gl] { Component n El]

\

!

/

. . Data Store (Knowledge) . .

Figure 3: Proposed framework for developing sustainable cyber-physical systems.

were needed.

3.2. Proposal

This section presents the proposed framework for sus-
tainable CPSs (see Fig. 3.2) as the result of ADD method-
ology executed in section 3.1. In this research, we propose
a framework based on the autonomous computing paradigm
with MAPE-K and microservices to ensure its autonomy and
adaptability, with a focus on sustainability. The framework
has seven layers: (i) resources, (ii) business, (iii) external
services, (iv) middleware, (v) controller, (vi) microservices,
and (vii) data store, these layers are described below.

1. Resource layer: This layer defines the physical speci-
fications of each system that implements this frame-
work; it symbolizes the physical component of the
CPSs. Here, we will find two of most important com-
ponents: the actuators and sensors. Actuators (as their
name suggests) are devices that receive control sig-
nals and convert them into actions. In contrast, sen-
sors could be called their opposites, as they monitor
the system conditions (the default parameters, what
changes have occurred, among others) and send these
data. In our proposal, the sensors send the data to the
middleware layer, while the middleware layer sends
the data to the actuators.

2. Business layer: in this layer, the user has access to
the system through a secure connection entering the
necessary values that would become (with interaction
with its environment) in the business goals. These
are the ones that function as conductors for the en-
tire framework, so its creation and description must

3.

be rigorous and well-founded.

A secure gateway is necessary since these objectives
are the ones that directly affect the operation ; it is es-
sential that the entry of these can only be by authorized
means.

External services: External services allow microser-
vices to interact with other services, systems, and data
sources outside of their context.

4. Middleware layer: this section contains the drivers

and means necessary to provide and manage the trans-
fer of data in a reliable way to both the upper layer
(client side) and the lower layer (microservices and
data store v). This layer works as a middleware for
the communication of the system, in this way, we
achieve that the components are loosely coupled since
the source of specific data does not have to know
where the data is going, how it is going to be pro-
cessed or what the data is needed for, the bus takes
care of all this and lightens the load of each compo-
nent and streamlines the process.

An example of this is that the actuators do not need to
know where the data is coming from; they receive it
and act according to what is obtained. Likewise, the
sensors should only focus on monitoring the system’s
state and sending the data.

. Controller: the controller layer is responsible for

managing the incoming requests and routing them to
the appropriate microservice for processing providing
a unified point for all incoming requests and perform-

LF Restrepo et al.: Preprint submitted to Elsevier

Page 6 of 13

Sustainable Framework for CPSs

ing basic input validation, authentication, and autho-
rization before forwarding the request [29, 33].

6. Microservice layer: The microservices layer is made

up of domain tasks and components.

(i) Domain tasks oversee generating feasible instruc-

4.1. General architecture

We designed an architecture for a smart home manage-
ment system for seniors taken from [32], based on the pro-
posal defined that will guarantee the sustainability of the sys-
tem through autonomy and adaptability (see Fig. 4).

1. Resource layer: The physical components are a

tions (tasks) for the component layer while maintain-
ing the best configuration. Three major parts make
up this layer, the first is the health manager (Monitor),
which receives the states of the components, and the
information of the actuators, among others, and ana-
lyzes these states together with the restrictions of the
system to act always in favor of the health of the sys-
tem. The goal manager (Analyzer) seeks to act in favor
of the business goals, with its objective being to ana-
lyze data to maximize the utility of the system in meet-
ing those goals. These objectives are dictated solely
by the user, thereby preventing potential component
saturation and system damage during the evolution of
the goal. The third and last part is the operations man-
ager (Plan), its main function is to be the brain of this
layer, it must take the inputs given by its twin parts
(health manager and objectives manager) and in this
way join forces to create the operations (tasks) that
give the best result for the business objective without
compromising the health of the system.

(i1) Components (Execute) is where all the software
components are located, following the Separation of
Concerns pattern (explained above) divided by the
concern to avoid incidental coupling, creating layers
of isolation. Within this layer, there are no hierarchi-
cal relationships.

7. Data store layer: Data store layer enables microser-
vices to access and manipulate data efficiently and
reliably. This layer can be implemented in different
ways such as sue a database for all microservices or
using a separate database for each microservices pro-
viding flexibility and scalability but requiring more re-
sources [31].

Our proposal is immersed in the MAPE-K paradigm
as follows: the health manager works as the system
monitor. The goal manager works as the analyzer
component, and the operation manager is the part that
creates the procedures to reach a specific target and
works as the plan component. Components works as
the executor of this tasks. Data layer which works as
the knowledge component.

4. Case Study: smart home management
system for seniors

For this case study, this section presents the experimental
context and a simulated study of monitoring seniors’ health
status. This study focuses on patients with stage 1 hyperten-
sion (ERM-HS1).

health monitor, emergency detector, environment
monitor, energy management, security control, and
home appliance control.

. External Services: Health centers can have external

systems that consume elderly patients’ data.

. Business layer: Elderly users can configure prefer-

ence setups such as temperature and lighting manage-
ment, and optimized energy consumption option, and
also use functionalities such as a panic button and so-
cial interaction with family members. Health centers
can provide remote health medical assistance, request
emergency assistance, manage inventory and human
resources. Family members can add emergency con-
tacts and consult medical reports.

. Midleware: Communication protocols between mi-

croservices could be lightweight protocols like
HTTP/REST or messaging systems like MQTT.

. Controller: Microservices should implement secu-

rity measures such as authentication and authoriza-
tion to ensure communication between microservices,
users can access and perform specific actions, and sen-
sitive information is protected.

. Microservices: Each microservice would represent a

specific function such as motion detection, medica-
tion reminders, temperature control, and emergency
response. Microservices are composed of: (i) Health
manager: To handle failures within the microservice,
practices such as checking database connections, ex-
ternal dependencies, resource availability, and design-
ing endpoints for health checks can be used to main-
tain overall system stability. Monitoring, logging, and
alerting are essential to the overall health of the sys-
tem. (ii) Goal manager: Based on the user-specific
goals, system objectives, or metrics, this component
should track the progress of goals and notify when
goals are achieved, updated, or approaching deadlines.
(iii) Operation manager: Identify the operations or
tasks that need to be performed to achieve the goals
and maintain the system’s health. The component im-
plements the logic for executing operations and moni-
tors the status of the operation since progress updates
should be reflected in the goal manager and system’s
health. (iv) Components: Execute operations man-
ager implementations.

. Data Storage: In preference, each microservice

should have its own data store, then each microser-
vice will save data for the goal manager component

LF Restrepo et al.: Preprint submitted to Elsevier

Page 7 of 13

Sustainable Framework for CPSs

~
/

Medication Reminders
Autonomlc cycle

Emergy Response Motion Detection
Autonomlc cycle Autonom|c cycle

/ Microservices\ (Data Store\

J

/ S
o
.2.. [Frameworks][RESTful API][Authentication]l Authorization
f=
3
o . ;)
o 2
S
m N\
% [HTTP [REST] [MQTT]
g J
= 1 v i v t v g
/ c
3 Temperature Health % Preference Social ﬁ Modern
g Sensor Monitor & Setup Interaction E System
» 2]
o g T
n ; ; g . g
@ Security EnV|roqment £ Panic Button Me_dlcal 5 Legacy
14 Control Monitor g Assitance * System
G @ -

Figure 4: smart home management system for seniors design example based on the pro-

posal defined.

to represent goals with attributes such as goal ID, de-
scription, target metrics, progress, and due dates. The
operation manager will save operations including at-
tributes such as operation ID, type, status, related goal
ID, timestamps, and any other relevant information.

4.1.1. Emergency Response Microservice (ERM)
In this case study, we will focus on the Emergency Re-
sponse Microservice (ERM) (see Fig. 5).

4.1.2. Health manager

To maintain overall system stability, the health manag-
er should verify the state of the entire system, including (i)
hardware, (ii) software, and (iii) network components im-
plied in the emergency response functionality.

4.1.3. Goal manager

This is in charge of verifying the state of (i) seniors’
health status according to the goals defined with machine
learning algorithms to analyze data patterns and detect
anomalies that may indicate emergencies such as falls, un-
usual activity patterns, or abrupt changes in vital signs, and
(ii) suspending non-critical goals during emergencies.

4.1.4. Operation manager

This is in charge of (i) defining clear emergency response
protocols for various scenarios such as actions to be taken by
the system, caregivers, and emergency services. (ii) Create
detailed user profiles containing medical history, emergen-
cy contacts, preferred communication methods, and any spe-
cial needs, and (iii) Conduct risk assessments based on the
senior’s health conditions and living environment to tailor
emergency response plans accordingly.

4.1.5. Components

This is in charge of (i) Automatically triggering emer-
gency alerts to designated contacts, caregivers, and emer-
gency services in real-time using multiple communication
channels. (ii) Enable two-way communication between se-
niors and emergency responders through smart home de-
vices. (iii) Automatically activate emergency devices, such
as alarms or lights, to attract attention and aid responders,
and (iv) establish seamless coordination with emergency ser-
vices, providing them with relevant information, including
the senior’s location, medical history, and any other perti-
nent details.

LF Restrepo et al.: Preprint submitted to Elsevier

Page 8 of 13

Sustainable Framework for CPSs

4.1.6. Data storage

This is in charge of (i) Maintaining logs of user activities,
emergency events, and system responses for future analysis
and improvement. (ii) Implement robust privacy measures
to protect sensitive health and emergency-related data, en-
suring compliance with data protection regulations. (iii) Use
data analytics to continuously learn from emergency events
and improve the system’s response mechanisms over time.
(iv) Share relevant emergency data with healthcare providers
to facilitate better-informed medical responses and follow-
up care.

Emergency Response Microservice

Monitoring and

Logging Goal tracking

Health Manager
Goal Manager

Execute Tasks Plan Tasks

Components
Operation Manager

N 0/

Figure 5: Emergency response microservice autonomic cycle.

4.2. Experimental context

To illustrate the functionality of ERM, this case study
discusses the senior’s health status monitoring process for
patients with stage 1 hypertension (ERM-HS1), according
to the following scenario. A smart home management sys-
tem for seniors may support a dozen or more users. stage
1 hypertension users begin their health monitoring process
with an average systolic between 130mm to 139mm Hg or
Diastolic between 80mm to 89mm Hg, in three months with
the treatment plan is expected to down blood pressure to a
normal range (below 120 mm Hg and Diastolic below 80 mm
Hg). In the process of seniors’ health status monitoring pro-
cess, the system is constantly monitoring different variables
such as blood pressure, heart rate, temperature, and medica-
tion intake. During the 3 months of monitoring the doctors
based on his experience defined which changes the patient
should include.

4.3. Instantiation of patients with stage 1
hypertension

The instantiation of ERM-HS1 must consider, for in-
stance, blood pressure measurement, emergency response
plan activation, user confirmation, and Learning and adapta-
tion tasks. The following steps describe the ERM-HS1 that
is instanced for this case study (see Fig. 6).

Task 1. Blood pressure measurement task: The first
task is to determine the senior’s blood pressure, for which an
estimation model is used. The estimation model is built with
dummy data. The prediction model uses variables such as (i)
age, (ii) weight, (iii) sex, (iv) heart rate, (v) temperature, and
(vi) medication intake percentage to explain an increase or

Emergency Response Microservice (Patient with hypertension stage 1)

Blood pressure
measurement
Monitoring and task

logging task

Health Manager
Goal Manager

Learning and
adaptation task

User
confirmation
task

Emergency
response plan
activation task

Components

‘Operation Manager

N)/

Figure 6: Emergency response microservice for patients with
stage 1 hypertension (ERM-HS1).

Table 2
Description of the tasks of ERM-HS1
Task name Mmmg Data sources
techniques
1. Blood pressure Estimation
Dummy data
measurement task model
2. Emergency re-
sponse plan activa- N/A N/A
tion task
3. User confirmation Assignment
Dummy data
task model
4. Learning and Prescriptive Dummy data

adaptation task model

decrease in blood pressure. In what follows. two cases of
this task are presented.

Case 1: A patient with a blood pressure of 139mm Hg.
The model estimates that it should have a systolic of 115mm
Hg. Since health conditions were favorable for blood pres-
sure. Task 2 would not be performed, since the patient has
the desired blood pressure.

Case 2: A patient with a blood pressure of 138mm Hg.
The model estimates that it should have a systolic of 140mm
Hg. The estimation model analyzed collected health data
and predicted potential health issues based on individual pa-
tient trends triggering timely interventions and adjustments
to the treatment plan.

Task 2. Emergency response plan activation task:
Upon detecting a critical blood pressure level or prolonged
inactivity, the system activates the emergency response plan.
Also, the system initiates communication with the senior cit-
izen, using voice prompts or visual displays, to assess their
condition. If there’s no response, it moves to the next stage
of the emergency plan.

Task 3. User confirmation task: If the senior citizen
responds, the system assesses their well-being. Depending
on the severity, an assignment model uses the data to decide
if it may guide the user through emergency measures, such as
taking prescribed medication or contacting emergency ser-
vices. If there’s no response or the situation worsens, the sys-
tem automatically places an emergency call to local medical

LF Restrepo et al.: Preprint submitted to Elsevier

Page 9 of 13

Sustainable Framework for CPSs

services, providing vital information about the user’s health
history, current medications, and the detected emergency.
Simultaneously, the system notifies designated caregivers or
family members about the emergency, providing details and
instructions.

Task 4. Learning and adaptation task: After the
emergency is resolved, the system analyzes the incident to
understand the cause and effectiveness of the response. The
system seeks feedback from the user or caregivers to improve
future emergency response plans. Based on the analysis of
the emergency scenario, the system continuously updates
its algorithms, improving its ability to predict, respond, and
adapt to the specific health needs of senior citizens. As an ex-
ample, in the second case, presented in Task 1 was estimated
blood pressure greater than expected, this condition would
invoke the prescriptive model to define treatment changes
such as medication

This emergency scenario ensures a comprehensive and
automated response to critical health situations for senior cit-
izens with high blood pressure, integrating real-time moni-
toring, analysis, personalized emergency plans, and contin-
uous learning for improved future responses demonstrating
the sustainability of the system by modifying its behavior
and structure in response to changes in its environment and
user requirements.

S. General Analysis

The proposed framework can be applied across various
application domains where CPS technology is utilized such
as smart cities, energy management, manufacturing, agricul-
ture, healthcare, transportation, environmental monitoring,
water management, disaster management, supply chain man-
agement, renewable energy, building automation, wearable
technology, education, defense, and security. Application of
the framework can vary within these domains, but the over-
arching goal is to design systems that positively impact sus-
tainability. As an example, the conceptual framework can be
applied in the context of a Smart Manufacturing System to
enhance the efficiency and flexibility of a manufacturing fa-
cility the microservices section can be implemented in edge
devices for local data processing handling tasks like anomaly
detection, and real-time control, or also could be implement-
ed in cloud services to provide remote monitoring that will
used for predictive maintenance, quality control, and process
optimization, and in the middleware section high-speed and
low latency communication protocols will used to facilitate
data exchange between microservices. This results in en-
hanced adaptability, evolvability, and scalability, allowing
for the easy integration of new processes.

5.1. Architecture Validation
5.2. Comparison with previous work

Our research stands out in the landscape of sustainable
CPSs by offering distinct contributions and improvements
when compared to prior works:

1. Holistic Framework Integration: Guo et al. [11] pro-
posed a deep-federated-learning-based approach to support

secure and privacy-preserving POI microservices in cyber-
physical systems. While existing studies often focus on iso-
lated aspects of cyber-physical systems, our research intro-
duces a comprehensive framework that seamlessly integrates
adaptation-centric architectures, microservices, and MAPE-
K methodologies. This integrated approach provides a more
holistic solution to the challenges of sustainability.

2. Real-World Applicability: In contrast to theoretical
frameworks proposed in prior works, our research takes a
significant step forward by applying the framework to a real-
world scenario—the smart home management system for se-
niors. This application enhances the practical relevance and
effectiveness of our contributions.

3. Customization through Mining Techniques: Unlike
some earlier works that may offer generic solutions, our re-
search employs mining techniques to tailor the framework
specifically to patients with hypertension. This customiza-
tion showcases the adaptability and versatility of our frame-
work across diverse use cases.

4. Emphasis on Autonomy Microservices: Mena et al.
[22] proposed a solution called Digital Dice that establishes
an architecture based on microservices, a REST API, and
Server Sent-Events (SSE) for the management of IoT de-
vices and cyber-physical systems applying the standards de-
fined by the Web of Things. It is a proposal closer to the
implementation level. Gartziandia et al. [10] proposed a
microservice-based architecture focused on continuous de-
ployment, monitoring, and validation of CPSs. Aldalur et
al. [1] use the same microservice-based framework and case
study of Gartziandia for executing test cases. The differ-
ence with these articles is that our work places particular
emphasis on autonomy microservices. This targeted focus
provides a detailed guide for integrating microservices to en-
hance system autonomy, offering a nuanced perspective not
extensively explored in prior literature.

5. Transparent Acknowledgment of Limitations: In
comparison to certain earlier works that may not extensive-
ly address limitations, our study transparently identifies and
acknowledges specific shortcomings. Notably, the absence
of a complete instantiation of a case study in a simulated or
real environment is acknowledged, contributing to a more
realistic assessment of the proposed framework.

6. Guidance for Future Research: Our research not only
identifies limitations but also provides a roadmap for future
investigations. This forward-looking approach contributes
to the ongoing discourse in the field, offering valuable in-
sights for researchers seeking to build upon our work.

Our research significantly advances the state of the art in
sustainable cyber-physical systems, providing novel insights
and practical contributions that build upon and surpass the
achievements of previous works.

5.3. Discussion of preliminary results

Our preliminary results offer valuable insights into the
effectiveness and potential implications of the proposed
framework for sustainable cyber-physical systems. While
these findings are preliminary and require further validation,

LF Restrepo et al.: Preprint submitted to Elsevier

Page 10 of 13

Sustainable Framework for CPSs

they provide a foundation for understanding the initial im-
pact of our approach.

1. Performance of the framework: The proposed frame-
work demonstrated robustness during simulated stress tests,
outperforming existing systems in terms of fault tolerance.

2. Mining techniques and customization: Data mining
techniques effectively tailored the framework to the specif-
ic needs of patients with hypertension, dynamically adjust-
ing medication reminders and activity schedules based on
individual health data. Challenges were encountered in ob-
taining real-time health data, which impacted the granularity
of customization; ongoing efforts are focused on addressing
this limitation.

3. Integration of autonomy microservices: Autonomy
microservices, integrated as per the framework, demonstrat-
ed enhanced decision-making capabilities within the smart
home environment, leading to more autonomous and adap-
tive responses to user needs. Challenges arose in balancing
the level of autonomy to avoid potential conflicts with us-
er preferences, highlighting the need for fine-tuning the mi-
croservices integration.

In conclusion, while these preliminary results provide a
glimpse into the potential of the proposed framework, it is
crucial to interpret them with caution. Ongoing work will
involve further validation, refinement, and a more compre-
hensive analysis to strengthen the robustness of our findings.

6. Conclusions and future work

This research has presented a novel framework for
the development of sustainable CPSs. By emphasiz-
ing adaptation-centric architectures and incorporating self-
adaptive techniques such as microservices and MAPE-K
methodologies, our framework aims to address the dynamic
and interconnected nature of CPS.

The application of the proposed framework to the smart
home management system for seniors, with a focus on pa-
tients with stage 1 hypertension , demonstrated its efficacy
in real-world scenarios. Through the utilization of mining
techniques, the framework provides a tailored solution, of-
fering a guide for the integration of autonomous microser-
vices to achieve sustainability.

Despite the promising outcomes, it is important to
acknowledge certain limitations inherent in the proposed
framework, such as the lack of a complete instantiation of
a case study in a simulated environment or real context.

Looking ahead, further research and refinement of the
framework will be crucial for addressing the identified lim-
itations and adapting to the evolving landscape of cyber-
physical systems. As the field of CPS continues to advance,
our work contributes to the ongoing dialogue on sustainable
system development, offering a solid foundation for future
endeavors in this domain.

4. Limitations and Challenges: The absence of a com-
plete instantiation of a case study in a simulated or real en-
vironment limited the depth of the assessment. This under-
scores the importance of extending our experiments to more

realistic settings. Challenges in obtaining real-time health
data for customization purposes highlighted the need for col-
laboration with healthcare providers and the development of
secure data-sharing protocols.

5. Implications for future research: The preliminary re-
sults lay the groundwork for future research to delve deep-
er into the real-world application of the framework, empha-
sizing complete instantiating in diverse environments. Fur-
ther investigation is warranted to address the identified chal-
lenges, such as refining the autonomy of microservices in-
tegration and developing strategies for overcoming data ac-
quisition hurdles.

Acknowledgments

The authors would like to thank Vicerectoria de Des-
cubrimiento y Creacion from Universidad EAFIT. Universi-
dad EAFIT supported this research. The authors would also
like to thank XXXXXXXXXXX for his early comments and
suggestions on this research.

References

[1] Aldalur, L., Arrieta, A., Agirre, A., Sagardui, G., Arratibel, M., 2023.
A microservice-based framework for multi-level testing of cyber-
physical systems. Software Quality Journal URL: https://doi.org/
10.1007/511219-023-09639-2, d0i:10.1007/511219-023-09639-2.

[2] Alsharif, M.H., Kelechi, A.H., Jahid, A., Kannadasan, R., Singla,
MK., Gupta, J., Geem, Z.W., 2024. A comprehensive sur-
vey of energy-efficient computing to enable sustainable mas-
sive iot networks. Alexandria Engineering Journal 91, 12—
29. URL: https://www.sciencedirect.com/science/article/pii/
$1110016824001091, doi:https://doi.org/10.1016/j.aej.2024.01.067.

[3] Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler,
B., Seyff, N., Venters, C., 2015. Sustainability Design and Software:
The Karlskrona Manifesto, in: Proceedings - International Confer-
ence on Software Engineering, pp. 467-476. doi:10.1109/ICSE.2015.
179.

[4] Chantem, T., Guan, N., Liu, D., 2019. Sustainable embedded software
and systems. doi:10.1016/].suscom.2019.05.003.

[5] Chitchyan, R., Groher, L., Noppen, J., 2017. Uncovering sustainability
concerns in software product lines. Journal of Software: Evolution
and Process 29. doi:10.1002/smr.1853.

[6] De Lemos, R., Giese, H., Miiller, H.A., Shaw, M., Andersson,
J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel,
T., Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K,
Goschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G.,
Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mi-
randola, R., Mylopoulos, J., Nierstrasz, O., Pezze, M., Prehofer,
C., Schifer, W., Schlichting, R., Smith, D.B., Sousa, J.P., Tahvil-
dari, L., Wong, K., Wuttke, J., 2013. Software engineering for self-
adaptive systems: A second research roadmap, in: Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), Springer,
Berlin, Heidelberg. pp. 1-32. URL: https://link-springer-com.
ezproxy.eafit.edu.co/chapter/10.1007/978-3-642-35813-5_1, doi:10.
1007/978-3-642-35813-5{\{}{\textbackslash}{_}{\}}1.

[7] Fernandez, N., Lago, P., Luaces, M., Places, , Folgueira, L., 2019.
Using participatory technical-action-research to validate a software
sustainability model.

[8] Fowler, M., 2014. Microservices. URL: https://martinfowler.com/
articles/microservices.html.

[9] Fritzsch, J., Bogner, J., Haug, M., Franco da Silva, A.C., Rub-
ner, C., Saft, M., Sauer, H., Wagner, S., 2023. Adopting mi-

LF Restrepo et al.: Preprint submitted to Elsevier

Page 11 of 13

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Sustainable Framework for CPSs

croservices and devops in the cyber-physical systems domain:
A rapid review and case study. Software: Practice and Expe-
rience 53, 790-810. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/spe.3169, doi:https://doi.org/10.1002/spe.3169,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3169.
Gartziandia, A., Ayerdi, J., Arrieta, A., Ali, S., Yue, T., Agirre, A.,
Sagardui, G., Arratibel, M., 2021. Microservices for continuous de-
ployment, monitoring and validation in cyber-physical systems: an
industrial case study for elevators systems, in: 2021 IEEE 18th Inter-
national Conference on Software Architecture Companion (ICSA-C),
pp. 46-53. doi:10.1109/ICSA-C52384.2021.00014.

Guo, Z., Yu, K., Lv, Z., Choo, K.K.R., Shi, P., Rodrigues, J.J.P.C.,
2022. Deep federated learning enhanced secure poi microservices for
cyber-physical systems. IEEE Wireless Communications 29, 22-29.
doi:10.1109/MWC. 002.2100272.

ul Hassan, M., Al-Awady, A.A., Ali, A., Igbal, M.M., Akram,
M., Khan, J.,, AbuOdeh, A.A., 2023. An efficient dy-
namic decision-based task optimization and scheduling approach
for microservice-based cost management in mobile cloud com-
puting applications. Pervasive and Mobile Computing 92,
101785. URL: https://www.sciencedirect.com/science/article/pii/
$1574119223000433, doi:https://doi.org/10.1016/j.pmcj.2023.101785.
International Organization for Standardization, 2011. ISO/IEC
25010:2011 - Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. URL: https://www.iso.org/standard/35733.
html.

Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M., McKinley,
PK., Cheng, B.H.C., 2020. MAPE-K/MAPE-SAC: An interaction
framework for adaptive systems with security assurance cases. Future
Generation Computer Systems 109, 197-209. doi:10.1016/j. future.
2020.03.031.

Jensen, J.C., Chang, D.H., Lee, E.A., 2011. A model-based design
methodology for cyber-physical systems, in: 2011 7th International
Wireless Communications and Mobile Computing Conference, pp.
1666—-1671. doi:10.1109/IWCMC. 2011.5982785.

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic comput-
ing. Computer 36. doi:10.1109/MC.2003.1160055.

Koziolek, H., 2011. Sustainability evaluation of software architec-
tures: A systematic review, in: CompArch’11 - Proceedings of the
2011 Federated Events on Component-Based Software Engineering
and Software Architecture - Q0SA+ISARCS’11, ACM Press, New
York, New York, USA. pp. 3-12. URL: http://portal.acm.org/
citation.cfm?doid=2000259.2000263, d0i:10.1145/2000259.2000263.
Lee, E.A., 2008. Cyber physical systems: Design challenges, in:
Proceedings - 11th IEEE Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, ISORC 2008, pp. 363—
369. doi:10.1109/ISORC. 2008. 25.

Lu, Z., Delaney, D.T., Lillis, D., 2023. A survey on microservices
trust models for open systems. IEEE Access 11, 28840-28855.
doi:10.1109/ACCESS. 2023.3260147.

Marstein, K.E., Chiriac, A., Riley, L., Hardjono,
dian, G., 2023. Implementing Secure Bridges: Learnings
from the Secure Asset Transfer Protocol URL: https://www.

techrxiv.org/articles/preprint/Implementing_Secure_Bridges_

T., Ver-

Learnings_from_the_Secure_Asset_Transfer_Protocol/22285183,
doi:10.36227/techrxiv.22285183.v1.

Marwedel, P., 2018. Embedded system design : embedded systems,
foundations of cyber-physical systems, and the internet of things.
Springer International Publishing. URL: http://link.springer.com/
10.1007/978-3-319-56045-8, doi:10.1007/978-3-319-56045-8.

Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopou-
los, Y., 2023. Towards high-availability cyber-physical sys-
tems using a microservice architecture. Computing 105, 1745—
1768. URL: https://doi.org/10.1007/s00607-023-01165-x, doi:10.
1007/s00607-023-01165-X.

Pacheco, F., Rangel, C., Aguilar, J., Cerrada, M., Altamiranda, J.,
2014. Methodological framework for data processing based on the

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

data science paradigm, in: 2014 XL Latin American Computing Con-
ference (CLEI), pp. 1-12. doi:10.1109/CLEI.2014.6965184.
Pankowska, M., 2013. Sustainable software: A study of software
product sustainable development, in: Mechanism Design for Sustain-
ability: Techniques and Cases. Springer Netherlands, pp. 265-281.
doi:10.1007/978-94-007-5995-4{\{ }{ \textbackslash}{_}{\}}13.

Pei Breivold, H., 2020. Using Software Evolvability Model for Evolv-
ability Analysis .

Rajavaram, H., Rajula, V., Thangaraju, B., 2019. Automation of mi-
croservices application deployment made easy by rundeck and ku-
bernetes, in: 2019 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT), pp. 1-
3. doi:10.1109/CONECCT47791.2019.9012811.

Restrepo, L., Aguilar, J., Toro, M., Suescin, E., 2021. A sustainable-
development approach for self-adaptive cyber—physical system’s life
cycle: A systematic mapping study. Journal of Systems and Soft-
ware 180, 111010. URL: https://www.sciencedirect.com/science/
article/pii/Se164121221001072, doi:https://doi.org/10.1016/j.jss.
2021.111010.

Restrepo Gutierrez, L.F., Bernal Moreno, P., Suesctiin Monsalve, E.,
Aguilar Castro, J.L., Pardo Calvache, C.J., 2023. Toward a conceptual
framework for designing sustainable cyber-physical system architec-
tures: A systematic mapping study. Heritage and Sustainable Devel-
opment 5, 253-279. URL: https://hsd.ardascience.com/index.php/
journal/article/view/226, d0i:10.37868/hsd.v5i2.226.

Richardson, C., 2018. Microservices Patterns: With examples
in Java. Manning. URL: https://books.google.com.co/books?id=
UeK1SWEACAAT.

Rowe, D., Leaney, J., Lowe, D., 1994. Defining systems evolvability-a
taxonomy of change. Change 94, 541-545.

Sadri, A., Rahmani, A., Saberikamarposhti, M., Hosseinzadeh, M.,
2021. Fog data management: A vision, challenges, and future direc-
tions. Journal of Network and Computer Applications 174, 102882.
doi:10.1016/j.jnca.2020.102882.

Saputri, T., Lee, S.W., 2021. Integrated framework for incorporating
sustainability design in software engineering life-cycle: An empirical
study. Information and Software Technology 129. doi:10.1016/3.
infsof.2020.106407.

Saverio, Lluch, L.A., Manuel, M., Fabrizio, M., Ruslan, M., Nico-
la, S.L.D., Giallorenzo, 2017. Microservices: Yesterday, Today,
and Tomorrow. Springer International Publishing. pp. 195-216.
URL: https://doi.org/10.1007/978-3-319-67425-4_12, doi:10.1007/
978-3-319-67425-4_12.

Seiger, R., Huber, S., Heisig, P., ABmann, U., 2019. Toward a
framework for self-adaptive workflows in cyber-physical systems.
Software and Systems Modeling 18, 1117-1134. doi:10.1007/
510270-017-0639-0.

Stankovic, J.A., 2014. Research directions for the internet of things.
IEEE Internet of Things Journal 1, 3-9. doi:10.1109/J10T.2014.
2312291.

Stavros, J.M., Sprangel, J.R., 2008. “SOAR” from the Mediocrity
of Status Quo to the Heights of Global Sustainability, in: Innovative
Approaches to Global Sustainability. Palgrave Macmillan US, pp. 11—
35. doi:10.1057/9780230616646{\{ }{ \textbackslash}{_}H\}}2.
Tagne, E.F., Kamdjou, H.M., Amraoui, A.E., Nzeukou, A.,
2023. A lossless distributed data compression and aggrega-
tion methods for low resources wireless sensors platforms.
Wireless Personal Communications 128, 621-643. URL:
https://link.springer.com/article/10.1007/s11277-022-09970-x,
doi:10.1007/511277-022-09970-X/METRICS.

Vizcarrondo, J., Aguilar, J., Exposito, E., Subias, A., 2017. MAPE-K
as a service-oriented architecture. IEEE Latin America Transactions
15, 1163-1175. doi:10.1109/TLA.2017.7932705.

Weyns, D., Georgeft, M., 2010. Self-adaptation using multiagent sys-
tems. IEEE Software 27, 86-91. doi:10.1109/MS.2010.18.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord,
R., Wood, W., 2006. Attribute-Driven Design (ADD), Version 2.0.
Technical Report CMU/SEI-2006-TR-023. Software Engineering In-

LF Restrepo et al.: Preprint submitted to Elsevier

Page 12 of 13

Sustainable Framework for CPSs

stitute, Carnegie Mellon University. Pittsburgh, PA. URL: http:
//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147.

[41] Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., Yli-
Jaaski, A., 2010. A system-level model for runtime power estimation
on mobile devices, in: Proceedings - 2010 IEEE/ACM International
Conference on Green Computing and Communications, GreenCom
2010, 2010 IEEE/ACM International Conference on Cyber, Physi-
cal and Social Computing, CPSCom 2010, pp. 27-34. doi:10.1109/
GreenCom-CPSCom.2010.114.

[42] Zeadally, S., Sanislav, T., Mois, G., 2019. Self-Adaptation Techniques
in Cyber-Physical Systems (CPSs). IEEE Access 7, 171126-171139.
doi:10.1109/ACCESS.2019.2956124.

Luisa Restrepo received a B.Sc. degree in Com-
puter Science in 2015 and an M.Sc. in Engineering
from Universidad EAFIT, Colombia, emphasizing
Software Engineering, in 2019. Since 2020, Luisa
has worked as an Adjunct Professor at the Depart-
ment of Systems and Informatics Engineering at
Universidad EAFIT. Her research interests include
requirements engineering, assessment of software
applications, software reuse, cyber-physical sys-
tems, and data quality.

Professor Jose Aguilar received the B. S. degree
in System Engineering in 1987 (Universidad de
Los Andes-Venezuela), the M. Sc. degree in Com-
puter Sciences in 1991 (Universite Paul Sabatier-
France), and the Ph.D degree in Computer Sci-
ences in 1995 (Universite Rene Descartes-France).
He was a Postdoctoral Research Fellow in the De-
partment of Computer Sciences at the Universi-
ty of Houston (1999-2000) and in the Labora-
toire d’Analyse et d’Architecture des Systems of
Toulouse, France (2010-2011). He is a Titular
Professor in the Department of Computer Sci-
ence at the Universidad de los Andes, Mérida,
Venezuela, and contracted professor of the De-
partment of Systems Engineering of the EAFIT
University, Medellin, Colombia. His research in-
terests include artificial intelligence, industry 4.0,
IoT, cyber-physical and autonomic systems.

Elizabeth Suescin Monsalve received a B.Sc.
degree in Computer Science from Politecnico
Colombiano JIC, Colombia, in 2004. Elizabeth
got a Master and PhD degree in Computer Sci-
ence from Pontifical Catholic University of Rio
de Janeiro - PUC-Rio, Brazil with emphasis on
Software Engineering, from 2010 to 2014. Since
2015, Elizabeth works as Assistant Professor at the
Department of Systems and Informatics Engineer-
ing and as a researcher of the GIDITIC Group at
Universidad EAFIT. Her research interests include
Software Engineering, DevOps, industry 4.0, Soft-
ware Transparency, Intentional Modeling, cyber-
physical systems and its applications.

LF Restrepo et al.: Preprint submitted to Elsevier

Page 13 of 13

	Abstract
	Scientific contributions
	Acknowledgement
	Introduction and research context
	Problem statement and motivation
	Research Objectives
	General objective
	Specific objectives

	Contributions and research scope
	Thesis organization

	State of the art on sustainable development for Self-Adaptive Cyber-Physical System’s
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	SinSO: An ontology of Sustainability in Software
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	NFR-Based framework para el análisis de la sostenibilidad en sistemas ciberfísicos (CPS)
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Toward a conceptual framework for designing sustainable cyber-physical system architectures: A systematic mapping study
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Towards Sustainable Cyber-Physical Systems: A Comprehensive Framework and Case Study for Healthcare Enviroments
	Motivation
	Identification of the article
	Abstract
	Link to full paper

	Conclusions
	Summary
	Limitations and future work

	Bibliographic references
	State of the art on sustainable development for Self-Adaptive Cyber-Physical System’s
	SinSO: An Ontology of Sustainability in Software
	NFR-Based framework para el análisis de la sostenibilidad en sistemas ciberfísicos (CPS)
	Toward a conceptual framework for designing sustainable cyber-physical system architectures: A systematic mapping study
	Towards Sustainable Cyber-Physical Systems: A Comprehensive Framework and Case Study for Healthcare Enviroments

