

UNIVERSIDAD DE LOS ANDES CONSEJO DE ESTUDIOS DE POSTGRADO DOCTORADO EN CIENCIAS APLICADAS

Inteligencia Artificial Distribuida como estrategia para la Gerencia Integrada de Producción Industrial

Trabajo presentado como requisito final para optar al título de Doctor en Ciencias Aplicadas

Autor:

Ing. M.Sc. César Enrique Bravo

Tutores:

Dr. José Aguilar Castro Dr. Addison Ríos Bolívar Dr. Joseph Aguilar Martin

Mérida, Febrero de 2010

Dedicatoria

A Francis, por ser la hermosa compañía que hace mi mundo posible

A Víctor y Glady, mi orgullo y ejemplo

Agradecimientos

A mis tutores, José Aguilar Castro y Addison Ríos, por todo su apoyo y guía durante la realización de este trabajo y de muchos otros en los que hemos colaborado.

Al Prof. Joseph Aguilar Martin, por haberme permitido el honor y el lujo de contarlo como asesor en este trabajo.

A mi maestro y amigo Francklin Rivas, por apoyarme siempre a superarme y brindarme tantas oportunidades.

Al Programa de Cooperación de Postgrados (PCP) Venezuela-Francia, por darme esta maravillosa oportunidad de crecimiento profesional y personal.

Al Dr. Luigi Saputelli, por honrarme con su interés en mi trabajo y más aún con su amistad, y por ser mi modelo a seguir.

A Audine Subias, Louise Travé-Massuyes y todo el equipo de profesores e investigadores del LAAS Toulouse, por recibirnos en su laboratorio y apoyarnos en el desarrollo del trabajo, merci beaucoup à tous!

A los Doctores Carles Sierra, Pablo Noriega, Marc Steva y al resto del equipo del IIIA en Barcelona, gracias por desarrollar la teoría que fundamentó este trabajo y por su apoyo en la realización del mismo.

A Edgar Camargo, por ser mi compañero de estudio en esta travesía y por la gran amistad que me ha brindado.

A Claudia, Carmen, Fernando, Alejandra y al resto de compañeros latinoamericanos que conocí en Toulouse, por su hospitalidad y compañía en mis días por Francia.

A Héctor Ceballos, mi gran "ayuda en línea" desde Monterrey, sin su apoyo no hubiese sido posible culminar el trabajo.

A la Sociedad de Ingenieros de Petróleo (SPE), por ser la "Biblioteca de Alejandría" del mundo de petróleo, al brindarme tanto material para estudiar.

Finalmente, a mi Alma Mater, La Universidad de los Andes, por haberme provisto de las luces del conocimiento a lo largo de todos estos años.

Tabla de contenido

Dedicato	ria	2
Agradeci	mientos	3
Índice de	e Figuras	13
Índice de	e Tablas	18
Capítulo	I. Introducción	20
1.1.	Descripción del Problema	20
1.2.	Objetivo General	21
1.3.	Objetivos Específicos	21
1.4.	Alcance	22
1.5.	Antecedentes	22
Capítulo	II. Marco Teórico	25
2.1	Introducción	25
2.2	Concepto de Gerencia Integrada de Producción	25
2.3	Arquitecturas de Automatización	26
2.4	Integración de Aplicaciones Empresariales	30
2.4.1	El Problema de Integración	30
2.4.2	Arquitectura Orientada a Servicios (SOA: Service Oriented Architecture)	32
2.5	Ontologías	36
2.5.1	Concepto de Ontología	36
2.5.2	Estructura de las Ontologías	36
2.5.3	Lenguajes para Especificación de Ontologías	37
2.5.3.1	L RDF	37
2.5.3.2	2 OWL	38

	2.5.4	Implementación	. 39
	2.5.5	Especificaciones de Ontologías para Ciencia e Ingeniería	. 40
	2.5.5.1	SWEET	. 40
	2.5.5.2	Ontología de Petróleo y Gas	. 42
	2.5.5.3	WITSML	. 43
	2.5.5.4	PRODML	. 43
	2.6	Sistemas Multiagentes e Instituciones Electrónicas	. 45
	2.6.1	Agentes Inteligentes	. 45
	2.6.2	Definición de Agente	. 46
	2.6.3	Estructura de un agente	. 46
	2.6.4	Sistemas Multiagentes	. 49
	2.6.5	FIPA	. 50
	2.6.6	Instituciones Electrónicas	. 51
	2.6.6.1	Definición de Institución Electrónica	. 51
	2.6.6.2	Estructura de una Institución Electrónica	. 51
	2.6.6.3	Implementación de Instituciones Electrónicas: EIDE	. 55
C	apítulo I	III. Arquitectura de Referencia	. 59
	3.1	Descripción General de la Arquitectura	. 59
	3.2	Capa de Conectividad	. 60
	3.3	Capa de Semántica	. 62
	3.3.1	Meta-modelo de Datos	. 63
	3.3.2	Conceptos de Dominio Específico	. 64
	3.4	Capa de Gestión	. 64

	3.4.1	Flujo de Trabajo a Automatizar	64
	3.4.2	Definición de la Institución Electrónica	66
	3.5	Análisis	70
С	apítulo	IV. Capa de Semántica	71
	4.1.	Descripción General	71
	4.2.	Meta-Data	74
	4.3.	Ontologías de Carácter General	75
	4.4.	Meta-Modelo de Datos	75
	4.5.	Ontología de Dominio Específico	82
	4.6.	Análisis	82
С	apítulo '	V. Capa de Gestión: Institución Electrónica para la Gestión Integrada de Producción	84
	5.1.	Introducción	84
	5.2.	Diseño de la Institución Electrónica	85
	5.2.1	Marco de Diálogo	85
	5.2.1.1	Ontología	86
	5.2.1.2	Lenguaje	86
	5.2.1.3	Partículas Ilocutorias (Actos de Habla válidos)	86
	5.2.1.4	Roles	87
	5.2.1.5	Roles Internos	89
	5.2.1.5	.1 Gestor del Activo	89
	5.2.1.6	Roles Externos	90
	5.2.1.6	5.1 Productor	90
	5.2.1.6	5.2 Proveedor	91

5.2.1.6.3 Cliente
5.2.1.6.4 Optimizador
5.2.1.6.5 Rol Mantenedor
5.2.1.7 Relaciones entre Roles
5.2.2 Estructura Performativa
5.2.2.1 Descripción General
5.2.2.2 Transiciones
5.2.2.3 Arcos
5.2.2.3.1 Arcos de Salida y Entrada
5.2.2.3.2 Etiquetas de los arcos
5.2.2.3.3 Tipos de arcos
5.2.2.3.4 Restricciones
5.2.2.3.5 Meta-Lenguaje
5.2.2.3.6 Escenas que pueden ser múltiplemente instanciadas (μ)
5.2.2.4 Escenas
5.2.2.4.1 Programación de la Producción
5.2.2.4.1.1 Búsqueda de Información
5.2.2.4.1.2 Cálculo de Cuotas de Producción
5.2.2.4.2 Ejecución de Producción
5.2.2.4.2.1 Producción
5.2.2.4.2.2 Mantenimiento
5.2.3 Normas Sociales de la Institución
5.2.3.1 Norma para obtención de información del rol Proveedor

	5.2.3.2	Norma para obtención de información del rol Productor	121
	5.2.3.3	Norma para cálculo de escenario óptimo de producción	121
	5.2.3.4	Norma para la ejecución de producción	122
	5.3. A	nálisis	123
C	apítulo VI	Caso de Estudio	124
	6.1 D	escripción del Problema: Producción de Petróleo	124
	6.1.1	Introducción	124
	6.1.2	Proceso de Producción	126
	6.1.3	Proceso de Negocio de Producción de Petróleo	129
	6.1.3.1	Programación de la Producción	129
	6.1.3.2	Distribución de energía	130
	6.1.3.3	Producción	131
	6.1.3.4	Despacho de Producción	131
	6.2 Ir	nplantación de la Arquitectura	131
	6.2.1	Descripción General	131
	6.2.2	Capa de Conectividad	132
	6.2.3	Capa de Semántica	134
	6.2.3.1	Unidad de Producción Pozo (Oil Well)	138
	6.2.3.1.1	Descripción	138
	6.2.3.1.2	Productos	138
	6.2.3.1.3	Recursos	138
	6.2.3.1.3	.1 Partes	138
	Material	es:	138

Insumos:	139
6.2.3.1.3.2 Información	139
Variables de Proceso:	139
Información de Proceso:	141
6.2.3.1.4 Métodos	143
6.2.3.2 Unidad de Producción Estación de Flujo (FlowStation)	144
6.2.3.2.1 Descripción	144
6.2.3.2.2 Productos	144
6.2.3.2.3 Recursos	144
6.2.3.2.3.1. Materiales	144
Partes:	144
Insumos:	145
6.2.3.2.3.2. Información	145
Variables de Proceso:	145
Información de Proceso:	146
6.2.3.2.4 Métodos	147
6.2.3.3 Unidad de Producción Múltiple (Manifold)	147
6.2.3.3.1 Descripción	147
6.2.3.3.2 Productos	148
6.2.3.3.3 Recursos	148
6.2.3.3.3.1 Materiales	148
6.2.3.3.3.2 Información	148
6.2.3.3.4 Métodos	149

6.2.3.4 Unidad de Producción Planta (Plant)	149
6.2.3.4.1 Descripción	149
6.2.3.4.2 Productos:	150
6.2.3.4.3 Recursos	150
6.2.3.4.3.1. Materiales	150
6.2.3.4.3.2. Información	151
6.2.3.4.4 Métodos	153
6.2.3.5 Unidad de Producción Campo (Field)	153
6.2.3.5.1 Descripción	153
6.2.3.5.2 Productos	153
6.2.3.5.3 Recursos	153
6.2.3.5.4.1 Materiales	153
6.2.3.5.4.2 Información	154
6.2.3.5.4 Métodos	156
6.2.4 Capa de Gestión	157
6.3 Configuración del experimento	168
6.3.1 Descripción General	168
6.3.2 Objetivos del Experimento	168
6.3.3 Diseño del Experimento	168
6.3.4 Preparación de los Datos	170
6.3.5 Implantación de la Arquitectura	170
6.3.5.1 Capa de conectividad	171
6.3.5.2 Capa de Semántica	173

6.3.5.	3 Capa de Gestión	175
6.3.6	Simulaciones y Resultados	177
6.3.7	Análisis de Resultados	189
Conclusi	ones y Recomendaciones	190
Concl	usiones	190
Recor	nendaciones	192
ANEXO A	١	193
SWEET (ONTOLOGIES	193
A.1.	Conceptos Infraestructure Ontology	193
A.2.	Conceptos Sci Ontology	200
A.3.	Conceptos Time Ontology	201
ANEXO I	3	203
DIAGRA	MAS DE CLASES ROLES INSTITUCIÓN ELECTRÓNICA	203
ANEXO (208
INTROD	JCCIÓN A LA GERENCIA DE YACIMIENTOS	208
C.1.	Proceso de la Gerencia de Yacimientos	208
C.2.	Disciplinas involucradas en la Gerencia de Yacimientos	211
C.3.	Variables Fundamentales en la GIY	215
C.4.	Nuevos Enfoques para la Gerencia Integrada de Yacimientos	216
Geren	cia Integrada de Activos	217
El Can	npo Petrolero Digital del Futuro	220
ANEXO I)	222
OilProdu	ictionOntology	222

D.1.	Concepto de Producción de Petróleo	222
D.2.	Conceptos relacionados con la Unidad de Producción Pozo (OilWell)	223
D.3.	Conceptos relacionados con la Unidad de Producción Estación de Flujo (FlowStation)	235
D.4.	Conceptos relacionados con la Unidad de Producción Múltiple (Manifold)	242
D.5.	Conceptos relacionados con la Unidad de Producción Planta (Plant)	245
D.6.	Conceptos relacionados con la Unidad de Producción Campo (Field)	252
ANEXO E		259
DATOS U	TILIZADOS PARA LA SIMULACIÓN	259
E.1.	Escenario 1	259
E.2.	Escenario 2	267
E.3.	Escenario 3	273
D:hl:	C/_	270

Índice de Figuras

Fig. 2.1 Pirámide de automatización	27
Fig. 2.2 Modelo Heterárquico	28
Figura 2.3. Sistema Holónico de Manufactura	29
Fig. 2.4. Arquitectura SOA	33
Fig. 2.5. Elementos de una Arquitectura Orientada a Servicios (SOA)	35
Fig. 2.6. Grafo RDF	38
Fig. 2.7. Principales Ontologías SWEET	40
Fig. 2.8. Concepto Presión, ontología "Human Infrastructure" SWEET	41
Fig. 2.9. Esquema de construcción de ontologías de Petróleo y Gas con ISO 15926	43
Fig. 2.10. Jerarquía PRODML	44
Fig. 2.11. Arquitectura de un Agente Reactivo	47
Fig. 2.12. Arquitectura de un Agente con Estados	47
Fig. 2.13. Arquitectura de Agentes BDI	48
Fig. 2.14. Arquitectura de Agentes por Capas (Horizontal)	49
Fig. 2.15. Arquitectura de Agentes por Capas (Vertical)	49
Fig. 2.16. ISLANDER	56
Fig. 2.17. aBuilder	57
Fig. 2.18. AMELI	58
Figura 3.1. Arquitectura Propuesta	59
Figura 3.2. Capa de Conectividad	61
Figura 3.3. Meta-Modelo de datos	63
Fig. 3.4. Proceso de Negocio de Producción Continua	65

Fig. 3.5. Roles de los agentes en la IE	67
Fig. 3.6. Estructura Principal de la IE	68
Fig. 3.7. Estructura Performativa de la IE	69
Fig. 4.1. Mecanismo de Funcionamiento Capa de Semántica	72
Fig. 4.2. Componentes de la Ontología	73
Fig. 4.3. Meta-data asociada a cada Elemento de la Ontología	74
Fig. 4.4. Unidad de Producción	76
Fig. 4.5. Esquema Unidad de Producción	76
Fig. 4.6. Meta Modelo: Recursos de la Unidad de Producción	78
Fig. 4.7. Meta Modelo: Métodos	79
Fig. 4.8. Meta Modelo: Condición	80
Fig. 4.9. Árbol del Meta-Modelo	81
Fig. 5.1 Estructura Performativa de Gestión de Producción	95
Fig. 5.2 Arcos de la Estructura Performativa de Gestión de Producción	98
Fig. 5.3 Tipos de Arcos de la Estructura Performativa de Gestión de Producción	100
Fig. 5.4 Protocolo Escena de Programación de la Producción	102
Fig. 5.5 Estructura Performativa de Programación de Producción	103
Fig. 5.6. Diagrama de Secuencia de Mensajes Sub-protocolo para búsqueda de información	106
Fig. 5.7. Sub-protocolo para búsqueda de información	106
Fig. 5.8. Diagrama de Secuencia de Mensajes Sub-protocolo Cálculo de Cuotas de Producción	108
Fig. 5.9. Sub-protocolo Cálculo de Cuotas de Producción	109
Fig. 5.10. Diagrama de Secuencia de Mensajes Ejecución de Producción	111
Fig. 5.11. Estructura Performativa Ejecución de Producción	112

Fig. 5.12. Diagrama de Secuencia de Mensajes Sub-protocolo escena Producción	115
Fig. 5.13. Sub-protocolo escena Producción	116
Fig. 5.14. Diagrama de Secuencia de Mensajes Sub-protocolo escena Mantenedor	118
Fig. 5.15. Sub-protocolo escena Mantenedor	118
Fig. 6.1. Fases de la Gerencia de Yacimientos	124
Fig. 6.2. Esquema del Proceso de Producción de Petróleo	128
Fig. 6.3. Flujo de Trabajo del Proceso de Producción de Petróleo	129
Fig. 6.4 Arquitectura a Implantar para el Caso de Estudio	132
Fig. 6.5. Esquema de Implantación de la Capa de Conectividad	134
Fig. 6.6. Conceptos de Producción de Petróleo dentro de la Ontología	136
Fig. 6.7. Unidades de Producción en la OilProductionOntology	137
Fig. 6.8 Relación concepto Pozo con Meta Modelo de Datos	137
Fig. 6.9. OilFieldMAS	158
Fig. 6.10. Esquema de Implementación del Experimento	169
Fig. 6.11. Diagrama de Clases para la Capa de Conectividad implantada en el experimento	172
Fig. 6.12. Clase OilProductionDF (Marco de Diálogo)	173
Fig. 6.13. Clase OilProductionOntology	174
Fig. 6.14. Clase Agente Productor	176
Fig. 6.15. Clase que define el comportamiento del Agente Productor en la Estructura Performa OilProductionPS	
Fig. 6.16. Clase que define el comportamiento del Agente Productor en la Escena de Producció	
Fig. 6.17. Inicio de la ejecución de la Institución Electrónica	178

Fig. 6.18. El agente Gestor del Campo solicita información sobre el proceso al resto de los agentes de la Institución	
Fig. 6.19. El agente Gestor del Campo solicita el cálculo del escenario óptimo al agente Optimizador	0
Fig. 6.20. El agente Optimizador realiza el cálculo del escenario óptimo	0
Fig. 6.21. Inicio de la Producción	1
Fig. 6.22. Diferencial de Presión en la Válvula Choke para cada pozo. Ajuste de la configuración de los pozos para alcanzar la meta de producción	
Fig. 6.23. Producción del Campo con el Escenario establecido por el agente Gestor del Campo 18	2
Fig. 6.24. Producción por pozo para el primer escenario	3
Fig. 6.25. Los agentes retornan a la escena "Programación de Producción" debido a que hubo un cambio en la meta de producción del campo	4
Fig. 6.26. Cambios en la presión originados por cambios en la apertura de las válvulas Choke de los pozos	
Fig. 6.27. Ajuste en la producción total del Campo	5
Fig. 6.28. Producción por pozo después del ajuste de la meta de producción del campo 18	5
Fig. 6.29. El pozo P8 sufre una falla y entra a mantenimiento	6
Fig. 6.30. Ajuste en las válvulas Choke de los pozos para mantener la meta de producción 18	7
Fig. 6.31. Producción total del campo	7
Fig. 6.32. Ajustes en la producción de los pozos para asegurar la meta de producción después de la falla del pozo P8	
Fig. 6.33. Culminación de la ejecución de la Institución Electrónica	8
Fig. A.1 Concepto ProductionFacility	3
Fig. A.2 Concepto Pipeline	3
Fig. A.3 Concepto Equipment	4
Fig. A.4 Concepto Well	5

Fig. A.5 Concepto Fluid	. 196
Fig. A.6 Concepto Flow	. 196
Fig. A.7 Concepto Pressure	. 197
Fig. A.8 Concepto Speed	. 198
Fig. A.9 Concepto ElectricityCurrent	. 198
Fig. A.10 Concepto Temperature	. 199
Fig. A.11 Concepto Volume	. 199
Fig. A.12 Concepto SystemState	. 200
Fig. A.13 Concepto TimeReference	. 201
Fig. A.14 Concepto TimeInterval	. 201
Fig. A.15 Concepto Event	. 202
Fig. B.1 Rol Productor	. 203
Fig. B.2 Rol Proveedor	. 204
Fig. B.3 Rol Cliente	. 204
Fig. B.4 Rol Optimizador	. 205
Fig. B.5 Rol Mantenedor	. 205
Fig. B.6 Rol Gestor del Activo	. 205
Fig. B.7 Clase Activo	. 206
Fig. B.8 Clase Producto	. 206
Fig. B.9 Clase Configuración del Activo	. 206
Fig. B.10 Diagrama de Clases General	. 207

Índice de Tablas

Tabla 5.1 Descripción Rol Gestor del Activo	89
Tabla 5.2 Descripción Rol Productor	90
Tabla 5.3 Descripción Rol Proveedor	91
Tabla 5.3 Descripción Rol Cliente	92
Tabla 5.4 Descripción Rol Optimizador	93
Tabla 5.5 Descripción Rol Mantenedor	93
Tabla 5.6 Relaciones entre los roles de la Institución	94
Tabla 5.7 Tipos de Transiciones EPGP	97
Tabla 5.8 Arcos entre Escenas y Transiciones en la Estructura Performativa	97
Tabla 5.9 Etiquetas de los arcos en la Estructura Performativa	99
Tabla 5.10 Tipos de Arcos en la Estructura Performativa de Gestión de Producción	100
Tabla 5.11 Arcos Escena Performativa Programación de la Producción	103
Tabla 5.12 Etiquetas de Arcos Estructura Performativa Programación de la Producción	104
Tabla 5.14 Tipos deTransiciones Estructura Performativa Programación de la Producción	105
Tabla 5.15. Estados de la Escena de Búsqueda de Información	107
Tabla 5.16. Ejes de la Escena de Búsqueda de Información	107
Tabla 5.17.Estados de la Escena Cálculo de Cuotas de Producción	109
Tabla 5.18.Ejes de la Escena Cálculo de Cuotas de Producción	110
Tabla 5.20 Arcos de Entrada y Salida Estructura Performativa Ejecución de Producción	113
Tabla 5.21 Etiquetas de Arco Estructura Performativa Ejecución de Producción	114
Tabla 5.22. Tipos de Arcos Estructura Performativa Ejecución de Producción	114
Tabla 5.23. Tipos de Transiciones Estructura Performativa Ejecución de Producción	115

Tabla 5.24. Estados de la Escena Producción	. 116
Tabla 5.25 Ejes de la Escena Producción	. 117
Tabla. 5.26. Estados escena Mantenedor	. 119
Tabla. 5.27. Transiciones escena Mantenedor	. 119
Tabla. 6.1. Modelo de Agente Unidad de Producción	. 161
Tabla. 6.2. Modelo de Agente Mantenedor	. 164
Tabla. 6.3. Modelo de Agente Optimizador	. 165
Tabla. 6.4. Modelo de Agente Gestor del Activo	. 168
Tabla C.1 Variables fundamentales de la Gerencias Integrada de Yacimientos	. 216

Capítulo I. Introducción

La producción industrial se compone de procesos grandes y complejos, los cuales para su control requieren de una plataforma tecnológica que pueda manejar grandes volúmenes de información, incluyendo su interpretación y análisis automático para apoyar la toma de decisiones y generar una adecuada planificación de producción.

El esquema clásico de las plataformas para automatización industrial es un modelo piramidal jerárquico compuesto por diversos niveles, que van desde el nivel de control de procesos, en el cual se encuentran dispositivos de control regulatorio y adquisición de datos de proceso, pasando por los sistemas de control supervisorio, hasta llegar a los diversos sistemas de información de la empresa, que permiten optimizar, gestionar recursos y apoyar a la toma de decisiones [ISO/OSI 1994].

Sin embargo, las estrategias de tecnología de información centralizadas tienen limitaciones para dar respuesta a las necesidades actuales de la industria, debido a los retrasos en la transmisión de información y en la toma de decisiones (derivada de los múltiples niveles que existen entre el sector de toma de decisiones y el proceso productivo) y en la poca flexibilidad que tienen estas estrategias de adaptarse ante cambios en los escenarios de producción. Es así como se empieza a tener interés en arquitecturas distribuidas que provean de mayor reactividad y flexibilidad a la plataforma de automatización ante los cambios en el proceso productivo [Chacón, et al., 2003].

Este trabajo estudia el proceso integrado de adquisición y análisis de la información de producción, gestión de recursos y generación del plan óptimo de producción utilizando arquitecturas distribuidas, proceso al cual se denomina "Gerencia Integrada de Producción". Este trabajo plantea una arquitectura de inteligencia artificial distribuida para la plataforma de automatización de una industria de producción continua, basada en el concepto de Gerencia Integrada de Producción.

1.1. Descripción del Problema

A medida que ha avanzado la tecnología, los sistemas automatizados que controlan los procesos industriales han incrementado su complejidad. La información se ha convertido en uno de los activos más importantes de las empresas; cada día son mayores los requerimientos de información en todas las áreas empresariales (proceso, gestión, manejo de recursos, mercado, entre muchas otras), en la búsqueda de total visibilidad y control sobre sus procesos.

Este escenario plantea grandes exigencias para el sector de tecnología de información orientada a ambientes empresariales, porque actualmente no sólo se necesitan sistemas especializados para cada área de la empresa, sino que hace falta que todos estos sistemas se integren, para aportar una visión completa del funcionamiento de la misma. Para lograr este objetivo, es fundamental que la arquitectura de la empresa esté bien definida y que sobre la misma estén identificadas cada una de las unidades de producción y los flujos de productos e información entre ellas, a partir de una ontología de empresa clara y precisa. Además, se requiere que los flujos de trabajo cuenten con mecanismos inteligentes de automatización que optimicen la adquisición y análisis de la información del estado del proceso productivo, para lograr una visión global del mismo que habilite un proceso de toma de decisiones oportuno y acertado.

Las arquitecturas clásicas que se encuentran actualmente en las industrias se basan en esquemas jerárquicos. Sin embargo, cuando se trata de sistemas de alta complejidad y dimensión, las jerarquías hacen que los sistemas se vuelvan rígidos y poco reactivos ante los cambios que se presenten en los mismos. Este trabajo aborda el problema del manejo de la información y de la automatización de procesos de producción continua, por medio del diseño de una arquitectura de referencia basada en técnicas de inteligencia artificial distribuida.

1.2. Objetivo General

Este trabajo tiene como objetivo el diseño de una arquitectura de referencia para gestión integrada de producción en empresas de producción continua, mediante la aplicación de técnicas de Inteligencia Artificial Distribuida.

1.3. Objetivos Específicos

- Realizar un estudio del problema de gestión integrada de producción, las arquitecturas utilizadas para su automatización y las tecnologías utilizadas para esa tarea.
- Diseñar una arquitectura de referencia para la gestión integrada de procesos de producción continua.
- Definir un caso de estudio para la implantación de la arquitectura a desarrollar e implementar un experimento para probar la funcionalidad de la misma.

1.4. Alcance

Este trabajo contempla el diseño detallado de una arquitectura de referencia para la gestión integrada de producción, la cual se compone de tres capas: Capa de Conectividad, Capa de Semántica y Capa de Gestión. Además, se contempla el desarrollo de un caso de estudio que consiste en la implantación de la arquitectura diseñada en el proceso de producción de petróleo. Finalmente, se contempla el desarrollo de un experimento en el cual se demuestre la funcionalidad de la arquitectura propuesta.

1.5. Antecedentes

En la década de 1970 se inició una corriente, denominada "modelado empresarial", que intentaba describir los procesos que ocurren en una empresa y los elementos vinculados con dichos procesos. En las décadas siguientes empiezan a aparecer modelos y estándares empresariales, tales como CIMOSA¹ [CIMOSA], para representación de procesos de manufactura, el modelo ISO/OSI [ISO/OSI, 1994], PERA², de la Universidad de Purdue [Purdue University], para modelar la infraestructura de automatización industrial, y más recientemente han aparecido modelos holónicos como PROSA³ [Wins, 1999].

Las arquitecturas de automatización industrial implantadas en empresas de producción continua siguen el patrón jerárquico clásico propuesto en el modelo piramidal ISO/OSI. Sin embargo, recientes investigaciones en el área de la Inteligencia Artificial Distribuida y, en específico, del Control Distribuido Inteligente (CDI) [PABADIS, 2002] [Jennings & Bussmann, 2003][Bravo, et al., 2005][Marik & Vrba, 2005], apuntan hacia arquitecturas de carácter colaborativo, donde la autonomía y la inteligencia son implantadas en los dispositivos de campo y en las plataformas de aplicaciones, en la búsqueda de disponer de una estrategia flexible que se adapte rápidamente a los cambios en los esquemas de producción.

Hay que destacar que la mayor parte de los aportes científicos-tecnológicos en el área de CDI, están orientados a los procesos de manufactura [PABADIS, 2002][Marik & Vrba, 2005] en donde los Sistemas de Ejecución de Manufactura (MES⁴) son redimensionados como sistemas multiagentes, en los cuales los Sistemas de Planificación de Empresa (ERP⁵) juegan un papel fundamental en la planificación de la producción. En cambio, en los procesos de producción continua no es común que un sistema ERP sea el centralizador de la planificación de la producción,

¹ Computer Integrated Manufacturing Open System Architecture

² Purdue Enterprise Reference Architecture

³ Product Resource Order Staff Architecture

⁴ Manufacturing Execution Systems

⁵ Enterprise Resource Planning

y no se ven con frecuencia sistemas análogos a los MES para la programación de tareas en las instalaciones, por lo que este tipo de procesos plantean un interesante reto para el área de CDI.

Por otro lado, el avance de los modelos de automatización industrial hacia esquemas distribuidos ha sido habilitado por la evolución de las plataformas de Tecnología de Información (TI) en las últimas décadas. En las décadas 80, 90 y en la actual, las arquitecturas de TI han ido evolucionando rápidamente, desde los sistemas mainframe, pasando por el dominio de los computadores personales y aplicaciones *stand-alone*, hasta la arquitectura Cliente-Servidor, y más recientemente, la Arquitectura Orientada a Servicios (SOA⁶). Por otro lado, se ha hecho necesario que las aplicaciones y sistemas inter-operen y cooperen intercambiando información y servicios, para lograr una automatización integrada de la empresa. Además, también los dispositivos de control de procesos han ido aumentando su capacidad de procesamiento, permitiendo que puedan ejecutarse aplicaciones empresariales sobre los mismos, favoreciendo la distribución de las plataformas de TI de la empresa.

En el área de la definición de modelos de procesos de negocio también ha habido mucho interés de grupos de investigación y de las industrias de TI. En el sector de investigación se han propuesto una serie de marcos de trabajo y de lenguajes que permiten establecer los flujos de información y productos en las empresas, siendo el esfuerzo más notable el realizado en los estándares SP 88 [ISA, 1995] y SP 95 [ISA, 2000] de la ISA (International Society of Automation), y los lenguajes derivados de los mismos como B2MML⁷ [World Batch Forum, 2004] y PSLX⁸ [PSLX Consortium, 2005]. En el sector de la industria de TI se han propuestos técnicas para el análisis y modelado de procesos de negocio (BPA y BPM⁹, respectivamente), y la definición de lenguajes, en general soportados sobre XML, para la implantación de dichas técnicas, entre los que destacan el Lenguaje de Ejecución de Procesos de Negocio (BPEL¹⁰) y RossetaNET [Litchicum, 2004]. En la industria de petróleo se han realizado esfuerzos por la generación de ontologías para integración de aplicaciones especializadas, entre los cuales resaltan WITSML [POSC, 2003-2006], PRODML [POSC, 2006], y la Ontología de Petróleo y gas (OGO) [POSC].

La Gerencia Integrada de Producción, es un concepto que se introduce en este trabajo. Sin embargo, en la literatura se encuentran estudios realizados en el sector de Petróleo y Gas, definidos como Gerencia Integrada de Yacimientos, que plantean la integración de todos los sistemas de información de la empresa con el fin de obtener toda la información relacionada con el negocio, desde los datos estáticos de información geológica y petrofísica del yacimiento, hasta

⁶ Service Oriented Architecture

⁷ Business to Manufacturing Modeling Language

⁸ Planning & Schedulling Language on XML Specification

⁹ Business Process Analysis y Business Process Management, respectivamente

¹⁰ Business Process Execution Language

la información de producción en tiempo real y de gestión del negocio, con el fin de generar el plan óptimo de explotación del yacimiento [Satter & Thakur, 1994]. Es así como en diversas industrias de producción de petróleo se están llevando a cabo proyectos de desarrollo tecnológico que apuntan al concepto de Gerencia Integrada de Yacimientos, entre los que destacan el Proyecto de Integración de Operaciones en el Mar del Norte [POSC, 2009], que lleva adelante el Consejo de Investigación Científica de Noruega y Statoil®, en conjunto con múltiples empresas de servicios, y los proyectos Smart Field de Shell® [Potters & Kapteijn, 2005] y Field of the Future de BP® [Reddick, 2007][Sisk, Fanty, & Knox, 2007]. Este tipo de modelo plantea a la automatización industrial como medio para la planificación de producción y no como un fin en sí misma, idea básica del concepto de Gerencia Integrada de Producción se propone como una extensión del concepto de Gerencia Integrada de Yacimientos, para cualquier tipo de proceso de producción continua.

Este trabajo está organizado de la siguiente manera: el segundo capítulo contiene el marco teórico que fue requerido para el desarrollo de la propuesta de investigación, el tercer capítulo presenta una descripción general del diseño de la arquitectura de referencia desarrollada, en el cuarto capítulo se presenta el diseño detallado de la Capa de Semántica y en el quinto capítulo se presenta el diseño detallado de la Capa de Gestión. En el sexto capítulo se presenta un caso de estudio de la aplicación de la arquitectura al proceso de producción de petróleo. Finalmente, se presentan las conclusiones y recomendaciones derivadas del trabajo.

Capítulo II. Marco Teórico

2.1 Introducción

En esta sección se presentará una descripción de los aspectos teóricos utilizados como base para el planteamiento de este trabajo de investigación. En primer lugar, se realizará la definición de la Gerencia Integrada de Producción, concepto fundamental para la realización de este trabajo. Seguidamente, se hará una revisión de las arquitecturas de automatización industrial utilizadas para la gestión de empresas de producción; luego, se hará una revisión de las estrategias utilizadas para la integración de aplicaciones empresariales. Posteriormente, se hará una revisión del concepto de ontologías y de las tecnologías relativas a este concepto, para finalmente pasar a hacer una revisión de la teoría alrededor de los Sistemas Multiagentes e Instituciones Electrónicas.

2.2 Concepto de Gerencia Integrada de Producción

En las industrias de producción continua, uno de los problemas más importantes es la dificultad en el acceso a toda la información sobre el estado del proceso de manera oportuna, exacta e integrada. En general, para la gestión de este tipo de industrias deben trabajar coordinadamente varios departamentos, cada uno de los cuales con una visión parcial del proceso de producción. Sin embargo, para una toma de decisiones acertada y oportuna es necesario disponer de una visión global de todo el proceso productivo. En ese sentido, se han desarrollado diversas teorías para la Gerencia Integrada de Producción, también llamada Gerencia Integrada de Activos [Zhang, et al., 2006], cuyo significado agrupa un conjunto de formas de trabajo y tecnologías que permiten a todos los tomadores de decisiones disponer de la información en tiempo real del estado del activo, y trabajar en conjunto para el manejo del mismo. Un activo es el conjunto de recursos, métodos, instalaciones y demás elementos requeridos para planificar, programar, ejecutar y controlar un proceso de producción.

Para lograr el objetivo de la Gerencia Integrada de Producción, se hace necesario cumplir con lo siguiente:

 Acceder a los múltiples sistemas y aplicaciones que son fuentes de la información del estado del activo. Los diferentes departamentos en una industria de producción continua utilizan sistemas muy sofisticados que están destinados a realizar tareas específicas, pero que, en general, no se integran ni exponen sus datos a otros sistemas. Se hace necesario,

entonces, desarrollar mecanismos para extraer la información de los diferentes sistemas que sirven a dichos departamentos y hacerla disponible a otros sistemas y/o usuarios.

- 2. La información transmitida entre las diversas aplicaciones y sistemas debe estar enmarcada en un lenguaje establecido con términos inteligibles para cada una de dichas aplicaciones, esto es, debe existir un marco ontológico común para todas las aplicaciones, de forma que el intercambio de información se realice sin riesgos de interpretaciones erróneas o de pérdidas de integridad.
- 3. Los flujos de trabajo dentro de la empresa deben automatizarse para optimizar el análisis de la información de su estado y favorecer la toma de decisiones oportuna. La información del estado de los diferentes componentes de la empresa debe estar disponible para cada actor del proceso de toma de decisiones de manera oportuna y exacta, y las acciones o recomendaciones de cada actor deben poder ejecutarse en tiempo real y deben ser visibles para el resto de los tomadores de decisiones. Deben existir herramientas que permitan el análisis en tiempo real de la información, para lograr una visión global del estado de la empresa, a través de indicadores claves del proceso (KPI, por sus siglas en inglés).

Dicho todo lo anterior, podemos definir la *Gerencia Integrada de Producción* como el proceso en el cual la información acerca de todos los aspectos de la producción de la empresa es manejada integralmente para definir y actualizar continuamente el plan óptimo de producción. La Gerencia Integrada de Producción permite la reconfiguración flexible de los procesos de la empresa para adaptarlos en tiempo real a los cambios de estrategia, táctica y de condiciones de operación de la empresa.

2.3 Arquitecturas de Automatización

Se han propuesto varios enfoques para modelar la empresa desde el punto de vista de automatización y abordar así el problema de la complejidad de sus procesos, entre los cuales, el mayormente implantado es el modelo jerárquico piramidal propuesto por la ISO/OSI [ISO, 2003], que se muestra en la figura 2.1.

Fig. 2.1 Pirámide de automatización

Este tipo de arquitectura plantea una jerarquía en donde la información de proceso va desde los niveles más bajos a los más altos y las órdenes y consignas de operación van desde los niveles más altos a los más bajos. Este enfoque provee control sobre los sistemas de la empresa, ya que los subsistemas de los niveles altos definen el comportamiento de los subsistemas en los niveles de proceso. Sin embargo, este tipo de arquitecturas pueden ser extremadamente rígidas a medida que aumenta la complejidad de los procesos a automatizar.

Otro problema que se presenta comúnmente en los modelos jerárquicos, desde un punto de vista de implantación, es que los mecanismos de comunicación entre los sistemas de control y supervisión y los sistemas de gestión no son eficientes. Esto trae como consecuencia que la información que se dispone en los ambientes de gestión y toma de decisiones no es exactamente la proveniente del ambiente de operación, o no cuenta con la precisión requerida y, por otro lado, la propagación de cambios en la planificación y en las órdenes y consignas de operación no es efectiva, lo que trae como consecuencia que lo planificado no es precisamente lo que está en ejecución.

Este tipo de restricciones, presente en los modelos jerárquicos, ha generado la proposición de arquitecturas alternativas, que buscan aportar mayor flexibilidad y un mejor manejo de la información en las empresas de producción continua. Uno de estos enfoques son los modelos heterárquicos, que proponen la distribución de la inteligencia entre las diversas unidades de producción de la empresa, otorgándole a las mismas un alto grado de autonomía. Así, el control y la planificación de la producción son derivados de la negociación ente las unidades de producción, basados en los objetivos individuales de cada unidad y en los objetivos comunes entre las unidades [Chacón, et al., 2003]. La arquitectura de un modelo heterárquico se presenta en la figura 2.2.

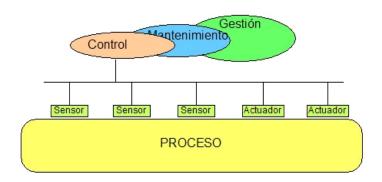


Fig. 2.2 Modelo Heterárquico

La implementación de este tipo de modelos, en general, se ha realizado a través de Sistemas Multiagentes y la incorporación de dispositivos de control local inteligentes. Sin embargo, la implantación en ambientes industriales de los modelos heterárquicos todavía es incipiente, siendo los procesos de manufactura donde mayormente se ha incursionado [PABADIS, 2002][Marik & Vrba, 2005].

La principal ventaja de la heterarquía es la flexibilidad del sistema para reaccionar y reconfigurarse antes cambios en el proceso productivo. Sin embargo, el mayor problema que se encuentra en este modelo es la posibilidad de que los sistemas se bloqueen o demoren tiempos excesivos para tomar una decisión, porque no llegan a una negociación efectiva. Esta es una de las principales limitantes para la adopción de modelos heterárquicos para procesos de producción continua, ya que en este tipo de procesos la ejecución de las actividades debe realizarse con restricciones de tiempo rígidas, porque si no se actúa de manera oportuna puede perderse el control del proceso. Es por esto que la implementación de modelos de negociación en procesos de producción continua para toma de decisiones entre las unidades de producción no es lo más adecuado, porque se puede derivar en situaciones que pongan en riesgo el proceso productivo.

Otro enfoque para el modelado de empresas es el enfoque holónico, el cual propone modelar las unidades de producción mediante un esquema común composicional, definiendo a una unidad de producción como un elemento autónomo, pero a la vez, como parte de una unidad de producción superior. Así, una planta es unidad de producción, la cual es parte de un complejo, que también es una unidad de producción, y a su vez el complejo es parte de una empresa, también modelada como una unidad de producción.

El enfoque holónico ha sido utilizado mayormente para procesos de manufactura, siendo la propuesta más relevante el modelo PROSA (Product Resource Order Staff Architecture) [Wins, 1999]. Dicho modelo consiste en una Sistema Holónico de Manufactura (HMS, por sus siglas en inglés), comprendido por tres holones básicos: Holón Orden, Holón Producto y Holón Recurso. El holón orden maneja la información de los métodos a utilizar para generar el producto del HMS, así como las metas de producción, el holón Producto maneja la información del producto a generar y el holón Recurso maneja toda la información sobre los insumos que requiere el HMS para cumplir con su meta. Un cuarto tipo de holón se prevé dentro de la arquitectura, al cual se le denomina "Staff" y tiene la función de asistir a los holones básicos en la realización de sus tareas; este holón permite adaptar la arquitectura a tipos de procesos específicos, ya que puede cumplir con tareas especializadas que no están previstas dentro de los tres holones principales, que dependerán del tipo de proceso en el que se implante la arquitectura. De esta manera, se simplifica la representación de los elementos de la empresa, ya que su arquitectura estará compuesta por los holones antes indicados. Entre los holones básicos se transmite información sobre el proceso: Entre los holones Recurso y Orden se transmite información sobre la ejecución del proceso, tales como demanda de recursos y disponibilidad de los mismos; entre los holones Recurso y Producto se transmite información sobre el proceso, tales como cantidad de productos en almacén, capacidad de producción, costos de producción; entre los holones Orden y Producto se transmite información de Producción, tal como meta y capacidades de producción. En la figura 2.3. se presenta de manera esquemática un Sistema Holónico de Manufactura (HMS).

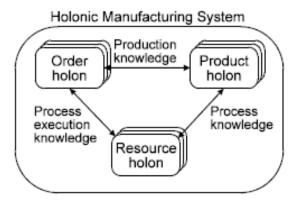


Figura 2.3. Sistema Holónico de Manufactura

Este modelo se puede considerar como un modelo heterárquico supervisado, ya que, aunque busca la distribución de la planificación y toma de decisiones entre las unidades de producción (holones), se mantiene una relación de jerarquía de las unidades más complejas a las más simples.

Los modelos holónicos buscan representar los flujos de productos e información dentro de una empresa, en el marco de la automatización industrial. Los modelos han evolucionado en la búsqueda de la definición de mecanismos para que la configuración de los sistemas de automatización industrial sea flexible y adaptable a los cambios operacionales, tácticos y estratégicos que ocurren en las empresas, para ahorrar tiempo y costos, mantener inventarios ajustados a la demanda y maximizar el uso de la plataforma instalada.

Las características de los agentes y sus arquitecturas de agentes distribuidas, hacen a la teoría de sistemas multiagentes apropiada para la implementación de sistemas holónicos. La investigación en sistemas holónicos ha estado muy relacionada con los sistemas multiagentes en la comunidad científica. De hecho, la mayoría de los casos de implantación de holarquías en empresas se han realizado mediante la implementación de SMA [Babicenau & Chen, 2006].

El enfoque presentado en este trabajo consiste en el modelado de la empresa por medio de los conceptos de holones y holarquías (a nivel ontológico) y, a su vez, plantear la implementación del modelo resultante mediante SMA.

2.4 Integración de Aplicaciones Empresariales

2.4.1 El Problema de Integración

Con el avance de la tecnología de información y de telecomunicaciones, cada día es más común encontrar dispositivos de control con alta capacidad de procesamiento, que pueden ejecutar aplicaciones complejas de control y optimización en el mismo lugar donde sucede el proceso productivo, transmitir gran cantidad de información a través de protocolos TCP/IP y publicar en la Web los datos de producción en tiempo real. Por otro lado, los requerimientos de información de las empresas se hacen cada vez más exigentes, abarcando áreas como la de adquisición y almacenamiento de información, procesamiento, transaccionalidad, inteligencia de negocios y, por supuesto, un aspecto clave, la integración e interoperabilidad entre las diversas aplicaciones existentes en la empresa. Esto plantea la necesidad de contar con una plataforma de Tecnología de Información (TI) basada en estándares abiertos y en componentes distribuidos, que permita la integración entre los sistemas de control y supervisión con los ambiente de gestión y toma de decisiones.

La industria de TI se ha avocado a la construcción de estándares y especificaciones que permitan la interoperabilidad entre los sistemas y aplicaciones de las empresas, siendo la principal especificación el Lenguaje de Enmarcado Extendido (XML: Extended Markup Language) [W3C, 1996-2003]. XML es un lenguaje de enmarcado extensible, no propietario, basado en texto, que se ha convertido en el estándar de facto para el intercambio de datos en internet, entre aplicaciones distribuidas y servicios Web. La característica central de XML es su extensibilidad, ya que XML es un metalenguaje que puede ser usado para definir marcos configurables para tipos de documentos y de archivos.

La tecnología XML busca dar solución al problema de expresar información estructurada de la manera abstracta y de la forma más reutilizable posible. Que la información sea estructurada quiere decir que se compone de partes bien definidas, y que esas partes se componen a su vez de otras partes. Entonces se tiene un árbol de pedazos de información. Estas partes se llaman elementos y se las señala mediante etiquetas.

Otras especificaciones ampliamente utilizadas en el ámbito de integración de aplicaciones empresariales son Java 2 Enterprise Edition (J2EE), Common Object Request Broker Architecture (CORBA), CORBA Component Model (CCM), Simple Object Access Protocol (SOAP), Web Services Definition Language (WSDL), Business Process Execution Language (BPEL), entre otros [Litchicum, 2004].

Mediante la implantación de estándares y especificaciones, los proveedores de tecnologías presentan soluciones a los ambientes empresariales, para proveer la infraestructura necesaria para la interoperación de las aplicaciones y el "desarrollo ágil" de soluciones de TI para la empresa. Algunas de las soluciones que han venido proponiendo los proveedores son las siguientes: Servidores de Aplicaciones, Servidores de Integración, Buses de Integración Empresariales (ESB), Suites de Plataformas de Aplicaciones (APS), etc. Las empresas usan este tipo de soluciones para implementar una infraestructura sistemática y de propósito general para aplicaciones distribuidas, conocida como Sistema Nervioso Empresarial (ENS) [Schulte, 2005].

En el área del control de procesos, también empieza a encontrarse la presencia de los estándares y especificaciones nombradas anteriormente, extendiendo el dominio de las aplicaciones empresariales a los dispositivos de control de campo.

Cómo puede verse, el avance de la tecnología de información ha ido eliminando la frontera entre el mundo de las aplicaciones empresariales y el de control de procesos, haciéndose necesaria la definición de modelos para la interoperabilidad entre todos los sistemas de la organización. En este campo todavía no se ha llegado a una madurez que permita encontrar herramientas comerciales para tal fin, sin embargo, en el área de la investigación se pueden encontrar algunos

aportes interesantes, como los lenguajes B2MML del World Batch Forum [World Batch Forum, 2004] y PSLX [PSLX Consortium, 2005], y la plataforma PABADIS [PABADIS, 2002].

Dada la complejidad presente en los sistemas de producción continua, disponer de inteligencia a nivel de los dispositivos de campo, sin contar con una arquitectura de integración que permita controlar el flujo de información y gestionar la ejecución de funciones y servicios por medio del modelaje de los objetos y de la lógica del negocio en la infraestructura de TI, terminará por volver inmanejable la arquitectura de automatización de la empresa. Es por esto que la integración de aplicaciones empresariales ha tomado gran importancia dentro de la industria, convirtiéndose en un elemento diferenciador para la productividad en las empresas. A continuación se realizara una descripción de la Arquitectura Orientada a Servicios, la cual es la estrategia utilizada como estándar para la integración de aplicaciones empresariales en la actualidad.

2.4.2 Arquitectura Orientada a Servicios (SOA: Service Oriented Architecture)

La Arquitectura Orientada a Servicios se basa en la disponibilidad de servicios que se comparten y que pueden estar distribuidos a lo largo de toda la plataforma de TI de la empresa. Estos servicios publican las funciones que ofrecen en un directorio, accesible al resto de los servicios y aplicaciones de la empresa (con los debidos niveles de autorización). Los servicios funcionan de forma auto-contenida, esto es, no requieren de otro servicio o aplicación para realizar su función, y no se construyen con el objetivo de formar parte de una aplicación mayor, sino de ofrecer una función específica; sin embargo, esto no implica que se puedan construir aplicaciones complejas a partir de la combinación de servicios. Ejemplos de servicios básicos tienen que ver con gestión de aspectos de seguridad, transaccionalidad, manejo de usuario, balance de carga, entre otros [Singh, et al., 2005] [Barry, 2003].

Normalmente, la arquitectura orientada a servicios consta de un conjunto de capas. Así, en una arquitectura orientada a servicios existe una capa de conectividad a través de la cual se accede a las diversas fuentes de datos de la empresa. Sobre la capa de conectividad se dispone de una capa de servicios compartidos, en dónde se "exponen" los diversos servicios que presta la plataforma de tecnología de información. En general, la capa de servicios compartidos consiste de un repositorio de servicios en donde están disponibles las especificaciones de dichos servicios a todos los recursos de la empresa. Para construir aplicaciones compuestas, se dispone de una capa de procesos de negocio o de orquestación, en la cual se enlazan los diferentes servicios en flujos de trabajo que permiten llevar a cabo tareas complejas. Para la interacción de las aplicaciones compuestas de servicios con el usuario, se dispone de una capa de presentación. En la figura 2.4 se puede observar un esquema de la arquitectura orientada a servicios descrita anteriormente.

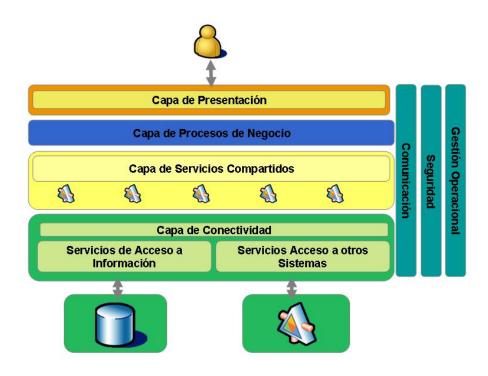


Fig. 2.4. Arquitectura SOA.

El estado del arte en este esquema de integración tiende hacia los Servicios Web, en los cuales la interacción entre servicios y en el intercambio de información se lleva a cabo a través de la Intranet (para la empresa) e Internet (entre empresas).

SOA representa una evolución en los paradigmas de programación de soluciones de TI para ambientes empresariales. Las principales características de SOA son el desacoplamiento de los servicios que presta cada componente de SW de la plataforma y la construcción de aplicaciones compuestas mediante la orquestación de dichos servicios. La arquitectura SOA permite dos cosas fundamentalmente: la distribución entre diferentes servicios de tareas asociadas a problemas complejos y la reusabilidad de los servicios para la construcción de nuevas aplicaciones. En una arquitectura orientada a servicios deben estar presentes los siguientes elementos [Sun Microsystems Learning Services., 2006]:

Servicio: una función sin estado, auto-contenida, que acepta una(s) llamada(s) y devuelve una(s) respuesta(s) mediante una interfaz bien definida. Los servicios pueden también ejecutar unidades discretas de trabajo, como serían editar y procesar una transacción. Los servicios no dependen del estado de otras funciones o procesos.

Proveedor: La función que brinda un servicio en respuesta a una llamada o petición desde un consumidor.

Consumidor: La función que consume el resultado del servicio provisto por un proveedor.

Definición del Servicio: todos los servicios deben definir cuáles son sus funciones, qué parámetros se necesitan para su ejecución, cuál es el formato de sus respuestas y los estándares de calidad con los cuales son prestados. Dicha definición se realiza a través de un lenguaje estándar, denominado "Lenguaje de Definición de Servicios Web" (WSDL, por sus siglas en inglés).

Directorio (Repositorio) de Servicios: es un repositorio en dónde se encuentra la descripción de todos los servicios provistos dentro de la plataforma. A través de este directorio, denominado "Directorio Universal de Descripción, Descubrimiento e Integración (UDDI, por sus siglas en inglés)", cualquier consumidor puede encontrar la descripción de un servicio, que aplicación lo provee y los parámetros de calidad con el que es provisto.

Estructura de Mensajes: la búsqueda, solicitud, ejecución y entrega de resultados de los servicios en una arquitectura SOA se realiza a través de mensajes que deben tener una estructura estándar, de forma de que todos los elementos de la plataforma puedan comprenderlos. Dicha estructura se realiza a través de un estándar denominado "Protocolo Simple de Acceso a Objetos (SOAP)", el cual es un formato basado en XML que las aplicaciones basadas en servicios usan para comunicarse e inter-operar sobre la Web.

En la figura 2.5 se esquematizan todos los elementos presentes en una arquitectura SOA y la forma como se interrelacionan.

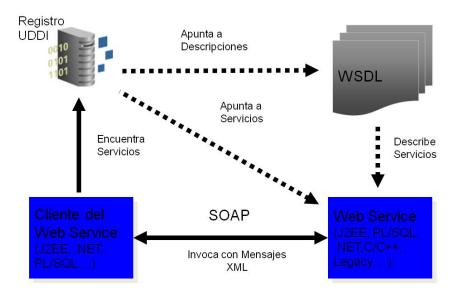


Fig. 2.5. Elementos de una Arquitectura Orientada a Servicios (SOA).

Una de las orientaciones importantes de los fabricantes de plataformas de TI en la actualidad es hacia los Servicios Web; los servidores de aplicaciones y de integración que se encuentran en el mercado cuentan con herramientas para el diseño de este tipo de servicios. Esto ha hecho que las implantaciones de SOA apunten a usar este tipo de servicios.

La adopción de SOA en ambientes de automatización industrial, apalancado por la posibilidad de alojar servicios en los propios dispositivos de control de procesos y por la necesidad de integración entre las aplicaciones de control, supervisión, gestión y toma de decisiones, parece ser una alternativa para diseñar soluciones flexibles y de alto desempeño. Esta solución permite hacer disponible la información en tiempo real en todos los niveles de la empresa y facilita la toma de decisiones acertada y oportuna en aras de maximizar la producción, reducir costos y minimizar el impacto al ambiente. Sin embargo, uno de los restos más importantes es incorporar inteligencia a la plataforma de aplicaciones, lo cual SOA no resuelve por sí sola. En este trabajo se presentará una propuesta para, utilizando conceptos de SOA, definir una arquitectura para la automatización de procesos empresariales que involucre mecanismos inteligentes para la adquisición, procesamiento y análisis de la información de proceso y para la optimización del proceso de toma de decisiones.

2.5 Ontologías

2.5.1 Concepto de Ontología

Una ontología es una representación compartida, o un modelo de datos común, de un conjunto de conceptos en un dominio y de las relaciones entre ellos. Una ontología se utiliza comúnmente para resolver dos problemas fundamentales en grandes empresas: la integración de información y la gestión del conocimiento [Soma, et al., 2008]. El problema de integración de información se presenta cuando sistemas y bases de datos diferentes presentan y almacenan la información de distintas formas. Estas diferencias no son solamente sintácticas, es decir, el uso de diferentes tecnologías (XML, RDBMS, Orientación por Objetos, etc.) para representar la información, sino también semánticas, ya que los nombres o la codificación de los datos entre diferentes fuentes se realiza de forma diferente. Este tipo de problemas puede ser resuelto eficientemente a través de la definición de una ontología.

Una ontología puede ser utilizada para gestionar conocimiento dentro de una empresa, ya que permite realizar tareas, tales como comprensión y transmisión de la información y conocimiento presentes en la plataforma de tecnología de información de la empresa. Un almacén de datos, el cual contiene las instancias de los conceptos definidos en una ontología, se denomina *base de conocimiento*. La ontología puede ser considerada el *esquema* de una base de conocimiento.

En los años recientes, las ontologías han sido adoptadas en muchas comunidades científicas y de negocios, como una forma de compartir, reutilizar y procesar dominios de conocimiento. Las ontologías son ahora centrales para muchas aplicaciones, tales como portales de conocimiento científico, sistemas de integración y gestión de información, comercio electrónico y servicios web semánticos [Stanford University, 2009].

2.5.2 Estructura de las Ontologías

Desde el punto de vista de la Inteligencia Artificial, las ontologías permiten definir un vocabulario con lógica. El conocimiento en las ontologías se formaliza a través de seis componentes: clases, atributos, relaciones, funciones, axiomas e instancias [Muñoz & Aguilar, 2007]:

- Las clases o conceptos en la ontología se organizan normalmente en taxonomías.
- Los atributos representan la estructura interna de los conceptos. De acuerdo a su origen, se clasifican en específicos y heredados. Los específicos son los propios del concepto al que pertenecen, y los heredados vienen dados por las relaciones taxonómicas en las que el

concepto desempeña el rol de hijo, y por tanto, hereda los atributos del padre. Los atributos se caracterizan por el dominio en el cual pueden tomar valor.

- Las **relaciones** representan la interacción y enlace entre los conceptos de un dominio. Ejemplos son: "subclase de", "parte-de", "conectado-a".
- Las **funciones** son un tipo concreto de relación, donde se identifica un elemento mediante el cálculo de una función que considera varios elementos de la ontología. Por ejemplo, pueden aparecer funciones como asignar-fecha.
- Los axiomas son teoremas que se declaran sobre relaciones que deben cumplir los elementos de la ontología. Los axiomas permiten inferir conocimiento que no esté indicado explícitamente en las relaciones entre los conceptos.
- Las **instancias**, son las ocurrencias en el mundo real de los conceptos. En una instancia, todos los atributos del concepto tienen asignado un valor concreto.

2.5.3 Lenguajes para Especificación de Ontologías

Los lenguajes más utilizados para las especificaciones de ontologías se basan en XML, del cual existen varias especializaciones, entre los cuales encontramos el "Marco de Descripción de Recursos (RDF)" [W3C, 2004] y el "Lenguaje Web de Ontologías (OWL)" [W3C, 2004]. A continuación se realiza una descripción de estos lenguajes.

2.5.3.1 RDF

El Marco de Descripción de Recursos (RDF, del inglés Resource Description Framework) es una especificación del Word Wide Web Consortium (W3C), originalmente diseñada como un modelo de metadata, pero que ha sido utilizado como un método general para modelado de información. La unidad básica para la representación de datos en RDF es una "declaración" o tripleta, la cual tiene la forma sujeto-predicado-objeto. Un conjunto de declaraciones relacionadas conforman un grafo RDF (ver fig. 2.6). Aunque un grafo RDF puede ser codificado en diferentes formas, la más común es a través de un documento XML, usando una convención bien definida [Soma, et al., 2008]. Los conceptos claves de la especificación RDF son:

Grafo del Modelo de Datos: la estructura de cualquier expresión en RDF es una colección de tripletas, cada una consistente de un sujeto, un predicado (también llamado propiedad) y un objeto, tal y como se muestra en la figura 2.6.

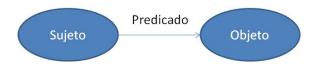


Fig. 2.6. Grafo RDF

Un conjunto de estas tripletas es considerado un grafo RDF. Cada tripleta representa una declaración de una relación entre las cosas denotadas por los nodos (Sujeto y Objeto) y sus vínculos (Predicado). En una tripleta RDF se afirma que existe una relación, indicada por el predicado, mantenida entre las cosas denotadas por el sujeto y el objeto de la tripleta.

Vocabulario basado en URI: en una especificación de una ontología a través de RDF, los nodos de las tripletas generalmente hacen referencia a direcciones URI (Uniform Resource Identifiers). En el caso que el concepto no se corresponda a una dirección URI, el mismo debe estar definido de manera literal sobre el documento RDF.

Tipos de datos (Datatypes): los tipos de datos (datatypes) son usados en RDF en la representación de valores, tales como enteros, números reales y fechas. La definición de datatypes en RDF puede realizarse a través de la invocación de XML Schema Datatypes.

Literales: los literales son usados para identificar valores, tales como números y fechas por medio de una representación léxica. Un literal puede ser el objeto de una declaración RDF, pero no puede ser el sujeto o el predicado.

Expresión de hechos simples: los hechos en RDF son representados como la relación entre dos cosas, la cual se establece a través de una tripleta sujeto-predicado-objeto.

Implicación: una expresión RDF A se dice que implica otra expresión B si es posible el arreglo de cosas en el mundo tal que si A es cierto entonces B es cierto. En ese sentido, si la certeza de A es presumida o demostrada, entonces la certeza de B puede ser inferida.

La especificación completa de RDF puede encontrarse en [W3C, 2004].

2.5.3.2 OWL

El Lenguaje de Ontologías Web (OWL) es un lenguaje de enmarcado semántico para publicar y compartir ontologías a través de la World Wide Web. OWL está desarrollado como una extensión de vocabulario de RDF, mejorando su expresividad mientras asegura que la complejidad computacional del lenguaje sea razonable.

El lenguaje OWL está diseñado para ser usado por aplicaciones que necesitan, además de mostrar información a los usuarios, procesar el contenido de la información. OWL facilita una mayor interpretabilidad de los contenidos Web que aquellos soportados por XML y RDF, proveyendo vocabulario adicional a través de una semántica formal.

Una ontología OWL puede incluir descripción de clases, sus propiedades y sus instancias. Dada una ontología, la semántica formal de OWL especifica cómo se derivan sus consecuencias lógicas, es decir, hechos que no están presentes literalmente en la ontología, pero que están implícitos en la semántica. Estas implicaciones pueden estar basadas en un solo documento, o en múltiples documentos distribuidos que han sido combinados utilizando mecanismos de OWL definidos.

La especificación completa de OWL puede encontrarse en [W3C, 2004].

2.5.4 Implementación

Existen varias herramientas que permiten el desarrollo de ontologías, pero la más utilizada es la herramienta Protégé®, desarrollada por la Universidad de Stanford [Stanford University, 2009]. Dicha herramienta permite el desarrollo de ontologías a partir de utilidades gráficas y usa los lenguajes de especificación de ontologías RDF u OWL.

Protégé es una plataforma de código abierto, que provee una suite de herramientas para construir modelos de dominio y aplicaciones basadas en conocimiento, a través de ontologías. Protégé implementa un rico conjunto de estructuras y acciones de modelado de conocimiento que soportan la creación, visualización y manipulación de ontologías en varios formatos de representación. Protégé soporta dos formas para modelar ontologías:

- El editor Protégé-Frames, el cual permite a los usuarios especificar y completar ontologías que tienen un marco de referencia, en concordancia con el Protocolo de Conectividad Abierta de Bases de Conocimiento (OKBC).
- El editor Protégé-OWL, el cual permite al usuario construir ontologías para la Web Semántica, en particular en lenguaje OWL.

En Protégé pueden definirse los conceptos de la ontología de manera gráfica y establecer las relaciones entre los mismos a través de propiedades. Además, Protégé provee mecanismos de validación de las ontologías, que garantizan que las ontologías desarrolladas tengan coherencia. Una vez definidas las ontologías, las mismas pueden ser almacenadas en diferentes formatos, tales como RDF u OWL.

Protégé permite, adicionalmente, importar ontologías previamente definidas a una ontología en construcción, ya sea que las mismas estén almacenadas en un archivo o se puedan acceder a través de una dirección URL.

2.5.5 Especificaciones de Ontologías para Ciencia e Ingeniería

Entre las especificaciones de ontologías más importantes desarrolladas para los campos de ciencia e ingeniería se pueden nombrar: la "Semántica Web para la Terminología de Ciencias de la Tierra y del Ambiente (SWEET)" [NASA. Jet Propulsion Laboratory. California Institute of Technology, 2009], la "Ontología de Petróleo y Gas (Oil & Gas Ontology)" [POSC], "WITSML" [POSC, 2003-2006] y "PRODML" [POSC, 2006].

A continuación se realizará una descripción de estas especificaciones.

2.5.5.1 SWEET

SWEET es un conjunto de ontologías desarrolladas por la NASA para soportar sistemas de ciencias de la tierra y del ambiente. Aborda temas que van desde la geología, estudios del clima y biología, hasta las diversas áreas de la ingeniería. Las ontologías SWEET incluyen varios miles de términos, abarcando una amplia extensión del sistema de ciencias de la tierra y sus conceptos relacionados, usando lenguaje OWL [NASA. Jet Propulsion Laboratory. California Institute of Technology, 2009].

Para soportar una gran cantidad de conceptos, los mismos se dividen en dimensiones ortogonales o "facetas". Las ontologías principales disponibles en SWEET se exponen en la figura 2.7.

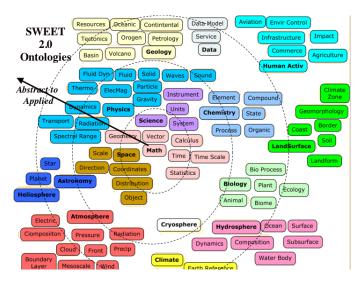


Fig. 2.7. Principales Ontologías SWEET

Cada cuadro representa una ontología diferente y una línea de conexión entre ellas indica una propiedad definida para relacionar conceptos entre las diferentes ontologías.

En las siguientes figuras se presentan, a manera de ejemplo, un concepto de la ontología "HumanInfrastructure" de SWEET.

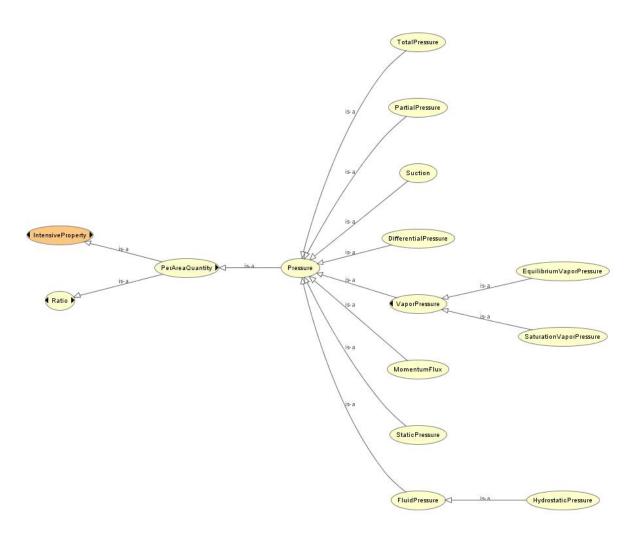


Fig. 2.8. Concepto Presión, ontología "Human Infrastructure" SWEET

Como se puede observar en la figura 2.8, se define el concepto "Presión", el cual es derivado de los conceptos "Cantidad por Área", "Propiedad Intensiva" y "Radio" de la ontología. Así mismo, existen una serie de conceptos derivados del concepto "Presión": "Presión Total", "Presión Parcial", "Succión", "Presión Diferencial", "Presión de Vapor", "Presión Estática", "Presión de

Fluido". De esta manera, la ontología va creando un árbol de relaciones entre conceptos para un dominio definido.

Las ontologías SWEET han sido desarrolladas con Protégé y pueden descargarse desde http://sweet.jpl.nasa.gov/sweet.

2.5.5.2 Ontología de Petróleo y Gas

La Ontología de Petróleo y Gas es una metodología para la integración de datos entre disciplinas y fases relacionadas con la producción de petróleo y gas, la cual ha sido documentada en el estándar ISO 15926: "Integración del ciclo de vida de los datos para procesos incluyendo facilidades de producción de petróleo y gas" [ISO 15926, 2003]. Dicha ontología conforma la base para una integración de datos consistente entre los diferentes dominios de la producción de petróleo y gas. La metodología descrita en el estándar ISO 15926 ha sido utilizada en distintos proyectos del Consejo de Investigación de Noruega [Hydro, 2007] [The Norwegian Oil Industry Association (OLF), 2008], los cuales han sido fundamentales para la extensión de la ontología en diversos dominios, tales como perforación, desarrollo y operaciones de producción. Además, se han desarrollado servicios Web basados en dicha Ontología. La Ontología de Petróleo y Gas puede ser expresada en diferentes tecnologías, tales como EXPRESS (ISO), SQL, XML, RDF y OWL.

A través del uso del ISO 15926, es posible crear ontologías derivadas de las terminologías en uso en la industria de producción, para:

- Realizar integración de datos a través de diferentes dominios de negocio.
- Crear una arquitectura para Servicios Web.
- Incluir razonamiento como parte de la ontología, para la creación de soluciones autónomas.
- Incluir la incertidumbre como parte de la ontología para manejar riesgos.
- Crear marcos de referencia (meta data) para ser usados en una compañía o entre compañías.

La Ontología de Petróleo y Gas está compuesta por una jerarquía de clases y relaciones, que derivan de una clase primaria denominada "thing". Todos los elementos de la ontología se derivan de esta clase y se pueden clasificar como individuos posibles (posibles_individual) u objetos abstractos (abstract_object). Los individuos posibles representan un objeto que existe en el espacio y en el tiempo; en cambio, los objetos abstractos no existen ni en el espacio ni en el tiempo, sino que representan un concepto. A partir de estos elementos principales, se deriva una jerarquía de elementos que pueden ser utilizados para instanciar ontologías para dominios específicos en la industria de petróleo y gas.

En la figura 2.9 se presenta un esquema propuesto por la Asociación Noruega de Industria de Petróleo (OLF) para la construcción de ontologías utilizando el estándar ISO 15926 [The Norwegian Oil Industry Association (OLF), 2008].

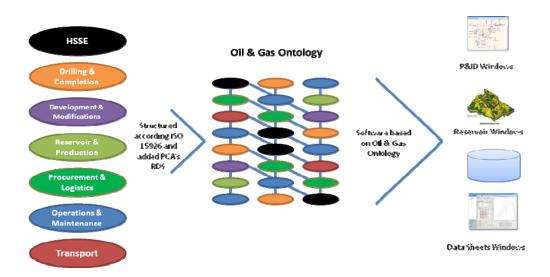


Fig. 2.9. Esquema de construcción de ontologías de Petróleo y Gas con ISO 15926

2.5.5.3 WITSML

El WITSML (Wellsite Information Transfer Standard Markup Language) [POSC, 2003-2006] es un estándar para enviar información en formato XML, desde un pozo petrolero hacia las aplicaciones de negocio de una industria de producción de petróleo. WITSML, propuesto por POSC (Petrotechnical Open Standard Consortium), es ampliamente utilizado para transferir información captada durante la perforación de pozos petroleros. El esquema de datos de WITSML consiste en un conjunto de objetos de datos independientes, pero integrables. Un esquema de objeto de datos define un conjunto de datos que pueden ser transmitidos en un documento XML simple y que representan un componente (por ejemplo: completación, cabezal de pozo, etc.) de un esquema lógico global de un determinado dominio (por ejemplo, pozo). Los esquemas de objetos de datos contienen atributos y elementos, e incluyen sub-esquemas.

WITSML es una especificación que se utiliza ampliamente en las empresas petroleras para transmitir datos desde los taladros de perforación hacia las bases de datos y sistemas de producción.

2.5.5.4 PRODML

El estándar PRODML (Production XML) es una iniciativa de Energistics¹¹ (asociación dedicada a la definición de estándares para la industria de energía), y un conjunto de empresas de producción

¹¹ Energistics. www.energistics.org. Antigua POSC.

de petróleo y de empresas de servicios para la industria petrolera, orientado a soportar el intercambio de datos entre aplicaciones y almacenes de datos utilizados en ambiente de oficina en empresas de producción de petróleo. El estándar hace énfasis en las operaciones de tiempo real, esto es, se enfoca principalmente en los sistemas de adquisición y almacenamiento de variables de producción y en las aplicaciones de optimización.

PRODML se enfoca en flujos de trabajo de producción desde el cabezal de pozo hasta el punto de transferencia de custodia y en la toma decisiones de optimización de producción que se toman con frecuencia diaria. Este estándar es una extensión de WITSML.

PRODML define, en primer lugar, una jerarquía para describir los objetos de negocio de la empresa. La jerarquía se compone de tres elementos fundamentales: la unidad, la red y el modelo. La unidad se define como cualquier elemento del objeto a modelar que capte o derive información. Para la recepción y entrega de información, cada unidad contiene puertos que representan los elementos de medición dentro de los objetos modelados. La red es una colección de unidades interconectadas; cuando existen conexiones "muchos a muchos" entre unidades, se definen nodos en los cuales confluyen varios puertos. Finalmente, el modelo es la representación del objeto de negocio, el cual está compuesto por una o más redes. Un esquema de la jerarquía de elementos que componen PRODML se expone en la figura 2.10.

Fig. 2.10. Jerarquía PRODML

PRODML define también flujos de trabajo que representan el comportamiento del flujo de información y productos entre diversos objetos de negocio. Estos flujos de trabajo, típicamente están asociados a:

Uso de almacenes de datos históricos por las aplicaciones de optimización.

- Uso de modelos para inferir si los datos no han sido medidos o son "no medibles"
- Uso de series de datos para análisis y modelado, incluyendo predicción.
- Manejo de alarmas de producción basadas en objetivos y atadas al manejo de excepciones.
- Integración de la programación de trabajos a pozos, pruebas de pozos y niveles de tanques.

En PRODML se han diseñando progresivamente objetos de negocio y flujos de trabajo correspondientes a la optimización en la producción de crudo, entre los que destacan: pozos, estaciones de flujo, múltiples de gas lift, válvulas, separadores, como objetos de negocio, y pruebas de pozo, separación e inyección de gas lift, como flujos de trabajo.

2.6 Sistemas Multiagentes e Instituciones Electrónicas

2.6.1 Agentes Inteligentes

La Gerencia Integrada de Producción implica manejar grandes volúmenes de datos sobre el estado de la empresa, ya sean datos de producción en tiempo real, información histórica, modelos procesos, información económica o información de mantenimiento. Para analizar y procesar estos datos debe disponerse de sofisticados mecanismos de filtraje, reconocimiento de patrones, sistemas de alarmas y sistema de automatización de toma de decisiones. La complejidad de los flujos de trabajo involucrados en la operación de una empresa de producción continua requiere que la plataforma informática de dicha empresa esté integrada, tanto a nivel de datos, como a nivel de flujo de trabajo. Por otro lado, dado que se requiere tomar acciones oportunas sobre la operación de cada uno de los componentes del proceso productivo, se necesita la disponibilidad de sistemas computacionales inteligentes que puedan automatizar el proceso de toma de decisiones y que puedan detectar patrones de comportamiento que permitan la detección incipiente de situaciones anormales.

Los sistemas autónomos y, en particular los sistemas multiagentes, cumplen con las características planteadas anteriormente. Los sistemas multiagentes son una clase de sistemas computacionales capaces de tomar acciones de forma autónoma para alcanzar sus objetivos. Los agentes de software son capaces de decidir por sí mismos qué hacer en una determinada situación. Los agentes mantienen información acerca de su entorno y toman decisiones en función de su percepción del estado de dicho entorno, sus experiencias anteriores y los objetivos que tienen planteados. Además, los agentes pueden comunicarse con otros agentes para colaborar y alcanzar objetivos comunes.

Los sistemas multiagentes han tenido aplicaciones interesantes en el mundo industrial, por ejemplo, en la industria de petróleo se ha utilizado para el manejo de información en flujos de

trabajo para manejo de portafolios de ventas de crudo y manejo de terminales de embarque [Olmheim, et. al, 2008].

2.6.2 Definición de Agente

La teoría de agentes puede ser vista como una evolución de la inteligencia artificial en la búsqueda de aportar autonomía a los sistemas computacionales. De hecho, aun cuando la definición de agente ha sido motivo de un amplio debate entre la comunidad de investigación de la Inteligencia Artificial Distribuida (IAD), existe el acuerdo de que la autonomía es la característica principal que describe un agente, entendiendo como autonomía la capacidad del agente de actuar sin la intervención de un usuario o de otro sistema. Una definición de agente ampliamente aceptada es: "Un agente es un sistema computacional que está situado en un ambiente, y que es capaz de tomar acciones autónomas en ese ambiente con el fin de cumplir sus objetivos de diseño" [Weiss, 1999]. Otra definición de agente encontrada en la literatura es la siguiente: "un objeto activo, un objeto con un estado mental", que posee capacidades cognitivas y un comportamiento social [Shoham & Tennenholtz, 2005]. Cada agente posee una serie de propiedades, entre las que se cuentan autonomía, movilidad, racionalidad, reactividad, sociabilidad y pro-actividad.

2.6.3 Estructura de un agente

En términos matemáticos, se puede decir que el comportamiento de un agente viene dado por la función del agente, que proyecta una percepción dada en una acción, la cual se implementará por medio del programa del agente [Russell & Norvig, 2004]. Los agentes reciben una serie de entradas, las cuales les dan una percepción de su ambiente. La secuencia de percepciones de un agente refleja el historial completo de lo que el agente ha recibido. En general, un agente tomará una decisión en un momento dado dependiendo de la secuencia completa de percepciones hasta ese instante. El efecto del agente en un ambiente es considerado dependiente de la historia de dicho ambiente, en otras palabras, el próximo estado del ambiente no sólo está determinado por la acción ejecutada por el agente y el estado actual del mismo si no por lo que ha ocurrido en el ambiente anteriormente; esto implica que el agente actúa en un ambiente no-determinístico, ya que existe cierto grado de incertidumbre sobre el efecto de las acciones que tome en un estado dado [Wooldridge, 2002].

Un agente tiene una *medida de rendimiento*, la cual es el conjunto de criterios que determinan el éxito en el comportamiento del agente. Un agente situado en un medio, genera una secuencia de acciones de acuerdo a las percepciones que recibe. Esta secuencia de acciones hace que su medio pase por una secuencia de estados. Si la secuencia de estados es la deseada, entonces el agente habrá actuado correctamente y su medida de rendimiento será alcanzada.

Los agentes pueden estar dotados de mecanismos de razonamiento que les permiten abordar situaciones de manera inteligente y evolucionar por medio de la experiencia. En ese caso, los

agentes se denominan "agentes inteligentes". Un agente racional o agente inteligente puede ser descrito como [Russell & Norvig, 2004]:

"En cada posible secuencia de percepciones, un agente racional deberá emprender aquella acción que supuestamente maximice su medida de rendimiento, basándose en las evidencias aportadas por la secuencia de percepciones y el conocimiento que el agente mantiene almacenado".

Existen diversas arquitecturas de agentes, entre la que destacan [Weiss, 1999]:

Agentes puramente reactivos: estos agentes basan su decisión en el presente, sin revisar los eventos pasados. Los mismos simplemente responden directamente ante eventos en su ambiente.

Fig. 2.11. Arquitectura de un Agente Reactivo

Agentes con estados: estos agentes tienen una estructura interna que es usada para guardar información acerca de su estado interno actual y de sus estados pasados. El agente toma su próxima acción no solo en base de la percepción del ambiente en el momento presente, sino en función de sus estados pasados.

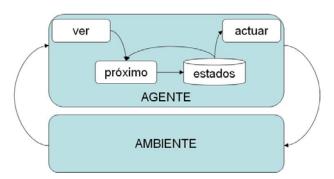


Fig. 2.12. Arquitectura de un Agente con Estados

Agentes con arquitectura basada en lógica: esta arquitectura se basa en la representación simbólica del ambiente y del comportamiento deseado de los agentes, y en la manipulación sintáctica de dicha representación. En este tipo de arquitectura se ven los agentes como "probadores de teoremas". Los mecanismos de actuación de los agentes están basados en formulas lógicas (lógica de predicados) y la toma de decisiones es vista como una deducción.

Agentes con arquitectura BDI: Estos agentes contienen tres componentes importantes: Creencias (Beliefs), Deseos (Desires) e Intenciones (Intentions). Las *creencias* representan el conocimiento del agente acerca del estado del mundo. Qué es lo que el agente cree que es cierto acerca del mundo. Los *deseos* son en lo que quiere el agente que se convierta el mundo. Las *intenciones* son las metas que se fija el agente para cumplir sus deseos, dadas sus creencias. La figura 2.13 muestra una arquitectura de Agentes BDI.

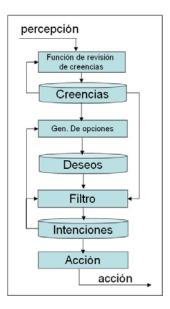


Fig. 2.13. Arquitectura de Agentes BDI

Agentes con arquitectura por capas: se hace una descomposición del agente en capas, para separar los comportamientos reactivos y pro-activos. La descomposición horizontal sugiere que todas las capas del agente están conectadas a la función de percepción y al mecanismo de acción del agente y cada una de las capas se puede activar según la entrada que perciba el agente del ambiente. La descomposición vertical sugiere que la conexión entre la percepción y la acción debe pasar por varias capas, esto es, que existe una activación sucesiva de capas para la definición de la acción que realizará el agente. La figura 2.14 muestra una arquitectura de agentes por capas horizontal y la figura 2.15 muestra una arquitectura de agentes por capas vertical.

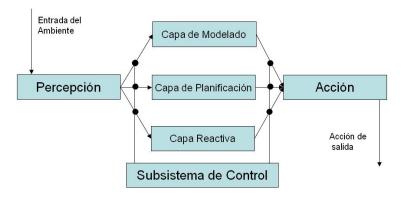


Fig. 2.14. Arquitectura de Agentes por Capas (Horizontal)

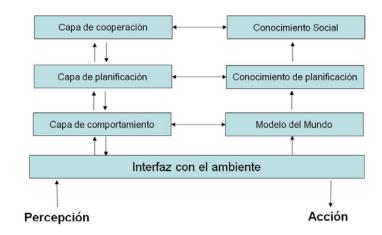


Fig. 2.15. Arquitectura de Agentes por Capas (Vertical)

2.6.4 Sistemas Multiagentes

Los sistemas multiagentes (SMA) son sistemas que describen a los agentes en un entorno social, en el cual dichos agentes cooperan para lograr tanto sus metas individuales como las metas colectivas de la comunidad multiagentes. Un SMA posee un lenguaje de agente que permite que los agentes se relacionen para ofrecer o solicitar la ejecución de tareas del SMA. Algunas características básicas de los SMA son: cada agente tiene una visión limitada del estado del mundo, no hay control global, la data es descentralizada y el cómputo es asincrónico [Bigus & Bigus, 2001].

Un SMA debe resolver dos problemas fundamentales para garantizar su funcionamiento: Comunicación y Coordinación [Weiss, 1999].

- Para que los agentes puedan comunicarse entre sí deben cumplirse una serie de condiciones: deben hablar el mismo idioma, deben estar de acuerdo en el significado de los mensajes y deben comunicarse con un determinado orden (no deben tratar de hablar uno sobre otro).
 - En los lenguajes de agentes (como en el lenguaje natural) existe un nivel básico del lenguaje que determina el formato y la sintaxis del mensaje y un nivel más profundo que determina el significado o semántica del lenguaje. Así, además de hablar el mismo lenguaje los agentes deben estar de acuerdo en el significado de los mensajes en el contexto o ambiente donde se desenvuelven. Para ello, se define un vocabulario compartido entre los agentes, donde las palabras tienen un significado determinado en el contexto; a este vocabulario se le llama *ontología*.
 - La comunicación entre agentes se basa en el intercambio de mensajes, los cuales consisten en un "acto de habla", que es una partícula de lenguaje que permite al agente establecer la intención del mensaje (informar, solicitar acción, solicitar información, etc.), y un contenido del mensaje que contendrá la información enviada por el agente, representada en los términos de su ontología.
- Para definir el comportamiento de los agentes dentro del SMA y permitir que los mismos colaboren para cumplir con un objetivo común, se deben disponer de protocolos que permitan establecer las responsabilidades o compromisos adquiridos por los agentes del SMA y sus interrelaciones. Ejemplos de las actividades de los protocolos de coordinación son: entrega a tiempo de información a otros agentes, asegurar sincronía en las acciones cuando sea necesario, entre otras cosas. Existen mecanismos de coordinación reactivos, de planificación centralizada y de planificación distribuida, entre otros, que permiten a los agentes resolver conflictos, negociar objetivos individuales y generales, colaborar, en función de lograr cumplir una meta común [Weiss, 1999]. Entre los protocolos más utilizados para la coordinación en SMA se pueden nombrar el de Solicitud (Request), Consulta (Query), Redes de Contrato (Contract-Net), Subasta Inglesa (British Auction) y Subasta Holandesa (Dutch Auction) [Foundation for Intelligent Physical Agents, 1996-2002].

2.6.5 FIPA

En la comunidad científica se han realizado esfuerzos para estandarizar la forma en la que se diseñan y construyen agentes y SMA. En 2002 se estableció la Fundación para los Agentes Físicos Inteligentes (FIPA), la cual es una organización de la Sociedad de Computación de la IEEE, que promueve la tecnología basada en agentes y la interoperabilidad de los agentes desarrollados con diferentes tecnologías.

La FIPA ha desarrollado una serie de especificaciones, las cuales son una colección de estándares que intentan promover la interoperabilidad entre agentes heterogéneos y los servicios que ellos pueden representar. Entre las especificaciones desarrolladas por la FIPA se encuentran: marcos arquitectónicos para SMAs, protocolos de comunicación, lenguajes de contenido, mecanismos de gestión e implantación de SMAs, estándares de calidad de servicio, entre otras. Las especificaciones FIPA son aceptadas como estándares en la comunidad científica y en ellas están basadas las principales plataformas para el desarrollo de SMAs.

2.6.6 Instituciones Electrónicas

2.6.6.1 Definición de Institución Electrónica

Las Instituciones Electrónicas [Esteva, et al., 2001] [Noriega, et al., 2002] [Sierra, 2004][García-Camino, et al. 2005] son una especialización de los sistemas multiagentes, propuesta por el Instituto de Investigación en Inteligencia Artificial de Barcelona (IIIA-CSIC). Esta teoría define el comportamiento de los SMA en base a normas sociales, emulando el comportamiento de los humanos en las instituciones sociales.

Las instituciones electrónicas (IEs) dan forma a SMAs que restringen el comportamiento de los agentes, para asegurar la interacción de los mismos en condiciones seguras. Las IEs restringen el comportamiento de los agentes, definiendo una secuencia lógica de interacciones dialógicas que los agentes pueden mantener para alcanzar sus metas [García-Camino, et al., 2005]. De esta forma, se sigue aprovechando el comportamiento emergente de los agentes (dada su autonomía), pero se restringe su acción a un entorno de comportamiento seguro en donde se definen roles y reglas que están orientadas a alcanzar las metas del sistema, emulando el comportamiento social de los seres humanos en cualquier institución de la sociedad.

2.6.6.2 Estructura de una Institución Electrónica

Para la creación de una IE se requiere de los siguientes elementos [IIIA-CSIC eMarkets Group UTS]:

Marco de diálogo: define los actos de habla válidos para la interacción entre los agentes que pertenecen a la IE y la ontología particular de una IE. A estos actos de habla se les denomina "ilocuciones" y se definen como:

i(speaker; hearer;Φ; t)

Donde,

i: formula ilocutoria (estructura de interacción)

Speaker: emisor del mensaje

Hearer: receptor del mensaje

Φ: contenido del mensaje

t: tiempo

El marco de diálogo se define como una tupla:

$$DF = (O; L; I; RI; RE; Rs);$$

Donde,

O: ontología del dominio de la IE;

L: lenguaje de contenido que expresa la información intercambiada entre agentes;

I: conjunto de partículas de ilocusión (actos de habla válidos para la comunicación entre los agentes de la IE);

RI: conjunto de roles internos (roles que pueden tomar los agentes que involucran tareas regulatorias internas de la IE);

RE: conjunto de roles externos (roles que pueden tomar los agentes que participan en la institución, pero que no tienen ninguna función regulatoria dentro de la misma);

RS: conjunto de relaciones entre roles.

Estructura performativa: es la composición de múltiples, distintas y posiblemente concurrentes actividades de diálogo, cada una envolviendo diferentes grupos de agentes jugando diferentes roles. Una actividad de dialogo sirve para establecer los modos de interacción entre los agentes dentro de la institución.

La estructura performativa de una IE se compone de escenas y transiciones. Una escena es una tupla:

$$s = (R; DF_S; W; w_0; W_f; (WA_r)_{r \in R}; (WE_r)_{r \in R}; \Theta; \lambda; min; max)$$

Donde,

R: conjunto de roles involucrados en la escena;

DF_S: marco de diálogo utilizado en la estructura performativa;

W: conjuntos de estados de la escena;

w₀: estado inicial;

W_f: conjunto de estados finales;

 $(WA_r)_{r \in R}$: conjunto de estados accesibles por el rol r

 $(WE_r)_{r \in R}$: conjunto de estados de salida del rol r

O: conjunto de ejes entre estados (ejes que unen pares de estados)

λ: función de etiquetado, que permite asignar una etiqueta a un arco que une dos estados

 $(min)_{r \in R}$, $(max)_{r \in R}$: mínimo y máximo número de agentes que pueden tomar el rol r

Escena: una escena está definida por un protocolo que establece las interacciones posibles entre los diferentes agentes que actúan en ella. Mientras una escena define un ambiente de diálogo particular, las relaciones temporales, causales y de otro tipo de contenido entre escenas, están expresadas en un tipo particular de escenas llamadas transiciones. Las interrelaciones entre escenas y transiciones son capturadas por la estructura performativa.

PS = (S; T;
$$s_0$$
; s_Ω ; E; f_L ; f_T ; f_E^O ; C; ML; μ)

Donde,

S: conjunto de escenas;

T: conjunto de transiciones entre escenas;

s₀: escena inicial;

 s_{Ω} : escena final;

 $E: E^{I} \cup E^{O}$ conjunto de identificadores de arcos, donde E^{I} es el conjunto de arcos de escenas a transiciones y E^{O} es el conjunto de arcos de transiciones a escenas

 f_L : representa la etiqueta del arco, mapea cada arco a un par compuesto de la variable del agente y el identificador del rol;

 f_T : mapea cada transición a su tipo; las transiciones puede ser de tipo "AND" cuando todos los agentes que concurren a una transición deben llegar a la misma (estar sincronizados) para poder salir de ella y los mismos siguen todos los caminos de salida, del tipo "OR", cuando los agentes que entran a la transición siguen alguno de los caminos de salida, y "XOR", cuando los agentes que entran a la transición pueden elegir tomar alguno de los caminos de salida, de manera exclusiva.

f ^O_E: mapea cada arco a su tipo (one, some, all or new); los tipos de arco son: "One", que significa que el agente entra a una de las escenas existentes, "Some", que significa que el agente puede entrar a varias de las escenas existentes, "All", que significa que el agente entra a todas las escenas existentes, y "New" que significa que se crea una nueva ocurrencia de la escena cuando ingresa el agente.

C: mapea cada arco a una expresión booleana de un meta-lenguaje que representa las restricciones que deben ser satisfechas por un agente para atravesar el arco

ML: meta-lenguaje utilizado para definir las restricciones y normas para el comportamiento de los agentes en las escenas.

μ: estados en la que la escena puede ser múltiplemente instanciada, en tiempo real o no.

Normas y compromisos: son aquellos actos de habla pertenecientes a la estructura performativa de la institución, que establecen obligaciones socialmente vinculantes y cuyo cumplimiento está garantizado dentro de la institución [García-Camino, et al., 2005].

La estructura regulatoria de una IE es un flujo de trabajo (estructura performativa) de protocolos multiagentes (escenas), en conjunto con una colección de reglas normativas que pueden ser disparadas por acciones de los agentes (actos de habla).

Las normas definen las consecuencias de las acciones de los agentes dentro de la institución (IIIA-CSIC eMarkets Group UTS). Dichas consecuencias son capturadas como obligaciones, de la forma:

 $Obl(x,\Phi,s)$

lo que significa que el agente "x" está obligado a cumplir con "Φ" en la escena "s".

Una norma es descrita como una regla especificada por tres elementos:

- Antecedente: la acción que provoca la activación de la norma (pueden ser definidas por expresiones booleanas sobre variables en el esquema de ilocuciones).
- Acciones: el conjunto de acciones que debe llevar a cabo el agente para cumplir con sus obligaciones en una escena.
- Consecuente: el conjunto de resultados derivados de las acciones (obligaciones) ejecutadas por el agente en una escena dada.

Las normas permiten acotar el comportamiento de los agentes orientándolos hacia el objetivo de la institución. Las normas son socialmente vinculantes, por lo que los agentes están obligados a cumplirlas para poder participar de la institución.

2.6.6.3 Implementación de Instituciones Electrónicas: EIDE

Para la implementación de Instituciones Electrónicas, el IIIA ha desarrollado un ambiente de desarrollo denominado "Electronic Institutions Development Environment (EIDE)" [IIIA-CSIC], que consiste en un conjunto de herramientas que permiten especificar e implantar una institución electrónica. A continuación se describen los elementos que componen a EIDE:

Islander: es un editor que permite especificar una institución electrónica por medio de la combinación de herramientas gráficas y textuales. En Islander es posible definir el marco de diálogo, la estructura performativa, la ontología y las normas de una institución electrónica, por medio de una interfaz gráfica de usuario. Islander almacena la especificación de la institución electrónica en archivos XML, para que luego pueda ser utilizada por las demás herramientas de EIDE. En la figura 2.9 se puede observar la interfaz gráfica de ISLANDER. En el lado derecho se pueden observar las estructuras y escenas que va construyendo el usuario, mientras en el lado izquierdo hay un árbol de navegación que permite acceder a cada uno de los elementos que se generan para construir la institución. En la parte inferior se encuentra un panel de información en donde se despliegan mensajes derivados durante el proceso de verificación de la institución electrónica que permite hacer ISLANDER.

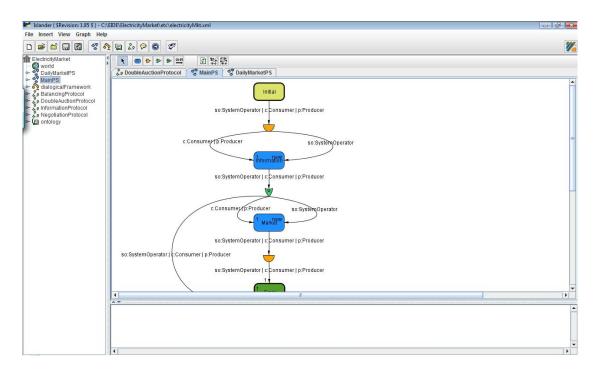


Fig. 2.16. ISLANDER

aBuilder: es una herramienta que, dada la especificación de una institución electrónica, permite construir los esqueletos de los agentes que pueden participar de la misma. En aBuilder se define el comportamiento de los agentes en las escenas y estructuras performativas de la institución electrónica. aBuilder permite generar los esqueletos de los agentes en código Java, para que posteriormente se puedan agregar los elementos necesarios para ejecutar la institución electrónica. En la figura 2.17 puede observarse la interfaz gráfica de aBuilder. En la parte izquierda se muestra un árbol en el cuál se puede navegar por cada agente creado para participar en la institución; así mismo se puede acceder a experimentos que pueden crearse para posteriormente ejecutarse en AMELI. Para estos experimentos se definen los agentes y la población por cada tipo de agente que participará en el mismo. En la parte derecha se puede observar el detalle para cada uno de los elementos visualizados en el árbol de navegación.

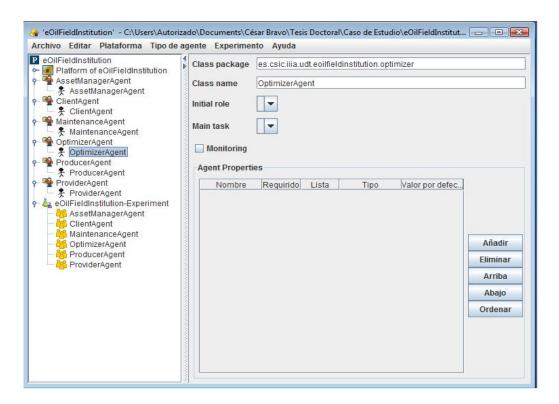


Fig. 2.17. aBuilder

AMELI: es una herramienta que permite ejecutar experimentos definidos para instituciones electrónicas, a partir de las especificaciones realizadas en ISLANDER y de los agentes definidos en aBuilder. AMELI permite llevar un registro de todos los eventos ocurridos durante dicha ejecución, a nivel de institución, estructuras performativas, escenas y agentes. En la figura 2.18 se muestra la interfaz gráfica de usuario de AMELI. En la parte izquierda se muestra un árbol de navegación que permite acceder, bien a cada una de las escenas y estructuras de la institución, o bien a cada uno de los agentes que actúa en la misma. En la parte superior derecha se muestran los registros (log) de los eventos acontecidos durante la ejecución de la institución y en la parte inferior derecha se puede observar el detalle de cada evento si se posiciona el ratón sobre el mismo.

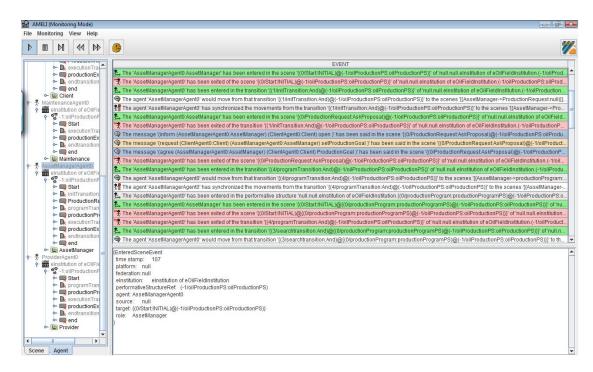


Fig. 2.18. AMELI

En este trabajo se hará uso de las herramientas ISLANDER, aBuilder y AMELI, para especificar y ejecutar las instituciones electrónicas que forman parte de la arquitectura.

Capítulo III. Arquitectura de Referencia

La propuesta presentada en este trabajo de investigación consiste en una arquitectura de referencia para la gestión integrada de producción, que permite el acceso a la información requerida para dicha actividad y la supervisión automatizada e inteligente de procesos de negocio, a partir del uso de técnicas de inteligencia artificial distribuida. En este capítulo se realizará una descripción general de la arquitectura. En los capítulos IV y V se describirán las capas de la arquitectura en detalle.

3.1 Descripción General de la Arquitectura

En este trabajo se propone una arquitectura de referencia, que consiste de las herramientas tecnológicas requeridas para la adquisición, procesamiento y análisis del estado del proceso de producción en una industria de producción continua y para la automatización de procesos de negocio y de toma de decisiones. La arquitectura planteada consta de tres capas: la primera capa se denomina "capa de conectividad", en la cual se definen los mecanismos de adquisición, procesamiento e interpretación de los datos; la segunda capa se denomina "capa semántica", en la cual se define el marco ontológico para el intercambio de información entre las diversas aplicaciones que se manejan en el proceso de producción; y la tercera capa, denominada "capa de gestión", establece los mecanismos de automatización inteligente de los flujos de trabajo de la empresa. En el siguiente gráfico se presenta la arquitectura propuesta.

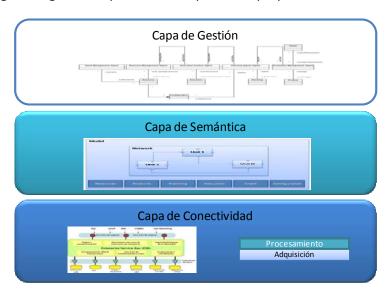


Figura 3.1. Arquitectura Propuesta

A continuación se realiza una descripción general de cada capa que compone la arquitectura.

3.2 Capa de Conectividad

Uno de los problemas fundamentales en materia de tecnología de Información para la industria de producción continua es la integración de aplicaciones empresariales. En la industria es común encontrar aplicaciones muy sofisticadas para resolver problemas concretos (por ejemplo, simuladores de procesos, sistemas de control y supervisión, herramientas de análisis económico, etc.), pero que no se integran entre sí, impidiendo tener una visión integral del estado del proceso productivo y un control dinámico de las condiciones del mismo, especialmente en condiciones de borde. Para abordar este problema se propone una capa de integración que permita acceder a la información requerida para la operación del proceso de producción.

El objetivo de la capa de integración es "envolver" las aplicaciones y sistemas disponibles en la empresa, mediante adaptadores de software que permitan acceder a sus datos y funciones y exponerlos en una capa común. Para tal fin, la capa de conectividad debe cumplir con las siguientes funciones:

Extracción de datos: en primer lugar, se deben obtener los datos desde su origen, esto es, desde la aplicación que los genera. Para esto se deben utilizar los medios de extracción de información que provea la aplicación, los cuales generalmente son interfaces o librerías de acceso a datos (API: Application Programing Interfaces). En algunos casos, la misma aplicación provee sus datos a través de servicios web, lo cual simplifica el acceso a los mismos ya que sólo deben invocarse dichos servicios. También, los datos pueden provenir de Sistemas Manejadores de Bases de Datos (BD) que utilizan ciertas lógicas de negocio para proveer sus datos, ya sea a través de librerías o estándares, como por ejemplo ODBC¹², DAO¹³ o JDBC¹⁴. Finalmente, existen aplicaciones que no proveen ningún mecanismo de acceso a sus datos, por lo que para estos casos será necesario desarrollar alguna interfaz que interactúe con la aplicación y obtenga sus datos; la complejidad en el desarrollo de las interfaces dependerá de la aplicación de la que se requiera la información.

Exposición de datos: una vez extraídos los datos de sus aplicaciones de origen, los mismos deben ser expuestos de forma tal de que estén disponibles para el resto de las aplicaciones de la plataforma de TI de la empresa. Para esto se sugiere el uso de "envoltorios" de software para exponer los datos en un esquema común en lenguaje XML. Los envoltorios tienen la función de

¹² Open Database Connectivity: estándar de conexión a bases de datos.

¹³ Data Access Object: mecanismo de conexión a bases de datos utilizado por la plataforma de aplicaciones Microsoft®.

¹⁴ Java Database Connectivity: estándar de conexión a base de datos para aplicaciones Java.

enmascarar las interfaces de acceso a datos de cada aplicación, a través de una capa XML que uniformiza como las aplicaciones obtienen la información. Esta capa XML consiste en Servicios Web que pueden ser invocados por las aplicaciones, que tienen bien definidas sus funciones y parámetros de calidad en un acuerdo de servicio denominado "Lenguaje de Definición de Servicios Web (WSDL)". A través del WSDL, cada aplicación puede saber exactamente cómo obtener información de otra aplicación. Debe existir, adicionalmente, un repositorio de servicios en dónde se encuentren todos los WSDL de los servicios provistos por las aplicaciones. En ese sentido, cada aplicación de la plataforma de TI de la empresa debe contar con por lo menos un Servicio Web para el acceso a sus datos y, de manera correspondiente, con un WSDL que indique como se puede acceder a dichos datos y los parámetros de calidad con los que serán provistos. En la siguiente figura se esquematiza cómo se organiza la capa de conectividad a través de un diagrama de componentes UML.

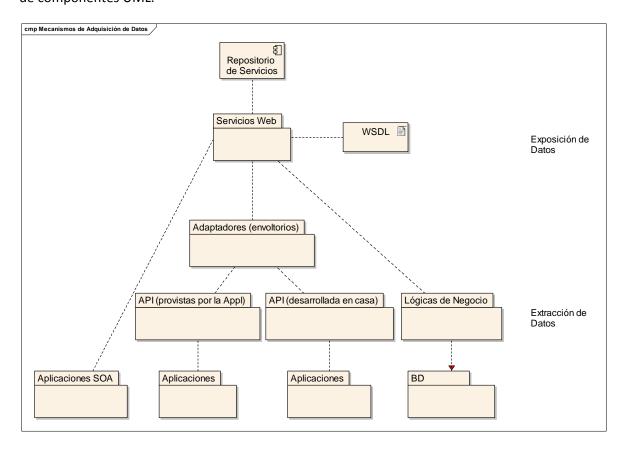


Figura 3.2. Capa de Conectividad

Ya que en una industria de producción continua hay gran demanda de información en todo momento, en la capa de conectividad se deben resolver problemas de balance de carga, enrutamiento de mensajes, persistencia y demás problemas de infraestructura que son necesarios para la integración entre las aplicaciones de la empresa y que deben formar parte de los servicios de infraestructura de su plataforma de TI. Por esta razón, se requiere que la capa de conectividad esté implementada sobre un Bus de Servicios Empresariales, Middleware, o alguna herramienta similar, que permita gestionar la cantidad de servicios de acceso a datos de los que dispone la empresa, resolviendo los problemas mencionados anteriormente.

La idea de esta capa es aprovechar al máximo la infraestructura instalada de la empresa, incorporándola en la arquitectura propuesta a través de los adaptadores antes mencionados, para potenciar las aplicaciones existentes con los conceptos planteados en la arquitectura, pero tratando de minimizar el impacto al momento de su implantación. Además, dicha capa debe permitir incorporar sistemas y aplicaciones de terceros a la arquitectura con una mínima intervención de la plataforma.

En este trabajo no se ahondará en el diseño de la capa de conectividad, ya que el tema de acceso a datos ha sido ampliamente abordado en la literatura [Litchicum, 2004][Schulte, 2005][Soma, Bakshi, et al., 2006] y existen múltiples soluciones en el mercado para abordar dicho tema [Apache Foundation][JBoss][OpenSpirit][Halliburton].

3.3 Capa de Semántica

La segunda capa de la arquitectura está constituida por las herramientas que permitirán el análisis semántico de la información obtenida de las diferentes aplicaciones presentes en la plataforma de TI de la empresa. Esta capa, denominada "Capa Semántica", constituye un marco ontológico en el cual se definen todos los conceptos manejados para la operación del proceso de producción. La misma busca establecer un lenguaje único para el intercambio de datos entre diversas aplicaciones y así garantizar la integración de las mismas para obtener una visión global del proceso de producción.

El modelo de datos presentado en este trabajo define la ontología que permite describir los objetos de negocio de la empresa sobre su plataforma de TI. El mismo permitirá realizar la interpretación de manera coherente de todos los elementos de la empresa sobre la plataforma de TI, estableciendo una ontología común a utilizar para la integración de los diversos sistemas y aplicaciones disponibles en la misma. A continuación se describen cada uno de los elementos que componen el marco ontológico propuesto.

3.3.1 Meta-modelo de Datos

El meta-modelo de datos es una estructura común para describir cada uno de los objetos de negocio de la empresa. Este meta-modelo se basa en dos propuestas: la primera correspondiente al estándar PRODML [POSC, 2006] y la segunda correspondiente al modelo PROSA [Wins, 1999].

El meta-modelo define una arquitectura común para los conceptos relacionados con las unidades de producción, haciendo uso del planteamiento realizado en las arquitecturas holónicas [Wins, 1999], en dónde cada unidad de producción se compone de Productos, Recursos y Órdenes. En este trabajo se ha utilizado el concepto de holón y se ha adaptado para definir una estructura para las Unidades de Producción. En ese sentido, el meta-modelo está compuesto por la Unidad de Producción como elemento central, la cual tiene asociados "Recursos" que necesita para el proceso de producción y que son provistos por "Proveedores"; también se asocian "Métodos" a la Unidad de Producción, los cuales son los mecanismos que utiliza para generar los "Productos" que son despachados a los "Clientes". Finalmente, se define una "Condición" de la Unidad de Producción, que define el estado en el cual se encuentra la misma, la cual es alterada por eventos generados por causas externas o por la aplicación de un método determinado. En la siguiente figura se puede observar la estructura del Modelo de Datos propuesto, el cual será explicado en detalle en el siguiente capítulo.

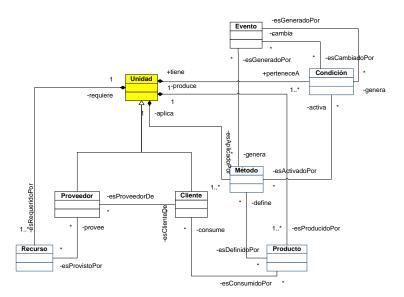


Figura 3.3. Meta-Modelo de datos

3.3.2 Conceptos de Dominio Específico

Cada empresa tiene una serie de conceptos particulares que les son propios y que puede compartir o no con otras empresas. Para representar estos conceptos dentro de la ontología se definen los *Conceptos de Dominio Específico*, que son todos aquellos conceptos relacionados con el proceso productivo particular de cada empresa en la que se implante la arquitectura. Estos conceptos se definen como instancias del meta-modelo de datos, esto es, cada concepto de dominio específico deberá corresponderse con los conceptos definidos en el meta-modelo. Así, dentro de los conceptos de dominio específico deben definirse las unidades de producción, recursos, productos, condiciones y métodos, específicos de la empresa en la que se está implantando la arquitectura. Al construir los conceptos de dominio específico como una instancia del meta-modelo de datos, se garantiza una estructura común para los conceptos de la empresa, que facilitará el intercambio de información en la arquitectura.

3.4 Capa de Gestión

La capa de gestión tiene como objetivo, una vez resueltos los problemas de acceso y procesamiento de la información de la empresa a través de las capas que se acaban de describir, automatizar los flujos de trabajo necesarios para el manejo de la misma. En el mercado se encuentran diversas herramientas para automatización de flujos de trabajo, sin embargo, el enfoque que se propone en este trabajo apunta más hacia la gestión automática e inteligente de los procesos de producción mediante el uso de técnicas y herramientas de inteligencia artificial distribuida.

Para la Capa de Gestión se propone el uso de Sistemas Multiagentes (SMAs), en específico de una especialización de los mismos denominada Instituciones Electrónicas [Esteva, et al., 2001]. Se propone crear una Institución Electrónica (IE), con el objetivo de aprovechar el comportamiento emergente de los agentes para abordar el problema de optimización en tiempo real, pero acotando su comportamiento mediante reglas que garanticen la respuesta del sistema dentro de las restricciones de tiempo propias de la operación, bajo las condiciones de seguridad y ambiente establecidas para el activo.

3.4.1 Flujo de Trabajo a Automatizar

El diseño de una Institución Electrónica comienza con la identificación de los flujos de trabajo que serán automatizados a través de la arquitectura multiagentes. Para efectos de este proyecto, el flujo de trabajo base para la IE será el Proceso de Producción de una industria de producción continua, el cual se esquematiza en la siguiente figura.

analysis Production WorkFlow «información» «información» «meta» Meta de Producción Establecimiento de Metas y Reporte de Producción Cuotas de Energía Programación de la Proceso de Producción Despacho de Producción Inicio del Proceso Producción Fin del Proceso «información» «producto» «recurso» Configuración del Activo Recursos Product

Fig. 3.4. Proceso de Negocio de Producción Continua

Dicho proceso de negocio es un flujo de trabajo compuesto por tres procesos fundamentales: 1) Programación de la Producción, 2) Producción y 3) Despacho de Producción. Cada uno de los subprocesos se describe a continuación.

Programación de la Producción: tal y como se observa en la figura 3.4, el primer proceso al inicio del flujo de trabajo es la Programación de la Producción. En este proceso se definen las cuotas de producción a asignar a cada unidad de producción, con el objetivo de cumplir la meta que tiene el activo. El resultado del proceso de programación de la producción es la asignación de cuotas de producción a cada uno de las unidades de producción del activo, acompañada de la respectiva asignación de recursos requeridos.

Producción: el proceso de producción consiste del conjunto de actividades requeridas para la generación del producto, en base a la configuración establecida en la programación de la producción. Este proceso tiene como entradas las cuotas de producción/recursos por unidad de producción, y como salidas las ratas de producción para todo el activo en un horizonte de tiempo determinado.

Despacho de Producción: el proceso de despacho de la producción corresponde a la entrega al cliente final de la producción acumulada del activo. Este proceso tiene como entrada la rata de producción del activo, y como salida la cantidad total despachada a cada cliente.

3.4.2 Definición de la Institución Electrónica

Para construir la Institución Electrónica se realizará una "reflexión"¹⁵ del flujo de trabajo antes descrito a una serie de escenas y transiciones en las que participan diversos agentes, la cual se denomina "estructura performativa".

La IE está compuesta por una serie de agentes que desempeñan roles específicos en escenas predefinidas, de acuerdo a los procesos de negocio que se llevan a cabo en el activo. El rol principal de la IE es el de Productor, el cual es desempeñado por la o las Unidades de Producción que generan la producción objetivo de la institución. Tal y como se define en la Capa de Semántica, cada Unidad de Producción requiere de recursos, los cuales son obtenidos de Proveedores, y genera productos requeridos por Clientes. En consecuencia, dentro de la IE se definen roles para los Proveedores y los Clientes de las Unidades de Producción. Un conjunto de Productores, Proveedores y Clientes se organizan en un Activo. Para cada activo debe haber un agente que cumple el rol de Gestor del Activo, el cual es responsable de la programación, ejecución y control del proceso de producción. Finalmente, se definen dos roles de agentes especializados que cumplen labores de optimización de procesos y de mantenimiento, estos dos roles son los de los agentes Optimizadores y Mantenedores. El conjunto de roles y sus relaciones, conforman el marco de diálogo de la IE.

En figura 3.5 se presenta el diagrama de clases de los roles a desempeñar por los agentes en la IE y sus interrelaciones. La descripción en detalle de dichos roles se presentará en el capítulo V.

Los agentes que participan en la IE deben utilizar la información generada por la capa de conectividad y regirse por el marco ontológico de la capa de semántica para el intercambio de dicha información entre los mismos, es decir, la ontología utilizada en el Marco de Diálogo de la IE es la definida en la Capa Semántica de la arquitectura.

¹⁵ Reflexión se refiere a la representación de los flujos de trabajo que ocurren en la empresa, sobre su plataforma de tecnología de información, con el objetivo de automatizar dichos flujos.

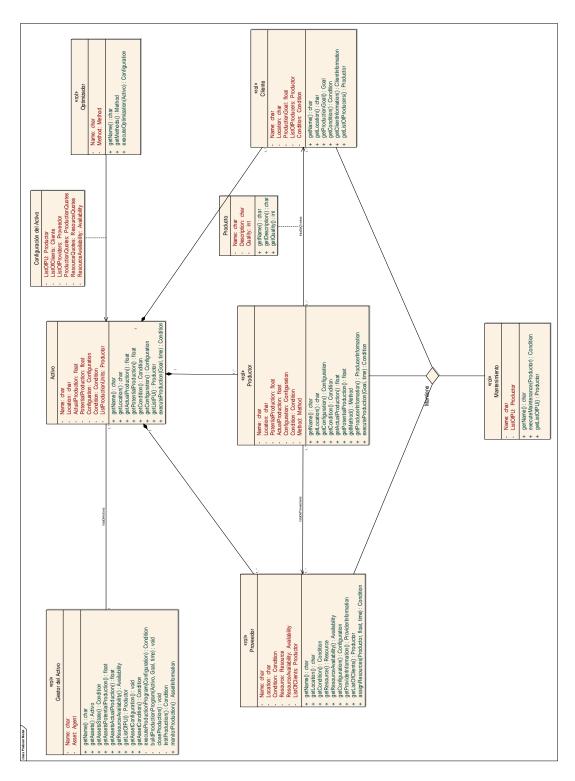


Fig. 3.5. Roles de los agentes en la IE

La estructura principal de la IE (estructura performativa) se describe a través del siguiente diagrama de actividad UML:

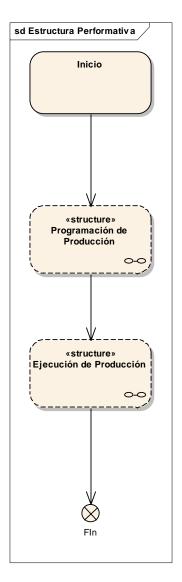


Fig. 3.6. Estructura Principal de la IE

En la estructura performativa se definen dos escenas principales: Programación de la Producción y Ejecución de la Producción. Cada escena se constituye de protocolos de intercambio de

información entre los diversos agentes que harán vida dentro de la IE. En la siguiente figura se expresa gráficamente la estructura performativa, incluyendo sus arcos y transiciones.

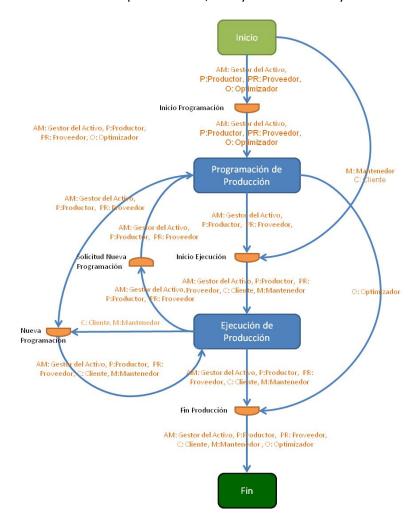


Fig. 3.7. Estructura Performativa de la IE

El comportamiento de los agentes dentro de la Institución Electrónica está regulado por Normas, orientadas a garantizar el objetivo de la Institución, el cual, en nuestro caso, es alcanzar la meta de producción de la empresa, optimizando el uso de los recursos y cumpliendo con las restricciones de tiempo establecidas para el proceso que se está automatizando.

La descripción en detalle de los roles, escenas, transiciones y demás elementos de la IE construida para la capa de gestión de la arquitectura, se realizará en el capítulo V.

3.5 Análisis

En este capítulo se ha presentado la arquitectura de referencia para la gestión integrada de producción. Esta arquitectura persigue dos objetivos fundamentales: habilitar la disponibilidad de la información del proceso productivo en tiempo real en forma integrada y automatizar los flujos de trabajo de la empresa por medio de técnicas de inteligencia artificial distribuida.

El primer objetivo se aborda en las dos primeras capas. La capa de conectividad permite establecer un medio integrado de acceso a las fuentes de información y de exposición de la misma, por medio de adaptadores de software y un esquema basado en arquitectura orientada a servicios (SOA). La capa de semántica viene a resolver el problema de interpretación de la información recabada, a partir de un marco ontológico genérico que tiene como base el concepto de unidad de producción. Al representar las unidades de producción a través de un mismo marco ontológico, se facilita el intercambio, la búsqueda y la interpretación de la información del estado del proceso productivo.

El segundo objetivo, relativo a la automatización de flujos de trabajo, se aborda en la capa de gestión por medio del uso de sistemas multiagentes, particularmente de instituciones electrónicas, a través de las cuales se automatizan la mayor parte de las tareas de búsqueda, interpretación y análisis de información e, incluso, de toma de decisiones. Utilizar instituciones electrónicas para la automatización de flujos de trabajo en procesos industriales, es un enfoque novedoso que persigue aportar el mayor grado de autonomía a este tipo de procesos, garantizando el cumplimiento de las restricciones propias de los ambientes en los cuales se desenvuelven los mismos, a partir del establecimiento de normas de comportamiento para los agentes que participan en la capa de gestión.

El funcionamiento integrado de las tres capas de la arquitectura aporta una herramienta de gran impacto para la gestión integrada de producción, al resolver los aspectos fundamentales del manejo de información sobre el estado del proceso.

Capítulo IV. Capa de Semántica

4.1. Descripción General

La Capa de Semántica es un elemento fundamental de la arquitectura propuesta en este trabajo, ya que es esta la que asegura que el intercambio de información entre los diferentes sistemas y aplicaciones de la empresa se realice sin ambigüedades, manteniendo la integridad de la información. Esto se logra a partir de la definición de una ontología en la que se definen todos los conceptos utilizados para la transmisión de información entre los sistemas y aplicaciones de la empresa, e incluso entre los usuarios humanos, de forma de que cuando se envíe un mensaje, el emisor tenga la seguridad de que el receptor va a entender la información de la misma forma de cómo el primero la entiende, independientemente de que el emisor sea un humano o una aplicación.

Para el caso de integración de aplicaciones empresariales, la definición de una ontología parte de la descripción en un meta-lenguaje de la estructura de cada concepto utilizado para el intercambio de información entre aplicaciones y sistemas, en otras palabras, toda la información que vaya a ser transferida entre una aplicación y otra, ya sea un simple mensaje o una base de datos completa, debe tener una estructura, la cual debe describirse en un meta-lenguaje que está disponible para todas las aplicaciones. Así, si una aplicación requiere información proveniente de otra aplicación o sistema, la misma podrá saber en qué forma estará expresada la misma (sintaxis) y su significado (semántica). En ese sentido, debe disponerse de un catálogo o repositorio en el cual se almacenen todos los conceptos definidos en la ontología, que debe poder ser accedido por todas las aplicaciones y usuarios de la empresa. También, debe disponerse de un lenguaje de consultas que permita acceder a los conceptos almacenados dentro del repositorio.

El meta-lenguaje más utilizado para el intercambio de información entre aplicaciones es el "Lenguaje de Enmarcado Extendido XML (eXtended Markup Language)", del cual existe una especialización para la definición de ontologías, denominada "Lenguaje de Ontologías Web OWL (Web Ontology Language)". Así mismo, existe un lenguaje de consultas para acceder a información descrita en OWL, denominado SPARQL [W3C, 2008].

La ventaja de la implantación de una ontología dentro de una arquitectura de integración de aplicaciones empresariales radica en que los mensajes transmitidos entre las aplicaciones deben ser menos explícitos ya que, a través de la ontología, los conceptos se enriquecen en su semántica, lo que permite que cada aplicación pueda entender claramente el significado de la información transmitida. Esto posibilita que se resuelvan problemas de mala interpretación de los datos, ya sea porque en diferentes aplicaciones existen conceptos nombrados de forma diferente pero que

significan lo mismo (sinónimos), o conceptos que se nombran igual pero que tienen significados diferentes (homónimos).

Para la Capa de Semántica de la arquitectura propuesta en este trabajo, se construirá una ontología para empresas de producción continua en lenguaje OWL, la cual será almacenada en un repositorio que podrá ser accedido por medio de consultas en lenguaje SPARQL.

Tal y como se describió en el capítulo III, dentro de la arquitectura se ha definido una Capa de Conectividad que tiene la función de extraer los datos de las diversas aplicaciones existentes en la empresa y ponerlos disponibles al resto de la plataforma de tecnología de información de la misma, a través de adaptadores de software. Dichos adaptadores deberán expresar los datos extraídos utilizando los conceptos de la ontología definida en la Capa de Semántica, de manera de homologar la forma como se presenta la información. Así mismo, los mensajes intercambiados entre los agentes de la Institución Electrónica de la Capa de Gestión (que será explicada en detalle en el próximo capítulo), también deberán corresponderse con conceptos definidos en la Capa de Semántica. En la siguiente figura se esquematiza el mecanismo de funcionamiento de la Capa de Semántica.

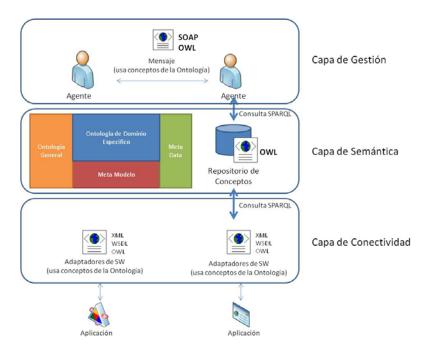


Fig. 4.1. Mecanismo de Funcionamiento Capa de Semántica

Siguiendo la figura anterior, la Capa de Semántica se constituye de una ontología que tiene cuatro componentes fundamentales: Meta-Data, Ontologías de Carácter General, Meta-Modelo de Datos y Ontología de Dominio Específico.

Las Ontologías de Carácter General comprende subconjuntos de ontologías ya definidas, que se reusarán dentro de la capa semántica. El Meta-Modelo de Datos establece una estructura común para definir los conceptos de la Ontología de Dominio Específico, la cual comprende todos los conceptos a utilizar en la Capa Semántica dentro de la arquitectura. Dicho Meta-Modelo de Datos es caracterizado por la Meta-Data, la cual define la información que debe ser expuesta por cada concepto dentro de la ontología. Cada uno de estos componentes se explicará a continuación. La relación entre cada uno de los componentes de la Ontología se presenta en la siguiente figura.

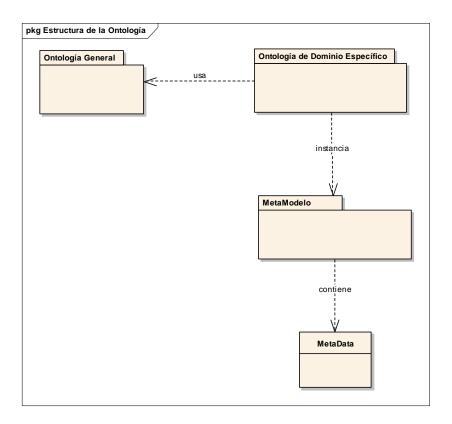


Fig. 4.2. Componentes de la Ontología

4.2. Meta-Data

Para la construcción de la Ontología se define una estructura para los conceptos, que organiza la información o meta-información que se tiene de cada elemento dentro de la arquitectura. Tomando como referencia la estructura presentada en [Soma, et al., 2008], se definen tres tipos de información que debe disponer cada elemento dentro de la ontología:

Meta-data de Acceso: es la información sobre el origen de la información que se obtiene a través de cada elemento en la ontología. Este origen puede ser la aplicación que genera la información, la dirección del archivo que la contiene, la dirección URL de donde se encuentra la información, la dirección IP del servidor de aplicaciones que la genera, la localización de la BD en donde esté almacenada, etc.

Meta-data de Creación: es la información sobre la persona o proceso que genera la información. Generalmente tiene que ver con el nombre del usuario que generó la información o el proceso que la derivó.

Meta-data Específica de la Información: es la información sobre el contenido expresado por el elemento de la ontología. Dependerá del sentido del concepto y, en general, es un resumen conciso sobre los elementos más importantes que involucra el concepto.

En la siguiente figura se presenta un esquema de la meta-data asociada a cada concepto de la ontología:

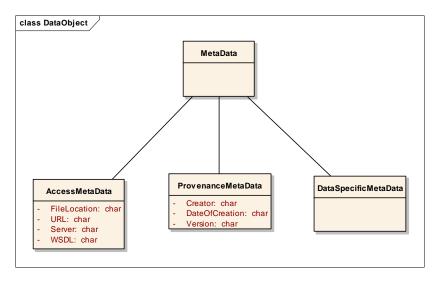


Fig. 4.3. Meta-data asociada a cada Elemento de la Ontología

Asociar meta-data a cada concepto de la ontología, servirá como herramienta para optimizar búsquedas de conceptos en la Capa de Semántica y para utilizar los conceptos como mecanismos de integración entre aplicaciones, ya que al disponer datos acerca de la localización y origen de la información, el acceso a la misma se puede realizar de una forma eficiente.

4.3. Ontologías de Carácter General

Este componente agrupa todos los conceptos que son de uso general en cualquier ámbito, independientemente del tipo de industria en la cual sea implementada la arquitectura. Los conceptos utilizados en la Ontología de Carácter General, son extraídos de ontologías ya definidas, ya que esto permite re-usar conceptos establecidos y ampliamente aceptados y reducir el esfuerzo en la construcción de la Capa de Semántica.

4.4. Meta-Modelo de Datos

El Meta-Modelo de Datos (MMD) dentro de la ontología consiste en una estructura genérica para representar las Unidades de Producción. Esta estructura genérica está inspirada en dos modelos: la arquitectura PROSA y el estándar PRODML.

La estructura tiene su centro en la Unidad de Producción, la cual es el elemento fundamental en una empresa de producción continua y es el elemento central de PRODML [POSC, 2006]. Una Unidad de Producción es toda aquella facilidad dentro de la empresa que genera un producto, ya sea intermedio o final, a través de la aplicación de un determinado método y del uso de una cantidad definida de recursos (energía, suministros, etc.). La Unidad de Producción atiende a una meta de producción y a unas restricciones que son establecidas por niveles superiores en la empresa y, a su vez, genera información de su estado para que el mismo pueda ser supervisado. Finalmente, además del producto generado, la Unidad de Producción genera desperdicios, los cuales deben ser óptimamente manejados de forma de minimizar el impacto al ambiente de la unidad [Chacón, 2001]. Un esquema de la Unidad de Producción se presenta en la siguiente figura.

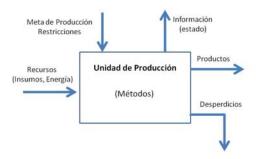


Fig. 4.4. Unidad de Producción

El Meta Modelo de Datos tiene como objetivo representar todas las Unidades de Producción a través de un esquema genérico, que represente los elementos descritos anteriormente. Para ello se ha realizado una adaptación del modelo holónico PROSA [Wins, 1999], que representa todas las unidades de producción a partir de tres elementos fundamentales: Producto, Recursos y Órdenes, combinándolo con la arquitectura PRODML que establece una arquitectura de Unidades de Producción para procesos de producción de petróleo [POSC, 2006]. Como resultado, se obtiene una representación de Unidades de Producción que tiene asociados los siguientes elementos: Recursos, Productos, Métodos, Condición, Proveedores y Clientes. De esta manera se reduce la complejidad del marco ontológico, ya que se define una estructura común para las Unidades de Producción que hace más fácil la implantación de la ontología a través de la reutilización de conceptos. Los conceptos del meta-modelo se presentan a continuación.

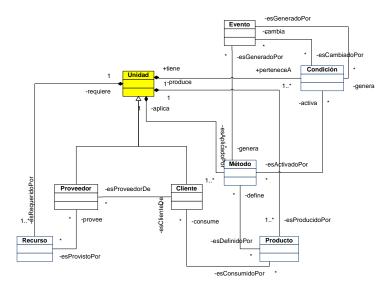


Fig. 4.5. Esquema Unidad de Producción

Unidad de Producción: es el elemento central del meta-modelo. Representa cualquier unidad de producción dentro de una arquitectura empresarial. Todos los conceptos de la ontología estarán relacionados con la Unidad de Producción. Un conjunto de Unidades de Producción puede conformar a su vez una nueva Unidad de Producción en un nivel superior de la arquitectura, lo que permite obtener un modelo recursivo de los elementos de la empresa.

Cliente: representa al cliente al cual la unidad de producción entregará sus productos. Es el cliente quien realiza la demanda de producción. El cliente es una unidad de producción, por lo cual se representa como una generalización de dicho concepto. El cliente consume Productos que son provistos por Proveedores

Proveedor: representa a todo proveedor de servicios y/o recursos a la Unidad de Producción. El proveedor es una unidad de producción, por lo cual se representa como una generalización de dicho concepto. El proveedor provee Recursos a los Clientes.

Producto: es el producto generado (producido) por la Unidad de Producción, que será consumido por el (los) Cliente(s).

Recurso: representa los recursos que necesita la Unidad de Producción para generar sus productos. Los recursos son provistos por los Proveedores a los Clientes. Estos recursos pueden ser (ver figura 4.6):

- Energía: energía de cualquier tipo (eléctrica, hidráulica, neumática, etc.) requerida para la producción. En general, es medida en términos de flujos (corriente, pies cúbicos de alguna sustancia, barriles, etc.)
- Material: son los materiales requeridos para ejecutar la producción. Generalmente son medidos por unidades de material. Los materiales pueden categorizarse en insumos y partes.
- Servicio: servicios que la Unidad de Producción solicita a otras unidades, y que son requeridos para la ejecución de la producción.
- Fuerza de Trabajo (Recursos Humanos): cantidad de personal requerido para ejecutar las tareas de producción.
- Información: recursos de información, tales como: bases de datos, bases de conocimientos, documentos, etc., que son requeridos para la ejecución y monitoreo del proceso de producción. Dentro de los recursos de información se encuentra la Información de Proceso, que refleja el estado actual y los estados pasados del proceso de producción. La Información de Proceso se divide en

Información de Tiempo Real del Proceso e Información Histórica del Proceso. Dicha información de proceso es definida por las Variables de Proceso, las cuales son las cantidades medibles de las características del proceso (tales como flujos, presiones, temperaturas, etc.).

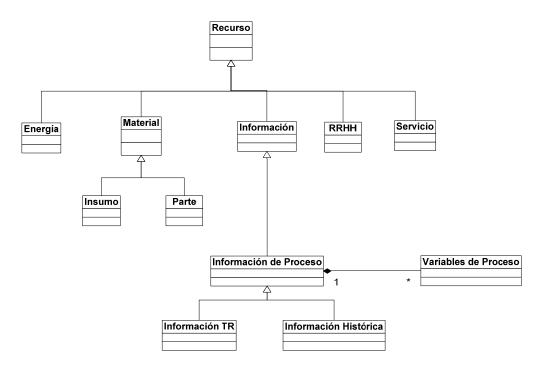


Fig. 4.6. Meta Modelo: Recursos de la Unidad de Producción

Método: representa los métodos utilizados por la unidad de producción para generar sus productos. Así, una Unidad de Producción aplica un Método, que genera un Producto. La aplicación de Métodos genera Eventos que cambian la Condición de la Unidad de Producción. Estos métodos pueden ser (ver figura 10):

- Recetas: algoritmos de control, programas, lista de pasos, etc., definidos para realizar alguna tarea dentro de la unidad de producción.
- Flujos de trabajo: secuencia de actividades y/o procesos llevados a cabo dentro de la unidad de producción.

 Planes: definición de actividades, uso de recursos, asignación de tareas y productos generados dentro de un determinado período de tiempo, en función de una meta de producción.

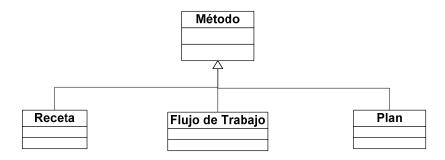


Fig. 4.7. Meta Modelo: Métodos

Condición: representa el estado de la unidad de producción, tanto el estado actual como los estados pasados. La Unidad de Producción tiene una Condición que puede cambiar a partir de la ocurrencia de un Evento específico. Así mismo, una Condición determinada de la Unidad de Producción puede activar un Método para llevar a la Unidad de Producción a la Condición deseada. La condición de la unidad de producción está definida por los siguientes elementos (ver figura 4.8):

Evento: representa los eventos que al ocurrir pueden generar un cambio de estado de la Unidad de Producción.

Estado: representa el conjunto de estados de la unidad de producción, los cuales son:

- Estado Actual: estado actual de la unidad de producción. Este estado está definido por la información de tiempo real del proceso (RealTimeProcessInformation), la cual está compuesta por el valor actual de las variables de proceso.
- 2. Estados Pasados: conjunto de estados pasados de la unidad de producción, vinculado a la información histórica de la unidad de producción. Está definido por la información histórica del proceso, la cual está compuesta por los valores pasados de las variables de proceso, en un período de tiempo determinado y con una granularidad definida.

3. Estados Posibles: conjunto de estados posibles en los cuales puede estar la unidad de producción en un instante de tiempo determinado. El paso de un estado a otro se realiza a través de transiciones, las cuales son generadas por eventos que están definidos en el modelo.

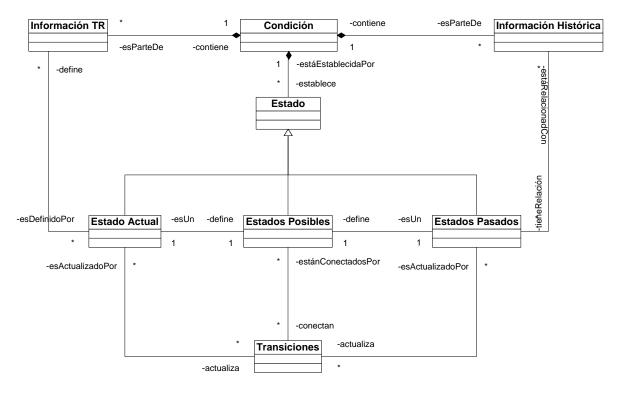


Fig. 4.8. Meta Modelo: Condición

Para el desarrollo del Meta-Modelo en OWL, se categorizó a todos los conceptos pertenecientes al mismo como "Conceptos de Producción"; esto permitirá distinguir los conceptos del meta-modelo de los conceptos de las ontologías de carácter general y de dominio específico, que formarán parte de la Capa de Semántica. El árbol del Meta-Modelo (desarrollado en Protégé) se presenta en la siguiente figura:

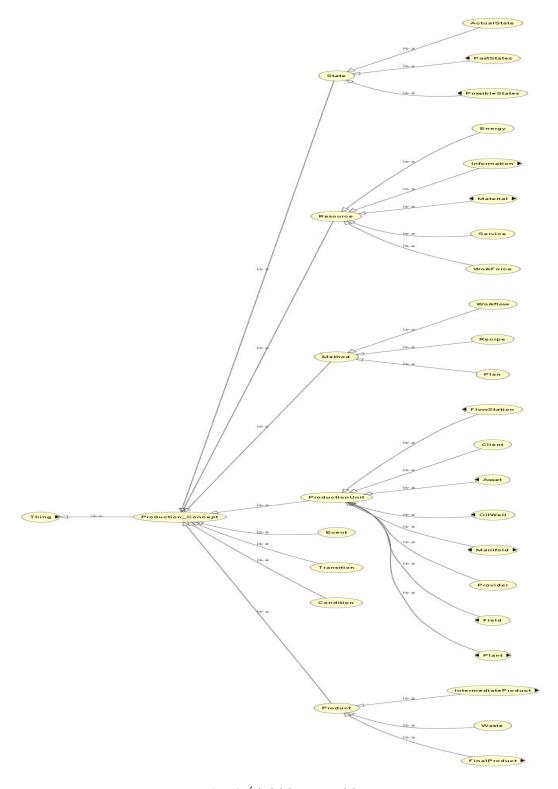


Fig. 4.9. Árbol del Meta-Modelo

4.5. Ontología de Dominio Específico

La Ontología de Dominio Específico contiene todos los conceptos a usar en la Capa de Semántica. En la Ontología de Domino Específico se construyen los conceptos a partir de la estructura definida en el meta-modelo. Cada concepto, además, tendrá asociada meta-data para facilitar su búsqueda en el repositorio de conceptos. Por otro lado, para simplificar la construcción de las ontologías, se re-utilizarán conceptos de uso general, a partir del componente de Ontología de Carácter General.

Los conceptos y funciones de cada dominio específico dependerán del tipo de industria en el que se implante la arquitectura. En el Capítulo VI se desarrollará un caso de estudio para el proceso de producción de petróleo, para cual se desarrollan una serie de conceptos y funciones que serán incorporados en la ontología y que servirán de ejemplo de la construcción de Ontologías de Dominio Específico.

4.6. Análisis

La capa de semántica, presentada en este capítulo, propone un marco ontológico para representar los conceptos utilizados en una empresa de producción continua, específicamente para el intercambio de información entre sistemas y aplicaciones.

Las ontologías son un área de gran interés, tanto para la industria como para la investigación científica, ya que, al disponer las empresas de sistemas cada vez más complejos que generan grandes cantidades de información y que deben inter-operar, se hacen necesarios mecanismos que permitan interpretar efectivamente la información disponible, para garantizar la integración entre dichos sistemas.

La capa de semántica está compuesta de varias partes que permiten: 1) disponer de información sobre la ubicación y el origen de la información representada por un concepto específico, 2) establecer un esquema genérico para representar las unidades de producción de la empresa, 3) re-utilizar conceptos definidos en ontologías previamente desarrolladas y 4) representar los conceptos relacionados con el dominio específico de la empresa en la que se implementa la arquitectura.

El aporte fundamental de esta capa (y uno de los aportes fundamentales del presente trabajo) es el meta-modelo de datos, el cual permite representar las unidades de producción de manera genérica a partir de un estructura holónica (basada en PROSA y PRODML). El meta-modelo de datos hace que se facilite la búsqueda y la interpretación de la información disponible sobre las unidades de producción, al establecer claramente los elementos de información de los que dispone cada unidad (desde un equipo hasta la empresa entera).

Además,	la capa	de semántica	contiene l	os conceptos	que	serán	utilizados	para	la (comunic	ación
entre los	agentes	que compon	en la capa d	e gestión (ve	r capí	tulo V).				

Capítulo V. Capa de Gestión: Institución Electrónica para la Gestión Integrada de Producción

5.1. Introducción

La Capa de Gestión de la arquitectura propuesta tiene como objetivo automatizar los flujos de trabajo en un proceso de producción continua, agregándoles inteligencia a través de la implantación de sistemas multiagentes que permiten la recolección, procesamiento y análisis de la información de los procesos de la empresa, el intercambio de información entre diversas aplicaciones y usuarios y la "reflexión" de los flujos de trabajo de la empresa sobre su plataforma de Tecnología de Información.

En una empresa de producción continua existen múltiples flujos de trabajo que requieren información de una gran cantidad de fuentes (aplicaciones, bases de datos, documentos, etc.) e involucran la participación y el trabajo conjunto de varios actores con pericias en diversas disciplinas. En estos flujos de trabajo, también llamados "procesos de negocio", se llevan a cabo procesos de toma de decisiones que necesitan la participación de todos los actores vinculados con el proceso productivo. Así pues, se hace necesario que la información de cada "vista" del negocio (la información que requiere cada actor del mismo) esté disponible para todos los actores de forma oportuna e inteligible, con el propósito de lograr una visión global del proceso productivo y optimizar el proceso de toma de decisiones. Adicionalmente, en los casos en los que sea posible (o sea suficientemente seguro), la toma de decisiones debería realizarse de forma automática.

En este trabajo se hace uso de la teoría de Instituciones Electrónicas [Esteva, et al., 2001] [Noriega, et al., 2002] [Sierra, 2004][García-Camino, et al. 2005] para automatizar los flujos de trabajo de una empresa de producción continua utilizando sistemas multiagentes. Se propone construir una Institución Electrónica para la Gestión de Producción, que maneje los procesos de planificación y ejecución de producción, incluyendo la recolección y análisis de la información requerida para tal fin.

El primer paso para el diseño de una Institución Electrónica es identificar los flujos de trabajo de la institución social que se quiere automatizar. Para el problema abordado en este trabajo, la Gerencia Integrada de Producción, el flujo de trabajo corresponde al proceso de producción continua en una industria, el cual fue descrito en el Capítulo III, y se compone de tres sub-flujos: la Programación (Planificación) de la Producción, la Ejecución de la Producción y el Despacho de Productos. Tomando como base el flujo de trabajo antes mencionado, en las secciones sub-siguientes se diseñará una Institución Electrónica para la Supervisión y Control de la Producción.

5.2. Diseño de la Institución Electrónica

Tal y cómo se describió en el Capítulo III, una Institución Electrónica es una especialización de los sistemas multiagentes que pretende emular el funcionamiento de las instituciones sociales, en donde los actores tienen autonomía, pero su comportamiento está regulado por un conjunto de reglas sociales que buscan garantizar que se alcance el objetivo que tiene la institución.

Una Institución Electrónica se compone de un Marco de Diálogo, que define los roles que pueden tomar los actores que participan en la institución y los actos de habla válidos para la comunicación entre los mismos; una Estructura Performativa, que define el conjunto de escenas que pueden tener lugar dentro de una institución; y un conjunto de Normas Sociales, que permiten regular el comportamiento de los actores dentro de la institución. A continuación se hace una descripción detallada de los elementos de la Institución Electrónica para la Supervisión y Control de la Producción.

5.2.1 Marco de Diálogo

El Marco de Diálogo de la Institución Electrónica se define como una tupla:

Que se compone de la Ontología (O) a usar en la Institución, el Lenguaje (L) utilizado para la comunicación entre los actores (agentes), los actos de habla válidos (partículas ilocutorias) para la comunicación (I), los Roles que puede tomar cada actor dentro de la Institución (los cuales se dividen entre roles internos (reguladores de la institución) (RI) y externos (RE)) y, finalmente, las relaciones entre los roles (Rs).

Para la arquitectura propuesta en este trabajo, los componentes del Marco de Diálogo de la Capa de Gestión son:

O: Ontología definida en la capa semántica (ver capítulo IV);

L: OWL;

I: {agree, failure, inform, inform-done, inform-results, promise, query, refuse, request, open, close}.

RI: {Gestor del Activo};

RE: {Productor, Proveedor, Cliente, Activo, Optimizador, Mantenedor};

RS: {(Optimizador ¬ (Activo (Productor, Proveedor, Cliente, Mantenedor)), (Mantenedor ¬ (Activo (Productor, Proveedor, Cliente, Optimizador)), (Gestor del Activo ¬ (Productor, Proveedor, Cliente, Activo))}

A continuación se describen en detalle cada uno de los componentes del Marco de Diálogo.

5.2.1.1 Ontología

La ontología del Marco de Diálogo de la Institución Electrónica define todos los conceptos utilizados por los actores para la transmisión de información entre los mismos. La definición de la ontología permite que los mensajes transmitidos entre los agentes de la Institución Electrónica sean menos explícitos, ya que los conceptos tienen una carga semántica que es inteligible para todos los actores.

La ontología a utilizar en la Institución Electrónica que conformará la Capa de Gestión de la arquitectura propuesta es la definida en la Capa de Semántica de la misma arquitectura. Así pues, los mensajes intercambiados entre los agentes de la Institución usarán los conceptos definidos en dicha ontología y que estarán almacenados en el repositorio de conceptos de la Capa de Semántica.

5.2.1.2 *Lenguaje*

El lenguaje a utilizar para la comunicación entre los agentes va a ser el mismo utilizado en la Ontología, el cual es el Lenguaje Web para Ontologías (OWL), de forma de que toda la comunicación esté basada en conceptos contenidos en el repositorio de conceptos de la Capa de Semántica.

5.2.1.3 Partículas Ilocutorias (Actos de Habla válidos)

Las partículas ilocutorias son los actos de habla válidos para la comunicación entre los agentes que constituyen la institución. Una secuencia definida de actos de habla se denomina protocolo y un protocolo establece la forma cómo se dan las interacciones entre los agentes en una escena. Las partículas ilocutorias a utilizar en la Institución Electrónica de la Capa de gestión serán las definidas en la Biblioteca de Actos de Habla de la FIPA (FIPA Act Library Specification) [Foundation for Intelligent Physical Agents, 1996-2002]. Particularmente, las partículas ilocutorias utilizadas en la IE se definen a continuación:

request (Sender, Receiver, message): solicitud de la ejecución de una acción de un agente

a otro(s).

agree(Sender, Receiver, message): manifestación de un agente de estar de acuerdo con

una solicitud realizada por otro agente.

refuse(Sender, Receiver, message): manifestación de un agente de no estar de acuerdo

con una solicitud realizada por otro agente.

inform(Sender, Receiver, message): envío de una información de un agente a otro.

inform-done(Sender, Receiver, message): envío de un mensaje de confirmación de la

realización de una acción solicitada por un agente a otro.

inform-results(Sender, Receiver, message): envío de un mensaje con los resultados de la

realización de una acción solicitada por un agente a otro.

failure(Sender, Receiver, failure_message): envío de un mensaje de que ha ocurrido una

falla.

open: inicio de la escena.

close: cierre de la escena

5.2.1.4 Roles

permiten abstraer los individuos (los agentes) que están envueltos en las actividades de una institución. Un agente es obligado a adoptar algún rol para poder formar parte de una institución electrónica. Cuando un agente desempeña un rol, el mismo debe cumplir con el patrón de comportamiento asociado a ese rol particular. En consecuencia, todos los agentes que adopten el

La noción de rol es fundamental en la especificación de instituciones electrónicas. Los roles

mismo rol tienen garantizados los mismos derechos, deberes y oportunidades. Un rol puede ser pensado como un tipo de agente. Más precisamente, un rol puede definirse como un conjunto finito de acciones de diálogo. Estas acciones tienen como objetivo representar las capacidades del

rol [Esteva, et al., 2001].

Para cada escena, los agentes asumen roles que tienen un comportamiento definido dentro de la institución, permitiéndole realizar tareas específicas con el fin de asegurar el buen funcionamiento

y el cumplimiento del objetivo de la misma.

En la Institución Electrónica de la Capa de Gestión están definidos los siguientes roles: Gestor del Activo, Productor, Proveedor, Cliente, Optimizador y Mantenedor. Estos roles se derivan del flujo de trabajo descrito en el capítulo III y de la definición de Unidad de Producción realizada en la Capa de Semántica. A continuación los describimos:

Gestor del Activo: es el regulador de la Institución, es el encargado de la programación y la supervisión de la ejecución de la producción; además, es quién garantiza que se cumplirá la meta asignada a la institución.

Productor: un proceso de producción es ejecutado por una o varias unidades de producción, para el control de las mismas se define el rol *Productor*, quien es el encargado del control de la producción de cada unidad. Existirán tantos agentes con rol Productor como unidades de producción existan.

Proveedor: una unidad de producción requiere de una serie de proveedores que le garanticen los recursos necesarios para llevar a cabo el proceso de producción. Para tal fin, dentro de la institución se ha definido el rol *Proveedor*.

Cliente: la unidad de producción tiene clientes a los cuales entrega sus productos. En base a los requerimientos de los clientes se establece la meta de producción. Para representar estos actores dentro de la institución se define el rol *Cliente*.

Optimizador: el objetivo de la Institución es cumplir con una meta de producción en base a criterios de optimalidad que serán definidos para cada empresa en particular. Para buscar la manera óptima de ejecutar el proceso de producción se define el rol *Optimizador*, que desempeñará el agente encargado de ejecutar modelos de optimización para definir el programa de producción de la institución.

Mantenedor: se define un rol *Mantenedor*, que es el que cumplirá el o los agentes que llevarán a cabo labores de mantenimiento en las diversas unidades de producción.

Algunos de esos roles son internos (Gestor del Activo), que son los reguladores de la institución, y otros son roles externos (el resto), que son los que cumplen los actores que participan de la institución pero que no tienen ninguna función regulatoria dentro de la misma. Dependiendo del tipo de rol, un agente puede cumplir uno o varios roles. Asimismo, dependiendo del tipo de rol, un rol puede ser desempeñado por uno o varios agentes. En el caso de la Institución de la Capa de Gestión, el rol Gestor del Activo debe ser desempeñado por un sólo agente en la Institución, ya que sólo debe existir un regulador de la misma. El resto de los roles pueden ser desempeñados por varios agentes a la vez.

Los roles antes mencionados son detallados a continuación. Para cada rol se describen sus atributos, que es la información mínima que debe poseer el agente, y sus operaciones, que son las acciones que debe poder ejecutar el agente para cumplir con el rol. Los diagramas de clases correspondientes a los roles de la institución electrónica se describen en el anexo B.

5.2.1.5 Roles Internos

5.2.1.5.1 Gestor del Activo

Nombre:	Gestor del Activo					
Descripción:	Este rol es el encargado de gestionar la institución. Es quien define el programa para la producción y quien maneja la información sobre el estado del activo					
	Atributos					
Nombre	Descripción	Tipo de Dato	Permisos			
Nombre	Nombre del Gestor del Activo	Cadena	Privado			
Activo	Activo que maneja el agente	Activo	Privado			
	Operaciones					
Nombre	Descripción	Parámetros	Variable de Retorno			
obtenerNombre	Obtiene el nombre del Activo	null	ActivoNombre::Cadena			
obtenerActivo	Obtiene la descripción del Activo	null	Activo::Activo			
obtener Disponibilidad Recurso	Obtiene la disponibilidad de recursos para el activo	null	DisponibilidadRecurso:: Disponibilidad			
obtener Meta Producción Activo	Obtiene la meta de producción del activo	null	MetaProducción::Meta			
obtener Producción Actua Activol	Obtiene la producción actual del activo	null	Producción::Producción			
obtenerProducciónPotencialActivo	Obtiene la producción potencial del activo	null	Producción::Producción			
obtenerCondiciónActivo	Obtiene la condición del Proveedor	null	CondiciónActivo:: Condición			
obtenerConfiguraciónActivo	Obtiene la configuración actual del Activo	null	Configuración:: Configuración			
programarProducción	Elabora la programación de la producción estableciendo las cuotas de producción y de asignación de recursos para las unidades de producción del activo	ProdMeta:: Meta Activo::Activo	ConfiguraciónActivo:: ConfiguraciónActivo			
ejecutar Programa Producción	Inicia la ejecución de producción con una configuración específica para el A\ctivo	Configuración Activo:: Configuración	ConfiguraciónActivo:: ConfiguraciónActivo			
monitorearProducción	Obtiene la información actualizada del proceso de producción	null	InformaciónActivo:: InformaciónActivo			
iniciarProducción	Inicia el proceso de Producción	null	CondiciónActivo:: Condición			
pararProducción	Culmina el proceso de producción	null	CondiciónActivo:: Condición			

Tabla 5.1 Descripción Rol Gestor del Activo

5.2.1.6 Roles Externos

5.2.1.6.1 **Productor**

Nombre:	Productor		
Descripción:	Este rol representa a una unidad de produco período de tiempo determinado y que dema		•
	Atributos		
Nombre	Descripción	Tipo de Dato	Permisos
Nombre	Nombre de`la Unidad de Producción	Cadena	Privado
Ubicación	Ubicación física de la Unidad de Producción representada por el agente	Ubicación	Privado
Producción Actual	Rata de Producción Actual de la Unidad de Producción	Real	Privado
Producción Potencial	Máxima producción que puede alcanzar la Unidad de Producción	Real	Privado
Configuración	Configuración actual de la Unidad de Producción	Configuración	Privado
Condición	Condición (Estado) de la Unidad de Producción		Privado
Método	Método(s) Utilizado por la Unidad de Producción	Método	Privado
	Operaciones		
Nombre	Descripción	Parámetros	Variable de Retorno
obtenerNombre	Obtiene el nombre de la Unidad de Producción	null	NombreProductor::Cadena
obtenerUbicación	Obtiene la ubicación física de la Unidad de Producción	null	Ubicación::Ubicación
obtenerProducciónActual	Obtiene la producción actual de la Unidad de Producción	null	ProducciónActual::Real
obtener Producción Potencial	Obtiene la producción poetencial de la Unidad de Producción	null	ProducciónPotencial::Real
obtenerCondición	Obtiene la condición de la Unidad de Producción	null	Condición::Condición
obtenerConfiguración	Obtiene la configuración actual de la Unidad de Producción	null	Configuración:: Configuración
obtenerMétodo	Obtiene el método ó métodos utilizados por la Unidad de Producción	null	Método::Método
obtenerInformaciónDelProductor	Obtiene los valores de todos los atributos del rol	null	InformaciónProductor:: InformaciónProductor
ejecutarProducción	Inicia la ejecución del método de producción en la Unidad de Producción	Meta Producción:: Meta; t::Tiempo	Condición::Condición

Tabla 5.2 Descripción Rol Productor

5.2.1.6.2 Proveedor

Nombre:	Proveedor		
Descripción:	Este rol representa las unidades de suminist energía, etc.) para las unidades de produccio	•	uministros, materiales,
	Atributos		
Nombre	Descripción	Tipo de Dato	Permisos
Nombre	Nombre del Activo	Cadena	Privado
Ubicación	Ubicación física del Activo	Ubicación	Privado
Disponibilidad de Recursos	Disponibilidad del recurso provisto por el Proveedor	Disponibilidad	Privado
Recurso	Descripción del recurso provisto por el Proveedor	Recurso	Privado
Configuración	Configuración actual del Proveedor	Configuración	Privado
Condición	Condición (Estado) del Proveedor	Condición	Privado
ListaDeProductores	Lista de Unidades de Producción a las cuales se les provee recursos	Productor[]	Privado
	Operaciones		
Nombre	Descripción	Parámetros	Variable de Retorno
obtenerNombre	Obtiene el nombre del Activo	null	NombreProveedor:: Cadena
obtenerUbicación	Obtiene la ubicación física del Activo	null	Ubicación::Ubicación
obtenerDisponibilidadRecurso	Obtiene la disponibilidad del recurso	null	DisponibilidadRecurso:: Disponibilidad
obtenerInformaciónRecurso	Obtiene la información del recurso	null	Recurso::Recurso
obtenerCondición	Obtiene la condición del Proveedor	null	CondiciónProveedor:: Condición
obtenerConfiguración	Obtiene la configuración actual del Proveedor	null	Configuración:: Configuración
obtenerInformaciónProveedor	Obtiene los valores de todos los atributos del rol	null	InformaciónProveedor:: InformaciónProveedor
asignarRecurso	Asigna una cantidad determinada de recursos a una Unidad de Producción	PU::Productor; Rata::Rata; t::Tiempo	CondiciónProveedor:: Condición
obtenerListaDeProductores	Obtiene la lista de Unidades de Producción a las que se les provee recursos	null	Productores[]:Productor

Tabla 5.3 Descripción Rol Proveedor

5.2.1.6.3 Cliente

Nombre:	Cliente	Cliente						
Descripción:	Este es el rol que demanda el producto. El agente que toma este rol es el encargado d definir la meta de producción para el activo y es quien toma las decisiones sobre camb en los objetivos de la institución.							
Atributos								
Nombre	Descripción	Tipo de Dato	Permisos					
Nombre	Nombre del Cliente	Cadena	Privado					
Ubicación	Ubicación física del Cliente	Ubicación	Privado					
MetaDeProducción	eProducción Méta de Producción para el Activo		Privado					
Condición	ondición Condición (Estado) del Cliente Co		Privado					
ListaDeProductors	Lista de Unidades de Producción que generan el producto requerido	Productor	Privado					
	Operaciones							
Nombre	Descripción	Parámetros	Variable de Retorno					
obtenerNombre	Obtiene el nombre del Activo	null	NombreCliente::Cadena					
obtenerUbicación	Obtiene la ubicación física del Cliente	null	Ubicación::Ubicación					
obtener Meta Producción I	Obtiene la meta de producción requerida por el Cliente	null	MetaProducción::Meta					
obtenerCondición	Obtiene la condición del Cliente	null	CondiciónCliente:: Condición					
obtenerInformaciónCliente	Obtiene los valores de todos los atributos del rol	null	InformaciónCliente:: InformaciónCliente					
obtenerListaDeProductores	Obtiene la lista de Unidades de Producción que generan el producto requerido	null	Productores[]:Productor					

Tabla 5.3 Descripción Rol Cliente

5.2.1.6.4 Optimizador

Nombre:	Optimizador						
Descripción:	Este rol representa al agente encargado de calcular las cuotas óptimas de producción y de asignación de recursos para unidad de producción dentro del activo						
	Atributos						
Nombre	Descripción	Tipo de Dato	Permisos				
Nombre	Nombre del agente de mantenimiento	Cadena	Privado				
Método	Método o lista de métodos utilizados para realizar el proceso de optimización Método[]		Privado				
	Operaciones						
Nombre	Descripción	Parámetros	Variable de Retorno				
obtenerNombre	Obtiene el nombre del agente de mantenimiento	null	MaintenanceNombre::Cadena				
obtener Métodos	Obtiene los métodos utilizados para null Mét		Métodos[]::Método				

ejecutar Optimización	Ejecuta un proceso de optimización sobre un activo para calcular las cuotas óptimas de producción y de asignación de recursos para cada Unidad de Producción	Activo::Activo	ConfiguraciónActivo:: ConfiguraciónActivo
-----------------------	---	----------------	--

Tabla 5.4 Descripción Rol Optimizador

5.2.1.6.5 Rol Mantenedor

Nombre:	Mantenedor	Mantenedor						
Descripción:		Este rol representa al agente que se encarga de programar y ejecutar las tareas de mantenimiento requeridas por las instalaciones de producción						
	Atributos							
Nombre	Descripción	Tipo de Dato	Permisos					
Nombre	Nombre del agente de mantenimiento	Cadena	Privado					
ListaDeProductors	Lista de Unidades de Producción en proceso de mantenimiento	Productor[]	Privado					
	Operaciones							
Nombre	Descripción	Parámetros	Variable de Retorno					
obtenerNombre	Obtiene el nombre del agente de mantenimiento	null	NombreMantenedor:: Cadena					
obtenerListaDeProductores	Obtiene la lista de Unidades de Producción en proceso de Mantenimiento	null	Productores[]:Productor					
ejecutarMantenimiento	Ejecuta tareas de mantimiento sobre una Unidad de Producción	Productor:: Productor	CondiciónProductor:: Condición					

Tabla 5.5 Descripción Rol Mantenedor

5.2.1.7 Relaciones entre Roles

Las relaciones entre los roles de una Institución Electrónica establecen la forma como pueden interactuar los agentes que adopten diferentes roles dentro de dicha institución. Un agente puede posiblemente desempeñar varios roles a la vez. El papel de las asociaciones rol/rol para resolver conflictos de intereses, deben definirse con el propósito de proteger a la institución de comportamientos maliciosos por parte de los agentes.

Las relaciones posibles entre los roles son [Esteva, et al., 2001]:

• 'sub': establece que un agente que tome un rol que tiene este tipo de relación con otro rol, automáticamente está autorizado a desempeñar este último también en la institución.

- 'ssd': el nombre completo de esta relación es Separación Estática de Deberes. Esta relación significa los agentes que participan en la institución no pueden tomar simultáneamente roles que mantengan este tipo de relación, esto es, que los roles que tengan este tipo de relación entre ellos son mutuamente excluyentes.
- 'dsd': significa Separación Dinámica de Deberes. Esta relación establece que un agente puede desempeñar simultáneamente roles que mantengan este tipo de relación.

Las relaciones entre los roles definidos para la institución de la Capa de Gestión se describen en la siguiente tabla.

	Gestor del Activo	Productor	Proveedor	Cliente	Optimizador	Mantenedor
Gestor del Activo		ssd	ssd	ssd	dsd	dsd
Productor	ssd		dsd	dsd	ssd	ssd
Proveedor	ssd	dsd		dsd	ssd	ssd
Cliente	ssd	dsd	dsd		ssd	ssd
Optimizador	dsd	ssd	ssd	ssd		ssd
Mantenedor	dsd	ssd	ssd	ssd	ssd	

Tabla 5.6 Relaciones entre los roles de la Institución

De la tabla anterior se desprende que el agente que desempeñe el rol Gestor del Activo puede al mismo tiempo tomar los roles de Optimizador o Mantenedor, y viceversa. Así mismo, un agente con rol Productor, puede tomar los roles de Cliente o Proveedor, y viceversa, durante la ejecución de las escenas en la institución. También vemos que no hay ningún tipo de relación tipo "sub" dentro de esta institución.

5.2.2 Estructura Performativa

5.2.2.1 Descripción General

La estructura performativa de la Institución Electrónica define el conjunto de escenas y transiciones en las cuales se desarrollan las actividades de diálogo entre los agentes. La estructura performativa principal de la institución electrónica que conforma la Capa de Gestión se ha denominado "Estructura Performativa de Gestión de Producción (EPGP)". Como se describió en el capítulo II, una estructura performativa es una tupla:

EPGP = (S;T;
$$s_0$$
; s_Ω ;E; f_L ; f_T ; f_E^0 ;C;ML; μ)

Donde,

S: conjunto de escenas = {Inicio (I), Programación de Producción (PP), Ejecución de Producción (EP), Fin (F)}

T: conjunto de transiciones = {Inicio Programación (TP), Inicio Ejecución (TAE), Solicitud Nueva Programación (TSNP), Nueva Programación (TNP), Fin Producción (TFP)}

s₀: escena inicial=I;

 s_{Ω} : escena final=F;

E: conjunto de arcos = E U E

En la siguiente figura se muestra la estructura performativa desarrollada para la Capa de Gestión.

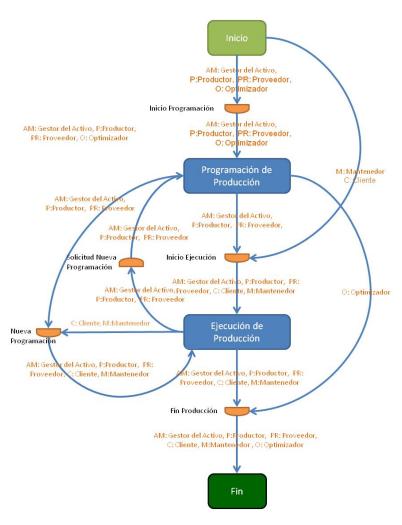


Fig. 5.1 Estructura Performativa de Gestión de Producción

A continuación se describen detalladamente cada uno de los elementos de la estructura performativa.

5.2.2.2 Transiciones

En la Estructura Performativa de Gestión de Producción existen cinco transiciones:

Inicio Programación: permite el ingreso de los agentes con los roles *Gestor del Activo, Productor, Proveedor y Optimizador* a la escena *Programación de la Producción*.

Inicio Ejecución: permite el ingreso de los agentes con los roles *Gestor del Activo, Productor, Proveedor, Optimizador, Cliente y Mantenedor* a la escena *Ejecución de la Producción*. Sincroniza el tránsito de los agentes provenientes de las escenas *Inicio* y *Programación de la Producción*.

Solicitud Nueva Programación: permite el tránsito de los agentes *Gestor del Activo, Productor, y Proveedor* desde la escena *Ejecución de la Producción* a la escena *Programación de la Producción,* cuando ocurre un evento que hace necesario reprogramar la configuración del proceso productivo.

Nueva Programación: permite el ingreso de los agentes *Gestor del Activo, Productor, Proveedor, Optimizador, Cliente y Mantenedor* a la escena *Ejecución de la Producción* cuando ha habido una reprogramación de la producción. Sincroniza el tránsito de los agentes que salen de la escena *Programación de la Producción* con los agentes Cliente y Mantenedor, los cuales se encuentran en espera, para reingresar a la escena *Ejecución de la Producción*.

Fin Producción: permite el ingreso de los agentes a la escena final de la estructura performativa. Sincroniza el tránsito de los agentes provenientes de las escenas *Ejecución de la Producción* y *Programación de la Producción*.

En la siguiente tabla se lista el tipo de cada transición de la Estructura Performativa de Gestión de Producción.

Transición	Tipo
Inicio Producción	AND
Inicio Programación	AND
Inicio Ejecución	AND
Solicitud Nueva Programación	AND

Nueva Programación	AND
Fin Producción	AND

Tabla 5.7 Tipos de Transiciones EPGP

5.2.2.3 Arcos

5.2.2.3.1 Arcos de Salida y Entrada

En la siguiente tabla se listan la cantidad de arcos que existen en la estructura performativa de la institución. Se han denominado "Arcos de Salida" a los arcos que van desde escenas hacia las transiciones y "Arcos de Entrada" a los arcos que van desde las transiciones hacia las escenas (ver figura 5.1)

			Transiciones		
Escenas	Inicio Programación	Inicio Ejecución	Solicitud Nueva Programación	Nueva Programación	Fin Producción
Inicio	Arco Salida 1	Arco Salida 2			
Programación de Producción	Arco Entrada 1	Arco Salida3	Arco Entrada 4	Arco Salida 8	Arco Salida 4
Ejecución de Producción		Arco Entrada 2	Arco Salida 6	Arco Salida 7/ Arco Entrada 5	Arco Salida 5
Fin					Arco Entrada 3

Tabla 5.8 Arcos entre Escenas y Transiciones en la Estructura Performativa

En la siguiente figura se pueden observar gráficamente los arcos de entrada y salida entre escenas y transiciones.

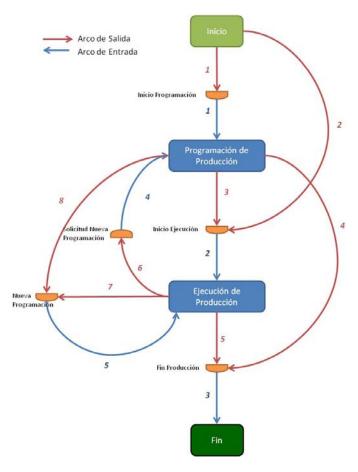


Fig. 5.2 Arcos de la Estructura Performativa de Gestión de Producción

5.2.2.3.2 Etiquetas de los arcos

A cada arco se le asigna una etiqueta (f_L) que permite identificar los roles de los agentes a participar en la escena y una variable asignada a cada agente que cumple un rol, que identificará al agente dentro a la escena a la que ingresa (ver figura 5.1). En la siguiente tabla se listan las etiquetas asociadas a cada arco.

Arco	Etiqueta (f _L)		
Arco Salida 1	AM: Gestor del Activo, P:Productor, PR: Proveedor, O: Optimizador		
Arco Salida 2	M: Mantenedor, C: Cliente		
Arco Salida 3	AM: Gestor del Activo, P:Productor, PR: Proveedor		
Arco Salida 4	O: Optimizador		

Arco Salida 5	AM: Gestor del Activo, P:Productor, PR: Proveedor, C: Cliente, M:Mantenedor	
Arco Salida 6	AM: Gestor del Activo, P:Productor, PR: Proveedor	
Arco Salida 7	C: Cliente, M:Mantenedor	
Arco Salida 8	AM: Gestor del Activo, P:Productor, PR: Proveedor	
Arco Entrada 1	AM: Gestor del Activo, P:Productor, PR: Proveedor, O: Optimizador	
Arco Entrada 2	AM: Gestor del Activo, P:Productor, PR: Proveedor, C: Cliente, M:Mantenedor	
Arco Entrada 3	AM: Gestor del Activo, P:Productor, PR: Proveedor, C: Cliente, M:Mantenedor , O: Optimizador	
Arco Entrada 4	AM: Gestor del Activo, P:Productor, PR: Proveedor	
Arco Entrada 5	AM: Gestor del Activo, P:Productor, PR: Proveedor, C: Cliente, M:Mantenedor	

Tabla 5.9 Etiquetas de los arcos en la Estructura Performativa

5.2.2.3.3 Tipos de arcos

Tal y como se describió en el Capítulo II, los arcos de entrada pueden clasificarse a través de una función (f^{o}_{E}), para indicar si la escena a la que entran los agentes a través del arco debe crearse, o si por el contrario, los agentes entrarán a una, alguna o todas las escenas (del tipo de escena que está al final del arco) activas en la institución. En la siguiente tabla se describen los tipos de arcos para la estructura performativa de gestión de producción.

Arco	Tipo (f ^O E)	Descripción		
Arco Entrada 1	NEW	Se crea una nueva escena "Programación de Producción" al iniciar la estructura performativa		
Arco Entrada 2	NEW	Se genera una nueva escena "Ejecución de Producción" iniciar la estructura performativa		
Arco Entrada 3	ONE	La escena "End" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente		

Arco Entrada 4	ONE	Los agentes ingresan a la escena "Programación de la Producción" activa en la Institución
Arco Entrada 5	NEW	Se genera una nueva escena "Ejecución de Producción" para implementar la nueva programación

Tabla 5.10 Tipos de Arcos en la Estructura Performativa de Gestión de Producción

En la siguiente figura se muestran los tipos de arco para la Estructura Performativa de Gestión de Producción.

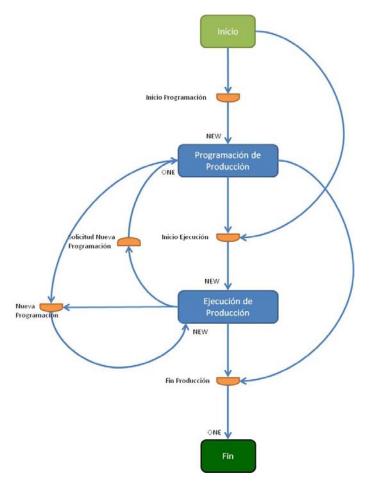


Fig. 5.3 Tipos de Arcos de la Estructura Performativa de Gestión de Producción

5.2.2.3.4 Restricciones

Para cada arco, se definen las restricciones (C) que se imponen a los agentes para transitar de una escena a otra. En el caso de la Estructura Performativa de Gestión de Producción no se han definido restricciones.

5.2.2.3.5 Meta-Lenguaje

En la Institución Electrónica se utilizará como meta-lenguaje (ML) el lenguaje OWL, ya que es en este lenguaje en el cual está definida la ontología.

5.2.2.3.6 Escenas que pueden ser múltiplemente instanciadas (μ)

En la Estructura Performativa de Gestión de Producción no existen escenas que se instancien múltiples veces.

5.2.2.4 Escenas

5.2.2.4.1 Programación de la Producción

Esta escena tiene como objetivo que, dada una meta de producción, se asignen las cuotas de producción y consumo de recursos para cada unidad de producción del activo, tomando en cuenta las restricciones en los recursos totales disponibles en el sistema. El proceso se describe en la figura 5.4.

Para implementar dicho protocolo como una escena de la institución electrónica, se definió la Estructura Performativa de Programación de la Producción (EPPP).

$$\mathsf{EPPP} = (\mathsf{S};\mathsf{T};\,\mathsf{s}_0;\,\mathsf{s}_\Omega;\mathsf{E};\,\mathsf{f}_\mathsf{L};\,\mathsf{f}_\mathsf{T};\,\mathsf{f}^\mathsf{O}_\mathsf{E};\mathsf{C};\mathsf{ML};\,\mu)$$

En la figura 5.5 se muestra gráficamente la estructura performativa de programación de la producción.

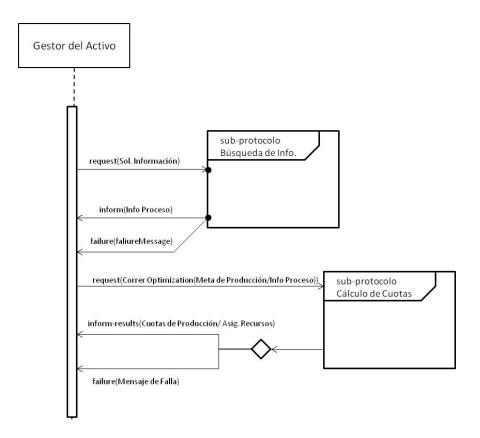


Fig. 5.4 Protocolo Escena de Programación de la Producción

Para la estructura performativa que se diseñó para la Programación de Producción se definieron cuatro escenas:

S= {Inicio, Búsqueda de Información, Cálculo de Cuotas de Producción, Fin}

Así mismo, se definieron cinco transiciones:

T= {Inicio Búsqueda, Inicio Cálculo, Salida Productor/Proveedor, Salida Optimizador, Fin Programación}

En la tabla 5.11 se pueden observar el conjunto de escenas y transiciones y los arcos existente, tanto de escenas a transiciones (Arcos de Salida), como de transiciones a escenas (Arcos de Entrada).

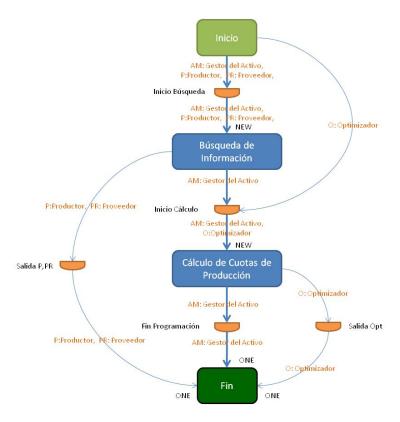


Fig. 5.5 Estructura Performativa de Programación de Producción

	Transiciones (T)				
Escenas (S)	Inicio Búsqueda	Inicio Cálculo	Salida P, PR	Salida Optimizador	Fin Programación
Inicio (So)	Arco Salida 1	Arco Salida 2			
Búsqueda de Información	Arco Entrada 1	Arco Salida 3	Arco Salida 5		
Cálculo de Cuotas de Producción	Arco Salida 4	Arco Entrada 2		Arco Salida 6	
Fin (SΩ)			Arco Entrada 4	Arco Entrada 5	Arco Entrada 3

Tabla 5.11 Arcos Escena Performativa Programación de la Producción

Las etiquetas que definen los roles que pueden transitar por cada arco, para ir de una escena a otra, se listan en la siguiente tabla.

Arcos(E)	Etiqueta(fL)		
Arco Salida 1	AM: Gestor del Activo,		
	P: Productor; PR: Proveedor		
Arco Salida 2	O:Optimizador		
Arco Salida 3	AM: Gestor del Activo		
Arco Salida 4	AM: Gestor del Activo		
Arco Salida 5	P: Productor; PR: Proveedor		
Arco Salida 6	O: Optimizador		
Arco Entrada 1	AM: Gestor del Activo,		
	P: Productor; PR: Proveedor		
Arco Entrada 2	AM: Gestor del Activo;		
	O: Optimizador		
Arco Entrada 3	AM: Gestor del Activo		
Arco Entrada 4	P: Productor; PR: Proveedor		
Arco Entrada 5	O: Optimizador		

Tabla 5.12 Etiquetas de Arcos Estructura Performativa Programación de la Producción

Los tipos de arcos se describen en la siguiente tabla:

Arcos (E)	Tipo(fO)	Descripción
Arco Entrada 1	NEW	Se crea una nueva escena "Solicitud de Información" cuando los agentes salen de la transición a través de este arco
Arco Entrada 2	NEW	Se crea una nueva escena "Cálculo de Cuotas de Producción" cuando los agentes salen de la transición a través de este arco

Arco Entrada 3	ONE	La escena "Fin" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente
Arco Entrada 4	ONE	La escena "Fin" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente
Arco Entrada 5	ONE	La escena "Fin" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente

Tabla 5.13 Tipos de Arcos Estructura Performativa Programación de la Producción

Los tipos de transiciones se listan en la siguiente tabla:

Transición(T)	Tipo(fT)
Inicio Búsqueda	AND
Inicio Cálculo	AND
Salida P, PR	AND
Salida Optimizador	AND
Fin Programación	AND

Tabla 5.14 Tipos deTransiciones Estructura Performativa Programación de la Producción

En la estructura performativa de programación de la producción no existen restricciones. Al igual que la estructura performativa principal, en el resto de la Institución Electrónica se utilizará el lenguaje OWL para el contenido de los mensajes, ya que es en este lenguaje en el cual está definida la ontología.

A continuación se hará una descripción de cada una de las escenas de la estructura performativa.

5.2.2.4.1.1 Búsqueda de Información

Esta escena tiene como objetivo la obtención de información sobre las unidades de producción y los proveedores que participan dentro de la institución.

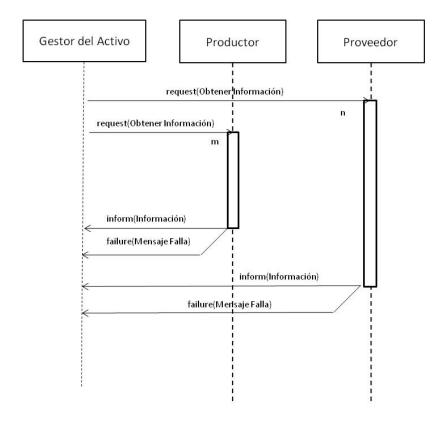


Fig. 5.6. Diagrama de Secuencia de Mensajes Sub-protocolo para búsqueda de información

En la siguiente figura se muestra el protocolo que define la escena como una máquina de estado.

Fig. 5.7. Sub-protocolo para búsqueda de información

Los elementos que componen la escena se describen en las siguientes tablas.

Estados					
		Agentes			
Estado (W)	Descripción	Agentes Entrando a la Escena (WA) ¹⁶	Agentes Saliendo de la Escena(WE) ¹⁷		
Inicio	Inicio de la escena	Gestor del Activo, Productor, Proveedor			
Evaluación	En este estado los agentes ya han entrado a la escena y el agente Gestor del Activo realiza una solicitud de información a los agentes participantes				
Recuperación Información Productor	En esta escena el agente (los agentes) con rol productor responde con la información requerida. Si existe alguna falla se emite un mensaje de falla				
Recuperación Información Proveedor	En esta escena el agente (los agentes) con rol proveedor responde con la información requerida. Si existe alguna falla se emite un mensaje de falla				
Fin	Se da por terminada la escena		Gestor del Activo Productor Proveedor		

Tabla 5.15. Estados de la Escena de Búsqueda de Información

Ejes (Θ)					
Etiqueta (λ)	Estado de Salida	Estado de Llegada	llocución	Contenido	Precondiciones
apertura	Inicio	Evaluación	informar	Abrir	No existen
consulta	Evaluación	Recuperación Información Productor	solicitud	Obtener Información	No existen
Respuesta Productor	Recuperación Información Productor	Recuperación Información Proveedor	solicitud	Información Productor	No existen
Respuesta Proveedor	Recuperación Información Proveedor	Fin	informar	Información Proveedor	No existen

Tabla 5.16. Ejes de la Escena de Búsqueda de Información

En cada estado existe la posibilidad que agentes con roles determinados ingresen a la escenaEn cada estado existe la posibilidad que agentes con roles determinados salgan de la escena

Para esta escena, el número mínimo y máximo de agentes que pueden desempeñar cada rol es:

Gestor del Activo= {min=1; max=1}

Productor = {min =1; max = parámetro de diseño¹⁸}

Proveedor = {min =1; max = parámetro de diseño}

5.2.2.4.1.2 Cálculo de Cuotas de Producción

A través de este protocolo se calculan las cuotas de producción a asignar a cada productor a las cantidades de recursos necesarias, de forma de optimizar el proceso de producción. El protocolo utilizado en esta escena se describe en la siguiente figura:

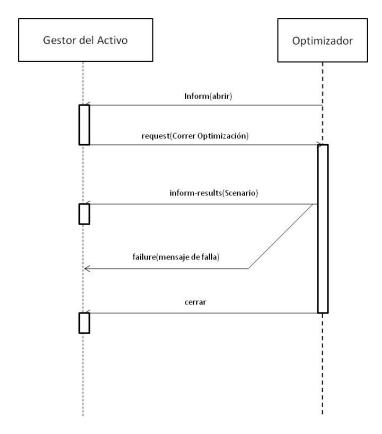


Fig. 5.8. Diagrama de Secuencia de Mensajes Sub-protocolo Cálculo de Cuotas de Producción

 $^{^{18}}$ Un parámetro de diseño es aquel que define <u>el usuario al momento de la implantación de la arquitectura.</u>

En la siguiente figura se muestra el protocolo que define la escena como una máquina de estado.

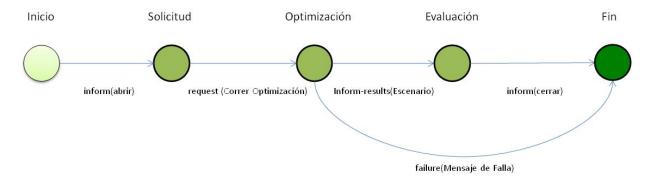


Fig. 5.9. Sub-protocolo Cálculo de Cuotas de Producción

Los elementos que componen la escena se describen en las siguientes tablas.

Estados				
		Agentes		
Estado (R)	Descripción	Entrando (WA)	Saliendo(WE)	
Inicio	Inicio de la escena	Gestor del Activo Optimizador		
Solicitud	En este estado los agentes ya han entrado a la escena y el agente Gestor del Activo realiza una solicitud al agente Optimizador para ejecutar el cálculo de las cuotas óptimas de producción y de energía para cada unidad de producción.			
Optimización	En este estado el agente Optimizador realiza los cálculos de las cuotas óptimas de producción y energía para cada unidad de producción, tomando en cuenta la meta de producción y la energía disponible.		Gestor del Activo	
Evaluación	En este estado el agente Gestor del Activo evalúa el escenario generado por el agente Optimizador y decide si debe implantarlo en la Institución.			
Fin	Se da por terminada la escena		Gestor del Activo Optimizador	

Tabla 5.17. Estados de la Escena Cálculo de Cuotas de Producción

	Ejes (Θ)					
Etiqueta (λ)	Estado de Salida	Estado de Llegada	llocución	Contenido	Precondiciones	
Abrir	Inicio	Solicitud	informar	Abrir	No existen	
Solicitud	Solicitud	Optimización	solicitud	Ejecutar Optimización	No existen	
evaluar	Optimización	Evaluación	informar- resultados	Escenario	No existen	
falla	Optimización	Fin	falla	Mensaje de Falla	Condición Gestor del Activo = falla ó Condición Optimizador = falla	
cierre	Optimización	Fin	informar	Cerrar	cierreProducción= 'Verdadero'	

Tabla 5.18. Ejes de la Escena Cálculo de Cuotas de Producción

Para esta escena, el número mínimo y máximo de agentes que pueden desempeñar cada rol es:

5.2.2.4.2 Ejecución de Producción

Esta escena representa la ejecución del proceso de producción, una vez establecidas y aprobadas las cuotas de producción y recursos en la escena anterior. El protocolo utilizado para la escena se describe en la siguiente figura.

Fig. 5.10. Diagrama de Secuencia de Mensajes Ejecución de Producción

Para implementar dicho protocolo como una escena de la institución electrónica se definió la siguiente estructura performativa,

EPEP = (S;T;
$$s_0$$
; s_Ω ;E; f_L ; f_T ; f_E^O ;C;ML; μ)

En la siguiente figura se muestra gráficamente la estructura performativa de ejecución de la producción.

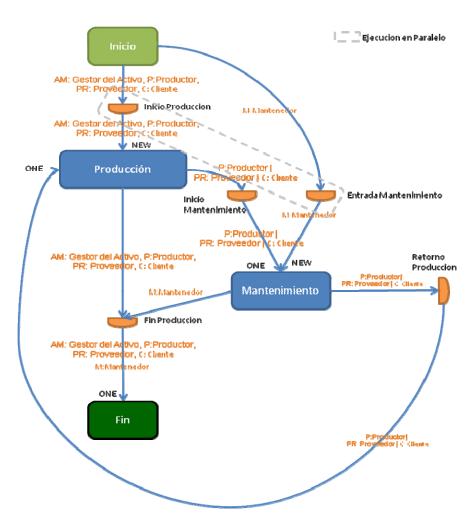


Fig. 5.11. Estructura Performativa Ejecución de Producción

Para la estructura performativa que se diseñó para la Ejecución de Producción se definieron cuatro escenas:

S= {Inicio, Producción, Mantenimiento, Fin}

Así mismo, se definieron cinco transiciones:

T= {Inicio Producción, Inicio Mantenimiento, Entrada a Mantenimiento, Retorno Producción, Fin Producción}

En la siguiente tabla se pueden observar el conjunto de escenas y transiciones y los arcos existente, tanto de escenas a transiciones (Arcos de Salida), como de transiciones a escenas (Arcos de Entrada).

	Transiciones (T)				
Escenas (S)	Inicio Producción	Inicio Mantenimiento	Entrada Mantenimiento	Retorno Producción	Fin Producción
Inicio (So)	Arco Salida 1		Arco Salida 2		
Producción	Arco Entrada 1	Arco Salida 4		Arco Entrada 4	Arco Salida 3
Mantenimiento	Arco Entrada 3	Arco Entrada 2		Arco Salida 5	Arco Salida 6
Fin (SΩ)					Arco Entrada 5

Tabla 5.20 Arcos de Entrada y Salida Estructura Performativa Ejecución de Producción

Las etiquetas que definen los roles que pueden transitar por cada arco para ir de una escena a otra se listan en la siguiente tabla.

Arcos(E)	Etiqueta(fL)		
Arco Salida 1	AM: Gestor de Producción; P: Productor; PR:		
	Proveedor; C: Cliente		
Arco Salida 2	M:Mantenedor		
Arco Salida 3	AM: Gestor de Producción; P: Productor; PR:		
	Proveedor; C: Cliente		
Arco Salida 4	P: Productor PR: Proveedor		
	C: Cliente		
Arco Salida 5	P: Productor PR: Proveedor		
	C: Cliente		
Arco Salida 6	M: Mantenimiento		
Arco Entrada 1	AM: Gestor de Producción; P: Productor; PR:		
	Proveedor; C: Cliente		
Arco Entrada 2	P: Productor PR: Proveedor		
	C: Cliente		

Arco Entrada 3	M:Mantenedor
Arco Entrada 4	P: Productor PR: Proveedor C: Cliente
Arco Entrada 5	AM: Gestor de Producción; P: Productor; PR: Proveedor; C: Cliente, M: Mantenedor

Tabla 5.21 Etiquetas de Arco Estructura Performativa Ejecución de Producción

Los tipos de arcos se describen en la siguiente tabla:

Arcos (E)	Tipo(fO)	Descripción
Arco Entrada 1	NEW	Se crea una nueva escena "Producción" cuando los agentes salen de la transición a través de este arco
Arco Entrada 2	ONE	Los agentes entran a la escena Mantenimiento que esta activa en la Institución
Arco Entrada 3	NEW	Se crea una nueva escena "Mantenimiento" cuando el agente Mantenedor salen de la transición a través de este arco
Arco Entrada 4	ONE	La escena "Fin" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente
Arco Entrada 5	ONE	La escena "Fin" es creada automáticamente al iniciar la estructura performativa, por lo que los agentes deben ir la escena existente

Tabla 5.22. Tipos de Arcos Estructura Performativa Ejecución de Producción

Los tipos de transiciones se listan en la siguiente tabla:

Transición(T)	Tipo(fT)
Inicio Producción	AND
Inicio Mantenimiento	AND
Entrada a Mantenimiento	AND
Retorno Producción	AND
Fin Producción	AND

Tabla 5.23. Tipos de Transiciones Estructura Performativa Ejecución de Producción

En la estructura performativa de ejecución de la producción no existen restricciones.

A continuación se describen los protocolos correspondientes a la estructura performativa de ejecución de la producción.

5.2.2.4.2.1 **Producción**

En la ejecución de la producción interactúan los agentes Gestor del Activo, Productor y Proveedor, existiendo la posibilidad de que exista multiplicidad de los últimos dos agentes. El protocolo utilizado para esta escena se describe en la siguiente figura:

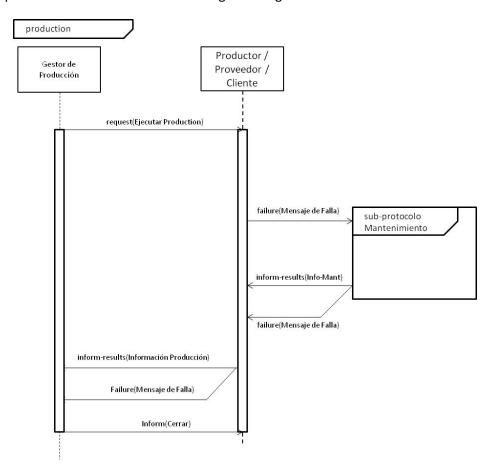


Fig. 5.12. Diagrama de Secuencia de Mensajes Sub-protocolo escena Producción

En la siguiente figura se muestra el protocolo que define la escena como una máquina de estado.

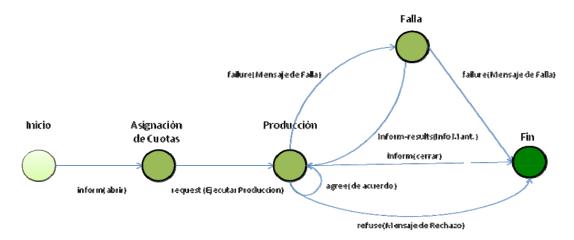


Fig. 5.13. Sub-protocolo escena Producción

Los estados y ejes de la escena se describen en las siguientes tablas:

Estados				
		Agentes		
Estado (R)	Descripción	Agentes Entrando a la escena (WA)	Agentes Saliendo de la Escena (WE)	
Inicio	Inicio de la escena	Gestor del Activo, Productor, Proveedor, Cliente		
Asignación Cuotas Producción	En este estado todos los agentes han entrado a la escena y el agente Gestor del Activo establece las cuotas de producción y energía para cada agente Productor			
Producción	En este estado se han fijado las cuotas a cada agente Productor y se inicia el proceso de producción. En este estado se realiza el monitoreo del proceso productivo.		Gestor del Activo, Productor, Proveedor, Cliente	
Falla	En este estado alguno de los agentes ha entrado en falla y pasa a la escena de mantenimiento		Productor	
Fin	Se da por terminada la escena		Gestor del Activo, Productor, Proveedor, Cliente	

Tabla 5.24. Estados de la Escena Producción

Ejes (Θ)						
Etiqueta (λ)	Estado de Salida	Estado de Llegada	llocución	Contenido	Precondiciones	
Abrir	Inicio	Asignación Cuotas de Producción	informar	Abrir		
Solicitud	Asignación Cuotas de Producción	Producción	solicitud	Ejecutar Producción		
Aceptación	Producción	Producción	deAcuerdo	De Acuerdo		
Rechazo	Producción	Fin	Rechazo	Mensaje de Rechazo		
Falla Productor	Producción	falla	Falla	Mensaje de Falla	Productor.Condición.EstadoActual ='falla'	
Falla Proveedor	Producción	falla	Falla	Mensaje de Falla	Proveedor.Condición.EstadoActual ='falla'	
Falla Cliente	Producción	falla	Falla	Mensaje de Falla	Cliente.Condición.EstadoActual= 'falla'	
Productor Falla Crítica	Producción	falla	Falla	Mensaje de Falla	Productor.Condición.EstadoActual ='falla'	
Proveedor Falla Crítica	Producción	falla	Falla	Mensaje de Falla	Proveedor.Condición.EstadoActual ='falla'	
Cliente Falla Crítica	Producción	falla	Falla	Mensaje de Falla	Proveedor.Condición.EstadoActual ='falla'	
Cierre	Producción	Fin	informar	cierre	cierreProducción=='Verdadero'	

Tabla 5.25 Ejes de la Escena Producción

Para esta escena, el número mínimo y máximo de agentes que pueden desempeñar cada rol es:

Gestor del Activo= {min=1; max=1}

Productor = {min =1; max = parámetro de diseño}

Cliente = {min =1; max = parámetro de diseño}

Proveedor = {min =1; max = parámetro de diseño}

5.2.2.4.2.2 Mantenimiento

En esta escena los agentes Cliente, Productor o Proveedor pueden solicitar al agente Mantenedor la ejecución de un proceso de mantenimiento. Para tal fin, el agente solicitante debe enviar una descripción de su estado que incluya una descripción detallada de la falla que presenta. El protocolo se describe en la siguiente figura:

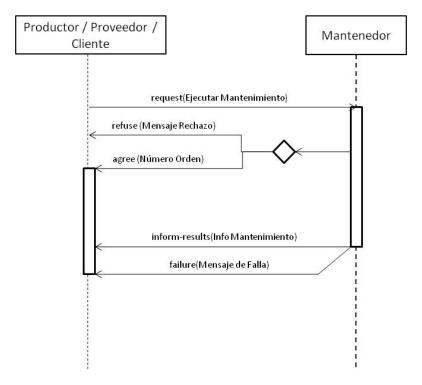


Fig. 5.14. Diagrama de Secuencia de Mensajes Sub-protocolo escena Mantenedor

En la siguiente figura se presenta el protocolo de la escena como una máquina de estado.

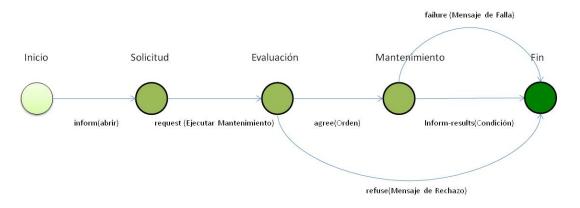


Fig. 5.15. Sub-protocolo escena Mantenedor

Los estados y ejes de la escena se describen en las siguientes tablas:

Estados				
		Agentes		
Estado (W)	Descripción	Entrando (WA)	Saliendo(WE)	
Inicio	Inicio de la escena	Mantenedor, Productor, Proveedor, Cliente		
Solicitud	Los agentes han entrado a la escena, el agente que presenta la falla (Productor, Proveedor o Cliente) informará al agente Mantenedor su estado y las características de la falla y realiza la solicitud de mantenimiento			
Evaluación	El agente Mantenedor acepta o rechaza la solicitud		Productor, Proveedor, Cliente	
Mantenimiento	El agente Mantenedor ejecuta las tareas de mantenimiento requeridas para solventar la falla presentada			
Fin	Se da por terminada la escena		Mantenedor, Productor, Proveedor, Cliente	

Tabla. 5.26. Estados escena Mantenedor

			Ejes (Θ)		
Etiqueta (λ)	Estado de Salida	Estado de Llegada	Ilocució n	Contenido	Precondiciones
Abrir	Inicio	Solicitud	informar	Abrir	
Solicitud	Solicitud	Evaluación	solicitud	Realizar Mantenimiento	
Aceptación	Evaluación	Mantenimiento	informar	Aceptación Solicitud	
Rechazo	Evaluación	Fin	informar	Rechazo Solicitud	
Condición	Mantenimiento	Fin	informar	Condición	
Cierre	Aceptación	Fin	informar	cierre	cierreProducción=='Verdader o'

Tabla. 5.27. Transiciones escena Mantenedor

Para esta escena, el número mínimo y máximo de agentes que pueden desempeñar cada rol es:

Gestor del Activo= {min=1; max=1}

Mantenedor = {min =1; max = 1}

5.2.3 Normas Sociales de la Institución

Las normas permiten imponer a los agentes reglas socialmente vinculantes, que restringen su comportamiento, en aras de alcanzar el objetivo de la institución bajo una serie de parámetros establecidos. Para nuestro caso, las normas permitirán alcanzar un programa de producción en un tiempo determinado, asignar cuotas de producción según criterios establecidos, procesar labores de mantenimiento de manera obligatoria, y reaccionar ante las fallas de una manera planificada y segura.

5.2.3.1 Norma para obtención de información del rol Proveedor

Con esta norma se establece un límite de tiempo para que el agente con rol Proveedor entregue la información solicitada por el Gestor del Activo en la escena Búsqueda de Información (ver sección 5.2.2.2.2.1). La norma tiene la siguiente forma:

OBLIGED (utter (InformationSearch, ProviderIR, inform-results (?ES,Provider, ?FM, AssetManager, Information)) BEFORE tmax)

El significado de la norma es el siguiente:

Escena: Búsqueda de Información

Estado: Recuperación Información Proveedor

ilocución: Informar Resultados

Emisor: Proveedor

Receptor: Gestor del Activo

Contenido: Información del Proveedor

Obligación: emitir la ilocución antes que se cumpla un tiempo tmax (donde tmax es un parámetro

establecido por el usuario)

5.2.3.2 Norma para obtención de información del rol Productor

Con esta norma se establece un límite de tiempo para que el agente con rol Productor entregue la información solicitada por el Gestor del Activo en la escena Búsqueda de Información (ver sección 5.2.2.2.2.1). La norma tiene la siguiente forma:

OBLIGED (utter (InformationSearch, ProducerIR, inform-results (?ES,Producer, ?FM, AssetManager, Information)) BEFORE tmax)

El significado de la norma es el siguiente:

Escena: Búsqueda de Información

Estado: Recuperación Información Productor

ilocución: Informar Resultados

Emisor: Productor

Receptor: Gestor del Activo

Contenido: Información del Productor

Obligación: emitir la ilocución antes que se cumpla un tiempo tmax (donde tmax es un parámetro

establecido por el usuario)

5.2.3.3 Norma para cálculo de escenario óptimo de producción

Con esta norma se establece un límite de tiempo para que el agente con rol Optimizador calcule el escenario óptimo de producción y entregue información sobre el mismo al Gestor del Activo, en la escena Cálculo de Cuotas de Producción (ver sección 5.2.2.2.2.2). La norma tiene la siguiente forma:

OBLIGED (utter (PQC, Optimization, inform-results (?O, Optimizer, ?FM, AssetManager, Scenario))
BEFORE tmax

El significado de la norma es el siguiente:

Escena: Cálculo de Cuotas de Producción

Estado: Optimización

ilocución: Informar Resultados

Universidad de los Andes Doctorado en Ciencias Aplicadas

Emisor: Optimizador

Receptor: Gestor del Activo

Contenido: Escenario óptimo de producción

Obligación: emitir la ilocución antes que se cumpla un tiempo tmax (donde tmax es un parámetro

establecido por el usuario)

5.2.3.4 Norma para la ejecución de producción

Con esta norma se establece un límite de tiempo para que los agentes con los roles Productor, Proveedor y Cliente inicien la ejecución de la producción en base al escenario estipulado por el Gestor del Activo, en la escena Producción (ver sección 5.2.2.4.2.1). Para este caso existe una norma por cada rol participante de la ejecución de producción. Dicha norma tiene la misma forma para todos los roles:

OBLIGED (utter (Production, Production, agree (?P, Producer, ?FM, AssetManager, agree)) BEFORE tmax

OBLIGED (utter (Production, Production, agree (?PR, Provider, ?FM, AssetManager, agree)) BEFORE tmax

OBLIGED (utter (Production, Production, agree (?C, Client, ?FM, AssetManager, agree)) BEFORE tmax

El significado de las normas es el siguiente:

Escena: Producción

Estado: Producción

ilocución: de acuerdo

Emisor: Productor, Proveedor, Cliente

Receptor: Gestor del Activo

Contenido: agree

Obligación: emitir la ilocución antes que se cumpla un tiempo tmax (donde tmax es un parámetro establecido por el usuario).

Universidad de los Andes Doctorado en Ciencias Aplicadas

5.3. Análisis

La capa de gestión propone un mecanismo para la automatización de flujos de trabajo en una industria de producción continua, por medio del uso de instituciones electrónicas.

Como paso inicial, en este capítulo se presentó el flujo de trabajo para el área de producción de una industria de producción continua. A partir de este flujo de trabajo se definieron el marco de diálogo (roles, ontología, actos de habla), las estructuras performativas (secuencia de escenas y transiciones que representan los flujos de trabajo) y las normas sociales que regirán una institución electrónica destinada a la supervisión automatizada de procesos de producción.

Las instituciones electrónicas permiten la implementación de sistemas multiagentes para la automatización de tareas de producción continua, la cual había encontrado críticas en la comunidad científica y desconfianza en el sector industrial, ya que por el carácter emergente de los sistemas multiagentes y el comportamiento autónomo de los agentes, se planteaba el riesgo de que al utilizar los mismos para el control y supervisión de producción, no se cumplieran las estrictas restricciones de tiempo y de condiciones de operación comúnmente encontradas en las industrias de producción continua. La instituciones electrónicas permiten mitigar estos riesgos, a partir del establecimiento de normas socialmente vinculantes que restringen el comportamiento de los agentes en un ambiente determinado, para garantizar el cumplimiento de los objetivos de la institución en la que participan. En el caso planteado en este trabajo, las instituciones electrónicas permiten cumplir con los objetivos de producción cumpliendo a su vez con las restricciones impuestas por la dinámica del proceso.

Utilizar sistemas multiagentes en la supervisión de producción posibilita: 1) aprovechar el carácter emergente de los agentes para establecer mecanismos de optimización del proceso de producción, 2) utilizar una plataforma distribuida para la supervisión de la producción, 3) reactividad en el sistema de supervisión ante eventos en el proceso y pro-actividad de los agentes para detectar posibles situaciones anormales, 4) integración de la información del proceso productivo en una visión global a partir del conocimiento colectivo del sistema multiagente (suma de las visiones parciales de los agentes) sobre el estado del proceso, 4) escalabilidad de la arquitectura a partir de la inclusión de nuevos agentes.

En este capítulo se realizó un análisis de los flujos de trabajo del proceso de producción y se diseñó una institución electrónica para la automatización de los mismos. Dicha institución se alimenta de la información recabada por la capa de conectividad y utiliza los conceptos definidos en la capa de semántica para la comunicación entre los agentes.

Capítulo VI. Caso de Estudio

6.1 Descripción del Problema: Producción de Petróleo

6.1.1 Introducción

Como caso de estudio de la arquitectura propuesta, se abordará la Gerencia de Yacimientos Petrolíferos, específicamente el proceso de Producción de Petróleo, ya que dicho proceso ejemplifica claramente los procesos de producción continua para los cuales fue diseñada la arquitectura.

La Gerencia de Yacimientos es el proceso recurrente en el cual el operador de un campo petrolero utiliza modelos matemáticos, datos y experticia, para optimizar la rentabilidad del yacimiento, o para cualquier otro objetivo establecido sobre el desempeño del campo [Saputelli, et al., 2003].

El propósito de la gerencia de yacimientos es controlar las operaciones para obtener el máximo recobro económico de un yacimiento basándose en datos, información y conocimiento. El proceso de gerencia de yacimientos supone establecer un objetivo, definir una estrategia, desarrollar un plan, implementar y monitorear dicho plan y evaluar sus resultados.

El proceso de explotación de yacimientos consta de varias etapas, que comienzan con la exploración en busca de reservas de hidrocarburos económicamente explotables en el subsuelo y terminan con el abandono de los campos maduros¹⁹ al final de su vida útil. En el siguiente gráfico se pueden observar las diversas etapas del proceso de explotación de yacimientos.

Fig. 6.1. Fases de la Gerencia de Yacimientos

¹⁹ Los campos maduros son aquellas unidades de producción que están destinadas a explotar un yacimiento, en las cuales ya han sido explotadas la mayor parte de las reservas de hidrocarburos presentes en dicho yacimiento.

A continuación se describen cada una de las fases señaladas en la figura.

Exploración: consiste en la detección de reservas comercialmente explotables de hidrocarburos en el subsuelo, por medio de diversas disciplinas, tales como la geología, la petrofísica y la geofísica. En esta fase se determinan las características del yacimiento, tales como: extensión, límites, acumulación de hidrocarburos, factor de recobro, características de la roca (permeabilidad, porosidad, viscosidad).

Evaluación: consiste en la realización de la ingeniería de yacimientos, la cual se trata del desarrollo de modelos que permitan inferir el movimiento de los fluidos en el yacimiento a lo largo del tiempo, además de determinar las características de los hidrocarburos almacenados en el mismo. En esta etapa también se realiza el diseño del plan de explotación del yacimiento²⁰, en el cual se definen el método de levantamiento a utilizar, la cantidad de pozos que se instalarán, el cronograma de completación²¹, las facilidades de superficie a requerir y los cambios en los métodos de explotación que serán necesarios a lo largo del ciclo de vida del yacimiento.

Perforación: en esta etapa se procede a la perforación y construcción de los pozos que fueron definidos en el plan de explotación del yacimiento. Durante la perforación se adquieren datos muy importantes, que servirán para el diseño de los pozos y para los análisis requeridos para optimizar su producción.

Producción: esta etapa consiste en la puesta en marcha de todas las facilidades del activo para la explotación del yacimiento. Una vez instaladas las facilidades de producción, se inicia la extracción de hidrocarburos del subsuelo y su posterior transporte y tratamiento. La producción puede ser llevada a cabo por diversos métodos de levantamiento, que son definidos en el plan de explotación, de acuerdo a las características del yacimiento que está siendo explotado.

Para cada una de las fases es necesario adquirir gran cantidad de información, procesarla y analizarla, para soportar el proceso de toma de decisiones implícita en cada una de ellas.

En este capítulo sólo se abordará la fase de producción. En el Anexo C se presenta una amplia introducción a la Gerencia Integrada de Yacimientos.

²⁰ Término utilizado en al ámbito de producción de petróleo para nombrar al conjunto de actividades a llevar a cabo para explotar las reservas de hidrocarburos en un yacimiento petrolífero.

²¹ Completación: proceso de construcción del pozo (instalación de tuberías y equipos de subsuelo y superficie) que se realiza posterior a la perforación.

6.1.2 Proceso de Producción

El proceso de producción de petróleo consiste en hacer uso de la energía que tiene el yacimiento y de la energía aportada por métodos de levantamiento artificial²², para llevar los hidrocarburos atrapados en el subsuelo hasta la superficie, para posteriormente transportarlos y tratarlos, y así obtener el producto requerido (gas, petróleo) y entregarlo a los clientes finales (refinerías, terminales de embarque).

En el proceso de producción de petróleo se hace uso de múltiples instalaciones para la extracción, transporte, separación e inyección. Entre las más importantes se encuentran:

Pozo: instalación comprendida por un conjunto de tuberías, válvulas, bombas, empacaduras y elementos de automatización, que permiten extraer el fluido de producción desde el subsuelo hasta la superficie. Un pozo contiene una serie de elementos que conforman su "completación", dichos elementos son:

Tubería de Revestimiento (Casing): permite aislar la tubería de producción del hoyo abierto en la perforación. En los pozos de levantamiento artificial por gas, este es inyectado a través del espacio anular entre el revestidor y la tubería de Producción.

Tubería de Producción (Tubing): permite el traslado del fluido de producción desde la arena productora en subsuelo hasta la superficie.

Equipos de subsuelo: comprenden las válvulas, sensores y actuadores que se colocan en el subsuelo para evaluar y controlar el comportamiento del proceso de extracción.

Equipos de Superficie: comprenden las válvulas, sensores y actuadores que se colocan en la superficie, en la terminación del pozo, para controlar el proceso de producción. Dichas válvulas permiten conectar el pozo a las tuberías de producción e inyección. Al conjunto de válvulas que se colocan en el cabezal del pozo se denomina comúnmente "árbol de navidad".

Instalaciones de Superficie: son todas las instalaciones dispuestas en superficie para llevar a cabo los procesos de transporte, separación y tratamiento del crudo, además de las instalaciones responsables de los mecanismos de levantamiento artificial. Entre las instalaciones de superficie más importantes se encuentran.

_

²² Los métodos de levantamiento artificial son aquellos que permiten aportar energía, bien al pozo o al yacimiento, para que, combinada con la energía aportada por el yacimiento, pueda elevarse la columna de fluido de cada pozo, desde el yacimiento hasta la superficie (ver Anexo C para más detalle sobre los diversos métodos de de levantamiento artificial)

Estación de Flujo: es la instalación en la que se realiza el proceso de separación entre la fase gaseosa y la fase líquida del fluido de producción. En esta instalación también se realizan las medidas de producción de cada pozo, denominadas "pruebas de pozo". En la estación de flujo se encuentran los equipos separadores, de los cuales se da una definición a continuación.

Separador: dispositivo que permite separar las fases del fluido de producción (gas, petróleo, agua). Existen dos tipos de separadores:

Separador de producción: separa las fases del fluido para luego enviarlas a plantas compresoras (gas) y patios de tanques (crudo y agua).

Separador de prueba: permite realizar las pruebas de pozo que miden la producción real por cada pozo.

Múltiple²³: es una instalación que permite que varias tuberías confluyan en una tubería común, o que el fluido que llega de una tubería sea distribuido en múltiples líneas. Se compone de tuberías, válvulas, actuadores y sistemas de control local (remotas). Comúnmente, en un campo de producción existen dos tipos principales de múltiples:

Múltiples de Gas: distribuye el gas de alta presión en diversas tuberías que desembocan en los cabezales de los pozos gas lift.

Múltiple de Producción: permite que las líneas de producción provenientes de los pozos confluyan en una tubería para la entrada a los separadores de producción. Además, permite alinear (dirigir el flujo a través de una tubería específica) la producción de un pozo determinado hacia el separador de prueba para realizar la "prueba de pozo".

Planta: instalación de superficie que permite la generación de algún tipo de energía que permite soportar los mecanismos de levantamiento artificial para la producción de los pozos.

Planta Eléctrica: planta generadora de energía eléctrica. Genera la electricidad necesaria para el funcionamiento de los pozos cuyo sistema de levantamiento es por bombeo. Además, genera energía para el resto de las instalaciones y para soportar a los sistemas de automatización.

Planta de Compresión de Gas: planta compresora de gas. Permite elevar la presión del gas para poder inyectarlo a los pozos de gas lift.

-

²³ Manifold en ingles

Planta de Inyección de Agua: Permite elevar la presión del agua para su inyección en los pozos de inyección de agua.

Patio de Tanques: es un conjunto de instalaciones que permiten el almacenamiento de la producción de uno o varios yacimientos, para su posterior entrega al cliente final. En los patios de tanques se realizan también procesos de separación de agua y crudo y mezclas entre crudos de diferentes gravedades, para lograr el producto final con la calidad deseada por el cliente a quien va a ser entregado.

En la siguiente figura se presenta un esquema de las instalaciones más importantes del proceso de producción.

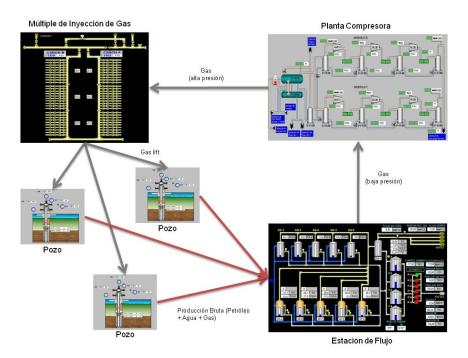


Fig. 6.2. Esquema del Proceso de Producción de Petróleo

Tal y como se expresa en la figura 6.2, las instalaciones antes descritas se interconectan en red para llevar a cabo la producción de petróleo. La colección de instalaciones dispuestas para la explotación de petróleo en uno o varios yacimientos, en un área geográfica determinada, se denomina "Campo".

6.1.3 Proceso de Negocio de Producción de Petróleo

La siguiente figura muestra el proceso de negocio para producción de petróleo, como un flujo de trabajo en el que se exponen las fases involucradas en dicho proceso.

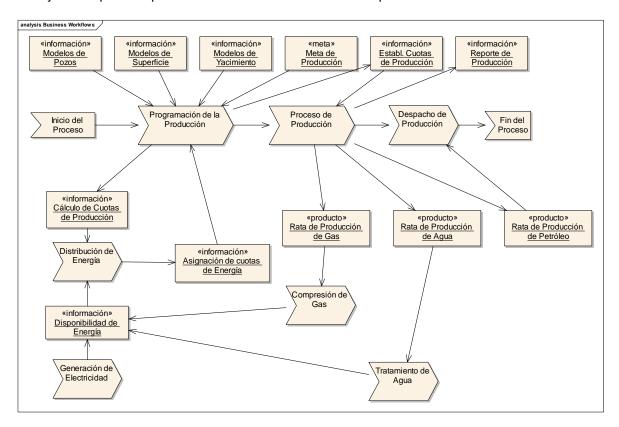


Fig. 6.3. Flujo de Trabajo del Proceso de Producción de Petróleo

Este flujo de trabajo está compuesto por cuatro procesos fundamentales: 1) Programación de la Producción, 2) Distribución de Energía, 3) Producción y 4) Despacho de Producción. Además, el proceso de Distribución de Energía se apoya en tres subprocesos: 1) Generación de Electricidad, 2) Compresión de Gas y 3) Manejo de Agua. Como es natural, este flujo de trabajo tiene, en términos generales, los mismos procesos del flujo de trabajo de producción continua presentado en la primera sección de este documento. Dichos procesos se describen a continuación.

6.1.3.1 Programación de la Producción

Tal y como se observa en la figura 6.3, el primer proceso al inicio del flujo de trabajo es la Programación de la Producción. En este proceso, se definen las cuotas de producción a asignar a cada pozo productor, con el objetivo de cumplir la meta de producción que tiene el campo. Para tal fin, se requieren las siguientes entradas:

- Modelos de los Pozos: contienen la información correspondiente a la configuración de cada pozo del campo (diagrama de completación), su potencial de producción, su comportamiento, en función de la energía del yacimiento y la energía aportada artificialmente, el estado del pozo (activo, cerrado, en mantenimiento) y su programa de mantenimiento.
- Modelo de Superficie: describe la composición de la red de instalaciones del campo en superficie: Pozos, EF's, Plantas, Múltiples, Tuberías, Empalmes, etc. Además, dispone de un modelo del comportamiento de los fluidos de producción e inyección (petróleo, agua, gas) en dicha red.
- Modelo de Yacimiento: describe el comportamiento de los fluidos en el reservorio y su conexión con los sistemas de los pozos.
- Meta de Producción: la Programación de la Producción tiene como entrada la meta de producción, la cuál es la cantidad de barriles por día que debe producir el campo.

El resultado del proceso de programación de la producción es la asignación de cuotas de producción a cada uno de los pozos activos del campo, acompañada de la respectiva asignación de energía para asistir al levantamiento.

6.1.3.2 Distribución de energía

Este proceso aporta información al proceso de programación de producción; en él se hace la distribución de la energía disponible a todos los pozos que pertenecen al campo, atendiendo a los siguientes criterios:

- Meta de producción.
- Energía demandada por cada pozo, derivada del modelo del pozo.
- Energía total disponible para el campo.
- Relación entre consumo de energía y producción por pozo.

Para llevar a cabo la Distribución de Energía, es necesario que se desarrollen procesos para la generación de la misma, entre los cuales se encuentran:

Compresión de Gas: consiste en recolectar el gas separado en la estación de flujo, durante el proceso de producción, y elevar su presión por medio de equipos de compresión (turbocompresores), para que el mismo pueda ser utilizado como gas de inyección a pozos de levantamiento artificial por gas.

Generación de Electricidad: consiste en la generación de energía eléctrica por medio de plantas eléctricas, que permita aportar la energía necesaria a los pozos cuyo método de levantamiento es el bombeo mecánico, electro-sumergible o de cavidad progresiva (ver anexo C). Además, la energía generada es usada para el funcionamiento de instalaciones de superficie (estaciones de flujo, plantas compresoras, múltiples), y para energizar los equipos de automatización instalados en el campo.

Tratamiento de Agua: permite tratar el agua separada del crudo en el proceso de producción, para que la misma pueda ser re-inyectada a pozos que funcionan por inyección de agua.

Generalmente, para llevar a cabo la programación de la producción se hace uso de técnicas de optimización que permiten maximizar la producción minimizando el consumo de energía.

El objetivo de este proceso es calcular las cuotas de energía que pueden ser asignadas a cada pozo productor y al resto del campo, en función de la energía total disponible y de las metas de producción.

6.1.3.3 Producción

El proceso de producción consiste de un conjunto de actividades requeridas para la extracción, transporte y separación del crudo, en base a la programación de la producción. Este proceso tiene como entradas las Cuotas de Producción/Inyección por pozo, y como salidas las ratas de producción de crudo, agua y gas para todo el campo en un horizonte de tiempo determinado, normalmente de un día.

6.1.3.4 Despacho de Producción

El proceso de despacho de la producción corresponde a la entrega al cliente final de la producción acumulada del campo. Este proceso tiene como entrada la rata de producción de crudo del campo y como salida la cantidad total despachada a cada cliente.

6.2 Implantación de la Arquitectura

6.2.1 Descripción General

En este caso de estudio se abordará la implantación de la arquitectura desarrollada con el objetivo de garantizar la producción óptima de un campo de producción de petróleo. Para esto se definirán una serie de adaptadores de software (SW), para obtener los datos de aplicaciones especializadas del dominio de producción de petróleo (Capa de Conectividad), se diseñará una ontología para

dicho dominio que se almacenará en un repositorio de conceptos (Capa de Semántica) y se realizará la implantación de la institución electrónica descrita en el Capítulo V, para gestionar las unidades de producción que participan en dicho proceso (Capa de Gestión).

La implantación de la arquitectura (ver figura 6.4) tiene como objetivo calcular automáticamente la configuración de las unidades de producción para maximizar la producción de petróleo, de forma de maximizar las ganancias del campo, minimizando sus costos.

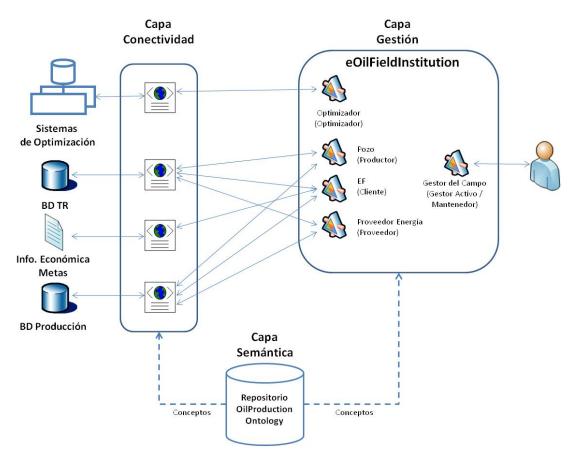


Fig. 6.4 Arquitectura a Implantar para el Caso de Estudio

A continuación se realizará una descripción de los elementos considerados en cada una de las capas.

6.2.2 Capa de Conectividad

Para llevar a cabo el proceso de producción de petróleo es necesario acceder información de múltiples fuentes de datos. Entre las fuentes de datos más importantes se encuentran:

Base de Datos de Producción: almacena los datos correspondientes a la configuración de las instalaciones de producción existentes en el campo (pozos, estaciones de flujo, plantas, múltiples, etc.). Para cada una de ellas se almacena la información sobre su configuración (partes, tipo), su producción potencial y real y la calidad de su producto. Generalmente, las bases de datos de producción se manejan a través de bases de datos relacionales. El acceso a estas fuentes de datos se realiza a través de controladores (drivers) de acceso a datos estándares, tales como ODBC o JDBC.

Base de Datos de Tiempo Real: almacena los valores de las variables de los procesos asociados a cada facilidad de producción. Almacena datos históricos de estas variables, con una periodicidad que depende del proceso monitoreado. Dependiendo de las restricciones de seguridad de la empresa, los datos de tiempo real pueden ser generados por sistemas SCADA o por sistemas de almacenamiento de datos históricos. El acceso a estas fuentes de datos se realiza a través de interfaces (APIs) provistas por los fabricantes de las mismas.

Información Económica y Metas: almacena la información relativa a los costos de operación (OPEX), los precios de venta del producto final y las metas de producción para el campo. En general, este tipo de información se almacena en sistemas empresariales de gestión (ERPs), los cuales proveen interfaces para poder acceder a sus datos.

Sistemas de Optimización: son sistemas que calculan distintos escenarios de producción en base a la configuración para el campo y las metas de producción establecidas, en los cuales la función objetivo es maximizar la ganancia y minimizar los costos de operación. Actualmente, estos sistemas proveen la facilidad de construir modelos subsuelo/superficie, que incluyen los modelos de los pozos y de la red de superficie (tuberías, estaciones de flujo, plantas, múltiples, etc.). El mecanismo de acceso a estos sistemas es a través de un conjunto de interfaces provistas por el fabricante.

Para cada fuente de datos se plantea la construcción de adaptadores como un servicio Web, que permiten extraer la data requerida y exponerla en formato XML. Las estructuras de datos que entregan los adaptadores de SW mencionados anteriormente se corresponden con los conceptos almacenados en el repositorio de la capa de semántica. En la siguiente figura se describe la configuración de la capa de conectividad para el caso de estudio.

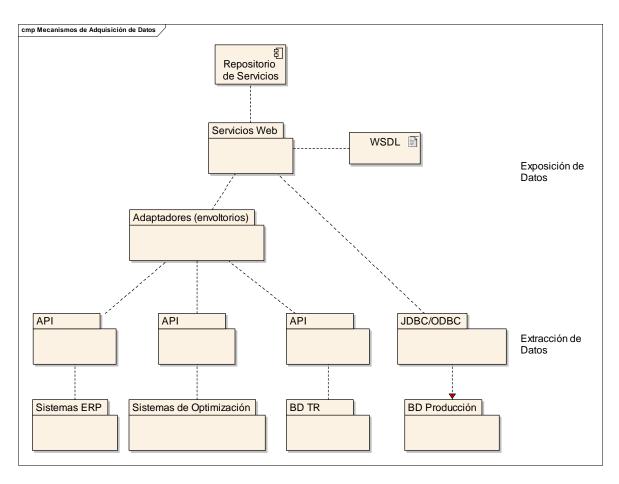


Fig. 6.5. Esquema de Implantación de la Capa de Conectividad

6.2.3 Capa de Semántica

En la capa de semántica se definen los conceptos más importantes del dominio de producción de petróleo. La ontología descrita para este caso de estudio se denomina "OilProductionOntology (Ontología de Producción de Petróleo)"; la misma se compone de los Conceptos de Dominio Específico definidos para la Capa de Semántica, los cuales están fundamentados en el Meta Modelo de Datos y utilizan conceptos de las Ontologías de Carácter General, descritos en el Capítulo IV.

Siguiendo el enfoque propuesto en [Soma, et al., 2008], los conceptos de carácter general a utilizar en la Capa de Semántica serán los propuestos en las Ontologías de la Web Semántica para la Terminología de Ciencias de la Tierra y el Ambiente (SWEET), desarrolladas en el Laboratorio de Propulsión a Chorro del Instituto de Tecnología de California (CalTech, Jet Propulsion Laboratory),

en colaboración con la NASA [NASA. Jet Propulsion Laboratory. California Institute of Technology, 2009]. Estos conceptos servirán como base para la construcción de la OilProductionOntology.

Los conceptos de la Ontología SWEET utilizados para la construcción de la Capa de Semántica son *Entidad Temporal*, en el cual se definen nociones referentes a unidades de medición de tiempo, *Estados del Sistema*, donde se definen los posibles estados en el que puede estar un sistema, e *Infraestructura*, en el cual se definen conceptos sobre facilidades y equipos utilizados en ambientes de producción [NASA. Jet Propulsion Laboratory. California Institute of Technology, 2009]. En el Anexo D se presenta la forma como los conceptos de las ontologías SWEET se relacionan con los conceptos de dominio específico de la OilProductionOntology.

Para la construcción de los conceptos de domino específico que componen la OilProductionOntology, se creó dentro de la ontología un concepto denominado "Concepto de Producción de Petróleo (Oil Production Concept)", el cual agrupa a todos los conceptos relativos al dominio de producción de petróleo. De esta manera se crea un sub-conjunto para los Conceptos de Dominio Específico, estableciendo una distinción entre los mismos y los conceptos provenientes de las Ontologías de Carácter General utilizados (SWEET) y del Meta-modelo de Datos.

La OilProductionOntology tiene como centro de sus conceptos las unidades de producción existentes en un campo petrolero, las cuales fueron definidas en la sección 6.1.2. Por esta razón, los primeros conceptos definidos dentro de la ontología son los correspondientes a dichas unidades de producción (ver figura 6.9). Alrededor de la definición de estas unidades de producción se desarrollan el resto de los conceptos de la ontología, los cuales están estructurados de acuerdo al Meta Modelo de Datos. En la figura 6.10 se puede observar el conjunto de unidades de producción definidas en la ontología para el caso de estudio.

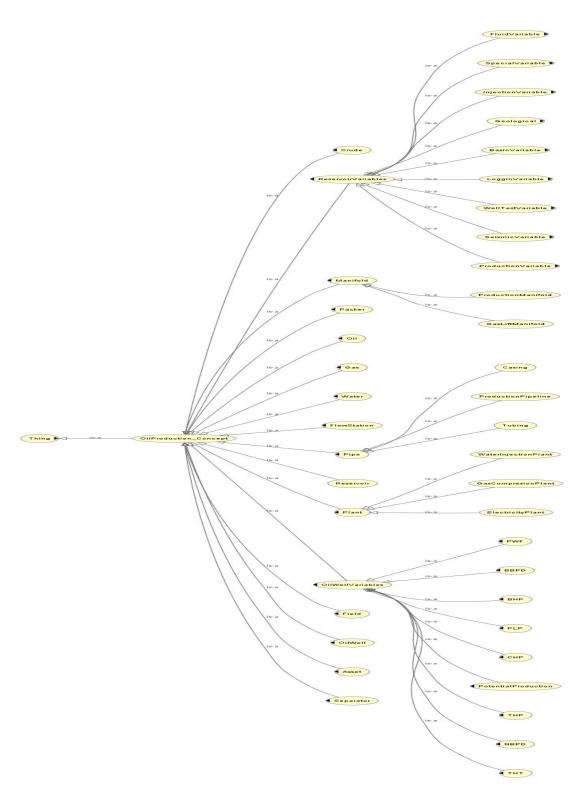


Fig. 6.6. Conceptos de Producción de Petróleo dentro de la Ontología

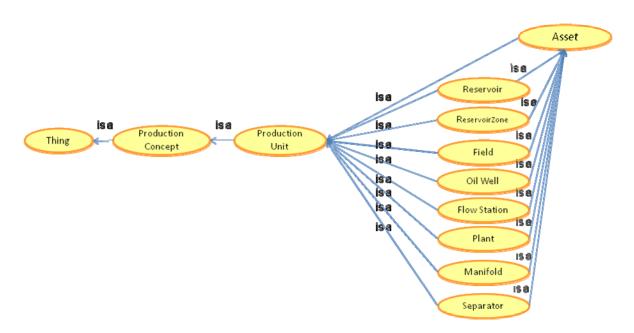


Fig. 6.7. Unidades de Producción en la OilProductionOntology

En la figura 6.11 se muestra, utilizando como ejemplo el concepto pozo, como se asocian los conceptos del meta-modelo de datos a una unidad de producción.

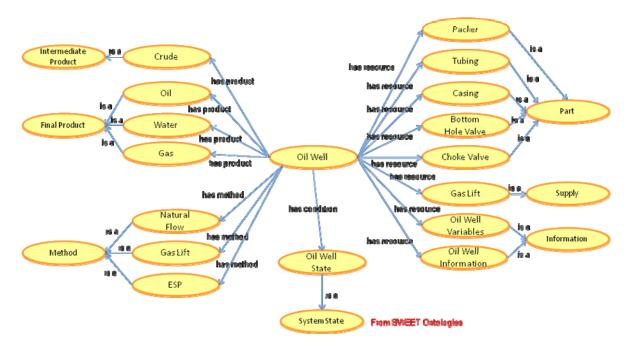


Fig. 6.8 Relación concepto Pozo con Meta Modelo de Datos

UNIVERSIDAD DE LOS SINDES DE LOS SINDES

A continuación se hace una breve descripción de cada unidad de producción y de los conceptos relacionados con cada una de ellas. La especificación detallada de la ontología, incluyendo la relación entre los conceptos, herencia y metadata asociada, se realiza en el Anexo D.

6.2.3.1 Unidad de Producción Pozo (Oil Well)

6.2.3.1.1 Descripción

Instalación comprendida por un conjunto de tuberías, válvulas, bombas, empacaduras y elementos de automatización que permiten extraer el fluido de producción desde el subsuelo, hasta la superficie.

6.2.3.1.2 **Productos**

Fluido de Producción (ProductionFluid): es el fluido multifásico de producción. Contiene petróleo, gas, agua y sedimentos. Es considerado un producto intermedio.

Petróleo (Oil): hidrocarburo utilizado como combustible fósil. Principal objetivo de producción. Es considerado un producto final.

Gas: hidrocarburo con poco contenido de carbono que es producido en conjunto con el petróleo y en algunos casos como fluido primario de producción. Es también utilizado como fluido de inyección a los pozos para facilitar el levantamiento (gas lift) o directamente al yacimiento para mantener la presión del mismo.

Agua (Water): Agua producida resultado de la separación del fluido de producción. En algunos casos es utilizada como fluido de inyección para soportar el proceso de levantamiento artificial. Es considerado un producto final.

6.2.3.1.3 Recursos

6.2.3.1.3.1 Partes

Materiales:

Empacadura (Packer): Dispositivo que permite aislar secciones en una completación.

Tubería de Revestimiento (Casing): definido en la sección 6.1.2.

Línea de Producción (ProductionPipeLine): tubería de producción que conecta al pozo con la estación de flujo.

Línea de Inyección (InjectionPipeLine): tubería de inyección que conecta el múltiple de gas con el pozo.

Tubería de Producción (Tubing): definido en la sección 6.1.2.

Válvula de Fondo (Bottom Hole Valve): es una válvula de control que permite controlar el flujo desde la cara de la arena en el fondo del hoy hacia el pozo.

Válvula de Gas de Levantamiento (Gas Lift Valve): es una válvula que permite la inyección de gas de levantamiento desde el anular hacia la tubería de producción.

Válvula de Control Línea de Producción (Production Line Control Valve): es una válvula de tipo Choke que permite regular el flujo desde el pozo hacia la tubería de producción que conduce a la estación de flujo.

Insumos:

Gas de Inyección: se corresponde con el flujo de gas de inyección que se le suministra a los pozos de producción por levantamiento artificial por gas.

Agua de Inyección: se corresponde con el flujo de agua de inyección que se le suministra a los pozos que funcionan por inyección de agua o hidrojet.

Corriente Eléctrica: se corresponde con el flujo de corriente eléctrica que se le suministra a los pozos que funcionan mediante bombeo mecánico, electrosumergible o de cavidad progresiva.

6.2.3.1.3.2 Información

Variables de Proceso:

Producción Actual: Cantidad total de barriles de fluido de producción (petróleo + gas + agua + sedimentos) producidos por un pozo en un día. Es una medida de Flujo.

BBPD: Barriles brutos por día. Unidad de medida correspondiente a la cantidad total de barriles de fluido de producción (petróleo + gas + agua + sedimentos) producidos por un pozo en un día. Es una medida de Flujo.

NBPD: Barriles netos por día. Unidad de medida correspondiente a la cantidad total de barriles de petróleo producidos por un pozo en un día. Es una medida de Flujo.

BHP: Presión de fondo del hoyo (Bottom Hole Pressure). Es la presión existente al final de la tubería de producción (tubing), en el fondo del hoyo, para cada pozo.

CHP: Presión del revestidor en el cabezal (Casing Head Pressure). Presión existente en la entrada al anular (espacio entre las tuberías de revestimiento y tuberías de producción), en el cabezal del pozo. Generalmente medido para pozos que funcionan por gas lift, hidrojet o inyección de agua.

PLP: Presión en la línea de producción (Production Line Pressure). Presión existente en la tubería que va desde el cabezal del pozo hasta la estación de flujo. Generalmente medida después de la válvula choke²⁴ que regula el paso del fluido de producción desde el cabezal hacia la línea de producción.

PWF: Presión de fondo fluyente (Well Flowing Pressure). Es la presión existente entre el yacimiento y la entrada a la tubería de producción, en el fondo del hoyo.

THP: Presión de la tubería de producción en cabezal (Tubing Head Pressure). Presión en la tubería de producción de la completación (tubing) medida en cabezal, antes de la válvula choke.

THT: Temperatura de la tubería de producción en cabezal (Tubing Head Temperature). Temperatura en la tubería de producción (tubing) de la completación medida en cabezal, antes de la válvula choke.

Qgl: Flujo de gas de inyección para un pozo, medido en el cabezal. En general se mide en Miles de Pies Cúbicos por Día (MCFD).

Qo: Flujo de fluido de producción para un pozo, medido en el cabezal. Generalmente se mide en Barriles por Día (BD).

Np: Producción acumulada de petróleo por pozo en un período determinado de tiempo. Generalmente medida en Barriles.

API: gravedad API del crudo. Establece que tipo de crudo se está produciendo (extra-pesado, pesado, mediano, liviano).

GOR: relación gas petróleo (Gas Oil Rate). Determina la cantidad de petróleo producido por flujo de gas inyectado. Generalmente medido en Miles de Pies Cúbicos (MCF).

Universidad de los Andes

Doctorado en Ciencias Aplicadas

²⁴ Válvula Choke: válvula que permite el flujo en una sola dirección. Utilizada normalmente para permitir el flujo desde el cabezal del pozo hacia la tubería de producción y evitar el flujo en sentido inverso.

Corte de Agua (WCT): porcentaje de la fase de agua que posee el crudo en relación con la cantidad total de fluido producido por el pozo.

Información de Proceso:

Completación (Completion): se refiere a la configuración que dispone el pozo. Comprende los siguientes conceptos:

Profundidad: profundidad total del pozo, desde la superficie hasta el fundo del hoyo. Para pozos que producen más de una arena se considerarán las profundidades hasta cada arena productora.

Diámetro del Revestidor: diámetro de la tubería de revestimiento (casing). Existen casos en el que el diámetro del revestidor disminuye a medida que aumenta la profundidad, para estos casos se dispondrá de un arreglo con las medidas del diámetro del revestidor para cada sección de la tubería. Existen medidas de diámetro interno del revestidor (hasta la cara interior de la tubería) y diámetro externo del revestidor (hasta la cara externa de la tubería).

Diámetro de la Tubería de Producción: diámetro de la tubería de producción (tubing). Existen casos en el que el diámetro de la tubería de producción disminuye a medida que aumenta la profundidad, para estos casos se dispondrá de un arreglo con las medidas del diámetro para cada sección de la tubería. Los puntos en los que la tubería de producción disminuye su diámetro se denominan "botellas". Existen medidas de diámetro interno de la tubería de producción (hasta la cara interior de la tubería) y diámetro externo de la tubería de producción (hasta la cara externa de la tubería).

Método de Producción: define el método de producción utilizado por el pozo para lograr su producción.

Equipo de bombeo: descripción del equipo de bombeo con el que cuenta el pozo, en el caso de que el mismo funcione a través de un método de levantamiento por bombeo mecánico, electrosumergible o de cavidad progresiva.

Válvulas de Gas Lift: descripción de la válvula de gas lift de la que dispone el pozo en el caso de funcionar por levantamiento artificial por gas. En la mayoría de los casos de levantamiento artificial por gas existen varias válvulas de gas lift, por lo que se define un arreglo con la información relativa a cada una: profundidad, presión, tipo de válvula.

Equipos de Subsuelo: se refieren a los equipos de automatización de los que dispone el pozo en el subsuelo. Estos equipos pueden ser:

Válvulas de fondo.

Sensor de Presión.

Sensor de Temperatura.

Sensor de Flujo.

Equipos de superficie: se refieren a los equipos de automatización de los que dispone el pozo en el cabezal. Estos equipos pueden ser:

Válvula Choke.

Sensor de Presión.

Sensor de Temperatura.

Sensor de Flujo.

Prueba de Pozo (WellTest): prueba realizada a los pozos en las estaciones de flujo, mediante las cuales, a través de un proceso de separación mecánico y/o químico de fluidos, pueden medirse las siguientes variables por cada pozo: BNPD, GOR, WC. En general, se almacenan los resultados de la última prueba de pozo en la Base de Datos de Producción.

Potencial de Producción (PotentialProduction): es el número total de barriles que puede producir un pozo en un período de tiempo bajo condiciones ideales (disponibilidad total de la energía requerida, tuberías de producción disponibles, no se presenta ningún tipo de problema en subsuelo).

Modelo de Pozo (WellModel): representa el comportamiento del pozo de acuerdo a la energía aportada por el yacimiento y la energía necesaria para que el pozo lleve el fluido hasta la superficie.

- 1. Curva de Afluencia (InflowCurve): Es una curva que representa el cambio de la presión fluyendo en el fondo del pozo (en la cara de la formación) de acuerdo a la Tasa de Producción de Liquido de un pozo.
- 2. Curva de Efluencia (OutflowCurve): Es una curva que representa la caída de presión (energía) a lo largo de la tubería de Producción para una determinada producción en el pozo.

3. **Punto de Operación (OperatingPoint):** representa el punto de cruce (Presión fluyente y Tasa de Producción de Liquido) entre las curvas de afluencia y efluencia, para una determinada cantidad de energía inyectada al pozo, presión de cabezal y propiedades de fluido.

6.2.3.1.4 Métodos

Flujo Natural: es el método de producción debido a la energía natural del yacimiento, es decir, cuando la diferencia de presión entre el yacimiento y el cabezal de pozo es suficiente para llevar el fluido de producción hasta la superficie. El recurso principal para este método son las válvulas de sub-suelo y superficie que controlan la presión entre el fondo del hoyo y el cabezal del pozo.

Levantamiento Artificial por Gas: es el método de producción que consiste en inyectar gas en el fondo del pozo, para reducir el peso de la columna de fluidos, de esta forma se reduce la presión de fondo fluyente por lo que se incrementa la tasa de producción. Este método utiliza como insumo principal el gas de inyección.

Bombeo Electrosumergible: consiste en colocar en una bomba centrífuga en la tubería de producción, para impulsar los fluidos hasta la superficie. La bomba es impulsada por un motor eléctrico que se encuentra en el fondo de pozo con la finalidad de utilizar el mismo fluido de producción como fluido de enfriamiento. Este método utiliza como insumo principal la corriente eléctrica.

Bombeo Mecánico: método de producción en el cual se utiliza una bomba basada en un arreglo cilindro-pistón para levantar los fluidos de producción hasta la superficie. Este método utiliza como insumo principal la corriente eléctrica.

Bombeo de Cavidad Progresiva: método de producción en el que se utiliza una bomba de desplazamiento positivo, basada en el "Tornillo de Arquímedes" para transportar los fluidos desde el yacimiento hasta la superficie. Este método utiliza como insumo principal la corriente eléctrica.

Bombeo Hidráulico o Hidrojet: método de producción que utiliza la energía potencial de un fluido a presión para levantar los fluidos desde el yacimiento hasta la superficie. Este método utiliza como insumo principal agua o cualquier otro fluido liviano para inyección.

6.2.3.2 Unidad de Producción Estación de Flujo (FlowStation)

6.2.3.2.1 Descripción

Es la instalación en la que se realiza el proceso de separación entre la fase gaseosa y la fase líquida del fluido de producción. En esta instalación también se realizan las medidas que establecen cuanto está produciendo cada pozo, denominadas "pruebas de pozo".

6.2.3.2.2 Productos

Líquido de Producción: es la fase líquida (crudo + agua) resultante del proceso de separación llevado a cabo en la Estación de Flujo. Es una medida de flujo y se mide en barriles estándares por día (STB/D).

Gas a baja presión: : es la fase gaseosa derivada del proceso de separación llevado a cabo en la Estación de Flujo. Es una medida de flujo y se mide en Miles de Píes Cúbicos estándares por Día (MSCF/D).

6.2.3.2.3 Recursos

6.2.3.2.3.1. Materiales

Partes:

Separador: dispositivo que permite separar las fases del fluido de producción (gas, petróleo, agua). Existen dos tipos de separadores:

Separador de producción: separa las fases del fluido para luego enviarlas a plantas compresoras (gas) y patios de tanques (crudo y agua).

Separador de prueba: permite realizar las pruebas de pozo que miden la producción real por cada pozo.

Múltiple de Entrada: es un arreglo de tuberías y válvulas que permite alinear la producción de los pozos asociados a la Estación de Flujo bien a los separadores de producción o a los separadores de prueba.

Tanque de Almacenamiento: tanque que permite almacenar la fase líquida separada antes de su envío a los Patios de Tanques.

Deshidratador: equipo que permite eliminar los hidratos presentes en el gas separado con la finalidad de evitar corrosión en las tuberías de transporte hacia las plantas compresoras.

Universidad de los Andes Doctorado en Ciencias Aplicadas

Bomba: equipo de bombeo que permite elevar la presión del fluido almacenado en los tanques de almacenamiento para ser enviado a los patios de tanques.

Insumos:

Fluido de Producción: es el fluido producido por los pozos asociados a la Estación de Flujo y que son recibidos en el múltiple de entrada.

Electricidad: es la energía que requiere la estación de flujo para su funcionamiento.

6.2.3.2.3.2. Información

Variables de Proceso:

Capacidad del Separador: capacidad de procesamiento de líquido de producción que tiene cada separador de la estación de flujo.

Nivel del Separador: es el nivel que tiene cada separador de la Estación de Flujo en un instante determinado.

Presión del Separador: es la presión existente en cada uno de los separadores de la Estación de Flujo en un instante determinado.

Flujo de Entrada: es la cantidad de barriles por unidad de tiempo que llegan al múltiple de entrada de la Estación de Flujo. Generalmente se mide en barriles estándares por día (STB/D).

Flujo de Salida de Líquido: es la cantidad de líquido que es enviado desde la Estación de Flujo hacia los patios de tanques en una determinada unidad de tiempo, generalmente días.

Flujo de Salida de Gas: es la cantidad de gas a baja presión despachada desde la Estación de Flujo hacia la planta compresoras de gas en una determinada unidad de tiempo, generalmente días.

Presión en tubería de gas de baja: es la presión con la que se está transportando el gas separado en la tubería que conecta a la Estación de Flujo con la Planta Compresora de Gas.

Nivel del Tanque de Almacenamiento: es el nivel de líquido que presenta el tanque de almacenamiento en un instante determinado.

Velocidad de la Bomba: es la velocidad a la cual funciona la bomba destinada a elevar la presión del fluido en la tubería que conecta la Estación de Flujo con el Patio de Tanques.

Presión del Deshidratador: es la presión existente en el deshidratador en un instante determinado.

Lista de Pozos para Prueba: es la lista de pozos que están "alineados" a los separadores de prueba en un día determinado.

Información de Proceso:

Configuración de la Estación de Flujo: define a la cantidad y características de los equipos que componen a la Estación de Flujo.

Separadores de Producción: cantidad de separadores de producción que dispone la Estación de Flujo.

Separadores de Prueba: cantidad de separadores de prueba que dispone la Estación de Flujo.

Cañones de Entrada: cantidad de tuberías de producción que provienen de los pozos asociados a la Estación de Flujo y que están conectadas al múltiple de entrada.

Equipos de Automatización: se refieren a los equipos de automatización de los que dispone el pozo en el cabezal. Estos equipos pueden ser:

Válvulas de alineamiento.

Válvulas de control de los separadores.

Sensores de Presión en los Separadores.

Sensor de Nivel en los Separadores.

Sensor de Presión en el Deshidratador.

Sensor de Presión en el Múltiple de Entrada.

Sensores de Presión en la tubería de conexión al Patio de Tanques.

Sensores de Presión en la tubería de conexión a la Planta Compresora.

Tanques de Almacenamiento: cantidad de tanques de almacenamiento de los que dispone la Estación de Flujo.

Equipos de Bombeo: cantidad de bombas de las que dispone la Estación de Flujo.

Equipos de Deshidratación: cantidad de equipos de deshidratación de los que dispone la Estación de Flujo.

Producción Potencial de Petróleo: cantidad de petróleo que puede producir la Estación de Flujo. Medida en barriles netos por día, generalmente asociada a la meta de producción.

Producción Potencial de Gas: cantidad de gas que puede ser despachada por la Estación de Flujo.

Lista de Pozos Asociados: lista de pozos asociados a la Estación de Flujo.

6.2.3.2.4 Métodos

Separación: es el proceso mediante el cual se separan la fase gaseosa y líquida del fluido de producción. Existen varias técnicas de separación entre la que destacan la separación centrífuga y la separación por adición de químicos.

Prueba de Pozo: es el proceso mediante el cual, durante la separación de las fases líquidas y gaseosas del fluido de producción en los separadores de prueba, se miden la producción neta, el corte de agua, la relación gas-petróleo y el porcentaje de agua y sedimentos para cada pozo asociado a la estación de flujo.

Deshidratación: es el proceso mediante el cual se eliminan los hidratos del gas separado en la Estación de Flujo.

6.2.3.3 Unidad de Producción Múltiple (Manifold)

6.2.3.3.1 Descripción

Es una unidad de producción que permite que varias tuberías confluyan en una tubería común o que el fluido que llega de una tubería sea distribuido en múltiples líneas. Se compone de tuberías y válvulas y en los casos en los que está automatizado también incluye actuadores y sistemas de control local (remotas). Para el caso de estudio presentado en este trabajo se considerarán dos tipos de múltiples:

Múltiple de Gas (GasManifold): Distribuye el gas de alta presión en diversas tuberías que desembocan en los cabezales de los pozos gas lift.

Múltiple de Producción (ProductionManifold): Permite que las líneas de producción provenientes de los pozos confluyan en una tubería para la entrada a los separadores de producción. Además, permite alinear (dirigir el flujo a través de una tubería específica) la

producción de un pozo determinado hacia el separador de prueba para realizar la "prueba de pozo".

6.2.3.3.2 Productos

Gas a Alta Presión: flujo de gas para cada pozo de inyección de gas. Medido en miles de pies cúbicos por día (MCFD).

6.2.3.3.3 Recursos

6.2.3.3.3.1 Materiales

Partes:

Cañón de Entrada: tubería que conecta la planta compresora con el múltiple.

Cañones de Salida: tuberías que conectan el múltiple con los pozos.

Válvulas de Control: válvula que permiten controlar la presión del gas en cada uno de los cañones de salida del múltiple.

Insumos:

Gas de Alta Presión: gas de alta presión que proviene de la planta compresora.

6.2.3.3.3.2 Información

Variables de Proceso:

Presión del Cañón de Entrada: presión en la tubería de gas a alta presión que proviene de la Planta Compresora de Gas.

Flujo total de entrada: flujo de gas proveniente de la planta compresora de gas.

Presión de Inyección: conjunto de presiones a los que es despachado el gas de inyección para cada pozo.

Información de Proceso:

Configuración del Múltiple: define la cantidad de elementos de los que dispone el múltiple.

Cañón de entrada: características de la tubería de conexión entre el múltiple y la planta compresora de gas (diámetro, longitud).

Cañones de Salida: cantidad y características (diámetro, longitud) de las tuberías de salida hacia los pozos.

Válvulas de Control: cantidad y características de las válvulas que permiten controlar el flujo de gas hacia los cañones de salida del múltiple.

Equipos de Automatización: se refieren a los equipos de automatización de los que dispone el múltiple. Estos equipos pueden ser:

Sensores de Presión en los cañones de entrada y salida.

Sensores de Flujo en los cañones de entrada y salida.

Actuadores de válvulas de control.

6.2.3.3.4 Métodos

Distribución del Gas: es un proceso mediante el cual se distribuye el gas total a alta presión que proviene de la planta compresora de gas, mediante el uso de válvulas de control y elementos de automatización.

6.2.3.4 Unidad de Producción Planta (Plant)

6.2.3.4.1 Descripción

Instalación de superficie que permite la generación de algún tipo de energía que permite soportar la producción de los pozos. Para este caso de estudio se considerarán los siguientes tipos de plantas:

Planta Eléctrica (ElectricityPlant): Genera la electricidad necesaria para el funcionamiento de los pozos cuyo sistema de levantamiento es por bombeo. Además genera energía para el resto de las instalaciones y para soportar a los sistemas de automatización.

Planta de Compresión de Gas (GasCompressionPlant): Permite elevar la presión del gas para poder inyectarlo a los pozos de gas lift.

Planta de Inyección de Agua (WaterInjectionPlant): Permite elevar la presión de agua para su inyección en los pozos de inyección de agua.

6.2.3.4.2 **Productos:**

Gas a alta presión (High Pressure Gas): las plantas de compresión de gas producen gas a alta presión para inyectar en los pozos para soportar el proceso de producción mediante levantamiento artificial por gas. En general las medidas de este producto son el flujo por día (miles de pies cúbicos estándares por día, MSCF/D) o gas total disponible, la calidad del gas expresada a través de su cromatografía y la presión a la cual se despacha el gas, denominada presión de descarga.

Electricidad: es la energía eléctrica despachada por las Plantas Eléctricas para soportar los procesos de levantamiento artificial por bombeo mecánica, electrosumegible o de cavidad progresiva. También generan electricidad para proveer energía a las diferentes facilidades de producción en el activo. Se mide en Kilovatios (KW).

Agua a Alta Presión: es el agua tratada y a alta presión despachada por las plantas de inyección de agua para soportar los procesos de producción por inyección de agua. Las medidas de este producto son Barriles de agua por día y la presión a la cual es despachada.

6.2.3.4.3 Recursos

6.2.3.4.3.1. Materiales

Partes:

Trenes de Compresión: son una colección de equipos de compresión que permiten elevar la presión del fluido. Dependiendo de la configuración de la planta y de la presiones de entrada y salida de la misma, pueden disponerse varios trenes de compresión en serie.

Turbinas: son equipos que permiten comprimir un fluido determinado mediante efectos mecánicos. Forman parte de los trenes de compresión.

Tanques de Almacenamiento: utilizados en las plantas de inyección de agua permiten almacenar y tratar el fluido antes del proceso de compresión.

UNIVERSIDAD DE LOS ANDES

Bombas: equipos dispuestos en las tuberías de entrada y salida de la planta que permiten mantener el flujo de fluido en niveles deseados.

Motores: equipos utilizados en las plantas bien para activar turbinas o bien para generar electricidad.

Insumos:

Gas a baja presión: gas producido en las estaciones de flujo durante el proceso de separación.

Agua a baja presión: agua derivado del proceso de separación realizado en los patios de tanques

Combustible: gas, gasolina, gasoil o cualquier otro combustible que alimenta a las plantas de generación eléctrica.

6.2.3.4.3.2. Información

Variables de Proceso:

Presión de Succión: presión en la tubería de entrada a la planta de compresión. Esta presión es también medida en la entrada de cada tren de compresión.

Presión de Descarga: presión en la tubería de salida de la planta de compresión. Esta presión es también medida a la salida de cada tren de compresión.

Velocidad de la turbina: velocidad de la(s) turbina(s) de las que dispone la planta de compresión.

Velocidad de la bomba: velocidad de la(s) bomba(s) de las que dispone la planta de compresión.

Temperatura de la turbina: temperatura de la(s) turbina(s) de las que dispone la planta de compresión.

Temperatura de la bomba: temperatura de la(s) bomba(s) de las que dispone la planta de compresión.

Corriente de la bomba: corriente consumida por la(s) bomba(s) de las que dispone la planta de compresión.

Vibración de la turbina: vibración presente en la(s) turbina(s) de las que dispone la planta de compresión.

Nivel del tanque de almacenamiento: nivel de agua en el tanque de almacenamiento de la planta de inyección de agua.

Información de Proceso:

Configuración de la Planta: se refiere a la cantidad de equipos, las instalaciones asociados y a la capacidad de la planta.

Trenes de Compresión: cantidad de trenes de compresión de los que dispone la planta y características de los mismos.

Turbinas: cantidad de turbinas por cada tren de compresión y características de las mismas.

Bombas: cantidad de bombas de las que dispone la planta y características de las mismas.

Presión de Succión Máxima: máxima presión con la que la planta puede recibir el fluido a comprimir.

Presión de Succión Mínima: mínima presión con la que la planta puede recibir el fluido a comprimir.

Presión de Succión Nominal: presión de succión media a la que la planta funciona.

Presión de Descarga Máxima: máxima presión con la que la planta puede despachar el fluido a comprimir.

Presión de Succión Mínima: mínima presión con la que la planta puede despachar el fluido a comprimir.

Presión de Succión Nominal: presión de descarga media a la que la planta funciona.

Potencia Máxima: máxima potencia a la que la planta puede trabajar.

Potencia Mínima: mínima potencia a la que la planta puede trabajar.

Potencia Nominal: potencia media a la cual la planta trabaja.

Lista de Estaciones de Flujo: lista de las estaciones de flujo que surten gas a baja presión a la planta.

Lista de Patios de Tanques: lista de patios de tanques que surten de agua a la planta.

UNIVERSIDAD DE LOS ANDES

Lista de Múltiples: lista de múltiples de inyección a los que surte la planta.

Lista de Instalaciones: lista de instalaciones (plataformas BES, Pozos, EF, etc.) a los que la planta surte energía eléctrica.

6.2.3.4.4 Métodos

Compresión: proceso que consiste en elevar la presión de un fluido hasta un nivel deseado mediante la acción de turbinas en trenes de compresión.

Tratamiento: proceso que consiste en tratamiento químico del agua para llevarlos a niveles de calidad estándar para su inyección.

Generación: proceso de generación de electricidad mediante combustión.

6.2.3.5 Unidad de Producción Campo (Field)

6.2.3.5.1 Descripción

Es una unidad de producción que consiste en una colección de pozos e instalaciones de superficie organizadas en una red cuyo objetivo es la producción de un yacimiento petrolífero.

6.2.3.5.2 Productos

Petróleo (Oil): definido en secciones anteriores.

Gas: definido en secciones anteriores.

6.2.3.5.3 Recursos

6.2.3.5.4.1 Materiales

Partes:

Pozos: unidad de producción definida en secciones anteriores.

Instalaciones de Superficie: red de unidades de producción que soportan el proceso de producción.

Estaciones de Flujo: definidas en secciones anteriores.

Plantas: definidas en secciones anteriores.

Múltiples: definidos en secciones anteriores.

Yacimiento (Reservoir): Es una sección de roca en el subsuelo que contiene confinadas cantidades económicamente explotables de petróleo y/o gas. Es el recurso que explota el Campo.

Insumos:

Gas externo: gas proveniente de otros campos y que es utilizado para soportar los métodos de levantamiento artificial.

Electricidad: energía eléctrica no producida en el campo utilizada para soportar la operación del campo.

6.2.3.5.4.2 Información

Variables de Proceso:

Producción Total Bruta: producción total de crudo (petróleo + gas + agua) aportada por los pozos del campo.

Producción Total Neta: producción total de petróleo aportada por el campo.

Producción Acumulada: producción acumulada del campo durante su explotación.

Producción de Gas: producción total de gas aportada por el campo.

Gas Disponible: gas total disponible para soportar los procesos de levantamiento artificial.

Calidad del Petróleo: definido en secciones anteriores.

Información de Proceso:

Configuración del campo: se refiere a la cantidad de instalaciones que componen al campo.

Pozos: lista de pozos que pertenecen al campo.

Estaciones de Flujo: lista de estaciones de flujo que pertenecen al campo.

Plantas: lista de plantas que pertenecen al campo.

Múltiples: lista de múltiples que pertenecen al campo.

Red de Tuberías: descripción de la red de tuberías que conectan las diferentes instalaciones del campo.

Producción Potencial: cantidad de petróleo que puede ser producido por día por el campo en condiciones ideales.

Modelo de Superficie: modelo de la red de superficie del campo.

Modelo de Yacimiento: modelo del yacimiento explotado por el campo.

Información de Yacimiento: información sobre las características del yacimiento explotado por el campo.

Profundidad (Depth): profundidad a la que se encuentra el yacimiento. Es una medida de longitud, generalmente medida en pies.

Saturación de Fluido (FluidSaturation): Cantidad relativa o porcentual de fluido que se encuentra en el espacio poroso de la roca. En general se miden la saturación de petróleo, agua y de gas. Es una medida importante para poder estimar los volúmenes en sitio.

Litología (Lithology): características de las rocas que se encuentran en el yacimiento.

OOIP: Petróleo original en sitio (Original Oil in Place). Cantidad total de petróleo que se encontró en el yacimiento antes de su explotación. Se mide en barriles estándares (STB).

Permeabilidad (Permeability): Capacidad de la roca que contiene el fluido de dejarlo fluir a través de ella. Se mide en mili-darcies (md).

Porosidad (Porosity): Medida relativa del volumen que ocupan los poros en los cuales se pueden depositar hidrocarburos y otros fluidos sobre el volumen total de la roca. Se mide como porcentaje (%) o fracción menor a 1.

Factor de Recobro (RecoveryFactor): Cantidad de crudo que puede recuperarse del yacimiento bajo las condiciones actuales del campo (cantidad de pozos, métodos de levantamiento, agotamiento, tecnología disponible). Se mide como porcentaje (%) o fracción menor a 1.

Índice de Productividad (ProductivityIndex) (J): Es la razón de la rata de producción, en barriles por día a la presión diferencial (pe-pw) en el punto medio del intervalo productor. Se mide en barriles estándares por día por psi (STB/D/psi).

J= Qo/(Pr-PWF)

Unidades: bl/día/Lpc

donde,

Qo: rata de producción

Pr: presión del yacimiento

PWF: Presión de fondo fluyente.

El índice de productividad es una medida del potencial del pozo o de su capacidad de producir, y es una propiedad de los pozos comúnmente medida.

Índice de Inyectividad (InjectivityIndex) (I): Se define como la razón de la rata de inyección en barriles por día al exceso de presión por encima de la presión del yacimiento que causa dicha rata de inyección. Se mide en barriles estándares por día por psi (STB/D/psi).

I= Qi/(PWF-Pr)

Unidades:bl/día/Lpc

donde,

Qi: rata de inyección

Pr: presión del yacimiento

PWF: Presión de fondo fluyente.

Estado de los Pozos: lista con el estado de cada uno de los pozos que componen el campo (Activo, Mantenimiento, Cerrado).

6.2.3.5.4 Métodos

Levantamiento Artificial por Gas: descrito en secciones anteriores.

Bombeo Electrosumergible: descrito en secciones anteriores.

Bombeo Mecánico: descrito en secciones anteriores.

Bombeo de Cavidad Progresiva: descrito en secciones anteriores.

Bombeo Hidráulico o Hidrojet: descrito en secciones anteriores.

6.2.4 Capa de Gestión

Para la capa de gestión se realizó una implantación de la institución electrónica descrita en el Capítulo V; a dicha implantación se le ha denominado "e-OilFieldInstitution".

e-OilFieldInstitution cuenta con el marco de diálogo y la estructura performativa descritos en el Capítulo V, esto es, se utilizan todos los roles, ilocuciones, escenas y transiciones descritas en dicho capítulo. Así mismo, la institución implantada hace uso de la "Oil Production Ontology" en los contenidos de los mensajes intercambiados por los agentes de la institución.

Para cumplir con los roles descritos en el marco de diálogo, se diseñó una colección de agentes para el dominio de producción de petróleo, los cuales constituyen un sistema multiagentes denominado OilFieldMAS (Oil Field Multiagent System: Sistema Multiagente Campo Petrolero). Los agentes del OilFieldMAS se clasifican en dos categorías: Unidades de Producción y Agentes de Servicio. En la figura 6.8 se muestran los componentes del OilFieldMAS.

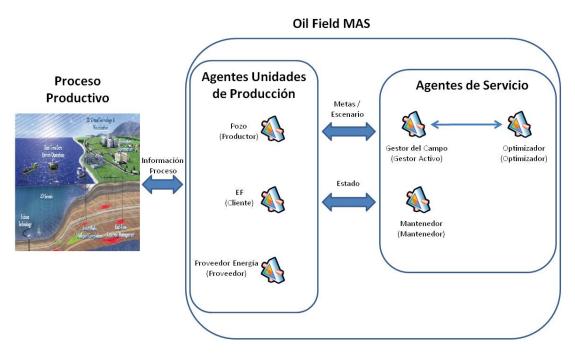


Fig. 6.9. OilFieldMAS

Agentes Unidades de Producción: son agentes que representan las unidades de producción que componen el campo. Se encargan de manejar la información sobre dichas unidades y controlar su comportamiento. Estos agentes pueden tomar los roles de Productor, Proveedor y/o Cliente (definidos en el Capítulo III) dentro de la institución.

Los agentes Unidades de Producción disponen de una estructura común que define los objetivos, servicios, capacidades y restricciones de los que dispone el agente. Dicha estructura está definida a partir del modelo MASINA presentado en [Aguilar, et al., 2008] y se describe en la siguiente tabla:

Agente	Agente		
1	Nombre	Unidad de Producción	
	Posición	NA NA	
	Componentes	NA NA	
	Marco de referencia	OilFieldMAS	
	Descripción del agente	Agente que controla las unidades de producción en el SMA	
1.1	Objetivos del Agente		
	Nombre	Controlar Producción	

	Descripción	El agente debe garantizar que la producción de la UP sea la estipulada como meta para la misma, con el uso óptimo de recursos requeridos.
	Parámetro de entrada	Meta de Producción, Recursos Disponibles
	Parámetro de salida	Producción Actual; Recursos Usados
	Condición de activación	Orden de inicio de producción
	Condición de finalización	Orden de finalización de producción
	Condición de éxito	Producción Actual = Meta de Producción +/- tolerancia y Recursos Usados <= Recursos Disponibles
	Condición de fracaso	Producción Actual <> Meta de Producción +/- tolerancia o Recursos Usados > Recursos Disponibles
	Ontología	OilProductionOntology
1.2	Servicios del Agente	
1.2.1	Nombre	Informar Características del Producto
	Descripción del Servicio	A través de este servicio el agente provee información sobre el tipo de producto producido por la UP. La información provista se compone de: Producción Diaría Actual, Parámetros de Calidad del Producto
	Tipo de Servicio	Externo
	Parámetro de entrada	NA
	Parámetro de salida	Producción Diaría Actual, Parámetros de Calidad del Producto
1.2.2	Nombre	Informar Condición de la UP
	Descripción del Servicio	A través de este servicio el agente provee información sobre el estado operacional en el que se encuentra la UP
	Tipo de Servicio	Externo
	Parámetro de entrada	NA
	Parámetro de salida	Estado de la UP
1.2.3	Nombre	Informar Configuración de la UP
	Descripción del Servicio	A través de este servicio el agente provee información sobre la configuración de la UP, lo que incluye las partes que la componen, su producción potencial, su estado operacional actual, su meta de producción y la cantidad de recursos que le han sido asignados
	Tipo de Servicio	Externo
	Parámetro de entrada	NA
	Parámetro de salida	Partes, Producción Potencial, Estado Operacional, Meta de Producción, Cantidad de Recursos Asignados
1.2.4	Nombre	Establecer Meta de Producción
	Descripción del Servicio	A través de este servicio es posible fijar la meta de producción de la UP
	Tipo de Servicio	Interno
	Parámetro de entrada	Meta de Producción
	Parámetro de salida	Confirmación
1.2.5	Nombre	Ejecutar Producción de la UP

	Descripción del Servicio	A través de este servicio el agente inicia la producción en una UP, para
		una meta de producción y una asignación de recursos determinada
	Tipo de Servicio	Interno
	Parámetro de entrada	Meta de Producción, Recursos Disponibles
	Parámetro de salida	Condición de la UP
1.2.6	Nombre	Detener producción de la UP
	Descripción del Servicio	A través de este servicio el agente detiene la producción de la UP y la condición de la misma pasa a "Cerrada"
	Tipo de Servicio	Interno
	Parámetro de entrada	NA
	Parámetro de salida	Condición de la UP
1.2.7	Nombre	Obtener información sobre el Cliente de la UP
	Descripción del Servicio	A través de este servicio el agente provee información sobre el o los clientes a los cuales la UP entrega su producción
	Tipo de Servicio	Externo
	Parámetro de entrada	NA
	Parámetro de salida	Nombre Cliente, Configuración Cliente
1.2.8	Nombre	Obtener información sobre el Proveedor de la UP
	Descripción del Servicio	A través de este servicio el agente provee información sobre el proveedor o los proveedores de recursos de la UP
	Tipo de Servicio	Externo
	Parámetro de entrada	NA
	Parámetro de salida	Nombre Preveedores, Configuración Proveedores
1.2.9	Nombre	Obtener Variables de Tiempo Real
	Descripción del Servicio	A través de este servicio el agente provee los valores de las variables de tiempo real del proceso ejecutado por la UP, en un tiempo de muestreo determinado
	Tipo de Servicio	Externo
	Parámetro de entrada	Tiempo de muestreo
	Parámetro de salida	Variables de la UP en tiempo real
1.2.10	Nombre	Obtener Variables Históricas
	Descripción del Servicio	A través de este servicio el agente provee los valores históricos de las variables del proceso ejecutado por la UP, en un tiempo de muestreo y una ventana de tiempo determinada
	Tipo de Servicio	Externo
	Parámetro de entrada	Tiempo de muestreo, Ventana de Tiempo
	Parámetro de salida	Valores Históricos variables de la UP, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar
1.2.11	Nombre	Cambiar Estado Operacional
	Descripción del Servicio	A través de este servicio el agente puede cambiar el estado operacional de una Unidad de Producción

Universidad de los Andes Doctorado en Ciencias Aplicadas

	Tipo de Servicio	Interno			
	Parámetro de entrada	Estado Destino			
	Parámetro de salida	Condición de la UP			
1.3	Capacidad del Agente				
1.3.1	Habilidades del agente	Detección de estado operacional			
	Representación del Conocimiento	OilProductionOntology			
	Lenguaje de Comunicación	ACL ²⁵			
1.3.2	Habilidades del agente	Controlar Producción			
	Representación del Conocimiento	OilProductionOntology			
	Lenguaje de Comunicación	ACL			
1.3.3	Habilidades del agente	Negociar Meta de Producción y Cuota de Recursos			
	Representación del Conocimiento	OilProductionOntology			
	Lenguaje de Comunicación	ACL			
	Restricción del Agente				
	Normas	Meta de Producción <= Potencial de Producción;			
	Preferencias	Meta de Producción = Potencial de Producción			
	Permisos				
	Modelo de Inteligencia				
	Mecanismo de aprendizaje	Depende de la implementación del agente			
	Mecanismo de razonamiento	Depende de la implementación del agente			

Tabla. 6.1. Modelo de Agente Unidad de Producción

Cada agente definido para una unidad de producción se corresponde con la definición de dicha unidad en la ontología, por lo que sus atributos se corresponderán con los conceptos definidos en la misma.

En concreto, los agentes Unidades de Producción definidos dentro del OilFieldMAS para el caso de estudio se listan a continuación.

- Agente Pozo: controla la operación de los pozos dentro del campo. Corresponde al concepto Pozo de la ontología.
- Agente Estación de Flujo: controla la operación de las Estaciones de Flujo dentro del campo. Corresponde al concepto Estación de Flujo de la ontología.

²⁵ Agent Communication Language

- Agente Suplidor de Energía: controla la operación de las plantas de generación de energía dentro del campo. Corresponde al concepto Planta de la ontología
- Agente Múltiple: controla la operación de los múltiples de gas y agua dentro del campo.
 Corresponde al concepto Múltiple de la ontología.
- Agente Recolector: controla la operación de los patios de tanques dentro del campo.
 Corresponde al concepto Patio de Tanque dentro de la ontología.

Agentes de Servicio: son agentes que prestan servicios a las unidades de producción dentro del campo. Se han definido tres agentes en esta categoría:

Agente Mantenedor del Campo: es el agente encargado de realizar los mantenimientos requeridos por las unidades de producción. La estructura de este agente se describe en la siguiente tabla:

Agente	
Nombre	Mantenedor
Componentes	NA
Marco de referencia	OilFieldMAS
Descripción del agente	Agente que presta servicios de mantenimiento de las unidades de producción
Objetivos del Agente	
Nombre	Ejecutar Mantenimiento a Unidades de Producción
Descripción	El agente debe garantizar la ejecución de los mantenimientos necesarios para las unidades de producción que operan en el campo.
Parámetro de entrada	Lista de unidades de producción. Lista de requerimientos de mantenimiento en el campo
Parámetro de salida	Estados de la unidades de producción del campo. Lista de requerimientos. Lista de solicitudes atendidas.
Condición de activación	Orden de inicio de producción
Condición de finalización	Orden de finalización de producción
Condición de éxito	Lista de solicitudes atendidas >Lista de requerimientos*0,5
Condición de fracaso	Lista de solicitudes atendidas < Lista de requerimientos*0,5
Ontología	OilProductionOntology
Servicios del Agente	
Nombre	Ejecutar mantenimiento
Descripción del Servicio	A través de este servicio el agente ejecuta el mantenimiento requerido por una determinada unidad de producción

Universidad de los Andes Doctorado en Ciencias Aplicadas

Tipo de Servicio		Externo
Parámetro de entrada		Nombre unidad de producción. Estado unidad de producción.
Parámetro de salida		Estado unidad de producción. Descripción de mantenimiento realizado.
Nombre		Informar Lista de Requerimientos
Descripción del Servicio		A través de este servicio el agente provee información sobre el listado de requerimientos de mantenimiento a unidades de producción pendientes por atender.
Tipo de Servicio		Externo
Parámetro de entrada		NA
Parámetro de salida		Lista de requerimientos
Nombre		Informar Lista de Solicitudes Atendidas
Descripción del Servicio		A través de este servicio el agente provee información sobre el listado de solicitudes de mantenimiento atendidas en un determinado período de tiempo.
Tipo de Servicio		Externo
Parámetro de entrada		Período de tiempo
Parámetro de salida		Lista de Solicitudes Atendidas
Nombre		Informar Lista de Solicitudes no Atendidas
Descripción del Servicio		A través de este servicio el agente provee información sobre el listado de solicitudes de mantenimiento que no pudieron ser atendidas efectivamente en un determinado período de tiempo.
Tipo de Servicio		Externo
Parámetro de entrada		Período de tiempo
Parámetro de salida		Lista de Solicitudes no Atendidas
Capacidad del Agente		
Habilidades del agente		Ejecutar Mantenimientos
Representación Conocimiento	del	OilProductionOntology
Lenguaje de Comunicación		ACL
Habilidades del agente		Analizar estado de las unidades de producción
Representación Conocimiento	del	OilProductionOntology
Lenguaje de Comunicación		ACL
Habilidades del agente		Autodiagnosticar condición
Representación Conocimiento	del	OilProductionOntology
Lenguaje de Comunicación		ACL
Restricción del Agente		
Normas		No tiene
Preferencias		No tiene
Permisos		No tiene
Modelo de Inteligencia		

Universidad de los Andes Doctorado en Ciencias Aplicadas

Mecanismo de aprendizaje	Base de Datos de estadísticas sobre mantenimientos realizados.
	Mecanismos de minería de datos
Mecanismo de razonamiento	Sistema Experto

Tabla. 6.2. Modelo de Agente Mantenedor

Agente Optimizador del Campo: este agente se encarga de calcular el escenario óptimo de producción para el campo. La estructura de dicho agente se describe en la siguiente tabla:

Agente		
Nombre	Optimizador	
Componentes	NA	
Marco de referencia	OilFieldMAS	
Descripción del agente	Agente que cálcula el escenario óptimo de producción del campo en función de las metas y restricciones establecidos para el mismo.	
Objetivos del Agente		
Nombre	Calcular escenario óptimo de producción	
Descripción	El agente debe calcular el escenario óptimo de producción en base a la meta de producción y las restricciones establecidas.	
Parámetro de entrada	Meta de Producción. Información de Condición de las Unidades de Producción. Lista de Restricciones.	
Parámetro de salida	Escenario óptimo de producción	
Condición de activación	Solicitud de alguna unidad de producción	
Condición de finalización	Finalización del cálculo del escenario óptimo de producción	
Condición de éxito	Escenario generado	
Condición de fracaso	Falla en el proceso de generación del escenario	
Ontología	OilProductionOntology	
Servicios del Agente		
Nombre	Calcular escenario óptimo de producción	
Descripción del Servicio	A través de este servicio el agente calcula el escenario óptimo de producción de campo, el cual se constituye de las ratas de producción y asignación de energía para cada unidad de producción dentro del campo.	
Tipo de Servicio	Externo	
Parámetro de entrada	Meta de Producción. Información de Condición de las Unidades de Producción. Lista de Restricciones.	
Parámetro de salida	Escenario óptimo de producción	
Capacidad del Agente		
Habilidades del agente	Ejecutar Cálculo de Escenario Óptimo	
Representación del	OilProductionOntology	

Conocimiento		
Lenguaje de Comunicación	ACL	
Habilidades del agente	Auto diagnosticar condición	
Representación del Conocimiento	OilProductionOntology	
Lenguaje de Comunicación	ACL	
Restricción del Agente		
Normas	No tiene	
Preferencias	No tiene	
Permisos	No tiene	
Modelo de Inteligencia		
Mecanismo de aprendizaje	Bases de Datos de Campos. Base de Datos de Escenarios. Redes Neuronales Artificiales.	
Mecanismo de razonamiento	Programación Lineal. Algoritmos Genéticos.	

Tabla. 6.3. Modelo de Agente Optimizador

Agente Gestor del Campo: es el encargado de garantizar que se cumpla la meta de producción del campo. Interactúa con el Agente Optimizador del Campo para realizar el cálculo del escenario óptimo de producción. Asigna las metas de producción y las cuotas de energía para cada unidad de producción dentro del campo. La estructura de dicho agente se describe en la siguiente tabla:

Agente		
Nombre	Gestor del Campo	
Componentes	NA	
Marco de referencia	OilFieldMAS	
Descripción del agente	Agente que gestiona las actividades dentro del campo para asegurar que se cumplan las metas de producción.	
Objetivos del Agente		
Nombre	Garantizar cumplimiento de metas de producción del campo	
Descripción	El agente debe garantizar el cumplimiento de las metas de producción del campo	
Parámetro de entrada	Meta de Producción, Condición de las unidades de producción del campo. Restricciones	
Parámetro de salida	Producción Actual. Condición del campo	
Condición de activación	Orden de inicio de producción	
Condición de finalización	Orden de finalización de producción	
Condición de éxito	Producción Actual = Meta de Producción +/- tolerancia y Recursos Requeridos <= Recursos Disponibles	

Universidad de los Andes Doctorado en Ciencias Aplicadas

Condición de fracaso	Producción Actual <> Meta de Producción +/- tolerancia o Recursos Requeridos > Recursos Disponibles
Ontología	OilProductionOntology
Servicios del Agente	
Nombre	Informar Condición del Campo
Descripción del Servicio	A través de este servicio el agente provee información sobre el estado operacional en el que se el campo
Tipo de Servicio	Externo
Parámetro de entrada	NA
Parámetro de salida	Estado del Campo
Nombre	Informar Configuración del Campo
Descripción del Servicio	A través de este servicio el agente provee información sobre la configuración del campo, lo que incluye las unidades de producción que lo componen, su producción potencial, su estado operacional actual, su meta de producción y la cantidad de recursos de los que dispone.
Tipo de Servicio	Externo
Parámetro de entrada	NA
Parámetro de salida	Configuración del Campo
Nombre	Definir escenario de producción
Descripción del Servicio	A través de este servicio el agente define el escenario de producción para el campo, es decir establece las cuotas de producción y la asignación de recursos para cada unidad de producción. Para realizar este servicio el agente interactúa con el Agente Optimizador quien cálcula el escenario óptimo de producción.
Tipo de Servicio	Externo
Parámetro de entrada	Meta de Producción, Condición de las unidades de producción del campo. Restricciones
Parámetro de salida	Escenario de Producción
Nombre	Establecer Meta de Producción
Descripción del Servicio	A través de este servicio el agente fija las metas de producción de cada unidad de producción dentro del campo, en base al escenario óptimo de producción calculado.
Tipo de Servicio	Interno
Parámetro de entrada	Meta de Producción
Parámetro de salida	Confirmación
Nombre	Ordenar Ejecución de Producción
Descripción del Servicio	A través de este servicio el agente inicia la producción en el campo y activa todas las unidades de producción dentro del mismo.
Tipo de Servicio	Interno
Parámetro de entrada	Metas de Producción, Recursos Disponibles
Parámetro de salida	Condición del Campo
Nombre	Detener ejecución de producción

Tipo de Servicio Interno NA Parámetro de entrada NA Parámetro de salida Condición del Campo Obtener Variables de Tiempo Real A través de este servicio el agente provee los valores de las variables de muestreo determinado. Tipo de Servicio Externo Externo Parámetro de entrada Tiempo de muestreo determinado. Tipo de salida Variables del Campo en tiempo real (ver ontología) Obtener Variables Históricas Obtener Variables Históricas A través de este servicio el agente provee los valores históricos de las variables del Campo en tiempo real (ver ontología) Obtener Variables Históricas Obtener Variables Históricas A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tiempo de muestreo y una ventana de tiempo determinada Tiempo de muestreo y una ventana de Tiempo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Timpo de muestreo y una ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Detección de estado operacional Parámetro de del Conocimiento ACL Habilidades del agente Detección de estado operacional ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos OilProductionOntology Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos OilProductionOntology Conocimiento ACL Restricción del Conocimiento ACL Restricción ACL Acidades Acidades Acidades Aci	Descripción del Servicio	A través de este servicio el agente detiene la producción del campo deteniendo la operación de todas las unidades de producción dentro del mismo.
Parámetro de salida Condición del Campo Nombre Obtener Variables de Tiempo Real Descripción del Servicio A través de este servicio el agente provee los valores de las variables de tiempo real del proceso de producción del campo, en un tiempo de muestreo determinado. Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo Parámetro de salida Variables del Campo en tiempo real (ver ontología) Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Controlar Producción Representación del OilProductionOntology Controlar Producción Representación del OilProductionOntology Controlar Producción y Cuotas de Recursos Representación del OilProductionOntology Representación del OilProductionOntology Concimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuotas de Recursos Representación del Concimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Concimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Concimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Concimiento ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Tipo de Servicio	Interno
Nombre Obtener Variables de Tiempo Real Descripción del Servicio A través de este servicio el agente provee los valores de las variables de tiempo real del proceso de producción del campo, en un tiempo de muestreo determinado. Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo Parámetro de salida Variables del Campo en tiempo real (ver ontología) Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de aslida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción = Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Parámetro de entrada	NA
Descripción del Servicio tiempo real del proceso de producción del campo, en un tiempo de muestreo determinado. Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo Parámetro de salida Variables del Campo en tiempo real (ver ontología) Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Metas de Producción y Cuotas de Recursos ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Representación del Agente Normas Meta de Producción = Potencial de Producción Permisos	Parámetro de salida	Condición del Campo
tiempo real del proceso de producción del campo, en un tiempo de muestreo determinado. Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo Parámetro de salida Variables del Campo en tiempo real (ver ontología) Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos OilProductionOntology OilProducti	Nombre	Obtener Variables de Tiempo Real
Parámetro de entrada Tiempo de muestreo Parámetro de salida Variables del Campo en tiempo real (ver ontología) Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Descripción del Servicio	tiempo real del proceso de producción del campo, en un tiempo de
Nombre Obtener Variables Históricas Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción Permisos Meta de Producción = Potencial de Producción	Tipo de Servicio	Externo
Nombre Obtener Variables Históricas Descripción del Servicio A través de este servício el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del OilProductionOntology Conocimiento ACL Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del OilProductionOntology Conocimiento ACL Lenguaje de Comunicación ACL Habilidades del agente Negociar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Representación del Conocimiento Lenguaje de Comunicación ACL Representación del Conocimiento </td <td>Parámetro de entrada</td> <td>Tiempo de muestreo</td>	Parámetro de entrada	Tiempo de muestreo
Descripción del Servicio A través de este servicio el agente provee los valores históricos de las variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación Habilidades del agente ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Negociar Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Parámetro de salida	Variables del Campo en tiempo real (ver ontología)
variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada Tipo de Servicio Externo Parámetro de entrada Tiempo de muestreo, Ventana de Tiempo Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Nombre	Obtener Variables Históricas
Parámetro de entrada Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción = Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos		variables del proceso de producción del campo, en un tiempo de muestreo y una ventana de tiempo determinada
Parámetro de salida Valores Históricos variables del Campo, Tendencia, Promedio, Máximo, Mínimo, Desviación Estándar Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción		
Capacidad del Agente Habilidades del agente Detección de estado operacional Representación del Conocimiento OilProductionOntology Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento OilProductionOntology Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento OilProductionOntology Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento DilProductionOntology Lenguaje de Comunicación ACL Representación del Agente ACL Restricción del Agente Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos Meta de Producción = Potencial de Producción	Parámetro de entrada	
Representación del Conocimiento Lenguaje de Comunicación del Conocimiento Lenguaje de Comunicación del Conocimiento Lenguaje de Comunicación ACL Representación del Conocimiento Lenguaje de Comunicación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Aclumicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Parámetro de salida	• • • • • • • • • • • • • • • • • • • •
Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción	Capacidad del Agente	
Conocimiento Lenguaje de Comunicación Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente ASignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción Permisos Meta de Producción = Potencial de Producción	Habilidades del agente	Detección de estado operacional
Habilidades del agente Controlar Producción Representación del Conocimiento Lenguaje de Comunicación Representación del Conocimiento Lenguaje de Gomunicación Representación del Conocimiento Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Representación del Conocimiento Lenguaje de Comunicación Representación del OilProductionOntology Representación del Conocimiento Lenguaje de Comunicación Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción Permisos Meta de Producción = Potencial de Producción	· '	OilProductionOntology
Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Asignar Metas de Producción y Cuotas de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos	Lenguaje de Comunicación	ACL
ConocimientoACLLenguaje de ComunicaciónACLHabilidades del agenteAsignar Metas de Producción y Cuotas de RecursosRepresentación del ConocimientoOilProductionOntologyLenguaje de ComunicaciónACLHabilidades del agenteNegociar Meta de Producción y Cuota de RecursosRepresentación del ConocimientoOilProductionOntologyLenguaje de ComunicaciónACLRestricción del AgenteNormasMeta de Producción <= Potencial de Producción;	Habilidades del agente	Controlar Producción
Habilidades del agente Representación del Conocimiento Lenguaje de Comunicación Representación del Comunicación ACL Habilidades del agente Representación del Conocimiento Conocimiento Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción Permisos	T	OilProductionOntology
Representación del Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Negociar Meta de Producción y Cuota de Recursos Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos	Lenguaje de Comunicación	ACL
Conocimiento Lenguaje de Comunicación ACL Habilidades del agente Representación del Conocimiento Lenguaje de Comunicación Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción Permisos	Habilidades del agente	Asignar Metas de Producción y Cuotas de Recursos
Habilidades del agente Representación del OilProductionOntology Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos	'	OilProductionOntology
Representación del Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos	Lenguaje de Comunicación	ACL
Conocimiento Lenguaje de Comunicación ACL Restricción del Agente Normas Meta de Producción <= Potencial de Producción;	Habilidades del agente	Negociar Meta de Producción y Cuota de Recursos
Lenguaje de Comunicación ACL Restricción del Agente Normas Normas Meta de Producción <= Potencial de Producción;	T	OilProductionOntology
Restricción del Agente Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos		ACL
Normas Meta de Producción <= Potencial de Producción; Preferencias Meta de Producción = Potencial de Producción Permisos		
Preferencias Meta de Producción = Potencial de Producción Permisos		Meta de Producción <= Potencial de Producción;
Permisos		
Modelo de Inteligencia	Permisos	
	Modelo de Inteligencia	

Universidad de los Andes Doctorado en Ciencias Aplicadas

Mecanismo de aprendizaje	Base de Datos de Producción.
	Bases de Datos de Información Histórica
	Técnicas de minería de datos
Mecanismo de razonamiento	Sistema Experto.
	Lógica Difusa
	Redes Neuronales Artificiales

Tabla. 6.4. Modelo de Agente Gestor del Activo

6.3 Configuración del experimento

6.3.1 Descripción General

Para ejemplificar la aplicación de la arquitectura desarrollada al caso de estudio antes descrito, se diseñó un experimento que pretende simular, en términos simplificados, el comportamiento de un proceso de producción de petróleo. El experimento persigue demostrar el funcionamiento de la arquitectura en un ambiente simulado, más no pretende ser una implantación refinada de la misma sobre un problema real.

6.3.2 Objetivos del Experimento

Los objetivos del experimento presentado en esta sección son los siguientes:

- Demostrar la funcionalidad de la arquitectura desarrollada mediante su implantación para la resolución del problema de optimización de producción en un campo petrolero que funciona por flujo natural.
- Validar el comportamiento reactivo de la Institución Electrónica ante cambios en las condiciones operacionales del proceso en estudio.
- Validar la integración de las capas de la arquitectura durante la ejecución del experimento.
- Validar el funcionamiento de la ontología desarrollada como elemento de comunicación dentro de la arquitectura.

6.3.3 Diseño del Experimento

Para el diseño del experimento se definió un campo que cuenta con 3 yacimientos, 8 pozos, una estación de flujo y una planta compresora de gas, tal y como se refleja en la siguiente figura.

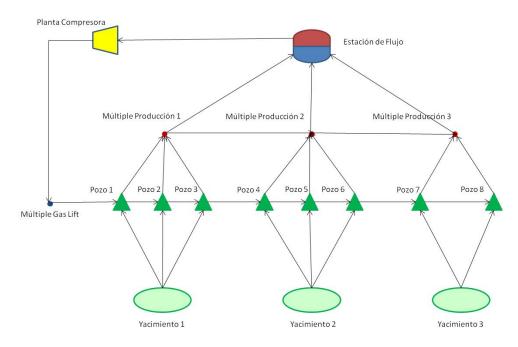


Fig. 6.10. Esquema de Implementación del Experimento

Se aplicará la arquitectura para resolver el problema de optimización de producción para un campo con las características antes mencionadas. El problema de optimización se puede definir de la siguiente forma:

Función objetivo: cumplir con la meta de producción establecida.

Restricciones:

Meta de Producción: 159000 NBPD

Producción máxima campo: 200000 NBPD

Producción Potencial Pozo 1: 24000 NBPD

Producción Potencial Pozo 2: 20000 NBPD

Producción Potencial Pozo 3: 7000 NBPD

Producción Potencial Pozo 4: 28000 NBPD

Producción Potencial Pozo 5: 20000 NBPD

Producción Potencial Pozo 6: 10000 NBPD

Producción Potencial Pozo 7: 30000 NBPD

Producción Potencial Pozo 8: 10000 NBPD

Cantidad de Separadores en la Estación de Flujo: 3

Capacidad de Separación por cada Separador: 50000 BBPD

Las variables manipulables dentro del experimento son las metas de producción y las aperturas de las válvulas Choke para cada pozo.

El experimento inicia con una meta de producción de 159000 NBPD para todo el campo y una capacidad de separación de tres separadores con 50000 NBPD. Luego, se modifica la meta de producción a 120000 NBPD para observar la reacción de la institución antes este evento. Finalmente, se inhabilita el pozo número 8 para provocar un nuevo cambio de escenario. La simulación mostrará la reacción de la institución ante los eventos operacionales antes mencionados.

6.3.4 Preparación de los Datos

Para el experimento se tomará como insumo datos de predicción generados por el programa GAP® de PETEX® [(PETEX) Petroleum Experts Limited, April 2009]. Se definió un campo con la configuración mencionada en la sección anterior, el cual tiene como fecha de inicio de explotación el 01/01/2010 y como fin el 01/01/2030. Se generaron datos de producción para un mes de operación que va desde el 01/01/2010 al 01/02/2010, teniendo como intervalo de tiempo para la generación de datos un día.

Los archivos que sirvieron como fuentes de datos para el experimento se presentan en el Anexo E.

6.3.5 Implantación de la Arquitectura

A continuación se describe como se realizó la implantación de cada capa de la arquitectura para el experimento.

6.3.5.1 Capa de conectividad

Para efectos del caso de estudio los datos requeridos se almacenaron en hojas de cálculo, por lo que se construyó un adaptador que permite extraer los datos de dichas hojas. El adaptador usa como base el API Apache POI [Apache Foundation], que permite el acceso a datos almacenados en documentos de Microsoft Office[®].

La organización de los archivos de los cuales se obtienen los datos para el experimento es el siguiente:

- Se organizaron tres libros de hojas de cálculo, uno por cada escenario previsto en el experimento.
- Cada libro contiene tres hojas de cálculo:
 - o Información Económica: en esta hoja de cálculo se almacenan la meta de producción, la disponibilidad de energía y el régimen fiscal (precios del crudo y costos de operación) para el campo.
 - Datos de Producción: en esta hoja de cálculo se almacenan todos los datos sobre la configuración de los pozos, tales como producción potencial, gravedad API del crudo, corte de agua, etc. (ver concepto pozo en la ontología).
 - Datos Tiempo Real: en esta hoja se almacenan los datos generados por el simulador GAP® Petex® para cada intervalo de tiempo, de cada una de las variables de proceso de los pozos, el campo y los separadores de la estación de flujo.

El diagrama de clases del adaptador construido para el experimento se expresa en la siguiente figura.

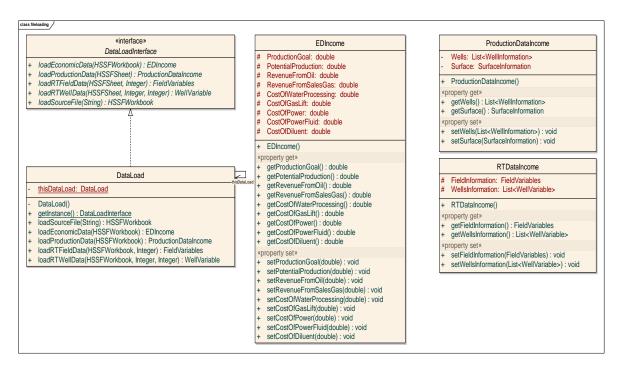


Fig. 6.11. Diagrama de Clases para la Capa de Conectividad implantada en el experimento.

La descripción de los métodos de la clase DataLoad, que permite la adquisición de datos desde las hojas de cálculo, se realiza a continuación:

loadSourceFile: carga en una estructura de datos el archivo ".xls" que contiene los datos a adquirir.

loadEconomicData: carga la información económica desde el archivo fuente de datos.

loadProductionData: carga la información de producción desde el archivo fuente de datos.

loadRTFieldData: carga la información de tiempo real para el campo en un instante específico.

loadRTWellData: carga la información de tiempo real para un pozo específico y en un momento específico.

Además, del adaptador, se construyeron tres clases auxiliares que permiten almacenar en un objeto Java los datos obtenidos desde la fuente de datos. Estas clases se denominan *EDIncome* (carga la información económica), *ProductionDataIncome* (carga la información de producción) y *RTDataIncome* (carga la información de tiempo real). Cada una de estas clases tiene como atributos los datos a cargar desde la fuente de datos y tiene implementados los métodos "set" y

"get" para cada uno de dichos atributos. Finalmente, se construyó una interfaz, llamada DataLoadInterface, la cual expone los métodos de la clase DataLoad.

6.3.5.2 Capa de Semántica

Para la implantación de la capa de semántica se tomó un sub-conjunto de los conceptos definidos en OilProductionOntology (los necesarios para el funcionamiento del experimento) y se codificaron como clases Java²⁶. Para ello, se llevaron manualmente los conceptos de la ontología desarrollados en Protege® a la herramienta ISLANDER de la suite EIDE y posteriormente se generaron las clases Java utilizando la herramienta aBuilder de la misma suite. Para cada concepto de la ontología se desarrolló una clase Java. Además, tal y como lo requiere la herramienta AMELI de la suite EIDE, se generó una clase denominada OilProductionOntology en la cual se almacenan todos los métodos que permiten generar un elemento asociado a un concepto en la ontología; esto permitirá construir los conceptos cuando los mismos sean evocados por los agentes. Por otro lado, se generó una clase denominada OilProductionDF, la cual define el Marco de Diálogo de la Institución Electrónica en donde se almacenan todas las partículas ilocutorias, o actos de habla, que podrán utilizar los agentes de la capa de gestión para comunicarse. A continuación se presentan los diagramas de clase OilProductionDF y OilProductionOntology.

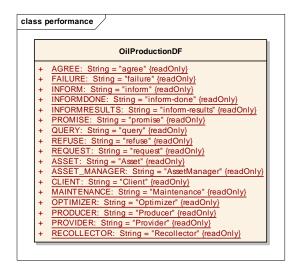


Fig. 6.12. Clase OilProductionDF (Marco de Diálogo)

Universidad de los Andes Doctorado en Ciencias Aplicadas

²⁶ Esto se debe a que las herramientas de la suite EIDE (las cuales se utilizan para la implantación de la Capa de Gestión) no pueden importar los conceptos de la ontología directamente de Protege. Por el contrario, tienen la restricción de que los conceptos deben estar definidos dentro de la especificación de la Institución Electrónica y luego codificados como clases Java.

Fig. 6.13. Clase OilProductionOntology

6.3.5.3 Capa de Gestión

Para la capa de gestión se realizó la implantación de la e-OilFieldInstitution, en la cual participan los siguientes agentes:

- 1 Agente Pozo con rol Productor, que controlará los ocho pozos del campo²⁷,
- 1 Agente Estación de Flujo con rol Proveedor,
- 1 agente Planta Compresora con rol Proveedor,
- 1 Agente Optimizador de Campo con rol Optimizador,
- 1 Agente Mantenedor del Campo con rol Mantenedor,
- 1 Agente Gestor del Campo con rol Gestor del Activo.

Los agentes de la Institución Electrónica se encargarán de obtener la información del estado del activo a partir de diversas fuentes de datos (que fueron especificadas en secciones anteriores). En función de dicho estado y de las metas de producción establecidas como parámetro de entrada, el Agente Gestor del Activo puede solicitar al agente Optimizador calcular el comportamiento del sistema de producción bajo condiciones óptimas, estableciendo las cuotas de producción para cada pozo. En función de los resultados aportados por el Agente Optimizador, el Agente Gestor del Activo puede decidir cambiar las condiciones del activo (a través de la modificación de las variables manipulables).

Para la implantación de la institución electrónica se utilizaron las herramientas ISLANDER y aBuilder de la suite EIDE y se generaron las clases Java para los siguientes elementos de la institución:

- Agentes participantes en la institución
- Comportamiento de los agentes en las estructuras performativas (se utilizarán las estructuras performativas definidas en el capítulo V)
- Comportamiento de los agentes dentro de cada escena (se utilizarán las escenas definidas en el capítulo V)

El diagrama de clases para uno de los agentes (los demás agentes tienen una estructura similar) del proyecto Java generado para la implantación de la institución se expone en la siguiente figura.

²⁷ Se utilizará un solo agente con el rol Productor, con el objetivo de simplificar la implantación de la institución electrónica.

Fig. 6.14. Clase Agente Productor

En las siguientes figuras se presentan los diagramas de las clases que controlan el comportamiento del agente antes presentado, en una estructura performativa y en una escena particular.

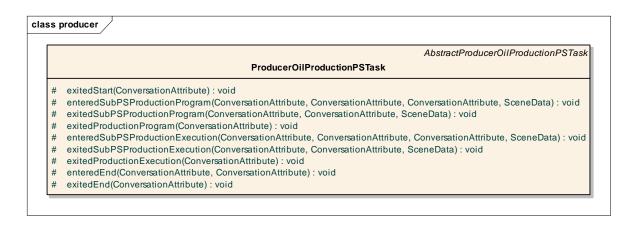


Fig. 6.15. Clase que define el comportamiento del Agente Productor en la Estructura Performativa OilProductionPS

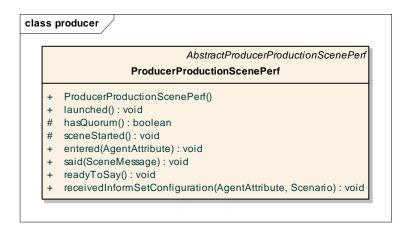


Fig. 6.16. Clase que define el comportamiento del Agente Productor en la Escena de Producción

Como IDE para la generación del proyecto Java se utilizó la herramienta Eclipse (The Eclipse Foundation).

6.3.6 Simulaciones y Resultados

La simulación del experimento correspondiente al caso de estudio se realizó utilizando la herramienta AMELI, de la suite EIDE. Para ello se siguieron los siguientes pasos.

- 1. Se configuraron los agentes y el experimento en aBuilder, utilizando como base la especificación de la institución realizada en Islander.
- 2. Por medio de aBuilder, se generó el código en Java correspondiente a la configuración de los agentes y a su comportamiento en las estructuras performativas y escenas de la institución.
- 3. Se compiló el código autogenerado por aBuilder utilizando Apache Ant (Apache Foundation).
- 4. Se generó un proyecto Java en la Ambiente de Desarrollo Eclipse utilizando las clases generadas y compiladas.

- 5. Para agregar los elementos necesarios para implementar la capa de conectividad, se incluyó en el proyecto Java que se generó la librería APACHE POI, requerida para el acceso a las fuentes de datos.
- 6. Se completó el código generado con clases, métodos y funciones que permiten el acceso a las fuentes de información y el efectivo intercambio de mensajes entre los agentes.

Se inició el experimento con un Escenario como el descrito en la sección 6.3.3.

A continuación se resumen los eventos ocurridos durante la ejecución electrónica:

1 Inicia la ejecución con el ingreso de los agentes a la institución. Al iniciarse, cada agente carga en su estructura de datos la información de producción almacenada en la fuente de datos. En la parte izquierda de la figura 6.19 (ver circulo) se pueden observar los agentes que han ingresado a la escena inicial de la estructura performativa.

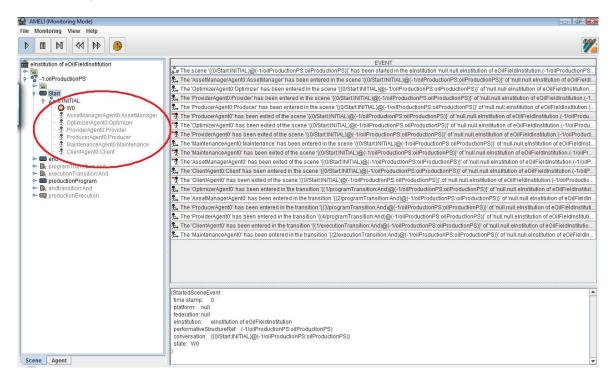


Fig. 6.17. Inicio de la ejecución de la Institución Electrónica

2 Se inicia la Programación de Producción, con la escena Búsqueda de Información, en la que el agente Gestor del Campo configura el escenario inicial de producción mediante la solicitud de información al resto de los agentes de la institución (ver fig. 6.20).

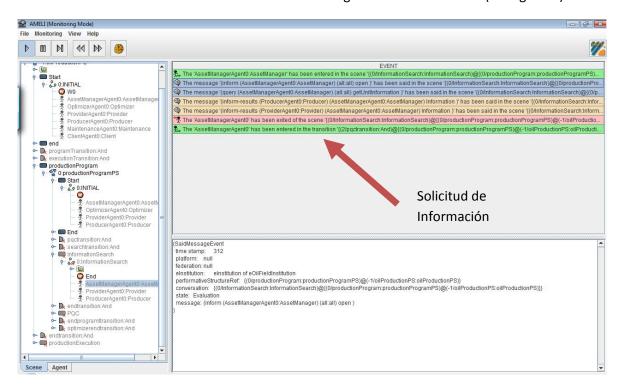


Fig. 6.18. El agente Gestor del Campo solicita información sobre el proceso al resto de los agentes de la Institución

3 El agente Gestor del Campo solicita al agente Optimizador que calcule el escenario óptimo de producción para una meta de 159000 NBPD, con la configuración actual del campo. El agente Optimizador genera el primer escenario óptimo y lo entrega al agente Gestor del Campo (ver figuras 6.21 y 6.22).

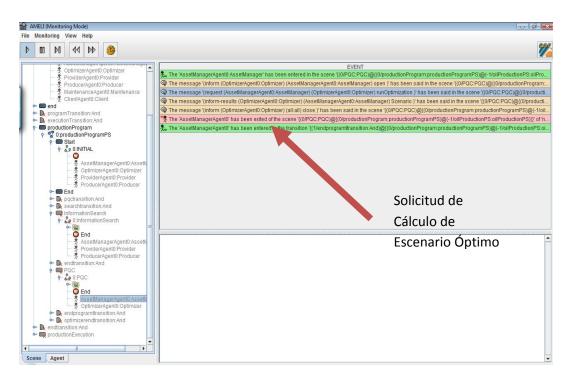


Fig. 6.19. El agente Gestor del Campo solicita el cálculo del escenario óptimo al agente Optimizador

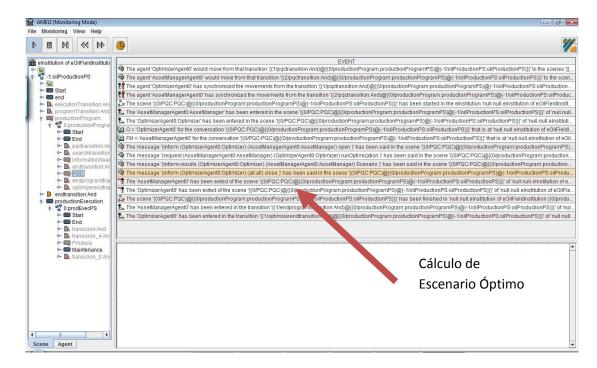


Fig. 6.20. El agente Optimizador realiza el cálculo del escenario óptimo

4 Se inicia la producción a través de la configuración del campo en base al Escenario Óptimo de Producción calculado en la escena anterior (ver figura 6.23).

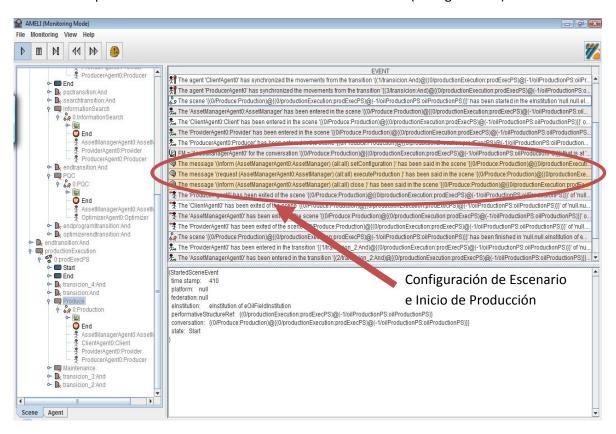


Fig. 6.21. Inicio de la Producción

El escenario establecido por el agente Gestor del Campo, implica un ajuste en la apertura de la válvula Choke para cada pozo, lo que se ve reflejado en el diferencial de presión aguas arriba y aguas abajo de la válvula, tal y como se expresa en la siguiente gráfica:

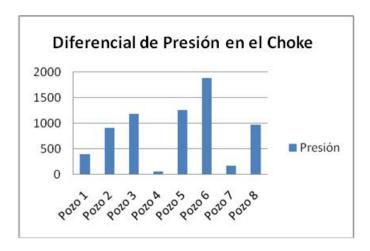


Fig. 6.22. Diferencial de Presión en la Válvula Choke para cada pozo. Ajuste de la configuración de los pozos para alcanzar la meta de producción.

El comportamiento de la variable más importante de proceso, producción total, se muestra en la siguiente gráfica.

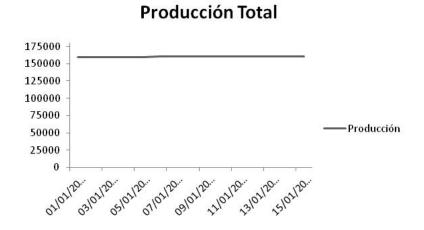


Fig. 6.23. Producción del Campo con el Escenario establecido por el agente Gestor del Campo

Como se puede observar, la producción total del campo se mantiene cerca de la meta establecida de 159000 NBPD. En la siguiente gráfica se puede observar la producción por cada pozo.

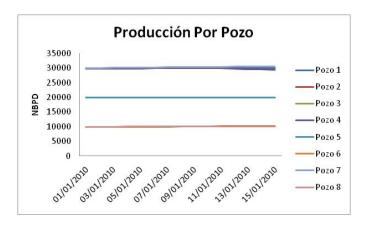


Fig. 6.24. Producción por pozo para el primer escenario

5 En el instante de muestreo #15 (día 15/01/10) el agente Gestor del Campo recibe una orden de cambio de la meta de producción a 120000 NBPD. El agente Gestor del Campo, en conjunto de los agentes Pozo (Productor) y Suplidor de Energía (Proveedor), transitan hacia la escena *Programación de la Producción* (ver figura 6.27). En dicha escena se calcula un nuevo escenario de producción para la institución, en función de la nueva meta. Culminada la escena *Programación de la Producción*, los agentes ingresan en una nueva escena, *Ejecución de la Producción*, la cual funcionará con el nuevo escenario.

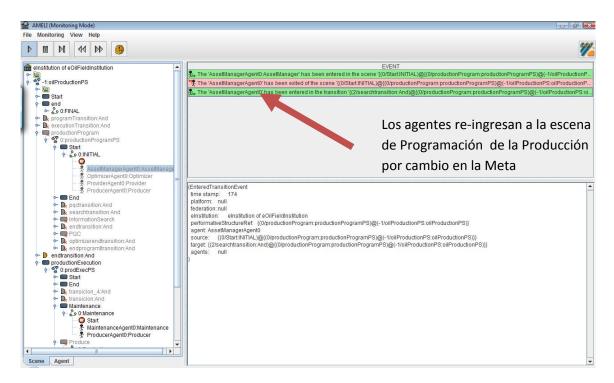


Fig. 6.25. Los agentes retornan a la escena "Programación de Producción" debido a que hubo un cambio en la meta de producción del campo

Se genera un nuevo escenario de producción por medio del ajuste del cambio en las aperturas de las válvulas Choke para cada pozo, lo que se ve reflejado en la siguiente gráfica:

Fig. 6.26. Cambios en la presión originados por cambios en la apertura de las válvulas Choke de los pozos

Como se puede observar en la gráfica 6.28, se generan incrementos en la presión en la válvula Choke para cada pozo, producido por una disminución en la apertura de dichas válvulas, que tienen como objetivo ajustar la producción total a 120000 NBPD.

En la siguiente gráfica se puede observar el ajuste en la producción total del campo.

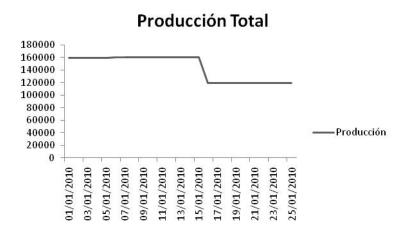


Fig. 6.27. Ajuste en la producción total del Campo

En la siguiente gráfica se puede observar la producción por pozo después del ajuste en la configuración del campo.

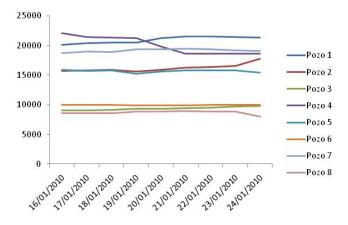


Fig. 6.28. Producción por pozo después del ajuste de la meta de producción del campo

6 En el instante de muestreo #25 (para el día 25/01/10), el agente P8 se detiene por una falla. Dicho agente sale de la escena *producción* a la escena *Mantenimiento* (ver círculo y registro de eventos en la figura 6.31). Se realiza una reprogramación de la producción para ajustar las cuotas de los demás pozos para mantener la meta de producción del activo.

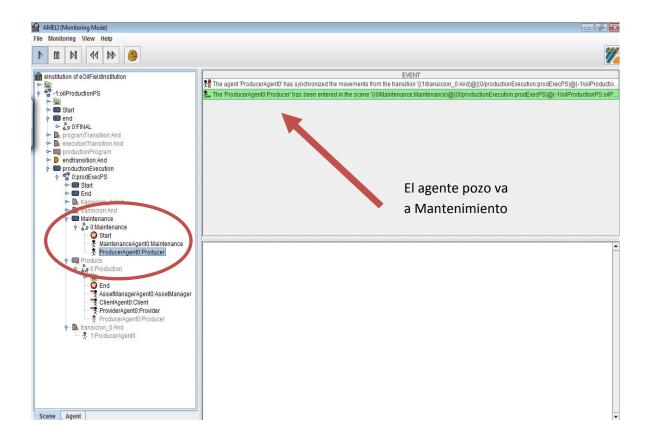


Fig. 6.29. El pozo P8 sufre una falla y entra a mantenimiento

En la siguiente gráfica se puede observar el ajuste en las presiones de las válvulas Choke para cada pozo, reflejando el cierre total del pozo 8 y el incremento en la apertura de las válvulas de los pozos 1, 2, 3, 5, 6 y 7, con el objetivo de mantener la meta de producción.

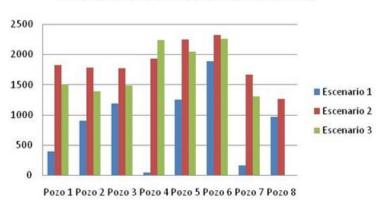


Fig. 6.30. Ajuste en las válvulas Choke de los pozos para mantener la meta de producción

Como se puede observar en la gráfica 6.33, gracias a los cambios en la configuración el campo, no se producen alteraciones en el cumplimiento de la meta de producción del campo.

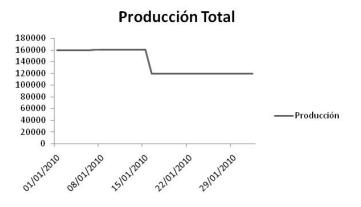


Fig. 6.31. Producción total del campo

En la siguiente figura se pueden observar los cambios en la producción de cada pozo, para asegurar el cumplimiento de la meta de producción, después de la falla del pozo 8.

Fig. 6.32. Ajustes en la producción de los pozos para asegurar la meta de producción después de la falla del pozo P8

7 En el instante #31, se da la orden de Cierre de Producción y culmina la ejecución de la institución, con la salida de los agentes de la misma. En la figura 6.35, se pueden observar los agentes saliendo de la escena final de la institución electrónica (ver información dentro del círculo).

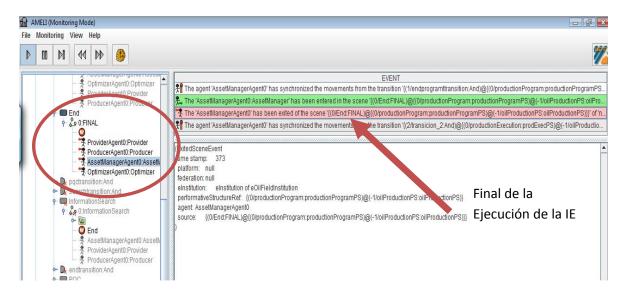


Fig. 6.33. Culminación de la ejecución de la Institución Electrónica

6.3.7 Análisis de Resultados

Como se pudo observar en los resultados de la simulación, la implantación de la arquitectura funcionó para cumplir el *objetivo de optimización planteado en el experimento (primer objetivo del experimento)*, que era mantener la meta de producción (ver ítems 2, 3 y 4 de la sub-sección anterior). El alcance del objetivo se logra al tener la capacidad la arquitectura propuesta de colectar todos los datos sobre el estado del proceso, realizar su análisis y automatizar el proceso de toma de decisiones a través de la institución electrónica implementada en la capa de gestión.

Ante dos eventos operacionales (cambios en la meta de producción y falla de un pozo), la institución electrónica reaccionó efectivamente, realizando los cambios necesarios para cumplir con el objetivo del campo, en el primer caso, ajustando la meta de producción del campo mediante la modificación de las aperturas de las válvulas Choke (ver ítem 5 de la subsección anterior); y en el segundo caso, compensando la producción perdida por la falla del pozo 8, mediante el incremento del flujo del resto de los pozos (ver ítem 6 de la sub-sección anterior). De esta manera queda demostrada *la capacidad reactiva del sistema, dando cumplimiento al segundo objetivo estipulado.*

La obtención de los datos de configuración del campo y el monitoreo de la información de proceso en tiempo real fue posible, gracias al funcionamiento de la capa de conectividad, que permitió acceder a las fuentes de datos mediante los adaptadores de software desarrollados en dicha capa (ver sub-secciones 6.2.2 y 6.3.5.1). Así mismo, la capa de semántica sirvió para garantizar la comunicación efectiva entre los agentes durante la ejecución de la institución, mediante la implantación de la OilProductionOntology (ver sub-secciones 6.2.3 y 6.3.5.2), que contiene los conceptos necesarios para el intercambio de información en el proceso de producción de petróleo. Finalmente, la capa de gestión funcionó como herramienta para la automatización de los flujos de trabajo del proceso en estudio, mediante la implantación de la e-OilFieldInstitution (ver sub-secciones 6.2.4 y 6.3.5.3). De esta manera se demuestra la funcionalidad de cada una de las capas y se valida la integración entre las mismas para abordar el problema de optimización planteado en el experimento, dando cumplimiento a los objetivos tres y cuatro estipulados para el mismo.

Conclusiones y Recomendaciones

Conclusiones

En el presente trabajo se propone una Arquitectura de Referencia para Integración de Procesos de Producción, mediante la cual es posible acceder a toda la información requerida para conocer el estado del proceso productivo, realizar la interpretación de dicha información, y automatizar los flujos de trabajo de la empresa, para la toma de decisiones y ejecución de acciones automática, mediante el uso de herramientas de inteligencia artificial distribuida.

La arquitectura propuesta representa una respuesta al problema de integración de información en ambientes industriales, el cual es de gran interés para la comunidad industrial y científica ya que es uno de los retos fundamentales para la optimización de los procesos productivos. Actualmente, en las industrias de producción continua, las plataformas de tecnología de información están compuestas por una gran variedad de soluciones sofisticadas para cada área de las empresas, pero que no se integran entre sí, impidiendo tener una visión global del estado del proceso productivo para tomar decisiones y ejecutar acciones de una forma oportuna y acertada. La arquitectura propuesta en este trabajo aborda el tema de integración y automatización de flujos de trabajo en ambientes industriales, habilitando la disponibilidad de una visión global del proceso productivo en tiempo real.

Dentro de la arquitectura propuesta, se definió una *Capa de Conectividad* que permite, a través de adaptadores de software y de la estandarización de los mecanismos de acceso a datos, recolectar la información sobre el estado del proceso productivo, almacenada en distintas fuentes. Dicha capa establece un mecanismo unificado de acceso a datos, que permite disponer de toda la información requerida para la toma de decisiones, de manera oportuna y confiable.

La arquitectura contiene también una *Capa de Semántica*, cuya función es establecer un marco ontológico que permita garantizar la comunicación efectiva entre las aplicaciones, fuentes de datos y humanos, que forman parte del proceso productivo. La Capa de Semántica se compone de cuatro elementos fundamentales: la Meta Data, la cual permite definir el origen y la ubicación de la información; el Meta-modelo de datos, que permite estandarizar la forma como se construyen los conceptos dentro de las ontologías de la empresa; las Ontologías de Carácter General, que permiten que se reutilicen conceptos definidos en otras ontologías desarrolladas en la comunidad científica e industrial; y los Conceptos de Domino Específico, que son los conjuntos de conceptos de la ontología pertenecientes a un proceso productivo particular. El aporte fundamental de la Capa de Semántica es el Meta-modelo de datos, ya que, el mismo establece una estructura genérica para la construcción de conceptos del área de producción industrial, basándose en los

modelos PROSA y PRODML, a través del cual se simplifica la búsqueda y análisis de la información representada en la ontología.

Para la construcción de la Capa de Semántica, se utilizó la herramienta Protégé, la cual fue muy útil para construir los conceptos y las relaciones entre los mismos. Protégé, permite almacenar las ontologías generadas en OWL y visualizar las relaciones entre los conceptos a través de una herramienta gráfica. Además, Protégé permite la importación de ontologías ya definidas almacenadas en repositorios locales o en la Web, lo que fue muy útil en la Capa de Semántica, ya que la misma utiliza conceptos de las ontologías SWEET.

Como última capa de la arquitectura, se define la *Capa de Gestión*, en la cual se automatizan los flujos de trabajo correspondientes a los procesos de planificación y ejecución de producción, mediante el uso de Instituciones Electrónicas. Las Instituciones Electrónicas permiten utilizar las ventajas de la inteligencia artificial distribuida que poseen los Sistemas Multiagentes, garantizando el cumplimiento de los objetivos planteados mediante la imposición de reglas sociales que norman el comportamiento de los agentes. Para el caso de producción industrial, se definen normas que acotan los tiempos de respuesta de los agentes, ya que las restricciones de tiempo son críticas en este tipo de procesos.

Para la implantación de la Capa de Gestión, se utilizó el ambiente EIDE para construcción de Instituciones Electrónicas. Las herramientas de EIDE permitieron el trabajo de especificación de la institución y de configuración de los agentes a participar en la misma, además de proveer una plataforma para la ejecución de la institución desarrollada. Poder contar con una herramienta gráfica para la definición de los flujos de trabajo (estructuras performativas) dentro de la institución electrónica, es un elemento muy poderoso para el uso de este tipo de técnicas en ambientes industriales, ya que permite representar de forma sencilla los flujos de trabajo de la empresa en la especificación de la institución electrónica.

Como parte del trabajo de investigación, se especificó un caso de estudio para el proceso de producción de petróleo, a través del cual se pudo ejemplificar la implantación de la arquitectura en un proceso industrial. Dentro del caso de estudio se definió una ontología para el dominio de producción de petróleo, denominada OilProductionOntology y una institución electrónica para la gestión del proceso de producción petrolera, denominada e-OilFieldInstitution.

Para comprobar la funcionalidad de la arquitectura se configuró un experimento, en el cual se implanta la misma en un ambiente de simulación, con el objetivo de gestionar un campo petrolero. El resultado de la simulación demuestra el *funcionamiento integral* de todas las capas de la arquitectura de manera eficiente, *la reactividad* del sistema ante eventos ocurridos durante la ejecución del experimento y su efectividad para *resolver el problema de optimización* de producción.

Recomendaciones

Para futuros trabajos, se recomienda ampliar el marco ontológico definido en la capa de semántica, en función de enriquecer los conceptos definidos en el mismo y agregar nuevos conceptos que hagan más completa dicha capa. Se recomienda la elaboración de ontologías por dominios relativos a la producción industrial, que puedan ser utilizados, bien como ontologías de carácter general, o bien como ontologías de dominio específico.

Así mismo, a nivel de la institución electrónica se recomienda desarrollar las estructuras performativas y escenas para el resto de los procesos de gestión de producción que no fueron abordados en este trabajo, así como completar las escenas ya desarrolladas, en función de complementar la capa de gestión. Entre las escenas más interesantes para desarrollar y/o complementar se encuentran: despacho de producción, mantenimiento (refinar la escena ya desarrollada), monitoreo, control y aseguramiento de calidad (añadir estas tres últimas a la estructura performativa de ejecución de producción).

En términos del caso de estudio, se recomienda llevar a cabo el desarrollo e implementación de una capa de conectividad para aplicaciones de producción petrolera, en base a la estructura propuesta en este trabajo, de forma de construir los adaptadores de software y los servicios necesarios para el acceso a la información requerida para gestionar un campo de producción de petróleo. La construcción de la capa de conectividad antes mencionada, debe ser implantada sobre un "Bus de Servicios Empresariales", que disponga de la infraestructura necesaria para soportar la demanda de servicios de acceso a la información de una empresa de producción petrolera. Así mismo, se recomienda la ampliación de la OilProductionOntology, con la incorporación de nuevos conceptos del área de producción de petróleo y de otras áreas tales como exploración, perforación y evaluación de yacimientos. También se recomienda agregar algunos procesos especializados del área de producción de petróleo, que complementen la institución electrónica ya desarrollada.

Como trabajo complementario, se recomienda continuar en el refinamiento de la suite EIDE para construcción de instituciones electrónicas, particularmente, agregando un módulo para la integración de Protégé con EIDE, de forma de poder incorporar a las instituciones electrónicas, ontologías previamente definidas en Protégé.

Finalmente, se recomienda emprender un trabajo de investigación y desarrollo cuya finalidad sea agregar una funcionalidad a EIDE, que provea la posibilidad de ir modificando en el tiempo las reglas sociales definidas inicialmente en una institución electrónica, lo cual otorgaría capacidades adaptativas (aprendizaje colectivo) a la misma.

ANEXO A

SWEET ONTOLOGIES

En este anexo se presentan los árboles de relación de los conceptos pertenecientes a las SWEET Ontologies, que son utilizados para la construcción de la Capa de Semántica de la arquitectura propuesta en este trabajo. Se presentan conceptos de tres ontologías: Infraestructure Ontology, Time Ontology y SCI Ontology.

A.1. Conceptos Infraestructure Ontology

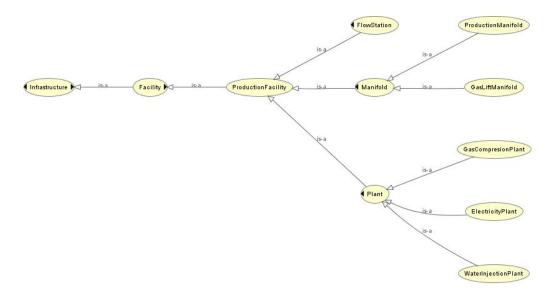


Fig. A.1 Concepto ProductionFacility

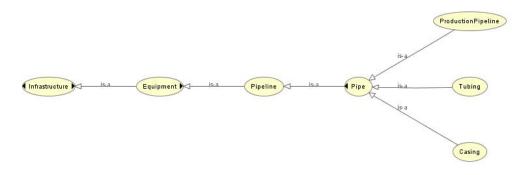


Fig. A.2 Concepto Pipeline

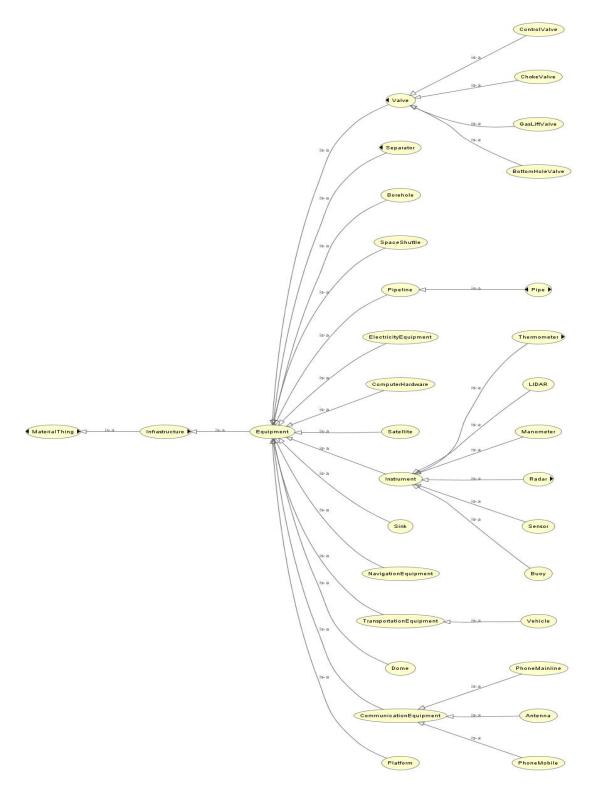


Fig. A.3 Concepto Equipment

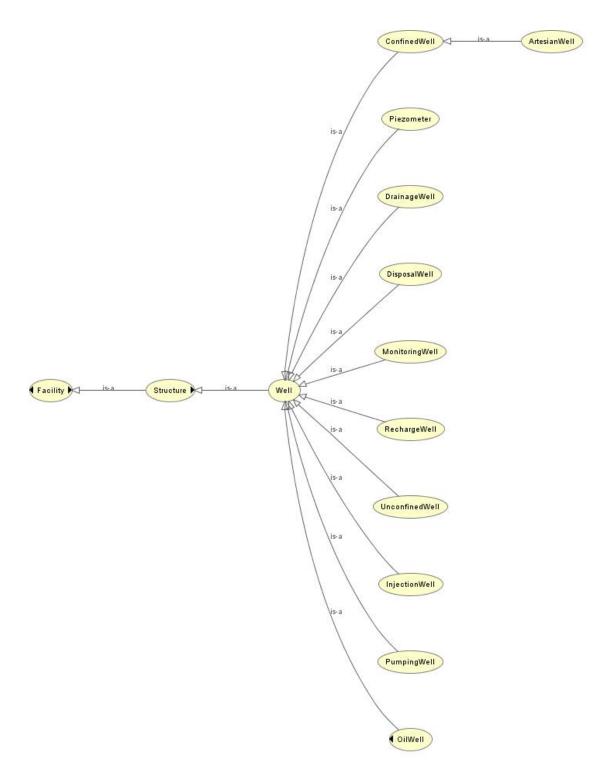


Fig. A.4 Concepto Well

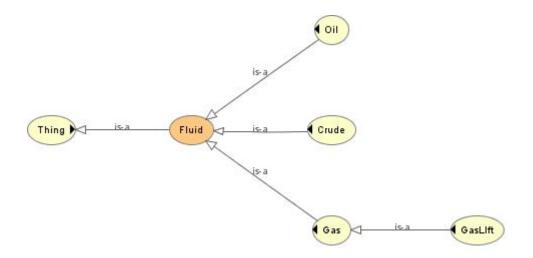


Fig. A.5 Concepto Fluid

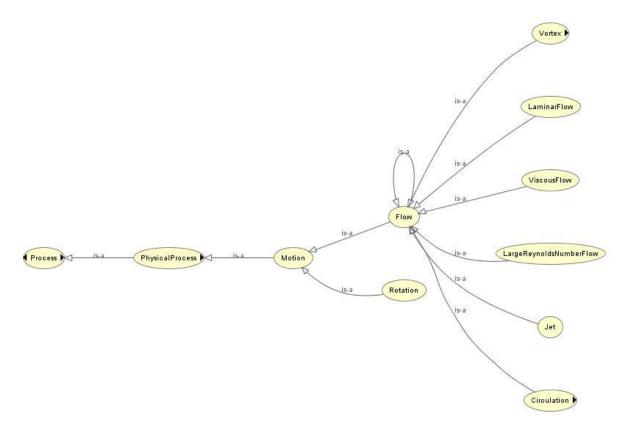


Fig. A.6 Concepto Flow

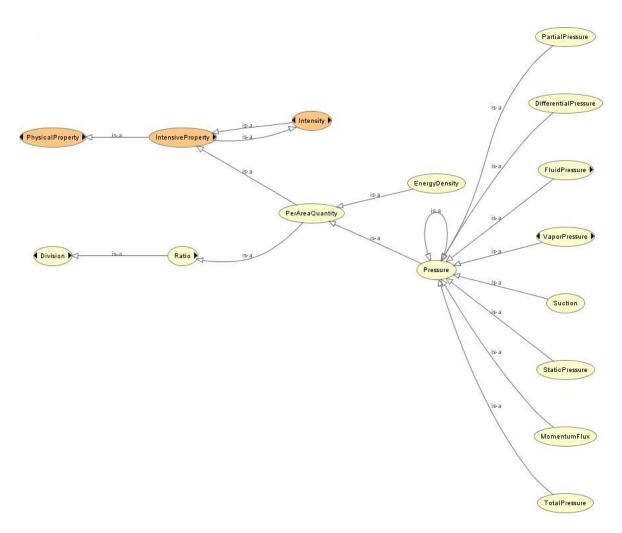


Fig. A.7 Concepto Pressure

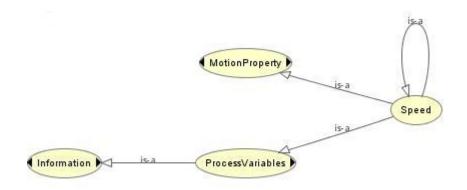


Fig. A.8 Concepto Speed

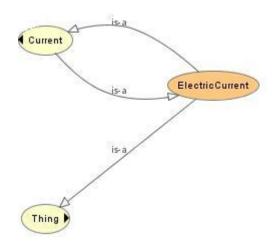


Fig. A.9 Concepto ElectricityCurrent

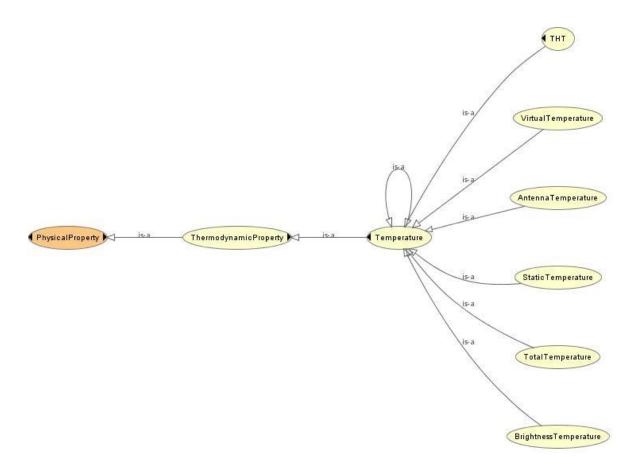


Fig. A.10 Concepto Temperature

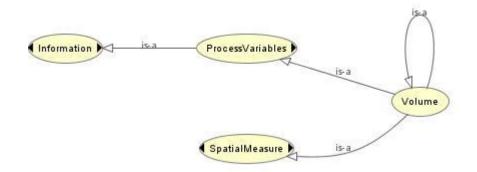


Fig. A.11 Concepto Volume

A.2. Conceptos Sci Ontology

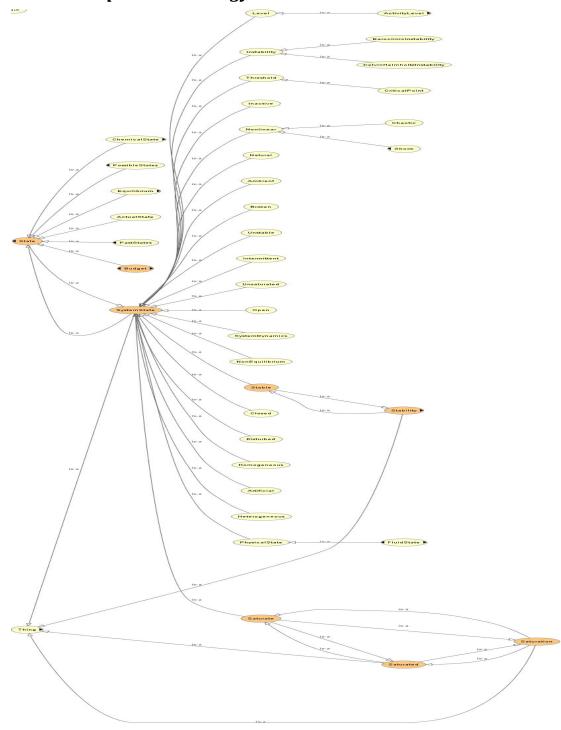


Fig. A.12 Concepto SystemState

A.3. Conceptos Time Ontology

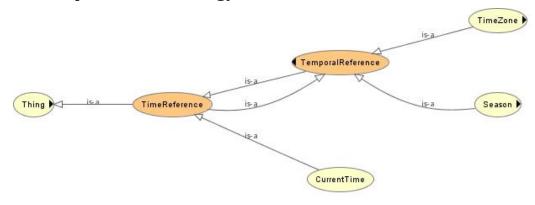


Fig. A.13 Concepto TimeReference

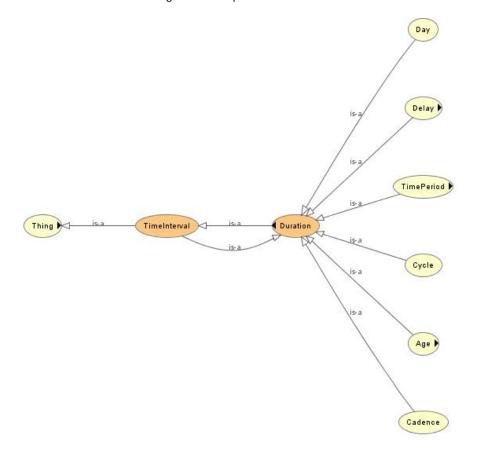


Fig. A.14 Concepto TimeInterval

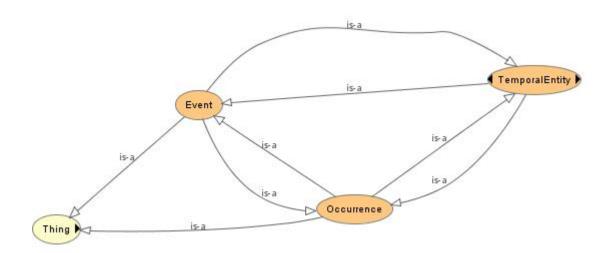


Fig. A.15 Concepto Event

ANEXO B

DIAGRAMAS DE CLASES ROLES INSTITUCIÓN ELECTRÓNICA

En este anexo se presentan los diagramas de clases correspondientes a los roles de los agentes que participan en la Institución Electrónica de la Capa de Semántica perteneciente a la arquitectura desarrollada en este trabajo. Para cada rol se muestran sus atributos y métodos. Cada clase correspondiente con los roles, posee al menos los métodos "set" y "get" para cada atributo; por otro lado, se definen algunos métodos adicionales que corresponden a los comportamientos particulares de cada rol. Finalmente, se describen dos clases asociación denominadas "Configuración del Activo" y "Producto", que permiten establecer la asociación entre las clases "Activo" y "Optimizador", y "Productor" y "Cliente", respectivamente.

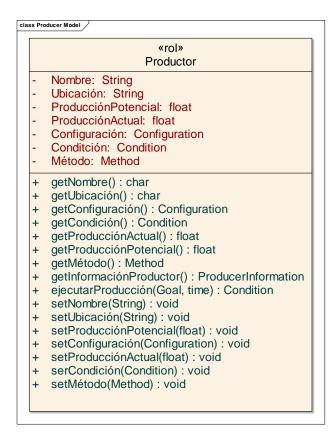


Fig. B.1 Rol Productor

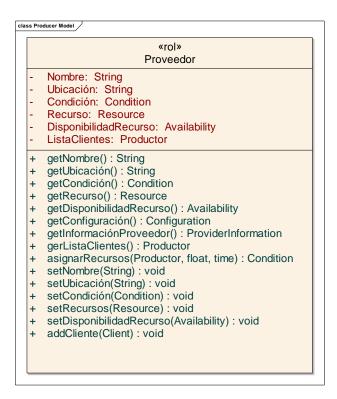


Fig. B.2 Rol Proveedor

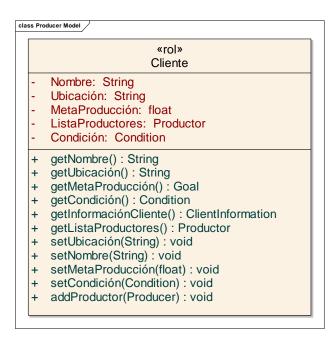


Fig. B.3 Rol Cliente

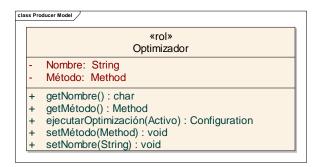


Fig. B.4 Rol Optimizador

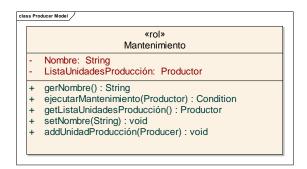


Fig. B.5 Rol Mantenedor

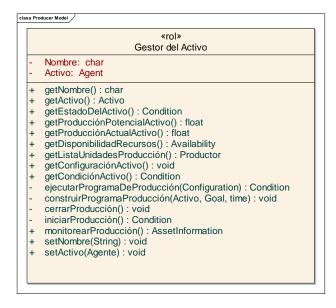


Fig. B.6 Rol Gestor del Activo

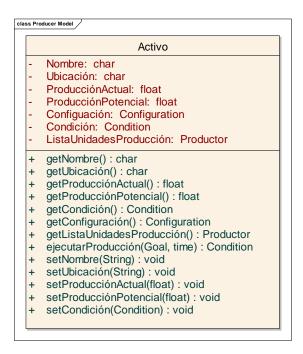


Fig. B.7 Clase Activo

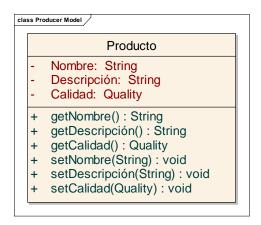


Fig. B.8 Clase Producto

Fig. B.9 Clase Configuración del Activo

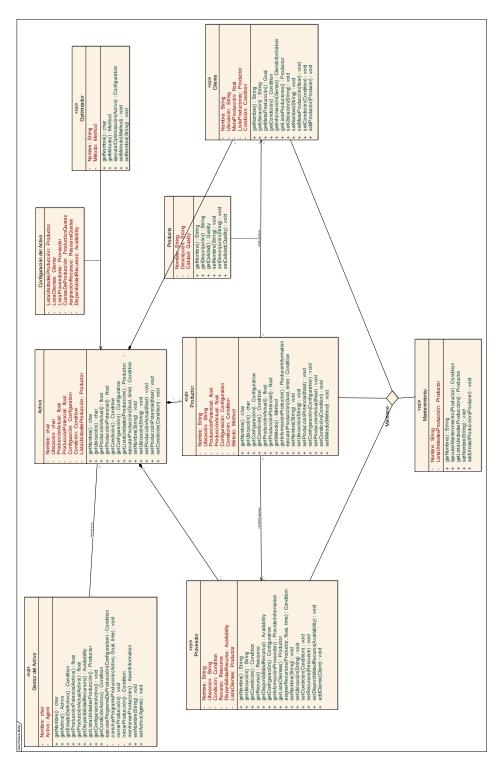


Fig. B.10 Diagrama de Clases General

ANEXO C

INTRODUCCIÓN A LA GERENCIA DE YACIMIENTOS

C.1. Proceso de la Gerencia de Yacimientos

La Gerencia de Yacimientos es el proceso recurrente en el cual el operador de un campo petrolero utiliza modelos matemáticos, datos y experticia para optimizar la rentabilidad del yacimiento o cualquier otro objetivo establecido sobre el desempeño del campo [Saputelli, et al., 2003]. Entre los objetivos de la Gerencia Integrada de Yacimientos encontramos:

- Disminuir riesgos.
- Incrementar la producción de petróleo y gas.
- Maximizar el recobro.
- Minimizar inversiones de capital.
- Minimizar gastos operacionales.
- Maximizar la rentabilidad.

El propósito de la gerencia de yacimientos es controlar las operaciones para obtener el máximo recobro económico de un yacimiento basándose en hechos, información y conocimiento. El proceso de gerencia de yacimientos supone establecer un objetivo, definir una estrategia, desarrollar un plan, implementar y monitorear dicho plan y evaluar sus resultados. El plan debe ser monitoreado constantemente para refinarlo implementando los cambios necesarios de acuerdo a la información obtenida de la operación. A continuación se describen los pasos para la gerencia de yacimientos.

Establecer Metas: En la gerencia de un yacimiento es fundamental establecer la necesidad específica y definir metas realistas y alcanzables. Los elementos clave a tomar en cuenta para definir metas en la gerencia de un yacimiento son:

Características del yacimiento: conocer las propiedades del yacimiento es el primer paso para establecer metas realistas en la gerencia de yacimientos. Para esto hace falta manejar datos de geología, petrofísica, propiedades de la roca y del fluido, mecanismos de recobro, perforación y completación de pozos y el desempeño del yacimiento en el pasado (si no se trata de un nuevo descubrimiento).

Aspectos Externos: conocer el estado sobre todos los aspectos que pueden impactar en el desarrollo del yacimiento es importante para definir las metas y restricciones en el plan de explotación. Entre estos aspectos se encuentran las metas corporativas, fortaleza financiera de la empresa, situación económica (precios del petróleo y el gas, inflación, capital), disponibilidad de recursos humanos con experiencia, el impacto social y las regulaciones ambientales y de seguridad que deberán ser acatadas durante el proceso de explotación.

Tecnología: el éxito en la gerencia de un yacimiento depende de la disponibilidad y del uso apropiado de las herramientas tecnológicas requeridas. Existen diversas y muy sofisticadas soluciones para cada una de las disciplinas involucradas en la gerencia de yacimientos, pero su selección debe atender a una serie de criterios que garanticen el retorno de la inversión y la optimización de los procesos: escalabilidad, mantenibilidad, soporte, capacidad de integración con otras soluciones, soporte de estándares abiertos, exposición del conocimiento detrás de la solución, flexibilidad, y principalmente, que las soluciones a adquirir se adapten a las necesidades reales del equipo de gestión de yacimientos.

Desarrollo del Plan: Un plan detallado, que considere los escenarios que puedan presentarse, que maneje los riesgos y que sea realista es el centro de la gerencia integrada de yacimientos. Para elaborar un plan de desarrollo de yacimientos deben seguirse los siguientes pasos:

- Estrategia de Desarrollo y Depletación: en esta etapa se define como se va a explotar el yacimiento hasta su agotamiento. Es aquí donde se debe definir la cantidad de pozos, el espaciamiento entre pozos, el método de recuperación y los cambios de métodos a lo largo de la vida del yacimiento y consecuentemente las instalaciones de superficie a considerar.
- Consideraciones ambientales: las regulaciones y consideraciones en materia ambiental deben ser tomadas en cuenta desde el principio del plan de explotación, ya que debe contenerse el impacto ambiental que pueda tener la explotación y evitar los costos económicos derivados de la violación de normas y regulaciones del país en donde se esté realizando la misma.
- Adquisición y análisis de datos: en todas las fases del desarrollo del yacimiento se adquiere gran cantidad de datos, desde datos de perforación y simulaciones hasta los datos derivados de la operación. El buen uso de estos datos es clave para que el plan de explotación tenga éxito.

- Estudios Geológicos y Modelos Numéricos: el modelo geológico se realiza a partir de medidas realizadas en pruebas de núcleo tomadas en la fase de perforación. Esto permite definir las características geológicas del yacimiento, a partir de tecnologías de análisis geofísico y de mineralogía. El modelo geológico es la base para los modelos de simulación del yacimiento.
- Predicción de producción y de reservas: la viabilidad económica de un proyecto de recuperación depende en gran medida en poder estimar el desempeño de la producción del yacimiento sobre las condiciones actuales y futuras de operación. Estas estimaciones se realizan por medio de simuladores de yacimientos que pueden predecir el comportamiento del yacimiento en diversos escenarios, lo que permite ajustar el plan de explotación.
- Requerimientos de Instalaciones: las instalaciones son el vínculo físico con el yacimiento.
 Dichas instalaciones, incluyen taladros, completaciones, bombas, instalaciones de inyección, procesamiento y almacenaje. El costo de las instalaciones suele ser muy alto, por lo que es muy importante definir las instalaciones a considerar en el plan de una manera precisa, ajustada a los mecanismos de recuperación a implementar.
- Optimización Económica: en general el criterio de optimización del plan de explotación de un yacimiento tiene que ver con aspectos económicos. El análisis económico establece la viabilidad del proyecto y establece los objetivos a alcanzar.
- Aprobación gerencial: todo plan de desarrollo de yacimientos debe contar con la aprobación de toda la línea gerencial involucrada con el activo. De otra forma, el proyecto no será viable o por lo menos su ejecución puede verse retrasada.

Implementación: Una vez establecidas las metas del plan de explotación, debe procederse a implementarlo. En líneas generales los requisitos para la implementación de un plan de explotación de yacimientos son los siguientes:

Definir una programación detallada de actividades, involucrando a todas las disciplinas.

- Contar con el apoyo gerencial.
- Contar con un personal de campo comprometido con el plan.
- Realizar reuniones periódicas para la revisión de la ejecución del plan, involucrando a todas las disciplinas.

Supervisión y monitoreo: Para poder hacer un seguimiento del desempeño del plan es necesario supervisar continuamente las operaciones. Para esto debe contarse con la tecnología en campo capaz de recolectar la data de producción, con modelos del yacimiento, con herramientas de análisis económico, con salas de control y salas de expertos desde donde pueda hacerse seguimiento en tiempo real de la ejecución del plan, con herramientas colaborativas que permitan involucrar en tiempo real a todos los miembros del equipo y con herramientas de integración que permitan a todas estas tecnologías trabajar en conjunto.

Evaluación: El plan de explotación debe ser revisado periódicamente y ajustado en función de los cambios que se presenten, tanto a nivel de operación como a nivel de metas y objetivos. Además, debe hacerse un seguimiento constante para detectar desviaciones de lo que fue planificado originalmente. Para esto debe garantizarse que todos los involucrados con el desarrollo del plan obtengan la información sobre la operación de manera oportuna, para que la toma de decisiones sea bien informada.

Revisión del plan y cambio de estrategias: Cuando el comportamiento del yacimiento o de la operación no está acorde con lo planificado originalmente se hace necesaria una revisión del plan y definir estrategias para implantar cambios sobre lo originalmente planificado. Sólo un seguimiento cercano del plan garantizará detectar desviaciones importantes a tiempo y tomar medidas que puedan evitar el fracaso de la explotación.

C.2. Disciplinas involucradas en la Gerencia de Yacimientos

Como se mencionó en la sección anterior, la gerencia de yacimientos es un esfuerzo conjunto de una serie de disciplinas con un objetivo común: maximizar el beneficio al ejecutar la explotación del yacimiento. A continuación se describen brevemente dichas disciplinas [Satter & Thakur, 1994].

Gerencia Funcional: es la responsable de establecer las metas y de la asignación de los miembros del equipo. Es el responsable de los recursos a asignar para la ejecución del plan de explotación. Es quien tiene la decisión final para aprobar acciones que involucren modificaciones al plan de explotación.

Liderazgo Operacional: en todo equipo de gestión de yacimientos se designa un líder que sigue día a día la ejecución del plan y aprueba las decisiones operativas recomendadas por el equipo. Es el responsable del buen funcionamiento del equipo.

Sísmica: es un equipo que coordina la adquisición de datos sísmicos en la etapa de perforación. Se encarga de definir las características sísmicas del yacimiento, tales como la estructura del yacimiento, su estratigrafía, la profundidad y el ancho de las arenas productoras, los domos de gas y los acuíferos y la presencia de fallas. Este equipo trabajará intensamente en la etapa de exploración y posteriormente fungirá como un equipo asesor para las demás etapas del plan de explotación.

Geología: es el equipo que ese encarga de estudiar y definir las características geológicas del yacimiento. Entre otros datos define la litología, las saturaciones de fluido, la porosidad de la roca, la permeabilidad, las áreas de contacto entre los diferentes fluidos. Este equipo arroja datos muy importantes que definen la viabilidad de un proyecto de explotación de petróleo.

Perforación: es el equipo encargado de realizar las perforaciones hasta las arenas productoras, para luego instalar la completación y poner en funcionamiento los pozos. En la etapa de perforación se toman importantes datos para las etapas posteriores del plan; es en esta etapa en donde se toman las muestras de núcleo que definen en gran medida las características geológicas del yacimiento. El equipo de perforación debe trabajar muy estrechamente con el equipo de gestión de yacimientos, ya que es el responsable de la secuencia de perforación establecida en el plan de explotación, esto es, es el responsable de la adición de nuevos pozos en el campo. En muchos casos el equipo de perforación también se encarga de realizar intervenciones a pozos en funcionamiento, con fines de mantenimiento o para toma de registros.

Ingeniería de Yacimientos: es el encargado de analizar el comportamiento del yacimiento, el movimiento de los fluidos, las características de los mismos, los contactos entre cada fase, y de monitorear la depletación o pérdida de presión en el yacimiento, lo cual determinará la implantación de los métodos de levantamiento a utilizar. El equipo de ingeniería de yacimientos informa al equipo de producción sobre la realidad en el subsuelo, que se resume en el análisis de la energía que entrega el yacimiento naturalmente (presión) y que puede ser utilizada para la explotación de los hidrocarburos que se encuentran en las arenas productoras. Además, este equipo es responsable de establecer las características del yacimiento: dimensiones, límites geográficos, ancho de las arenas productoras, domos de gas y acuíferos, permeabilidades, viscosidades, presiones (entre la que destacan las presiones de burbujeo y de fondo fluyente), fallas, fracturas e interconexión con otros yacimientos. El equipo de ingeniería de yacimientos se encarga además de realizar las simulaciones para establecer los cambios de métodos a aplicar en el campo, a partir de una inferencia de cómo se depletará el yacimiento en el tiempo, evaluando diversos escenarios. Finalmente, este equipo se encarga de monitorear cualquier evento anormal que pueda ocurrir en el subsuelo (como por ejemplo, migración de finos, arenamiento, precipitación de asfaltenos, frentes de agua, etc.) para informarlo oportunamente al equipo de producción para tomar las medidas necesarias para minimizar el impacto en la producción.

Ingeniería de Producción: es el equipo encargado de la operación de las instalaciones del activo. El equipo de ingeniería de producción se encarga de gerenciar la energía disponible en el activo (energía del yacimiento más la energía aportada por los métodos de levantamiento artificial) para lograr las metas de producción. Se encarga de establecer el esquema de funcionamiento de las completaciones, implantar los métodos de levantamiento en los pozos, monitorear el comportamiento de los pozos, estaciones de flujo y demás instalaciones del activo, analizar el comportamiento de la producción, medir la producción diaria por pozo, conjunto de pozos y por el activo en general, tomar las acciones adecuadas y oportunas que permitan optimizar la producción y/o prevenir eventos operacionales que produzcan pérdidas de producción. Además, cuando se adopta un esquema de explotación que involucra inyección de fluidos a los pozos o al yacimiento, el equipo de producción es el encargado de la inyección.

Infraestructura: es el encargado del diseño y de la instalación de todas las facilidades requeridas para la producción en el activo. Esto incluye pozos y demás instalaciones de superficie, tuberías, empalmes, válvulas y demás facilidades requeridas para la producción.

Ingeniería de Gas: es el responsable de la recolección, manejo, análisis, almacenamiento, compresión y distribución del gas separado del fluido productor. Este equipo es primordial sobre todo en los campos que contemplan como método de levantamiento la inyección de gas, ya que son garantes de la entrega de energía de levantamiento a los pozos productores. Además, este equipo tiene la tarea de analizar el gas y si es necesario eliminar los componentes que puedan ser dañinos para las instalaciones, el personal y el ambiente.

Ingeniería Química: en muchos casos se ocasionan daños en la formación y obstrucciones en la cara de la arena que hace que la producción de los pozos se vea disminuida y que incluso pueden poner en riesgo el potencial que pueda entregar el pozo en el futuro. El equipo de química se encarga de diseñar y coordinar la inyección de fluidos que permitan corregir estos daños con la mínima intervención al pozo, de forma de reducir la producción diferida. Además el equipo de química también se encarga del diseño e inyección de los fluidos deshidratantes, desiscrustantes y desmulsificantes que son añadidos en las estaciones de flujo y patios de tanques para favorecer y acelerar la separación de cada fase del fluido productor.

Equipo de análisis económico: este equipo es el encargado de establecer la viabilidad económica del plan de explotación. Analiza variables económicas tales como Valor Presente Neto (VPN) o Tasa Interna de Retorno (TIR) para determinar si el plan de explotación es rentable.

Equipo de análisis de impacto ambiental: las empresas de producción de petróleo son unas de las empresas cuyo pasivo ambiental es más alto, ya que son altamente contaminantes. Este equipo se encarga de detectar y mitigar los posibles riesgos ambientales que se presenten durante la ejecución del plan.

Seguridad Operacional: ese equipo es el responsable de garantizar la seguridad del personal y las instalaciones durante la ejecución del plan.

Tecnología de Automatización e Información: Como se describió en las secciones anteriores las tecnologías de automatización y de información son un factor clave para el éxito del plan de explotación. Este equipo se encarga de proveer todas las herramientas requeridas para disponer de la información del activo de manera confiable y oportuna.

Asistencia Legal: es el encargado de realizar todos los trámites para cumplir con las regulaciones establecidas para la explotación de hidrocarburos en la localidad donde se encuentre el activo. Además es responsable de asesorar al equipo en todos los aspectos legales que hagan falta durante toda la vida del activo.

Servicios: es el equipo encargado de proveer los servicios necesarios para la operación, tales como electricidad, agua, transporte, entre otros.

Investigación y Desarrollo: es el encargado de investigar sobre nuevas tecnologías que faciliten la explotación de los hidrocarburos. Aportan al equipo información sobre nuevos métodos y técnicas para optimizar la producción. Además, son encargados de analizar las características del yacimiento a explotar e informar sobre casos de éxito y lecciones aprendidas en yacimientos similares.

Expertos y Asesores: todo equipo de gestión de yacimientos debe contar con un panel de asesores que puedan aportar su experiencia y exponer mejores prácticas para garantizar el mejor desempeño del equipo.

En un proyecto de explotación de un yacimiento debe designarse un equipo de gestión con representantes de cada una de las disciplinas antes descritas. Los miembros del equipo deben trabajar en conjunto compartiendo la experiencia en cada una de las áreas, de forma tal de que el equipo completo tenga una consciencia total del estado del yacimiento. No quiere decir esto que cada miembro del equipo deba ser experto en todas las disciplinas, pero si debe adquirir un conocimiento general de cada área que le permita tener una visión global del activo.

Por otro lado, debe disponerse de los mecanismos para hacer que el equipo trabaje de forma integrada aún cuando los miembros del mismo no se encuentren en la misma localidad. Esto se logra por medio de tecnologías de trabajo colaborativo, computación distribuida, integración de aplicaciones, sistemas web y otras tecnologías que serán descritas en las secciones posteriores.

C.3. Variables Fundamentales en la GIY

Durante la vida del yacimiento se recolectan grandes cantidades de datos de distinta naturaleza: datos geológicos, sísmicos, geoespaciales, económicos, de producción, entre muchos otros. Para que estos datos puedan convertirse en información valiosa para la toma de decisiones, es necesario un enfoque sistemático de la recolección, almacenamiento, procesamiento, integración y análisis de los mismos.

En la siguiente tabla se presenta los principales datos obtenidos por cada una de las disciplinas dentro de la gerencia de yacimientos:

Clasificación	Datos	Etapa	Responsable
Sísmicos	Estructura	Exploración	Geocientíficos
	Estratigrafía		
	Fallas		
	Ancho del área productora		
	Fluidos		
	Heterogeneidad entre pozos		
Geológicos	Diagénesis del ambiente deposicional	Exploración, Descubrimiento y Desarrollo	Geocientíficos
	Litología		
	Estructura		
	Fallas y Fracturas		
Registros	Profundidad	Perforación	Geólogos. Petrofísicos, Ingenieros de Perforación
	Litología		
	Anchura		
	Porosidad		
	Saturación de fluido		
	Contacto gas/petróleo		
	Contacto agua/petróleo		
	Contacto gas/petróleo		
	Correlaciones pozo a pozo		
Núcleo	Pruebas de Núcleo	Perforación	Geólogos, Ingenieros de Perforación, Ingenieros de Yacimientos, Analistas de Laboratorio
	Profundidad		
	Litología		
	Ancho		
	Porosidad		
	Permeabilidad		

1	I	1	.
	Saturación de fluidos residuales		
	Permeabilidad relativa		
	Presión capilar		
	Compresibilidad del poro		
	Tamaño del grano		
	Distribución del tamaño del poro		
Fluidos	Factores de volumen de la formación	Descubrimiento, Delineación, Desarrollo y Producción	Ingenieros de yacimiento y analistas de laboratorio
	Compresibilidades		
	Viscosidades		
	Solubilidad del gas		
	Composición química		
	Comportamiento de la fase		
	Gravedades específicas		
Pruebas de pozo	Presión de yacimiento	Descubrimiento, Delineación, Desarrollo, Producción e Inyección	Ingenieros de yacimientos e Ingenieros de Producción
	Permeabilidad efectiva		
	Ancho		
	Estratificación		
	Continuidad del yacimiento		
	Presencia de Fracturas o fallas		
	Indices de productividad e inyectividad		
	Saturación de petróleo residual		
Producción e Inyección	Ratas de Producción de Petróelo, Gas y Agua	Producción	Ingenieros de yacimientos e Ingenieros de Producción
	Producción Acumulada		
	Ratas de Inyección de Gas y Agua		
	Perfiles de Producción		
	Perfiles de Inyección		

Tabla C.1 Variables fundamentales de la Gerencias Integrada de Yacimientos

C.4. Nuevos Enfoques para la Gerencia Integrada de Yacimientos

En la Gerencia Integrada de Yacimientos se requiere que cada uno de los miembros del equipo de gestión disponga de una "conciencia" total del estado del yacimiento en tiempo real. Esto ha generado nuevos enfoques en cuanto a las tecnologías a usar y a las formas de trabajo a adoptar. Es así como desde hace algunos años se han planteado dos conceptos que están direccionando la

tendencia de la industria de petróleo: La Gerencia Integrada de Activos (IAM: Integrated Asset Management) y el Campo Digital del Futuro (DOFF: Digital OilField of the Future).

Gerencia Integrada de Activos

La Gerencia Integrada de Activos (IAM: Integrated Asset Management), plantea la gestión de los campos petroleros considerándolos como activos, esto es considerando todos sus componentes (el yacimiento, sus instalaciones, su personal y el resto de sus recursos) como activos que deben gerenciarse en conjunto para maximizar la rentalibilidad del campo. Bajo este enfoque, se establecen equipos de trabajo para cada campo considerado como un activo, los cuales manejan de manera integral todos los aspectos del mismo. Los modelos de grandes equipos de gerencia que manejan muchos yacimientos a la vez por medio de múltiples departamentos, son sustituidos por equipos pequeños, auto contenidos y con un alto grado de autonomía, que se enfocan en la rentabilidad del activo del cual están a cargo. Este enfoque permite, además de la búsqueda de la optimización de la producción por medio de nuevos métodos de explotación y mejora de las operaciones, maximizar la rentabilidad dándole valor a cada elemento del activo, tomando más conciencia sobre el estado de cada uno de dichos elementos como factor fundamental para el desempeño de todo el conjunto. IAM presenta un ambiente operacional intensivo en el cual se toman decisiones de forma continua basadas en múltiples criterios, tales como seguridad, políticas ambientales, confiabilidad de los componentes del activo, eficiencia de la inversión, gastos de operación y las ganancias a obtener. Las decisiones para la gestión del activo requieren la interacción entre múltiples expertos, cada uno capaz de realizar análisis utilizando herramientas computacionales altamente especializadas [Zhang, et al., 2006].

La IAM, puede ser entendida como la creación de un ambiente de operación en el cual los diferentes responsables del activo están organizados y colaboran en función de los flujos de trabajo claves con el objetivo común de optimizar el valor presente neto y el flujo de caja del activo en cada momento. La definición de flujos de trabajo claros, integrables, que aborden todos los aspectos del proceso de producción del activo, es la clave para la IAM.

Las operaciones de producción integradas suponen lograr la integración de tres áreas distintas, las cuales son [Ella, et al., 2006]:

- Integración de Tecnología
- Integración de Flujos de Trabajo
- Integración del modelo del activo

Integración de Tecnología. En la industria de petróleo se han desarrollado, a largo de las últimas décadas, sofisticadas soluciones para cada una de las disciplinas involucradas en la gerencia de explotación de yacimientos, entre las que se pueden destacar simuladores de yacimiento, simuladores de redes de superficie, sistemas SCADA, Sistemas de Gestión, entre muchos otros. En la mayoría de los casos estas soluciones han sido desarrolladas como silos, ya que las aplicaciones que sirven a diversas disciplinas no se integran entre sí, impidiendo tener una visión integrada del activo con toda la información disponible en el tiempo oportuno. En consecuencia, se dispone de una gran cantidad de datos que no pueden ser aprovechados al máximo dada la imposibilidad de combinarse y analizarse de manera integral. Lo antes descrito representa un reto para las organizaciones de TI dentro de la industria de petróleo y ha generado una serie de esfuerzos en el desarrollo de tecnologías de integración de aplicaciones empresariales, que van desde estándares para el intercambio de información entre aplicaciones, tales como PRODML [POSC, 2006], WITSML [POSC, 2003-2006] y OGO [POSC], hasta suites integradas para la gestión del yacimiento como DecisionSpace [Landmark] y Decide [Shlumberger].

Integración de Flujos de Trabajo: la definición de flujos de trabajo involucra a todo el equipo de gestión del activo. Para ello se deben identificar las actividades, los actores y los flujos de productos e información por cada disciplina. Los flujos de trabajo deben ser el resultado de un común acuerdo entre todos los responsables de la gestión del activo, esto es, deben ser considerados válidos por todos y cada uno de los miembros del equipo de gestión. Además, se deben establecer los mecanismos de integración entre los diversos flujos de trabajo para la gestión del activo.

La generación de flujos de trabajo pasa por dos etapas. La primera tiene que ver con la identificación (algunos lo llaman descubrimiento) de los procesos de negocio, su sistematización y la creación en si del flujo de trabajo. Esta es una etapa que podemos denominar lógica. La segunda etapa pasa por realizar una "reflexión" de dichos flujos de trabajo sobre los sistemas de información de la empresa, de forma de automatizar la obtención de los datos, su procesamiento, análisis y finalmente la toma de decisiones, decisiones que a su vez formarán parte de dichos flujos de trabajo. Para esta segunda etapa de han propuesto varios frameworks que permiten automatizar los flujos de trabajo, aprovechando conceptos como BPM y SOA, tales como los propuestos en [Zhang, et. al, 2006] y [Soma, et al., 2006].

El análisis en tiempo real automatizado, combinado con el estudio de data histórica y la aplicación de inteligencia artificial y de técnicas de predicción pueden permitir que los flujos de trabajo se inicien en los momentos requeridos y orquestar directamente la información y las acciones a través de la organización de la gestión del activo, sin importar la localización de los responsables de cada disciplina. Las tecnologías de colaboración pueden habilitar un alto grado de interacción y

reducir los ciclos de tiempo desde la identificación de un evento hasta la toma de decisiones, la ejecución de las acciones y la validación de si la acción tomada fue en realidad óptima.

IAM crea un ambiente de operación virtual en el cual los diversos actores involucrados con el activo están organizados y colaboran sobre los flujos de trabajo operacionales claves, compartiendo datos en tiempo real y tomando decisiones en base al análisis automatizado de la información del activo, para disponer de una conciencia total y consistente del estado del activo. Los operadores están habilitados para actuar por excepciones, tomar decisiones oportunas y bien informadas, interpretadas contra el modelo de optimización del activo, con el objetivo de lograr el mejoramiento de las oportunidades de producción y mitigar pérdidas potenciales.

Integración del Modelo del Activo: comúnmente los yacimientos, pozos, redes y facilidades de superficie son modelados y mantenidos en aplicaciones distintas. Rara vez estas aplicaciones están sincronizadas, muchas veces los modelos no se mantienen adecuadamente y sólo ocasionalmente se realizan estudios de optimización fuera de línea. Las restricciones de cada modelo, los recursos computacionales necesarios y el tiempo requerido para su ejecución han probado ser una barrera para la optimización en tiempo real sobre la totalidad del activo. Tomando en cuenta que para una optimización general del activo se requiere un modelo integrado de todos los elementos del mismo (yacimientos, pozos, redes, instalaciones, económico), existen dos enfoques para abordar la Gerencia Integrada de Activos:

- Conectar de alguna manera los modelos existentes de cada uno de los componentes del activo
- Crear modelos simplificados de cada una de las partes para construir un modelo integrado del activo.

Existen varios retos potenciales en el primer enfoque:

- Se requiere integrar varios y muy diferentes simuladores.
- Cada uno de dichos simuladores tiene un dominio temporal diferente.
- Existen múltiples criterios de convergencia.
- Ciertas restricciones de los modelos deben ser respetadas en diferentes simuladores.
- Es posible que el modelo integrado no corra lo suficientemente rápido para soportar aplicaciones en lazo cerrado.
- Cómo se puede garantizar que, además de integrar los modelos, pueda integrarse el conocimiento de las distintas disciplinas.

En ese sentido, la mejor opción para abordar la gerencia integrada de activos parece ser el desarrollar modelos simplificados o "proxy" que permitan tener una aproximación del comportamiento del activo pero que a su vez permitan disponer de una visión en tiempo real para la toma de decisiones acertada. Algunos de las referencias más interesantes de modelos proxy pueden encontrarse en [Saputelli, et al., 2003] y [Zhang, et al., 2006].

El Campo Petrolero Digital del Futuro

El campo digital del futuro (DOFF: Digital Oilfield of the Future) [CERA, 2005][CERA, 2006][CERA, 2006] es un concepto que se ha venido desarrollando en los últimos años y se refiere al conjunto de tecnologías y formas de trabajo que permiten controlar en tiempo real la producción de un yacimiento de petróleo, desde el fondo del hoyo hasta los puntos de venta. Entre dichas tecnologías incluyen instrumentación avanzada, completaciones inteligentes, sistemas de control avanzado, optimización de subsistemas, modelos numéricos, simuladores de yacimientos, herramientas de inteligencia de negocios, entre otros.

El objetivo del DOFF es optimizar continuamente la producción de hidrocarburos, desde el yacimiento hasta los puntos de venta. Para alcanzar esta visión, deben integrarse y distribuirse a lo largo del activo nuevas tecnologías, procesos y formas de trabajo. Es una necesidad desarrollar e integrar nuevos procesos y tecnologías para facilitar un proceso de toma de decisiones, mejor y más rápido. Mejorar la toma de decisiones derivará en alcanzar la excelencia operacional, la confiabilidad y la eficiencia aguas arriba. Se requiere dar un mejor uso a las tecnologías existentes y emergentes y utilizar la data disponible más efectivamente. Los desarrollos recientes de sensores e instrumentación permiten el uso de tecnologías a nivel de instalaciones, tales como alarmas, gestión de discrepancias, visualización de data temporal, salas de control y optimización [Unneland & Hauser, 2005].

Uno de los enfoques del Campo Digital del Futuro es el i-field de Chevron Texaco, concepto que dicha empresa ha venido desarrollando en conjunto con la Universidad del Sur de California, y que es definido por el Gerente de Tecnología de Chevron, Don Paul, de la siguiente manera: "La idea básica del i-field es disponer de un ambiente instrumentado, integrado, de información intensiva para la operación de los campos petroleros. En la medida que se incrementa el número de sensores y controles, se permite conectar el yacimiento con la cadena de valor aguas abajo y, en cierto sentido, hacer que el campo petrolero se parezca más a una fábrica que como históricamente ha sido visto. Aguas abajo, sensores, medidas, controles y la eficiencia son las claves. Estos son importantes también aguas arriba, pero históricamente no se tiene el nivel de instrumentación y la práctica de optimización. Desde un punto de vista tecnológico, esta puede ser la clave, particularmente en campos donde se está tratando de exprimir el último porcentaje de

recobro, así como en proyectos costosos, tales como los de aguas profundas" [Unneland & Hauser, 2005].

Otros enfoques del DOFF son el Campo del Futuro (Field of the Future) desarrollado por BP [Reddick, 2007][Sisk, Fanty, & Knox, 2007] y el Campo Inteligente (Smart Field) desarrollado por Shell [Potters & Kapteijn, 2005]. Ambos conceptos tienen aplicaciones instaladas en campos en el Mar del Norte, en el Medio Oriente, en el Océano Índico, en el Golfo de México y en otras localidades, con éxitos comprobados en todos los casos.

Según el CERA, las tecnologías habilitadoras del DOFF incluyen Sistemas SCADA y DCS, Sísmica 4D, Completaciones Inteligentes, Perforación en Tiempo Real, Optimización de Subsistemas y Ontologías y Estándares de Información.

Además, el CERA propone que existen algunas otras tecnologías emergentes, que están actualmente en estados de investigación y desarrollo que seguramente impactarán el concepto de DOFF. Algunas de dichas son Procesamiento submarino, Tecnología Inalámbrica, Nanotecnología y Agentes Inteligentes.

ANEXO D

OilProductionOntology

En este anexo se presentan los conceptos que pertenecen a la OilProductionOntology. Dichos conceptos están organizados según el meta-modelo presentado en los capítulos III y IV, teniendo como elementos centrales las unidades de producción de un campo de producción de petróleo. Para la realización de este trabajo se desarrollaron los conceptos de las unidades de producción: Pozo (OilWell), Estación de Flujo (FlowStation), Planta (Plant), Múltiple (Manifold) y Campo (Field). Para cada unidad de producción se mostrará su árbol de relaciones correspondiente y se describirán sus conceptos asociados. Existen algunos conceptos que tienen relación con varias unidades de producción; estos conceptos serán descritos sólo una vez, en la descripción de la primera unidad de producción que los contenga.

Los nombres de los conceptos están expresados en idioma inglés, para facilitar su uso en el área de integración de aplicaciones.

D.1. Concepto de Producción de Petróleo

Nombre	OilProduction_Concept
Descripción	Concepto que pertenece al dominio de Producción de Petróleo
SuperConceptos	Production_Concept

D.2. Conceptos relacionados con la Unidad de Producción Pozo (OilWell)

Nombre	OilWell
Descripción	Instalación comprendida por un conjunto de tuberías, válvulas, bombas, empacaduras y elementos de automatización que permiten extraer el fluido de producción desde el subsuelo, hasta la superficie.
SuperConceptos	Well (SWEET), ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, WellMethod, WellResource, Product: produce: Crude

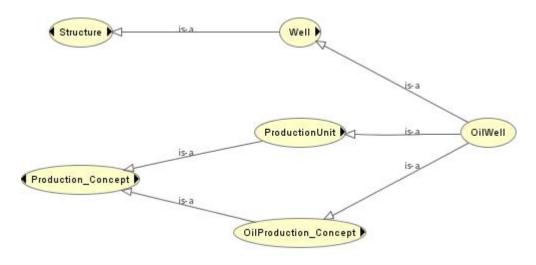


Fig. D.1. Concepto OilWell

Nombre	Crude
Descripción	Fluido multifásico de producción. Contiene petróleo, gas, agua y sedimentos. Es considerado un producto intermedio.
SuperConceptos	Fluid (SWEET), OilProduction_Concept, IntermediateProduct
Relaciones	isProducedBy: OilWell

Nombre	Oil
Descripción	Hidrocarburo utilizado como combustible fósil. Principal objetivo de producción. Es considerado un producto final.
SuperConceptos	Fluid (SWEET), OilProduction_Concept, FinalProduct
Relaciones	isProducedBy: OilWell, FlowStation; isDerivedFrom: Crude

Nombre	Gas
Descripción	Hidrocarburo con poco contenido de carbono que es producido en conjunto con el petróleo y en algunos casos como fluido primario de producción. Es también utilizado como fluido de inyección a los pozos para facilitar el levantamiento (gas lift) o directamente al yacimiento para mantener la presión del mismo.
SuperConceptos	Fluid (SWEET), OilProduction_Concept, FinalProduct, Supply
Relaciones	isProducedBy: OilWell, FlowStation, CompressorPlant, GasManifold; isDerivedFrom: Crude

Nombre	Water (SWEET)
Descripción	Agua producida resultado de la separación del fluido de producción. En algunos casos es utilizada como fluido de inyección para soportar el proceso de levantamiento artificial. Es considerado un producto final.
SuperConceptos	Fluid (SWEET), OilProduction_Concept, FinalProduct
Relaciones	isProducedBy: OilWell, FlowStation, TankFarm, WaterInjectionPlant; isDerivedFrom: Crude

Nombre	Packer
Descripción	Dispositivo que permite aislar secciones en una completación.
SuperConceptos	Part, OilProduction_Concept
Relaciones	isPartOf: OilWell

Nombre	Casing
Descripción	Tubería de revestimiento que permite aislar la tubería de producción del hoyo abierto en la perforación. En los pozos de levantamiento artificial, es utilizada para la inyección de fluidos de levantamiento.
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept; SubSurfaceEquipment
Relaciones	isPartOf: OilWell

Nombre	Tubing
Descripción	Tubería que permite el traslado del fluido de producción desde la arena productora en subsuelo hasta la superficie.
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept
Relaciones	isPartOf: OilWell

Nombre	ProductionPipeLine
Descripción	Tubería de producción que conecta al pozo con la estación de flujo.
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept
Relaciones	isPartOf: OilWell

Nombre	InjectionPipeLine
Descripción	Tubería de inyección que conecta el múltiple de gas con el pozo.
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept
Relaciones	isPartOf: OilWell

Nombre	BottomHoleValve
Descripción	Válvula de control que permite controlar el flujo desde la cara de la arena en el fondo del hoyo hacia el pozo
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept, SubSurfaceEquipment
Relaciones	isPartOf: OilWell

Nombre	GasLiftValve
Descripción	Válvula que permite la inyección de gas de levantamiento desde el anular hacia la tubería de producción
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept, SubSurfaceEquipment
Relaciones	isPartOf: OilWell

Nombre	ChokeValve
Descripción	Válvula de tipo Choke que permite regular el flujo desde el pozo hacia la tubería de producción que conduce a la estación de flujo.
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept, SurfaceEquipment
Relaciones	isPartOf: OilWell

Nombre	GasLift
Descripción	Gas de inyección que se le suministra a los pozos de producción por levantamiento artificial por gas.
SuperConceptos	Gas, Supply
Relaciones	isResourceOf: OilWell

Nombre	Current
Descripción	Corriente eléctrica que se le suministra a los pozos que funcionan mediante bombeo mecánico, electrosumergible o de cavidad progresiva.
SuperConceptos	ÈlectricityCurrent (SWEET), Supply
Relaciones	isResourceOf: OilWell

Nombre	Actual Production
Descripción	Cantidad total de barriles de fluido de producción (petróleo + gas + agua + sedimentos) producidos por un pozo en un día. Es una medida de Flujo.
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	BBPD
Descripción	Medida total de barriles de fluido de producción (petróleo + gas + agua + sedimentos) producidos por un pozo en un día. Es una medida de Flujo.
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	NBPD
Descripción	Mediad total de barriles de petróleo producidos por un pozo en un día. Es una medida de Flujo.
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	ВНР
Descripción	Presión de fondo del hoyo (Bottom Hole Pressure). Es la presión existente al final de la tubería de producción (tubing), en el fondo del hoyo, para cada pozo.
SuperConceptos	Pressure (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	CHP
Descripción	Presión del revestidor en el cabezal (Casing Head Pressure). Presión existente en la entrada al anular (espacio entre las tuberías de revestimiento y tuberías de producción), en el cabezal del pozo. Generalmente medido para pozos que funcionan por gas lift, hidrojet o inyección de agua.
SuperConceptos	Pressure (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	PLP
Descripción	Presión en la línea de producción (Production Line Pressure). Presión existente en la tubería que va desde el cabezal del pozo hasta la estación de flujo. Generalmente medida después de la válvula choke que regula el paso del fluido de producción desde el cabezal hacia la línea de producción.
SuperConceptos	Pressure (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	PWF
Descripción	Presión de fondo fluyente (Well Flowing Pressure). Es la presión existente entre el yacimiento y la entrada a la tubería de producción, en el fondo del hoyo.
SuperConceptos	Pressure (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	THP
Descripción	Presión de la tubería de producción en cabezal (Tubing Head Pressure). Presión en la tubería de producción de la completación (tubing) medida en cabezal, antes de la válvula choke.
SuperConceptos	Pressure (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell
Nombre	тнт
Descripción	Temperatura de la tubería de producción en cabezal (Tubing Head Temperature). Temperatura en la tubería de producción (tubing) de la completación medida en cabezal, antes de la válvula choke.
SuperConceptos	Temperature (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	Qgl
Descripción	Flujo de gas de inyección para un pozo, medido en el cabezal. En general se mide en Miles de Pies Cúbicos por Día (MCFD).
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Universidad de los Andes Doctorado en Ciencias Aplicadas

Nombre	Qo
Descripción	Flujo de fluido de producción para un pozo, medido en el cabezal. Generalmente se mide en Barriles por Día (BD).
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	Qoc
Descripción	Producción acumulada de petróleo por pozo en un período determinado de tiempo. Generalmente medida en Barriles.
SuperConceptos	Flow (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	API
Descripción	Gravedad API del crudo. Establece que tipo de crudo se está produciendo (extra-pesado, pesado, mediano, liviano).
SuperConceptos	Desnsity (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	GOR
Descripción	Relación gas petróleo (Gas Oil Rate). Determina la cantidad de petróleo producido por flujo de gas inyectado. Generalmente medido en Miles de Pies Cúbicos (MCF).
SuperConceptos	Ratio (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	WC
Descripción	Porcentaje de la fase de agua que posee el crudo en relación con la cantidad total de fluido producido por el pozo.
SuperConceptos	Ratio (SWEET), OilWellVariable
Relaciones	isResourceOf: OilWell

Nombre	Completion
Descripción	Configuración de los equipos que componen un pozo
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: OilWell; hasSome: SurfaceEquipment,
	SubSurfaceEquipment, Casing, Tubing

Nombre	SurfaceEquipment
Descripción	Equipos de automatización de los que dispone el pozo en el cabezal
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	SubSurfaceEquipment
Descripción	Equipos de automatización de los que dispone el pozo en el subsuelo
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	ProductionFlowSensor
Descripción	Sensor que permite medir flujo en la línea de producción. Determina cuanto está produciendo el pozo
SuperConceptos	Sensor (SWEET), Part, SurfaceEquipment, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	THTSensor
Descripción	Sensor que permite medir temperatura de la tubería de proucción en superficie
SuperConceptos	Sensor (SWEET), Part, SurfaceSensor, OilProduction_Concept
Relaciones	isResourceOf: OilWell

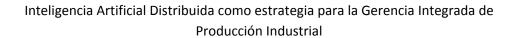
Nombre	THPSensor
Descripción	Sensor que permite medir presión en la tubería de producción en superficie
SuperConceptos	Sensor (SWEET), Part, SurfaceEquipment, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	CHPSensor
Descripción	Sensor que permite medir presión de inyección en el casing en superficie
SuperConceptos	Sensor (SWEET), Part, SurfaceEquipment, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	BHPSensor
Descripción	Sensor que permite medir presión en el fondo del hoyo
SuperConceptos	Sensor (SWEET), Part, SubSurfaceEquipment, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	BHTSensor
Descripción	Sensor que permite medir temperatura en el fondo del hoyo
SuperConceptos	Sensor (SWEET), Part, SubSurfaceEquipment, OilProduction_Concept
Relaciones	isResourceOf: OilWell

Nombre	CompletionDepth
Descripción	Profundidad de la completación del pozo
SuperConceptos	Length (SWEET), OilWellInformation
Relaciones	isResourceOf: OilWell



Nombre	ProductionMethod
Descripción	Método de producción utilizado por el pozo para extraer los hidrocarburos desde el yacimiento hasta la superficie
SuperConceptos	Method, OilProductionConcept
Relaciones	isResourceOf: OilWell, Field

Nombre	NaturalFlow
Descripción	Método de producción debido a la energía natural del yacimiento, es decir, cuando la diferencia de presión entre el yacimiento y el cabezal de pozo es suficiente para llevar el fluido de producción hasta la superficie.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	ArtificialGasLift
Descripción	Método de producción que consiste en inyectar gas en el fondo del pozo, para reducir el peso de la columna de fluidos, de esta forma se reduce la presión de fondo fluyente por lo que se incrementa la tasa de producción.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	ESP
Descripción	Método de Producción que consiste en colocar en una bomba centrífuga en la tubería de producción, para impulsar los fluidos hasta la superficie. La bomba es impulsada por un motor eléctrico que se encuentra en el fondo de pozo con la finalidad de utilizar el mismo fluido de producción como fluido de enfriamiento.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	MecanicPumping
Descripción	Método de producción en el cual se utiliza una bomba basada en un arreglo cilindro-pistón para levantar los fluidos de producción hasta la superficie.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	ProgressiveCavityPumping
Descripción	Método de producción en el que se utiliza una bomba de desplazamiento positivo, basada en el "Tornillo de Arquímedes" para transportar los fluidos desde el yacimiento hasta la superficie.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	Hidrojet
Descripción	Método de producción que utiliza la energía potencial de un fluido a presión para levantar los fluidos desde el yacimiento hasta la superficie.
SuperConceptos	ProduccionMethod, OilProductionConcept
Relaciones	isMethodOf: OilWell, Field

Nombre	WellTest
Descripción	Prueba realizada a los pozos en las estaciones de flujo, mediante las cuales, a través de un proceso de separación mecánico y/o químico de fluidos, pueden medirse las siguientes variables por cada pozo: NBPD, GOR, WC.
SuperConceptos	Test (SWEET), OilProductionConcept, WellProcessInformation
Relaciones	isResourceOf: OilWell

Nombre	PotentialProduction
Descripción	Número total de barriles que puede producir un pozo en un período de tiempo bajo condiciones ideales (disponibilidad total de la energía requerida, tuberías de producción disponibles, no se presenta ningún tipo de problema en subsuelo).
SuperConceptos	Flow (SWEET), OilProductionConcept, WellProcessInformation
Relaciones	isResourceOf: OilWell, Field

Nombre	WellModel
Descripción	representa el comportamiento del pozo de acuerdo a la energía aportada por el yacimiento y la energía necesaria para que el pozo lleve el fluido hasta la superficie.
SuperConceptos	Model (SWEET), OilProductionConcept, WellProcessInformation
Relaciones	isResourceOf: OilWell, Field

Nombre	InflowCurve
Descripción	Curva que representa el cambio de la presión en el yacimiento de acuerdo a la producción de un pozo
SuperConceptos	Curve (SWEET), OilProductionConcept, WellProcessInformation
Relaciones	isPartOf: WellModel

Nombre	OutflowCurve
Descripción	Curva que representa la presión (energía) requerida para una determinada producción en el pozo.
SuperConceptos	Curve (SWEET), OilProductionConcept, WellProcessInformation
Relaciones	isPartOf: WellModel

Nombre	OperatingPoint
Descripción	Punto de cruce entre las curvas de afluencia y efluencia, que determina la cantidad de energía que se necesita inyectar al pozo para que pueda producir una cantidad deseada de crudo.
SuperConceptos	Oil Production Concept, Well Process Information
Relaciones	isPartOf: WellModel

Nombre	WellCondition
Descripción	Condicion en la que se encuentra el pozo
SuperConceptos	Condition, OilProduction_Concept
Relaciones	isConditionOf: Well; hasSome: WellState; WellInformation

Nombre	WellState
Descripción	Estado en el que se encuentra el pozo
SuperConceptos	SystemState (SWEET), OilProduction_Concept
Relaciones	isPartOf: WellCondition

D.3. Conceptos relacionados con la Unidad de Producción Estación de Flujo (FlowStation)

Nombre	FlowStation
Descripción	Instalación en la que se realiza el proceso de separación entre la fase gaseosa y la fase líquida del fluido de producción. En esta instalación también se realizan las medidas que establecen cuanto está produciendo cada pozo, denominadas "pruebas de pozo".
SuperConceptos	ProductionFacility(SWEET), ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, Method,Resource, Product; produce: Crude

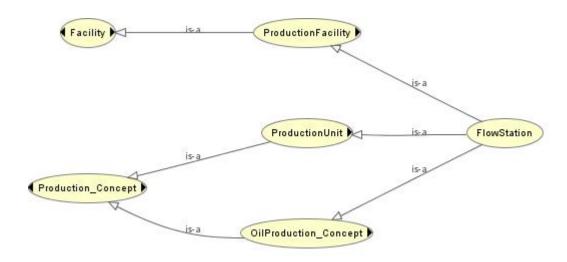


Fig. D.2. Concepto FlowStation

Nombre	Separator
Descripción	Dispositivo que permite separar las fases del fluido de producción (gas, petróleo, agua)
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: FlowStation

Nombre	ProductionSeparator
Descripción	Separa las fases del fluido para luego enviarlas a plantas compresoras (gas) y patios de tanques (crudo y agua).
SuperConceptos	Separator
Relaciones	isResourceOf: FlowStation

Nombre	TestSeparator
Descripción	Permite realizar las pruebas de pozo que miden la producción real por cada pozo.
SuperConceptos	Separator
Relaciones	isResourceOf: FlowStation; generate: WellTest

Nombre	ProductionEnterManifold
Descripción	Arreglo de tuberías y válvulas que permite alinear la producción de los pozos asociados a la Estación de Flujo bien a los separadores de producción o a los separadores de prueba.
SuperConceptos	Manifold
Relaciones	isResourceOf: FlowStation;

Nombre	StorageTank
Descripción	Tanque que permite almacenar la fase líquida separada antes de su envío a los Patios de Tanques.
SuperConceptos	Tank (SWEET); Part; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; TankFarm

Nombre	OutputPump
Descripción	Equipo de bombeo que permite elevar la presión del fluido almacenado en los tanques de almacenamiento para ser enviado a los patios de tanques.
SuperConceptos	Pump (SWEET); Part; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; TankFarm; CompressorPlant; Manifold

Nombre	Dehydrator
Descripción	Equipo que permite eliminar los hidratos presentes en el gas separado con la finalidad de evitar corrosión en las tuberías de transporte hacia las plantas compresoras.
SuperConceptos	Equipment (SWEET); Part; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	SeparatorCapacity
Descripción	Capacidad de procesamiento de líquido de producción que tiene cada separador de la estación de flujo.
SuperConceptos	Volume (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	SeparatorLevel
Descripción	Nivel que tiene cada separador de la Estación de Flujo en un instante determinado.
SuperConceptos	Level (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	SeparatorPressure
Descripción	Presión existente en cada uno de los separadores de la Estación de Flujo en un instante determinado.
SuperConceptos	Pressure (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	EntryFlow
Descripción	Cantidad de barriles por unidad de tiempo que llegan al múltiple de entrada de la Estación de Flujo. Generalmente se mide en Barriles por Día.
SuperConceptos	Flow (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	LiquidOutputFlow
Descripción	Cantidad de líquido que es enviado desde la Estación de Flujo hacia los patios de tanques en una determinada unidad de tiempo, generalmente días.
SuperConceptos	Flow (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	GasOutputFlow
Descripción	Cantidad de gas a baja presión despachada desde la Estación de Flujo hacia la planta compresoras de gas en una determinada unidad de tiempo, generalmente días.
SuperConceptos	Flow (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

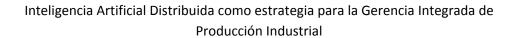
Nombre	GasOutputPressure
Descripción	Presión con la que se está transportando el gas separado en la tubería que conecta a la Estación de Flujo con la Planta Compresora de Gas.
SuperConceptos	Pressure (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	StorageTankLevel
Descripción	Nivel de líquido que presenta el tanque de almacenamiento en un instante determinado.
SuperConceptos	Level (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; Plant

Nombre	DehydratorPressure
Descripción	Presión existente en el deshidratador en un instante determinado.
SuperConceptos	Pressure (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	PumpSpeed
Descripción	Velocidad a la cual funciona la bomba destinada a elevar la presión del fluido en la tubería que conecta la Estación de Flujo con el Patio de Tanques.
SuperConceptos	Speed (SWEET); ProcessVariable; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; Plant

Nombre	WellTestList
Descripción	Lista de pozos que están "alineados" a los separadores de prueba en un día determinado.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;


Nombre	FlowStationConfiguration
Descripción	Define a la cantidad y características de los equipos que componen a la Estación de Flujo.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation;

Nombre	NumberOfProductionSeparators
Descripción	Cantidad de separadores de producción que contiene la Estación de Flujo.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; isPartOf: FlowStationConfiguration

Nombre	NumberOfTestSeparators
Descripción	Cantidad de separadores de prueba que contiene la Estación de Flujo.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; isPartOf: FlowStationConfiguration

Nombre	InletLines
Descripción	Cantidad de tuberías de producción que provienen de los pozos asociados a la Estación de Flujo y que están conectadas al múltiple de entrada.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation; isPartOf: FlowStationConfiguration

Nombre	WellList
Descripción	Lista de pozos asociados a la Estación de Flujo.
SuperConceptos	ProcessInformation; OilProduction_Concept
Relaciones	isResourceOf: FlowStation

Nombre	Separation
Descripción	Proceso mediante el cual se separan la fase gaseosa y líquida del fluido de producción. Existen varias técnicas de separación entre la que destacan la separación centrífuga y la separación por adición de químicos.
SuperConceptos	Method; OilProduction_Concept
Relaciones	isMethodOf: FlowStation

Nombre	Dehydration
Descripción	Proceso mediante el cual se eliminan los hidratos del gas separado en la Estación de Flujo.
SuperConceptos	Method; OilProduction_Concept
Relaciones	isMethodOf: FlowStation

Nombre	FlowStationCondition
Descripción	Condicion en la que se encuentra la estación de flujo
SuperConceptos	Condition, OilProduction_Concept
Relaciones	isConditionOf: FlowStation; hasSome: FSState; FlowStationInformation

Nombre	FSState
Descripción	Estado en el que se encuentra la estación de flujo
SuperConceptos	SystemState (SWEET), OilProduction_Concept
Relaciones	isPartOf: FlowStationCondition

D.4. Conceptos relacionados con la Unidad de Producción Múltiple (Manifold)

Nombre	Manifold
Descripción	Unidad de producción que permite que varias tuberías confluyan en una tubería común o que el fluido que llega de una tubería sea distribuido en múltiples líneas
SuperConceptos	ProductionFacility(SWEET), ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, Method, Resource, Product; produce: Crude, Oil, Gas, Water

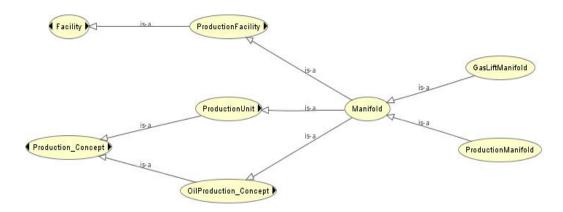


Fig. D.3.. Concepto Manifold

Nombre	GasLiftManifold
Descripción	Distribuye el gas de alta presión en diversas tuberías que desembocan en los cabezales de los pozos gas lift.
SuperConceptos	Manifold, OilProduction_Concept
Relaciones	has some: Condition, Method, Resource, Product; produce: Gas

Nombre	ProductionManifold
Descripción	Permite que las líneas de producción provenientes de los pozos confluyan en una tubería para la entrada a los separadores de producción. Además, permite alinear (dirigir el flujo a través de una tubería específica) la producción de un pozo determinado hacia el separador de prueba para realizar la "prueba de pozo".
SuperConceptos	Manifold, OilProduction_Concept
Relaciones	has some: Condition, Method,Resource, Product; produce: Crude, Oil

Nombre	EntryLine
Descripción	Tubería que conecta el origen del flujo con el múltiple
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: Manifold

Nombre	OutPutLine
Descripción	tubería que conecta al múltiple con el destino del flujo
SuperConceptos	Pipeline (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: Manifold

Nombre	EntryLinePressure
Descripción	Presión en la línea de entrada al múltiple
SuperConceptos	Pressure (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Manifold

Nombre	OutputLinePressure
Descripción	Presión en la línea de salida del múltiple
SuperConceptos	Pressure (SWEET), Process Variable, Oil Production_Concept
Relaciones	isResourceOf: Manifold

Nombre	TotalEntryFlow
Descripción	Flujo total de entrada al múltiple
SuperConceptos	Flow (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Manifold

Nombre	ManifoldConfiguration
Descripción	Define la cantidad de elementos de los que dispone el múltiple.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: Manifold

Nombre	NumberOfInputLines
Descripción	Cantidad de tuberías de entrada al múltiple
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: ManifoldConfiguration

Nombre	NumberOfOutputLines
Descripción	Cantidad de tuberías de salida del múltiple
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: ManifoldConfiguration

Nombre	Distribution
Descripción	Proceso mediante el cual se distribuye el flujo total que proviene de la unidad de producción origen, mediante el uso de válvulas de control y elementos de automatización.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isMethodOf: ManifoldConfiguration

Nombre	ManifoldCondition
Descripción	Condicion en la que se encuentra el múltiple
SuperConceptos	Condition, OilProduction_Concept
Relaciones	isConditionOf: Manifold; hasSome: ManifoldState;
	ManifoldInformation

Nombre	ManifoldState
Descripción	Estado en el que se encuentra el múltiple
SuperConceptos	SystemState (SWEET), OilProduction_Concept
Relaciones	isPartOf: ManifoldCondition

D.5. Conceptos relacionados con la Unidad de Producción Planta (Plant)

Nombre	Plant
Descripción	Instalación de superficie que permite la generación de algún tipo de energía que permite soportar la producción de los pozos.
SuperConceptos	ProductionFacility(SWEET), ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, Method,Resource, Product; produce: Gas, Electricity, Water

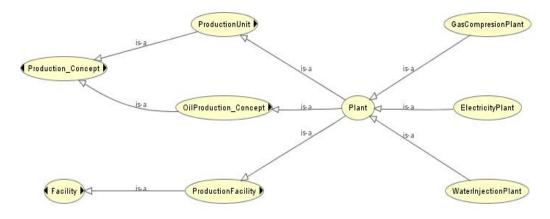
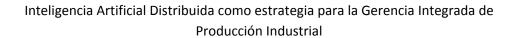



Fig. D.4. Concepto Plant

Nombre	ElectriciyPlant
Descripción	Genera la electricidad necesaria para el funcionamiento de los pozos cuyo sistema de levantamiento es por bombeo. Además genera energía para el resto de las instalaciones y para soportar a los sistemas de automatización.
SuperConceptos	Plant
Relaciones	has some: Condition, Method,Resource, Product; produce:Electricity

Nombre	GasCompressionPlant
Descripción	Permite elevar la presión del gas para poder inyectarlo a los pozos de gas lift.
SuperConceptos	Plant
Relaciones	has some: Condition, Method,Resource, Product; produce: Gas

Nombre	WaterInjectionPlant
Descripción	Permite elevar la presión de agua para su inyección en los pozos de inyección de agua.
SuperConceptos	Plant
Relaciones	has some: Condition, Method,Resource, Product; produce: Water

Nombre	CompressionTrain
Descripción	Equipos de compresión que permiten elevar la presión del fluido. Dependiendo de la configuración de la planta y de la presiones de entrada y salida de la misma, pueden disponerse varios trenes de compresión en serie.
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: GasCompressionPlant

Nombre	Turbine
Descripción	Son equipos que permiten comprimir un fluido determinado mediante efectos mecánicos. Forman parte de los trenes de compresión.
SuperConceptos	Equipment (SWEET), Part, OilProduction_Concept
Relaciones	isResourceOf: GasCompressionPlant

Nombre	Fuel
Descripción	gas, gasolina, gasoil o cualquier otro combustible que alimenta a las plantas de generación eléctrica.
SuperConceptos	Fluid (SWEET), Supply, OilProduction_Concept
Relaciones	isResourceOf: ElectricityPlant

Nombre	SuctionPressure
Descripción	Presión en la tubería de entrada a la planta de compresión. Esta presión es también medida en la entrada de cada tren de compresión.
SuperConceptos	Pressure (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	DischargePressure
Descripción	Presión en la tubería de salida de la planta de compresión. Esta presión es también medida a la salida de cada tren de compresión.
SuperConceptos	Pressure (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	TurbineSpeed
Descripción	Velocidad de la(s) turbina(s) de las que dispone la planta de compresión
SuperConceptos	Speed (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	PumpSpeed
Descripción	Velocidad de la(s) bomba(s) de las que dispone la planta de compresión.
SuperConceptos	Speed (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	TurbineTemperature
Descripción	Temperatura de la(s) turbina(s) de las que dispone la planta de compresión.
SuperConceptos	Temperature (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	PumpTemperature
Descripción	Temperatura de la(s) bomba(s) de las que dispone la planta de compresión.
SuperConceptos	Temperature (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	PumpCurrent
Descripción	Corriente consumida por la(s) bomba(s) de las que dispone la planta de compresión.
SuperConceptos	ElectricityCurrent (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	TurbineVibration
Descripción	Vibración presente en la(s) turbina(s) de las que dispone la planta de compresión.
SuperConceptos	Vibration (SWEET), ProcessVariable, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	PlantConfiguration
Descripción	Cantidad de equipos, las instalaciones asociados y a la capacidad de la planta.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: Plant

Nombre	NumberOfCompressionTrains
Descripción	Cantidad de trenes de compresión de los que dispone la planta y características de los mismos.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	NumberOfTurbines
Descripción	Cantidad de turbinas por cada tren de compresión y características de las mismas.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	NumberOfPumps
Descripción	Cantidad de bombas de las que dispone la planta y características de las mismas.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	NumberOfEngines
Descripción	Cantidad de motores de los que dispone la planta y características de los mismos.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MaxSuctionPressure
Descripción	Máxima presión con la que la planta puede recibir el fluido a comprimir.
SuperConceptos	Pressure (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MaxDischargePressure
Descripción	máxima presión con la que la planta puede despachar el fluido a comprimir.
SuperConceptos	Pressure (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MinSuctionPressure
Descripción	Mínima presión con la que la planta puede recibir el fluido a comprimir.
SuperConceptos	Pressure (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MinDischargePressure
Descripción	Mínima presión con la que la planta puede despachar el fluido a comprimir.
SuperConceptos	Pressure (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MinPower
Descripción	mínima potencia a la que la planta puede trabajar.
SuperConceptos	Power (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	MaxPower
Descripción	Máxima potencia a la que la planta puede trabajar.
SuperConceptos	Power (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	FlowStationList
Descripción	Lista de las estaciones de flujo que surten gas a baja presión a la planta.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	TankFarmList
Descripción	Lista de patios de tanques que surten de agua a la planta.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	FacilitiesList
Descripción	Lista de instalaciones (plataformas BES, Pozos, EF, etc.) a los que la planta surte energía eléctrica.
SuperConceptos	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: PlantConfigurartion

Nombre	Compression
Descripción	Proceso que consiste en elevar la presión de un fluido hasta un nivel deseado mediante la acción de turbinas en trenes de compresión.
SuperConceptos	Method, OilProduction_Concept
Relaciones	isMethodOf: Plant

Nombre	Treatment
Descripción	Proceso que consiste en tratamiento químico del agua para llevarlos a niveles de calidad estándar para su inyección.
SuperConceptos	Method, OilProduction_Concept
Relaciones	isMethodOf: Plant

Nombre	ElectricityGeneration
Descripción	Proceso de generación de electricidad mediante combustión
SuperConceptos	Method, OilProduction_Concept
Relaciones	isMethodOf: Plant

Nombre	PlantCondition
Descripción	Condicion en la que se encuentra la Planta
SuperConceptos	Condition, OilProduction_Concept
Relaciones	isConditionOf: Plant; hasSome: PlantState; PlantInformation

Nombre	PlantState
Descripción	Estado en el que se encuentra la planta
SuperConceptos	SystemState (SWEET), OilProduction_Concept
Relaciones	isPartOf: PlantCondition

D.6. Conceptos relacionados con la Unidad de Producción Campo (Field)

Nombre	Field
Descripción	Unidad de producción que consiste en una colección de pozos e instalaciones de superficie organizadas en una red cuyo objetivo es la producción de un yacimiento petrolífero.
SuperConceptos	ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, Method,Resource, Product; produce: Oil, Gas, Water

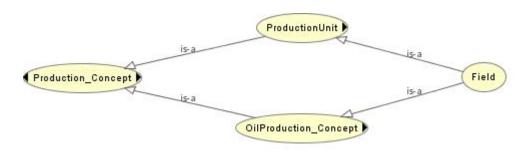


Fig. D.5. Concepto Field

Nombre	SurfaceFacility
Descripción	red de unidades de producción que soportan el proceso de producción del campo.
SuperConcept os	ProductionFacility(SWEET), ProductionUnit, OilProduction_Concept
Relaciones	has some: Condition, Method,Resource, Product; produce: Gas, Electricity, Water; isResourceOf: Field

Nombre	Reservoir
Descripción	Es una sección de roca en el subsuelo que contiene confinadas cantidades económicamente explotables de petróleo y/o gas. Es el recurso que explota el Campo.
SuperConcept os	OilProduction_Concept
Relaciones	isResourceOf: Field

Nombre	GasAvailable
Descripción	Gas total disponible para soportar los procesos de levantamiento artificial.
SuperConcept os	Flow (SWEET), Supply, OilProduction_Concept
Relaciones	isResourceOf: Field

Nombre	FieldConfiguration
Descripción	Se refiere a la cantidad de instalaciones que componen al campo.
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: Field

Nombre	NumberOfWells
Descripción	Cantidad de pozos que pertenecen al campo.
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: FieldConfiguration

Nombre	NumberOfFlowStations
Descripción	Cantidad de estaciones de flujo que pertenecen al campo.
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: FieldConfiguration

Nombre	Number Of Plants
Descripción	Cantidad de plantas que pertenecen al campo
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: FieldConfiguration

Nombre	NumberOfGLManifolds
Descripción	Cantidad de múltiples de gas lift que pertenecen al campo.
SuperConcept	ProcessInformation, OilProduction Concept
os	
Relaciones	isPartOf: FieldConfiguration

Nombre	SurfaceModel
Descripción	modelo de la red de superficie del campo
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: Field

Nombre	ReservoirModel
Descripción	Modelo del yacimiento explotado por el campo.
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: FieldConfiguration

Nombre	ReservoirInformation
Descripción	Información sobre las características del yacimiento explotado por el campo.
SuperConcept os	ProcessInformation, OilProduction_Concept
Relaciones	isResourceOf: FieldConfiguration

Nombre	ReservoirDepth
Descripción	Profundidad a la que se encuentra el yacimiento. Es una medida de longitud, generalmente medida en pies.
SuperConcept os	Depth (SWEET), ProcessInformation, OilProduction_Concept
Relaciones	isPartOf: ReservoirInformation

Nombre	FluidSaturation				
Descripción	Cantidad de fluido que se encuentra en la roca. En general se miden la saturac de petróleo y de gas. Es una medida de volumen.				
SuperConcept os	Saturation (SWEET), ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	Lithology				
Descripción	Características de las rocas que se encuentran en el yacimiento.				
SuperConcept os	ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	OOIP				
Descripción	Petróleo original en sitio (Original Oil in Place). Cantidad total de petróleo que encontró en el yacimiento antes de su explotación.				
SuperConcept os	Volume (SWEET), ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	Permeability				
Descripción	Capacidad de la roca que contiene el fluido de dejarlo fluir a través de ella.				
SuperConcept os	ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	Porosity								
Descripción	Cantidad de poros existentes en la roca en la cual se pueden depositar hidrocarburos.								
SuperConcept os	ProcessInformation, OilProduction_Concept								
Relaciones	isPartOf: ReservoirInformation								

Nombre	RecoveryFactor				
Descripción	Cantidad de crudo que puede recuperarse del yacimiento bajo las condicione actuales del campo (cantidad de pozos, métodos de levantamiento, agotamiento tecnología disponible).				
SuperConcept os	ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	ProductivityIndex				
Descripción	Es la razón de la rata de producción, en barriles por día a la presión diferencial (pe-pw) en el punto medio del intervalo productor.				
SuperConcept os	ProcessInformation, OilProduction_Concept				
Relaciones	isPartOf: ReservoirInformation				

Nombre	InjectivityIndex			
Descripción	Se define como la razón de la rata de inyección en barriles por día al exceso de presión por encima de la presión del yacimiento que causa dicha rata de inyección			
SuperConcept os	ProcessInformation, OilProduction_Concept			
Relaciones	isPartOf: ReservoirInformation			

Nombre	TankFarm							
Descripción	Colección de tanques de almacenamiento y de mezcla que recolecta la producción producida en uno o varios campos							
SuperConcept os	ProductionFacility(SWEET), ProductionUnit, OilProduction_Concept							
Relaciones	has some: Condition, Method,Resource, Product; produce: Oil, Water							

Nombre	FieldCondition					
Descripción	Condicion en la que se encuentra el Campo					
SuperConcept os	Condition, OilProduction_Concept					
Relaciones	isConditionOf: Field; hasSome: FieldState; FieldInformation					

Nombre	FieldState				
Descripción	Estado en el que se encuentra el campo				
SuperConcept os	SystemState (SWEET), OilProduction_Concept				
Relaciones	isPartOf: FieldCondition				

ANEXO E

DATOS UTILIZADOS PARA LA SIMULACIÓN

En este anexo se presentan los datos utilizados para realizar la simulación correspondiente al caso de estudio. Se presentan los datos por cada escenario: 1) Meta de producción 169 MNBPD, 2) Cambio de la meta de producción a 120 MNBPD y 3) Falla Pozo #8.

E.1. Escenario 1

Información Económica

Quota 159000 STB

Label TR1 Unit Revenue from oil 50 US\$/STB 1500 US\$/MMscf Revenue from sales gas Cost of water processing 10 US\$/STB Cost of gaslift gas 2 US\$/MMscf Cost of power 10 US\$/hp Cost of power fluid 10 US\$/STB Cost of diluent 15 US\$/STB

Información de Producción

PotentialProduction 200000 STB/day
Gas Availability 50 MMscf/day
Separator A Capacity 50.000 STB/day
Separator B Capacity 50.000 STB/day
Separator C Capacity 50.000 STB/day

Well Oil Rate Gas Rate Water Rate Liquid Rate Gas Lift Revenue dP Choke Oil gravity Injection STB/day MMscf/day STB/day STB/day MMscf/day MMUS\$/day psi API Р1 23691,3 11.846 0 23691,3 1812,37 30 0,156 1,2

30	1594,43	1,01	0,365	19905,3	0	9.953	19905,3	P2
30	2653,91	0,32	0,844	6277,2	0	3.139	6277,2	P3
38	0	1,46	0,286	27345,6	0	60.160	27345,6	P4
38	721,25	1,06	0,11	19887,1	0	43.752	19887,1	P5
38	1350,46	0,53	0,11	9943,7	0	21.876	9943,7	P6
30	622,32	1,52	0,122	29865,8	0	14.933	29865,8	P7
30	1409,75	0,51	0,887	9955,3	0	4.978	9955,3	P8

Información de Tiempo Real

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day
01/01/2010	159219,4	181.033	0	159219,4	0,776	8,23
02/01/2010	159358,2	181.139	0	159358,2	0	8,24
03/01/2010	159491,6	181.240	0	159491,7	0	8,25
04/01/2010	159615,9	181.336	0	159616	0	8,25
05/01/2010	159730,2	181.424	0,1	159730,3	0	8,26
06/01/2010	159834,3	181.506	0,2	159834,4	0	8,26
07/01/2010	159927,3	181.580	0,2	159927,5	0	8,27
08/01/2010	160015,9	181.650	0,3	160016,2	0	8,27
09/01/2010	160115,5	181.723	0,5	160115,9	0	8,28
10/01/2010	160209,3	181.791	0,6	160209,9	0	8,28
11/01/2010	160332,8	181.908	0,8	160333,6	0	8,29
12/01/2010	160294,5	181.702	1	160295,5	0	8,29
13/01/2010	160240,3	181.468	1,2	160241,5	0	8,28
14/01/2010	160191,8	181.269	1,5	160193,3	0	8,28
15/01/2010	160144	181.045	1,8	160145,8	0	8,28
16/01/2010	160162,7	180.953	2,1	160164,8	0	8,28
17/01/2010	160119	180.766	2,5	160121,5	0	8,28
18/01/2010	160068,7	180.576	2,9	160071,6	0	8,27
19/01/2010	160031,7	180.380	3,3	160035	0	8,27
20/01/2010	159997,6	180.188	3,8	160001,4	0	8,27
21/01/2010	159944	179.995	4,3	159948,2	0	8,27
22/01/2010	159908,3	179.823	4,8	159913,1	0	8,27
23/01/2010	159884	179.668	5,4	159889,4	0,007	8,26
24/01/2010	159813,4	179.508	6	159819,4	0	8,26
25/01/2010	159995,6	179.343	6,7	160002,3	0	8,27
26/01/2010	159773,6	179.177	7,4	159780,9	0,023	8,26
27/01/2010	160116,7	179.102	8,2	160124,9	0	8,27
28/01/2010	159447,7	179.617	8,6	159456,3	0,034	8,24
29/01/2010	159064,2	179.068	9,4	159073,6	0,651	8,22
30/01/2010	159474,2	178.530	10,5	159484,7	0,976	8,24
31/01/2010	159354,5	178.427	11,4	159365,8	0,871	8,24
01/02/2010	159354,5	178.427	11,4	159365,8	0,871	8,24

Date Oil Rate Gas Rate Water Rate Liquid Rate Gas Lift Pressure Temperature dP Choke Oil gravity

					Injection Rate				
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi	API
01/01/2010	29867,5	14.934	0	29867,5	0	1787,24	153,57	465,62	30
02/01/2010	29807,3	14.939	0	29807,3	0	1787,24	153,57	465,62 459,87	30
03/01/2010	29877,4	14.944	0	29877,4	0	1784,23	153,58	459,87 450,2	30
04/01/2010	29899	14.950	0	29899	0	1786,34	153,58	440,79	30
05/01/2010	29909,9	14.955	0	29909,9	0	1787,28	153,58	431,59	30
06/01/2010	29919,8	14.960	0	29919,8	0	1788,15	153,58	422,72	30
07/01/2010	29919,8	14.965	0	29919,8	0	1788,93	153,58	414,08	30
08/01/2010	29938,8	14.969	0	29938,8	0	1789,68	153,59	405,61	30
09/01/2010	29947,8	14.974	0	29947,8	0	1790,48	153,59	397,22	30
10/01/2010	29957,3	14.979	0	29957,3	0	1791,24	153,59	388,9	30
11/01/2010	29949,9	14.975	0	29949,9	0	1805,7	153,59	368,96	30
12/01/2010	29967,5	14.984	0	29967,5	0	1823,55	153,59	342,76	30
13/01/2010	29973,9	14.987	0	29973,9	0	1840,92	153,59	318,43	30
14/01/2010	29991	14.996	0	29991	0	1856,48	153,6	294,74	30
15/01/2010	29998,2	14.999	0	29998,2	0	1872,93	153,6	271,38	30
16/01/2010	30000,6	15.000	0	30000,7	0	1879,05	153,6	258,97	30
17/01/2010	30010,9	15.005	0	30011	0	1892,33	153,6	238,53	30
18/01/2010	30021,9	15.011	0	30022	0	1905,12	153,6	218,56	30
19/01/2010	30026,6	15.013	0	30026,7	0	1918,64	153,61	198,65	30
20/01/2010	30032,6	15.016	0	30032,6	0	1932,08	153,61	178,73	30
21/01/2010	30041	15.020	0,1	30041	0	1944,27	153,61	159,82	30
22/01/2010	30045,7	15.023	0,1	30045,8	0	1955	153,61	142,85	30
23/01/2010	30051	15.026	0,1	30051,1	0	1964,62	153,61	126,97	30
24/01/2010	30063,8	15.032	0,1	30063,9	0	1973,53	153,61	110,96	30
25/01/2010	30044,7	15.022	0,1	30044,8	0	1994,73	153,61	86,44	30
26/01/2010	30066,3	15.033	0,1	30066,4	0	1996,94	153,61	76,2	30
27/01/2010	30061,4	15.031	0,1	30061,5	0	2020,64	153,61	47,61	30
28/01/2010	30384,1	15.192	0,1	30384,2	0	1984,83	153,68	40,17	30
29/01/2010	30227,6	15.114	0,1	30227,7	0,074	1988,87	153,65	48,99	30
30/01/2010	30086,2	15.043	0,1	30086,3	0	2031,81	153,62	17,21	30
31/01/2010	30181,8	15.091	0,1	30182	0	2032,5	153,64	0	30
01/02/2010	30181,8	15.091	0,1	30182	0	2032,5	153,64	0	30

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig 	deg F	psi 	API
01/01/2010	19911,6	9.956	0	19911,6	0	1787,24	151,34	976,66	30
02/01/2010	19918,3	9.959	0	19918,3	0	1784,23	151,35	971,18	30
03/01/2010	19925,8	9.963	0	19925,8	0	1785,29	151,36	961,82	30
04/01/2010	19932,9	9.966	0	19932,9	0	1786,34	151,36	952,7	30
05/01/2010	19939,8	9.970	0	19939,8	0	1787,28	151,37	943,87	30
06/01/2010	19946,7	9.973	0	19946,7	0	1788,15	151,37	935,24	30
07/01/2010	19952,8	9.976	0	19952,8	0	1788,93	151,38	926,92	30
08/01/2010	19958,8	9.979	0	19958,8	0	1789,68	151,38	918,74	30
09/01/2010	19965,1	9.983	0	19965,1	0	1790,48	151,38	910,59	30
10/01/2010	19971,2	9.986	0	19971,2	0	1791,24	151,39	902,58	30
11/01/2010	19965,5	9.983	0	19965,5	0	1805,7	151,38	882,43	30
12/01/2010	19977,9	9.989	0	19977,9	0	1823,55	151,39	856,71	30
13/01/2010	19982,6	9.991	0	19982,6	0	1840,92	151,4	832,51	30
14/01/2010	19993,9	9.997	0	19993,9	0	1856,48	151,41	809,35	30

15/01/2010	19999	9.999	0	19999	0	1872,93	151,41	786,16	30
16/01/2010	20000,7	10.000	0	20000,7	0	1879,05	151,41	773,78	30
17/01/2010	20006,8	10.003	0	20006,8	0	1892,33	151,41	753,75	30
18/01/2010	20014,3	10.007	0	20014,3	0	1905,12	151,42	734,09	30
19/01/2010	20017,6	10.009	0	20017,6	0	1918,64	151,42	714,29	30
20/01/2010	20021,8	10.011	0	20021,8	0	1932,08	151,43	694,5	30
21/01/2010	20027	10.013	0	20027	0	1944,27	151,43	675,89	30
22/01/2010	20030,5	10.015	0	20030,5	0	1955	151,43	659	30
23/01/2010	20034,7	10.017	0	20034,7	0	1964,62	151,44	643,18	30
24/01/2010	20042,4	10.021	0	20042,4	0	1973,53	151,44	627,67	30
25/01/2010	20029,1	10.015	0,1	20029,1	0	1994,73	151,43	602,56	30
26/01/2010	20044,3	10.022	0,1	20044,3	0	1996,94	151,44	592,9	30
27/01/2010	20041	10.020	0,1	20041,1	0	2020,64	151,44	564,11	30
28/01/2010	20258,4	10.129	0,1	20258,5	0	1984,83	151,6	567,1	30
29/01/2010	20153,1	10.077	0,1	20153,2	0,106	1988,87	151,53	570,8	30
30/01/2010	20057,2	10.029	0,1	20057,3	0	2031,81	151,45	534,49	30
31/01/2010	20052,2	10.026	0,1	20052,3	0	2032,5	151,45	529,08	30
01/02/2010	20052,2	10.026	0,1	20052,3	0	2032,5	151,45	529,08	30

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi 	API
01/01/2010	9956	4.978	0	9956	0,395	1787,24	143,56	1253,04	30
02/01/2010	9959,3	4.980	0	9959,3	0	1784,23	143,47	1247,61	30
03/01/2010	9962,8	4.981	0	9962,8	0	1785,29	143,48	1238,42	30
04/01/2010	9966,5	4.983	0	9966,5	0	1786,34	143,49	1229,38	30
05/01/2010	9969,8	4.985	0	9969,8	0	1787,28	143,5	1220,68	30
06/01/2010	9973,1	4.987	0	9973,1	0	1788,15	143,51	1212,2	30
07/01/2010	9976,4	4.988	0	9976,4	0	1788,93	143,52	1203,91	30
08/01/2010	9979,7	4.990	0	9979,7	0	1789,68	143,52	1195,76	30
09/01/2010	9982,6	4.991	0	9982,6	0	1790,48	143,53	1187,73	30
10/01/2010	9985,6	4.993	0	9985,6	0	1791,24	143,54	1179,83	30
11/01/2010	9981,7	4.991	0	9981,7	0	1805,7	143,53	1159,76	30
12/01/2010	9988,8	4.994	0	9988,8	0	1823,55	143,55	1134,07	30
13/01/2010	9990,8	4.995	0	9990,8	0	1840,92	143,55	1110	30
14/01/2010	9997	4.999	0	9997	0	1856,48	143,57	1086,92	30
15/01/2010	9999,5	5.000	0	9999,5	0	1872,93	143,57	1063,81	30
16/01/2010	10000	5.000	0	10000	0	1879,05	143,57	1051,51	30
17/01/2010	10003,4	5.002	0	10003,4	0	1892,33	143,58	1031,5	30
18/01/2010	10007,2	5.004	0	10007,2	0	1905,12	143,59	1011,95	30
19/01/2010	10009	5.004	0	10009	0	1918,64	143,6	992,15	30
20/01/2010	10011	5.006	0	10011	0	1932,08	143,6	972,44	30
21/01/2010	10013,8	5.007	0	10013,8	0	1944,27	143,61	953,86	30
22/01/2010	10015,2	5.008	0	10015,3	0	1955	143,61	937,07	30
23/01/2010	10017	5.008	0	10017	0	1964,62	143,62	921,38	30
24/01/2010	10021,5	5.011	0	10021,5	0	1973,53	143,63	905,87	30
25/01/2010	10013,5	5.007	0	10013,6	0	1994,73	143,61	880,73	30
26/01/2010	10022,4	5.011	0	10022,4	0	1996,94	143,63	871,09	30
27/01/2010	10019,6	5.010	0	10019,6	0	2020,64	143,62	842,44	30
28/01/2010	10147,3	5.074	0	10147,4	0	1984,83	143,94	845,83	30
29/01/2010	10085,4	5.043	0	10085,4	0,105	1988,87	143,81	849,33	30
30/01/2010	10028,6	5.014	0	10028,7	0	2031,81	143,64	812,87	30
31/01/2010	10025,7	5.013	0	10025,7	0	2032,5	143,64	807,43	30
01/02/2010	10025,7	5.013	0	10025,7	0	2032,5	143,64	807,43	30

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi	API
01/01/2010	29830,2	65.626	0	29830,2	0	1817,46	154,94	102,37	38
02/01/2010	29840,8	65.650	0	29840,8	0	1814,97	154,95	96,38	38
03/01/2010	29851,5	65.673	0	29851,5	0	1816,14	154,95	87,04	38
04/01/2010	29861,3	65.695	0	29861,3	0	1817,3	154,95	78,13	38
05/01/2010	29870,4	65.715	0	29870,4	0	1818,33	154,95	69,65	38
06/01/2010	29879	65.734	0	29879	0	1819,28	154,95	61,52	38
07/01/2010	29887	65.751	0	29887	0	1820,13	154,95	53,72	38
08/01/2010	29894,5	65.768	0	29894,5	0	1820,94	154,95	46,19	38
09/01/2010	29901,6	65.784	0	29901,6	0	1821,82	154,96	38,74	38
10/01/2010	29907,8	65.797	0	29907,9	0	1822,65	154,96	31,64	38
11/01/2010	29952,4	65.895	0	29952,4	0	1840,15	154,96	0	38
12/01/2010	29825,9	65.617	0	29825,9	0	1861,46	154,94	0	38
13/01/2010	29700,9	65.342	0	29700,9	0	1882,47	154,92	0	38
14/01/2010	29586,6	65.090	0	29586,6	0	1901,29	154,9	0	38
15/01/2010	29466,2	64.826	0	29466,2	0	1921,37	154,89	0	38
16/01/2010	29407,5	64.696	0	29407,5	0	1928,84	154,88	0	38
17/01/2010	29305,7	64.473	0	29305,8	0	1945,13	154,86	0	38
18/01/2010	29206,5	64.254	0	29206,6	0	1960,91	154,84	0	38
19/01/2010	29103	64.027	0,1	29103,1	0	1977,57	154,83	0	38
20/01/2010	28999,4	63.799	0,1	28999,4	0	1994,26	154,81	0	38
21/01/2010	28903,4	63.588	0,1	28903,5	0	2009,39	154,79	0	38
22/01/2010	28815,5	63.394	0,1	28815,6	0	2022,88	154,78	0	38
23/01/2010	28734,6	63.216	0,1	28734,7	0	2034,96	154,77	0	38
24/01/2010	28659,5	63.051	0,1	28659,6	0	2046,09	154,76	0	38
25/01/2010	28505,1	62.711	0,1	28505,2	0	2073,34	154,73	0	38
26/01/2010	28474,1	62.643	0,1	28474,3	0	2075,85	154,73	0	38
27/01/2010	28303,5	62.268	0,1	28303,7	0	2106,3	154,7	0	38
28/01/2010	28536,1	62.779	0,2	28536,3	0	2056,15	154,74	0	38
29/01/2010	28488,2	62.674	0,2	28488,3	0,072	2062,14	154,73	0	38
30/01/2010	28178,5	61.993	0,2	28178,7	0	2120,42	154,68	0	38
31/01/2010	28159,6	61.951	0,2	28159,8	0	2120,68	154,67	0	38
01/02/2010	28159,6	61.951	0,2	28159,8	0	2120,68	154,67	0	38

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi 	API
01/01/2010	19887	43.751	0	19887	0	1817,46	153,17	1318,5	38
02/01/2010	19894,2	43.767	0	19894,2	0	1814,97	153,17	1313,86	38
03/01/2010	19900,7	43.781	0	19900,7	0	1816,14	153,18	1306,02	38
04/01/2010	19907,5	43.796	0	19907,5	0	1817,3	153,18	1298,33	38
05/01/2010	19913,4	43.810	0	19913,4	0	1818,33	153,18	1291,08	38
06/01/2010	19919,5	43.823	0	19919,5	0	1819,28	153,19	1284,02	38
07/01/2010	19924,7	43.834	0	19924,7	0	1820,13	153,19	1277,34	38
08/01/2010	19929,9	43.846	0	19929,9	0	1820,94	153,19	1270,79	38
09/01/2010	19934,4	43.856	0	19934,4	0	1821,82	153,2	1264,38	38
10/01/2010	19938,4	43.864	0	19938,4	0	1822,65	153,2	1258,19	38

11/01/2010	19931,6	43.850	0	19931,6	0	1840,15	153,19	1237,19	38
12/01/2010	19941,8	43.872	0	19941,8	0	1861,46	153,2	1209,63	38
13/01/2010	19944	43.877	0	19944	0	1882,47	153,2	1183,77	38
14/01/2010	19951,4	43.893	0	19951,4	0	1901,29	153,21	1159,29	38
15/01/2010	19953,2	43.897	0	19953,2	0	1921,37	153,21	1134,57	38
16/01/2010	19952,6	43.896	0	19952,6	0	1928,84	153,21	1122,88	38
17/01/2010	19955,9	43.903	0	19955,9	0	1945,13	153,21	1101,78	38
18/01/2010	19956,9	43.905	0	19956,9	0	1960,91	153,21	1081,61	38
19/01/2010	19956,8	43.905	0	19956,9	0	1977,57	153,21	1060,77	38
20/01/2010	19956,6	43.905	0	19956,6	0	1994,26	153,21	1039,97	38
21/01/2010	19955,9	43.903	0	19956	0	2009,39	153,21	1020,83	38
22/01/2010	19953,8	43.898	0,1	19953,9	0	2022,88	153,21	1003,58	38
23/01/2010	19951,9	43.894	0,1	19952	0	2034,96	153,21	987,73	38
24/01/2010	19953,2	43.897	0,1	19953,2	0	2046,09	153,21	972,55	38
25/01/2010	19955,6	43.902	0,1	19955,6	0	2073,34	153,21	941,28	38
26/01/2010	19954,4	43.900	0,1	19954,5	0	2075,85	153,21	935,4	38
27/01/2010	19970,6	43.935	0,1	19970,7	0	2106,3	153,22	898,7	38
28/01/2010	20135,2	44.297	0,1	20135,3	0	2056,15	153,31	917,71	38
29/01/2010	20035,1	44.077	0,1	20035,3	0,11	2062,14	153,26	925	38
30/01/2010	19956,7	43.905	0,1	19956,8	0	2120,42	153,21	876,41	38
31/01/2010	19953	43.897	0,1	19953,1	0	2120,68	153,21	873,36	38
01/02/2010	19953	43.897	0,1	19953,1	0	2120,68	153,21	873,36	38

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi	API
01/01/2010	9943,6	21.876	0	9943,6	0	1817,46	146,79	1947,69	38
02/01/2010	9947,1	21.884	0	9947,1	0	1814,97	146,8	1943,61	38
03/01/2010	9950,3	21.891	0	9950,3	0	1816,14	146,81	1936,26	38
04/01/2010	9953,7	21.898	0	9953,7	0	1817,3	146,82	1929,07	38
05/01/2010	9956,7	21.905	0	9956,7	0	1818,33	146,82	1922,26	38
06/01/2010	9959,5	21.911	0	9959,5	0	1819,28	146,83	1915,71	38
07/01/2010	9962,6	21.918	0	9962,6	0	1820,13	146,83	1909,32	38
08/01/2010	9964,9	21.923	0	9964,9	0	1820,94	146,84	1903,23	38
09/01/2010	9967	21.927	0	9967	0	1821,82	146,84	1897,22	38
10/01/2010	9969,2	21.932	0	9969,2	0	1822,65	146,85	1891,31	38
11/01/2010	9964,1	21.921	0	9964,1	0	1840,15	146,84	1870,45	38
12/01/2010	9970,6	21.935	0	9970,6	0	1861,46	146,85	1843,24	38
13/01/2010	9971,6	21.937	0	9971,6	0	1882,47	146,85	1817,64	38
14/01/2010	9975,8	21.947	0	9975,8	0	1901,29	146,86	1793,55	38
15/01/2010	9976,6	21.949	0	9976,6	0	1921,37	146,86	1769,05	38
16/01/2010	9976,1	21.947	0	9976,1	0	1928,84	146,86	1757,48	38
17/01/2010	9977,6	21.951	0	9977,6	0	1945,13	146,86	1736,71	38
18/01/2010	9978,5	21.953	0	9978,5	0	1960,91	146,87	1716,6	38
19/01/2010	9978,1	21.952	0	9978,1	0	1977,57	146,87	1695,94	38
20/01/2010	9978,7	21.953	0	9978,7	0	1994,26	146,87	1675,07	38
21/01/2010	9977,8	21.951	0	9977,9	0	2009,39	146,86	1656,12	38
22/01/2010	9977,1	21.950	0	9977,1	0	2022,88	146,86	1638,79	38
23/01/2010	9976,1	21.947	0	9976,1	0	2034,96	146,86	1622,97	38
24/01/2010	9976,6	21.949	0	9976,7	0	2046,09	146,86	1607,96	38
25/01/2010	9977,7	21.951	0	9977,7	0	2073,34	146,86	1576,94	38
26/01/2010	9977,3	21.950	0	9977,3	0	2075,85	146,86	1571,04	38
27/01/2010	9986,7	21.971	0,1	9986,8	0	2106,3	146,88	1535,01	38
28/01/2010	10089,2	22.196	0,1	10089,2	0	2056,15	147,09	1558,45	38

29/01/2010	10027,1	22.060	0,1	10027,2	0,11	2062,14	146,98	1563,16	
30/01/2010	9978,4	21.953	0,1	9978,5	0,11	2120,42	146,87	1512,54	
31/01/2010	9975,6	21.946	0,1	9975,7	0	2120,42	146,86	1509,59	
01/02/2010	9975,6	21.946	0,1	9975,7	0	2120,68	146,86	1509,59	
,,,,			-,	,		.,	-,		
#	############# Well: P7 #								
Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil gravi
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi	API
01/01/2010	29867,7	14.934	0	29867,7	0	1770,36	153,57	482,48	
02/01/2010	29940,9	14.970	0	29940,9	0	1767,71	153,57	426,26	
03/01/2010	30009,2	15.005	0	30009,2	0	1769,03	153,59	369,14	
04/01/2010	30003,2	15.036	0	30003,2	0	1770,31	153,61	314,34	
05/01/2010	30127,8	15.064	0,1	30127,8	0	1771,45	153,63	261,61	
06/01/2010	30127,8	15.004	0,1	30127,8	0	1771,43	153,64	210,79	
07/01/2010	30220,8	15.110	0,1	30221	0	1773,43	153,65	161,71	
08/01/2010	30262	15.131	0,2	30262,2	0	1774,31	153,65	113,97	
09/01/2010	30312,9	15.156	0,3	30313,2	0	1775,3	153,66	66,7	
10/01/2010	30359,7	15.180	0,4	30360,2	0	1776,23	153,67	20,77	
11/01/2010	30439,3	15.220	0,6	30439,9	0	1748,89	153,69	0	
12/01/2010	30465,3	15.233	0,7	30466	0	1708,5	153,7	0	
13/01/2010	30505,7	15.253	0,9	30506,6	0	1667,59	153,7	0	
14/01/2010	30522	15.261	1,1	30523	0	1630,43	153,71	0	
15/01/2010	30563,4	15.282	1,3	30564,7	0	1591,02	153,72	0	
16/01/2010	30617,8	15.309	1,5	30619,2	0	1550,61	153,73	0	
17/01/2010	30643,6	15.322	1,7	30645,3	0	1513,85	153,73	0	
18/01/2010	30662,9	15.331	2	30664,9	0	1478,31	153,74	0	
19/01/2010	30705,4	15.353	2,3	30707,8	0	1440,84	153,74	0	
20/01/2010	30747,7	15.374	2,7	30750,3	0	1403,75	153,75	0	
21/01/2010	30769,1	15.385	3	30772,1	0	1369,36	153,76	0	
22/01/2010	30802,8	15.401	3,4	30806,2	0	1333,89	153,76	0	
23/01/2010	30838,5	15.419	3,8	30842,3	0,007	1298,66	153,77	0	
24/01/2010	30825	15.412	4,2	30829,2	0	1269,44	153,77	0	
25/01/2010	31089,6	15.545	4,7	31094,3	0	1208,46	153,82	0	
26/01/2010	30925,9	15.463	5,2	30931,1	0,023	1196,84	153,79	0	
27/01/2010	31258,1	15.629	5,8	31263,8	0	1132,38	153,86	0	
28/01/2010	30005,7	15.003	6,1	30011,8	0,034	1242,7	153,6	0	
29/01/2010	29931,9	14.966	6,6	29938,5	0,041	1223,53	153,59	0	
30/01/2010	30846,3	15.423	7,4	30853,6	0,976	1101,38	153,81	0	
31/01/2010	30655,5	15.328	8	30663,4	0,871	1094,85	153,77	0	
01/02/2010	30655,5	15.328	8	30663,4	0,871	1094,85	153,77	0	
	+##########	###							
	Well: P8 # ##########	##							
Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Pressure	Temperature	dP Choke	Oil grav
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	psig	deg F	psi 	API
01/01/2010	9955,7	4.978	0	9955,7	0,382	1770,36	143,56	1269,98	
02/01/2010	9980,1	4.990	0	9980,1	0	1767,71	143,52	1216,55	
03/01/2010	10002,9	5.001	0	10002,9	0	1769,03	143,58	1162,09	
04/01/2010	10023,7	5.012	0	10023,7	0	1770,31	143,63	1109,69	

05/01/2010	10042,4	5.021	0	10042,5	0	1771,45	143,68	1059,11	30
06/01/2010	10059,2	5.030	0	10059,2	0	1772,5	143,72	1010,49	30
07/01/2010	10073,8	5.037	0,1	10073,8	0	1773,43	143,76	963,4	30
08/01/2010	10087,4	5.044	0,1	10087,4	0	1774,31	143,79	917,61	30
09/01/2010	10104,1	5.052	0,1	10104,2	0	1775,3	143,83	872,79	30
10/01/2010	10120,1	5.060	0,1	10120,2	0	1776,23	143,87	829,01	30
11/01/2010	10148,1	5.074	0,2	10148,3	0	1748,89	143,94	811,72	30
12/01/2010	10156,9	5.078	0,2	10157,1	0	1708,5	143,96	812,08	30
13/01/2010	10170,9	5.085	0,3	10171,1	0	1667,59	143,99	812,5	30
14/01/2010	10174	5.087	0,4	10174,4	0	1630,43	144	812,47	30
15/01/2010	10187,9	5.094	0,4	10188,3	0	1591,02	144,04	813,11	30
16/01/2010	10207,4	5.104	0,5	10207,9	0	1550,61	144,09	814,11	30
17/01/2010	10215,2	5.108	0,6	10215,7	0	1513,85	144,1	814,32	30
18/01/2010	10220,6	5.110	0,7	10221,2	0	1478,31	144,12	814,28	30
19/01/2010	10235,1	5.118	0,8	10235,9	0	1440,84	144,15	815,8	30
20/01/2010	10249,8	5.125	0,9	10250,7	0	1403,75	144,19	817,76	30
21/01/2010	10256	5.128	1	10257	0	1369,36	144,21	819,04	30
22/01/2010	10267,7	5.134	1,1	10268,8	0	1333,89	144,24	820,65	30
23/01/2010	10280,2	5.140	1,3	10281,4	0	1298,66	144,27	822,32	30
24/01/2010	10271,5	5.136	1,4	10272,9	0	1269,44	144,25	822,56	30
25/01/2010	10380,3	5.190	1,6	10381,9	0	1208,46	144,35	830,48	30
26/01/2010	10308,9	5.154	1,7	10310,6	0	1196,84	144,3	826,6	30
27/01/2010	10475,8	5.238	1,9	10477,7	0	1132,38	144,42	826,1	30
28/01/2010	9891,6	4.946	2	9893,6	0	1242,7	143,31	802,99	30
29/01/2010	10115,8	5.058	2,2	10118	0,033	1223,53	143,87	750,46	30
30/01/2010	10342,3	5.171	2,5	10344,8	0	1101,38	144,33	799,71	30
31/01/2010	10351	5.176	2,7	10353,7	0	1094,85	144,33	775,56	30
01/02/2010	10351	5.176	2,7	10353,7	0	1094,85	144,33	775,56	30

E.2. Escenario 2

Información Económica

GOAL

Quota 120000 STB

##################

TAX REGIME

Label TR1

LabelTR1Revenue from oil50US\$/STBRevenue from sales gas1500US\$/MMscfCost of water processing10US\$/STBCost of gaslift gas2US\$/MMscfCost of power10US\$/hpCost of power fluid10US\$/STBCost of diluent15US\$/STB

Información de Producción

PotentialProduction 200000 STB/day Gas Availability 50 MMscf/day
Separator A Capacity 50.000 STB/day
Separator B Capacity 50.000 STB/day
Separator C Capacity 50.000 STB/day

Well	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
P1	23691,3	11.846	0	23691,3	0,156	1,2	1170,28	152,32	1812,37	30
P2	19905,3	9.953	0	19905,3	0,365	1,01	1170,28	151,36	1594,43	30
Р3	6277,2	3.139	0	6277,2	0,844	0,32	1170,28	134,9	2653,91	30
P4	27345,6	60.160	0	27345,6	0,286	1,46	2414,7	154,55	0	38
P5	19887,1	43.752	0	19887,1	0,11	1,06	2414,7	153,17	721,25	38
P6	9943,7	21.876	0	9943,7	0,11	0,53	2414,7	146,81	1350,46	38

Universidad de los Andes

Doctorado en Ciencias Aplicadas

P7	29865,8	14.933	0	29865,8	0,122	1,52	1630,75	153,58	622,32	30
P8	9955.3	4.978	0	9955.3	0.887	0.51	1630.75	143.68	1409.75	30

Información de Tiempo Real

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Oil gravity	
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	API	
45/04/2040	440006 7	444.262	0.7	440007.4		6.24	22.4	
16/01/2010	119996,7	141.363	0,7	119997,4	0	6,21	33,1	
17/01/2010	119932,2	139.939	0,8	119933	0	6,21	33,05	
18/01/2010	119997,7	139.968	0,9	119998,6	0	6,21	33,04	
19/01/2010	119948,8	138.733	1,1	119949,8	0	6,21	33	
20/01/2010	119936,4	136.962	1,2	119937,7	0	6,2	32,93	
21/01/2010	119905,5	135.337	1,4	119907	0,093	6,2	32,87	
22/01/2010	120012,2	135.425	1,6	120013,8	0,09	6,2	32,87	
23/01/2010	120000,8	135.395	1,8	120002,6	0,085	6,2	32,87	
24/01/2010	119926,3	134.716	1,9	119928,2	0,054	6,2	32,84	
25/01/2010	119743,3	134.603	2,1	119745,4	0,054	6,19	32,85	
26/01/2010	119970,3	134.780	2,4	119972,6	0,002	6,2	32,84	
27/01/2010	119999,4	135.010	2,6	120002	0,002	6,2	32,85	
28/01/2010	119999	135.184	2,8	120001,8	0,002	6,2	32,86	
29/01/2010	119820,4	135.079	3,1	119823,5	0,002	6,19	32,86	
30/01/2010	120001,2	135.466	3,3	120004,5	0,002	6,2	32,87	
31/01/2010	119825,3	135.362	3,6	119828,9	0,002	6,19	32,87	
01/02/2010	119825,3	135.362	3,6	119828,9	0,002	6,19	32,87	

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
 	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
16/01/2010	30000,6	15.000	0	30000,7	0	1,52	1879,05	153,6	258,97	30
17/01/2010	30010,9	15.005	0	30011	0	1,52	1892,33	153,6	238,53	30
18/01/2010	30021,9	15.011	0	30022	0	1,52	1905,12	153,6	218,56	30
19/01/2010	30026,6	15.013	0	30026,7	0	1,52	1918,64	153,61	198,65	30
20/01/2010	30032,6	15.016	0	30032,6	0	1,52	1932,08	153,61	178,73	30
21/01/2010	30041	15.020	0,1	30041	0	1,52	1944,27	153,61	159,82	30
22/01/2010	30045,7	15.023	0,1	30045,8	0	1,52	1955	153,61	142,85	30
23/01/2010	30051	15.026	0,1	30051,1	0	1,53	1964,62	153,61	126,97	30
24/01/2010	30063,8	15.032	0,1	30063,9	0	1,53	1973,53	153,61	110,96	30
25/01/2010	30044,7	15.022	0,1	30044,8	0	1,52	1994,73	153,61	86,44	30
26/01/2010	30066,3	15.033	0,1	30066,4	0	1,53	1996,94	153,61	76,2	30
27/01/2010	30061,4	15.031	0,1	30061,5	0	1,53	2020,64	153,61	47,61	30
28/01/2010	30384,1	15.192	0,1	30384,2	0	1,54	1984,83	153,68	40,17	30
29/01/2010	30227,6	15.114	0,1	30227,7	0,074	1,53	1988,87	153,65	48,99	30
30/01/2010	30086,2	15.043	0,1	30086,3	0	1,53	2031,81	153,62	17,21	30

31/01/2010	30181,8	15.091	0,1	30182	0	1,53	2032,5	153,64	0	30
01/02/2010	30181,8	15.091	0,1	30182	0	1,53	2032,5	153,64	0	30

Well: P2 #

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
 	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
16/01/2010	20000,7	10.000	0	20000,7	0	1,02	1879,05	151,41	773,78	30
17/01/2010	20006,8	10.003	0	20006,8	0	1,02	1892,33	151,41	753,75	30
18/01/2010	20014,3	10.007	0	20014,3	0	1,02	1905,12	151,42	734,09	30
19/01/2010	20017,6	10.009	0	20017,6	0	1,02	1918,64	151,42	714,29	30
20/01/2010	20021,8	10.011	0	20021,8	0	1,02	1932,08	151,43	694,5	30
21/01/2010	20027	10.013	0	20027	0	1,02	1944,27	151,43	675,89	30
22/01/2010	20030,5	10.015	0	20030,5	0	1,02	1955	151,43	659	30
23/01/2010	20034,7	10.017	0	20034,7	0	1,02	1964,62	151,44	643,18	30
24/01/2010	20042,4	10.021	0	20042,4	0	1,02	1973,53	151,44	627,67	30
25/01/2010	20029,1	10.015	0,1	20029,1	0	1,02	1994,73	151,43	602,56	30
26/01/2010	20044,3	10.022	0,1	20044,3	0	1,02	1996,94	151,44	592,9	30
27/01/2010	20041	10.020	0,1	20041,1	0	1,02	2020,64	151,44	564,11	30
28/01/2010	20258,4	10.129	0,1	20258,5	0	1,03	1984,83	151,6	567,1	30
29/01/2010	20153,1	10.077	0,1	20153,2	0,106	1,02	1988,87	151,53	570,8	30
30/01/2010	20057,2	10.029	0,1	20057,3	0	1,02	2031,81	151,45	534,49	30
31/01/2010	20052,2	10.026	0,1	20052,3	0	1,02	2032,5	151,45	529,08	30
01/02/2010	20052,2	10.026	0,1	20052,3	0	1,02	2032,5	151,45	529,08	30

Well: P3 #

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
16/01/2010	10000	5.000	0	10000	0	0,51	1879,05	143,57	1051,51	30
17/01/2010	10003,4	5.002	0	10003,4	0	0,51	1892,33	143,58	1031,5	30
18/01/2010	10007,2	5.004	0	10007,2	0	0,51	1905,12	143,59	1011,95	30
19/01/2010	10009	5.004	0	10009	0	0,51	1918,64	143,6	992,15	30
20/01/2010	10011	5.006	0	10011	0	0,51	1932,08	143,6	972,44	30
21/01/2010	10013,8	5.007	0	10013,8	0	0,51	1944,27	143,61	953,86	30
22/01/2010	10015,2	5.008	0	10015,3	0	0,51	1955	143,61	937,07	30
23/01/2010	10017	5.008	0	10017	0	0,51	1964,62	143,62	921,38	30
24/01/2010	10021,5	5.011	0	10021,5	0	0,51	1973,53	143,63	905,87	30
25/01/2010	10013,5	5.007	0	10013,6	0	0,51	1994,73	143,61	880,73	30
26/01/2010	10022,4	5.011	0	10022,4	0	0,51	1996,94	143,63	871,09	30
27/01/2010	10019,6	5.010	0	10019,6	0	0,51	2020,64	143,62	842,44	30
28/01/2010	10147,3	5.074	0	10147,4	0	0,51	1984,83	143,94	845,83	30
29/01/2010	10085,4	5.043	0	10085,4	0,105	0,51	1988,87	143,81	849,33	30
30/01/2010	10028,6	5.014	0	10028,7	0	0,51	2031,81	143,64	812,87	30

0

0

0

0

0

0

38

38

38

38

38

38

31/01/2010	10025,7	5.013	0	10025,7	0	0,51	2032,5	143,64	807,43	30
01/02/2010	10025,7	5.013	0	10025,7	0	0,51	2032,5	143,64	807,43	30

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
16/01/2010	29407,5	64.696	0	29407,5	0	1,57	1928,84	154,88	(38
17/01/2010	29305,7	64.473	0	29305,8	0	1,56	1945,13	154,86	(38
18/01/2010	29206,5	64.254	0	29206,6	0	1,56	1960,91	154,84	(38
19/01/2010	29103	64.027	0,1	29103,1	0	1,55	1977,57	154,83	(38
20/01/2010	28999,4	63.799	0,1	28999,4	0	1,55	1994,26	154,81	(38
21/01/2010	28903,4	63.588	0,1	28903,5	0	1,54	2009,39	154,79	(38
22/01/2010	28815,5	63.394	0,1	28815,6	0	1,54	2022,88	154,78	(38
23/01/2010	28734,6	63.216	0,1	28734,7	0	1,53	2034,96	154,77	(38
24/01/2010	28659,5	63.051	0,1	28659,6	0	1,53	2046,09	154,76	(38
25/01/2010	28505,1	62.711	0,1	28505,2	0	1,52	2073,34	154,73	(38
26/01/2010	28474,1	62.643	0,1	28474,3	0	1,52	2075,85	154,73	(38

0

0,072

0

0

0

0

1,51

1,52

1,52

1,5

1,5

1,5

2106,3

2056,15

2062,14

2120,42

2120,68

2120,68

154,7

154,74

154,73

154,68

154,67

154,67

28303,7

28536,3

28488,3

28178,7

28159,8

28159,8

0,1

0,2

0,2

0,2

0,2

0,2

62.268

62.779

62.674

61.993

61.951

61.951

27/01/2010 28303,5

29/01/2010 28488,2

30/01/2010 28178,5

01/02/2010 28159,6

28536,1

28159,6

28/01/2010

31/01/2010

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
16/01/2010	19952,6	43.896	0	19952,6	0	1,06	1928,84	153,21	1122,88	38
17/01/2010	19955,9	43.903	0	19955,9	0	1,06	1945,13	153,21	1101,78	38
18/01/2010	19956,9	43.905	0	19956,9	0	1,06	1960,91	153,21	1081,61	38
19/01/2010	19956,8	43.905	0	19956,9	0	1,06	1977,57	153,21	1060,77	38
20/01/2010	19956,6	43.905	0	19956,6	0	1,06	1994,26	153,21	1039,97	38
21/01/2010	19955,9	43.903	0	19956	0	1,06	2009,39	153,21	1020,83	38
22/01/2010	19953,8	43.898	0,1	19953,9	0	1,06	2022,88	153,21	1003,58	38
23/01/2010	19951,9	43.894	0,1	19952	0	1,06	2034,96	153,21	987,73	38
24/01/2010	19953,2	43.897	0,1	19953,2	0	1,06	2046,09	153,21	972,55	38
25/01/2010	19955,6	43.902	0,1	19955,6	0	1,06	2073,34	153,21	941,28	38
26/01/2010	19954,4	43.900	0,1	19954,5	0	1,06	2075,85	153,21	935,4	38
27/01/2010	19970,6	43.935	0,1	19970,7	0	1,06	2106,3	153,22	898,7	38
28/01/2010	20135,2	44.297	0,1	20135,3	0	1,07	2056,15	153,31	917,71	38
29/01/2010	20035,1	44.077	0,1	20035,3	0,11	1,07	2062,14	153,26	925	38
30/01/2010	19956,7	43.905	0,1	19956,8	0	1,06	2120,42	153,21	876,41	38

31/01/2010	19953	43.897	0,1	19953,1	0	1,06	2120,68	153,21	873,36	38
01/02/2010	19953	43.897	0,1	19953,1	0	1,06	2120,68	153,21	873,36	38

# Well: P6 #	
############	##

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig 	deg F	psi 	API
16/01/2010	9976,1	21.947	0	9976,1	0	0,53	1928,84	146,86	1757,48	38
17/01/2010	9977,6	21.951	0	9977,6	0	0,53	1945,13	146,86	1736,71	38
18/01/2010	9978,5	21.953	0	9978,5	0	0,53	1960,91	146,87	1716,6	38
19/01/2010	9978,1	21.952	0	9978,1	0	0,53	1977,57	146,87	1695,94	38
20/01/2010	9978,7	21.953	0	9978,7	0	0,53	1994,26	146,87	1675,07	38
21/01/2010	9977,8	21.951	0	9977,9	0	0,53	2009,39	146,86	1656,12	38
22/01/2010	9977,1	21.950	0	9977,1	0	0,53	2022,88	146,86	1638,79	38
23/01/2010	9976,1	21.947	0	9976,1	0	0,53	2034,96	146,86	1622,97	38
24/01/2010	9976,6	21.949	0	9976,7	0	0,53	2046,09	146,86	1607,96	38
25/01/2010	9977,7	21.951	0	9977,7	0	0,53	2073,34	146,86	1576,94	38
26/01/2010	9977,3	21.950	0	9977,3	0	0,53	2075,85	146,86	1571,04	38
27/01/2010	9986,7	21.971	0,1	9986,8	0	0,53	2106,3	146,88	1535,01	38
28/01/2010	10089,2	22.196	0,1	10089,2	0	0,54	2056,15	147,09	1558,45	38
29/01/2010	10027,1	22.060	0,1	10027,2	0,11	0,53	2062,14	146,98	1563,16	38
30/01/2010	9978,4	21.953	0,1	9978,5	0	0,53	2120,42	146,87	1512,54	38
31/01/2010	9975,6	21.946	0,1	9975,7	0	0,53	2120,68	146,86	1509,59	38
01/02/2010	9975,6	21.946	0,1	9975,7	0	0,53	2120,68	146,86	1509,59	38

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
16/01/2010	30617,8	15.309	1,5	30619,2	0	1,55	1550,61	153,73	(30
17/01/2010	30643,6	15.322	1,7	30645,3	0	1,56	1513,85	153,73	(30
18/01/2010	30662,9	15.331	2	30664,9	0	1,56	1478,31	153,74	(30
19/01/2010	30705,4	15.353	2,3	30707,8	0	1,56	1440,84	153,74	(30
20/01/2010	30747,7	15.374	2,7	30750,3	0	1,56	1403,75	153,75	(30
21/01/2010	30769,1	15.385	3	30772,1	0	1,56	1369,36	153,76	(30
22/01/2010	30802,8	15.401	3,4	30806,2	0	1,56	1333,89	153,76	(30
23/01/2010	30838,5	15.419	3,8	30842,3	0,007	1,57	1298,66	153,77	(30
24/01/2010	30825	15.412	4,2	30829,2	0	1,56	1269,44	153,77	(30
25/01/2010	31089,6	15.545	4,7	31094,3	0	1,58	1208,46	153,82	(30
26/01/2010	30925,9	15.463	5,2	30931,1	0,023	1,57	1196,84	153,79	(30
27/01/2010	31258,1	15.629	5,8	31263,8	0	1,59	1132,38	153,86	(30
28/01/2010	30005,7	15.003	6,1	30011,8	0,034	1,52	1242,7	153,6	(30
29/01/2010	29931,9	14.966	6,6	29938,5	0,041	1,52	1223,53	153,59	(30
30/01/2010	30846,3	15.423	7,4	30853,6	0,976	1,57	1101,38	153,81	(30

31/01/2010	30655,5	15.328	8	30663,4	0,871	1,56	1094,85	153,77	0	30
01/02/2010	30655,5	15.328	8	30663,4	0,871	1,56	1094,85	153,77	0	30

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
16/01/2010	10207,4	5.104	0,5	10207,9	0	0,52	1550,61	144,09	814,11	30
17/01/2010	10215,2	5.108	0,6	10215,7	0	0,52	1513,85	144,1	814,32	30
18/01/2010	10220,6	5.110	0,7	10221,2	0	0,52	1478,31	144,12	814,28	30
19/01/2010	10235,1	5.118	0,8	10235,9	0	0,52	1440,84	144,15	815,8	30
20/01/2010	10249,8	5.125	0,9	10250,7	0	0,52	1403,75	144,19	817,76	30
21/01/2010	10256	5.128	1	10257	0	0,52	1369,36	144,21	819,04	30
22/01/2010	10267,7	5.134	1,1	10268,8	0	0,52	1333,89	144,24	820,65	30
23/01/2010	10280,2	5.140	1,3	10281,4	0	0,52	1298,66	144,27	822,32	30
24/01/2010	10271,5	5.136	1,4	10272,9	0	0,52	1269,44	144,25	822,56	30
25/01/2010	10380,3	5.190	1,6	10381,9	0	0,53	1208,46	144,35	830,48	30
26/01/2010	10308,9	5.154	1,7	10310,6	0	0,52	1196,84	144,3	826,6	30
27/01/2010	10475,8	5.238	1,9	10477,7	0	0,53	1132,38	144,42	826,1	30
28/01/2010	9891,6	4.946	2	9893,6	0	0,5	1242,7	143,31	802,99	30
29/01/2010	10115,8	5.058	2,2	10118	0,033	0,51	1223,53	143,87	750,46	30
30/01/2010	10342,3	5.171	2,5	10344,8	0	0,52	1101,38	144,33	799,71	30
31/01/2010	10351	5.176	2,7	10353,7	0	0,53	1094,85	144,33	775,56	30
01/02/2010	10351	5.176	2,7	10353,7	0	0,53	1094,85	144,33	775,56	30

E.3. Escenario 3

Información Económica

GOAL

Quota 120000 STB

TAX REGIME

LabelTR1Revenue from oil50US\$/STBRevenue from sales gas1500US\$/MMscfCost of water processing10US\$/STBCost of gaslift gas2US\$/MMscfCost of power10US\$/hpCost of power fluid10US\$/STBCost of diluent15US\$/STB

Información de Producción

PotentialProduction 200000 STB/day
Gas Availability 50 MMscf/day
Separator A Capacity 50.000 STB/day
Separator B Capacity 50.000 STB/day
Separator C Capacity 50.000 STB/day

Well	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
P1 P2	23691,3 19905,3	11.846 9.953	0	23691,3 19905,3	0,156 0,365	1,2 1,01	1170,28 1170,28	152,32 151,36	1812,37 1594,43	30 30
Р3	6277,2	3.139	0	6277,2	0,844	0,32	1170,28	134,9	2653,91	3

P4	27345,6	60.160	0	27345,6	0,286	1,46	2414,7	154,55	0	38
P5	19887,1	43.752	0	19887,1	0,11	1,06	2414,7	153,17	721,25	38
P6	9943,7	21.876	0	9943,7	0,11	0,53	2414,7	146,81	1350,46	38
P7	29865,8	14.933	0	29865,8	0,122	1,52	1630,75	153,58	622,32	30
P8	9955,3	4.978	0	9955,3	0,887	0,51	1630,75	143,68	1409,75	30

Información de Tiempo Real

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	API
26/01/2010	119798,4	140.285	1,8	119800,2	0	6,2	33,07
27/01/2010	119672,3	140.192	2	119674,3	0	6,19	33,07
28/01/2010	119994,1	140.840	2,2	119996,3	0	6,21	33,08
29/01/2010	120000,1	141.058	2,3	120002,4	0	6,21	33,09
30/01/2010	119961,2	141.061	2,6	119963,7	0,022	6,21	33,09
31/01/2010	119999,5	141.285	2,7	120002,2	0,018	6,21	33,1
01/02/2010	119875,6	141.203	2,9	119878,6	0,018	6,21	33,1
02/02/2010	119875,6	141.203	2,9	119878,6	0,018	6,21	33,1

###############

Well: P1

•

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
25/01/2010	23186,6	11.593	0	23186,7	0	1,18	1414,72	152,21	1512,36	
26/01/2010	23164,8	11.582	0	23164,8	0	1,18	1413,86	152,21	1510,69	
27/01/2010	23143,7	11.572	0	23143,7	0	1,17	1413	152,2	1509	
28/01/2010	23138,3	11.569	0	23138,3	0	1,17	1413,72	152,2	1503,93	
29/01/2010	23115,3	11.558	0,1	23115,4	0	1,17	1412,48	152,2	1502,93	
30/01/2010	22992,2	11.496	0,1	22992,2	0	1,17	1407,65	152,17	1517,39	
31/01/2010	22999,1	11.500	0,1	22999,1	0	1,17	1408,02	152,17	1511,39	
01/02/2010	22978	11.489	0,1	22978	0	1,17	1407,42	152,17	1509,71	
02/02/2010	22978	11.489	0,1	22978	0	1,17	1407,42	152,17	1509,71	

#	Well: P1 #
##	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
25/01/2010	23186,6	11.593	0	23186,7	0	1,18	1414,72	152,21	1512,36	30
26/01/2010	23164,8	11.582	0	23164,8	0	1,18	1413,86	152,21	1510,69	30
27/01/2010	23143,7	11.572	0	23143,7	0	1,17	1413	152,2	1509	30
28/01/2010	23138,3	11.569	0	23138,3	0	1,17	1413,72	152,2	1503,93	30
29/01/2010	23115,3	11.558	0,1	23115,4	0	1,17	1412,48	152,2	1502,93	30
30/01/2010	22992,2	11.496	0,1	22992,2	0	1,17	1407,65	152,17	1517,39	30
31/01/2010	22999,1	11.500	0,1	22999,1	0	1,17	1408,02	152,17	1511,39	30
01/02/2010	22978	11.489	0,1	22978	0	1,17	1407,42	152,17	1509,71	30
02/02/2010	22978	11.489	0,1	22978	0	1,17	1407,42	152,17	1509,71	30

###############

Well: P2 #

Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
25/01/2010	18701,3	9.351	0	18701,4	0	0,95	1414,72	150,46	1389,41	30
26/01/2010	18684,3	9.342	0	18684,4	0	0,95	1413,86	150,44	1387,39	30
27/01/2010	18668	9.334	0	18668,1	0	0,95	1413	150,43	1385,37	30
28/01/2010	18643,4	9.322	0	18643,4	0	0,95	1413,72	150,41	1382,85	30
29/01/2010	18609,7	9.305	0	18609,8	0	0,94	1412,48	150,39	1383,48	30
30/01/2010	18482,4	9.241	0	18482,4	0	0,94	1407,65	150,3	1399,51	30
31/01/2010	18448,8	9.224	0	18448,8	0	0,94	1408,02	150,27	1398,64	30
01/02/2010	18432	9.216	0,1	18432,1	0	0,94	1407,42	150,26	1396,66	30
02/02/2010	18432	9.216	0,1	18432,1	0	0,94	1407,42	150,26	1396,66	30

Well: P3 #

Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
9973,2	4.987	0	9973,2	0	0,51	1414,72	143,51	1509,19	30
9963,4	4.982	0	9963,4	0	0,51	1413,86	143,48	1507,1	30
9953,6	4.977	0	9953,6	0	0,51	1413	143,46	1505,07	30
10010,6	5.005	0	10010,6	0	0,51	1413,72	143,6	1487,43	30
10012,8	5.006	0	10012,8	0	0,51	1412,48	143,61	1483,35	30
9984,8	4.992	0	9984,8	0,002	0,51	1407,65	143,54	1489,28	30
10015,8	5.008	0	10015,8	0	0,51	1408,02	143,61	1477,64	30
	STB/day 9973,2 9963,4 9953,6 10010,6 10012,8 9984,8	STB/day MMscf/day 	STB/day MMscf/day STB/day 9973,2 4.987 0 9963,4 4.982 0 9953,6 4.977 0 10010,6 5.005 0 10012,8 5.006 0 9984,8 4.992 0	STB/day MMscf/day STB/day STB/day 9973,2 4.987 0 9973,2 9963,4 4.982 0 9963,4 9953,6 4.977 0 9953,6 10010,6 5.005 0 10010,6 10012,8 5.006 0 10012,8 9984,8 4.992 0 9984,8	STB/day MMscf/day STB/day STB/day Injection Rate MMscf/day 9973,2 4.987 0 9973,2 0 9963,4 4.982 0 9963,4 0 9953,6 4.977 0 9953,6 0 10010,6 5.005 0 10010,6 0 10012,8 5.006 0 10012,8 0 9984,8 4.992 0 9984,8 0,002	STB/day MMscf/day STB/day STB/day Injection Rate MMscf/day MMUS\$/day 9973,2 4.987 0 9973,2 0 0,51 9963,4 4.982 0 9963,4 0 0,51 9953,6 4.977 0 9953,6 0 0,51 10010,6 5.005 0 10010,6 0 0,51 10012,8 5.006 0 10012,8 0 0,51 9984,8 4.992 0 9984,8 0,002 0,51	STB/day MMscf/day STB/day STB/day MMscf/day MMUS\$/day psig 9973,2 4.987 0 9973,2 0 0,51 1414,72 9963,4 4.982 0 9963,4 0 0,51 1413,86 9953,6 4.977 0 9953,6 0 0,51 1413 10010,6 5.005 0 10010,6 0 0,51 1413,72 10012,8 5.006 0 10012,8 0 0,51 1412,48 9984,8 4.992 0 9984,8 0,002 0,51 1407,65	STB/day MMscf/day STB/day STB/day MMscf/day MMUS\$/day psig deg F	STB/day MMscf/day STB/day STB/day MMscf/day MMUS\$/day psig deg F psi

Universidad de los Andes Doctorado en Ciencias Aplicadas

01/02/2010	10005,9	5.003	0	10005,9	0	0,51	1407,42	143,59	1475,63	30
02/02/2010	10005,9	5.003	0	10005,9	0	0,51	1407,42	143,59	1475,63	30
	######################################	#								
Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
25/01/2010	20240,6	44.529	0,1	20240,6	0	1,08	1393,58	153,38	2262,4	3
26/01/2010		44.513	0,1		0					3
	20233,2	44.513 44.498		20233,3	0	1,08	1392,71	153,37 153,37	2261,06 2260,04	3
27/01/2010 28/01/2010	20226,4 20353,1	44.498 44.777	0,1 0,1	20226,5 20353,2	0	1,08 1,08	1391,48 1398,96	153,37 153,41	2229,42	3
29/01/2010	20353,1	44.777	0,1	20353,2	0	1,08	1401,41	153,41	2229,42	3
30/01/2010	20380,1	44.849	0,1	20380,2	0	1,08	1401,41	153,42	2242,75	3
31/01/2010	20303,2	44.667	0,1	20303,3	0	1,08	1407,28	153,41	2219,98	3
01/02/2010	20303,2	44.658	0,1	20299,1	0	1,08	1403,00	153,41	2219,38	3
02/02/2010	20299	44.658	0,1	20299,1	0	1,08	1407,76	153,41	2219,25	3
	######################################	#								
Date		#	Water Rate	Liquid Rate	Gas Lift	Revenue	Pressure	Temperature	dP Choke	Oil gravit
Date	# Well: P5 ######### Oil Rate	# ##### Gas Rate			Injection Rate					-
Date 	# Well: P5 #########	# #####	Water Rate STB/day	Liquid Rate STB/day	Injection	Revenue MMUS\$/day	Pressure psig	Temperature deg F	dP Choke psi	Oil gravit API
25/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4	# ##### Gas Rate MMscf/day 37.579	STB/day 0	STB/day 17081,4	Injection Rate MMscf/day 0	MMUS\$/day 	psig 1393,58	deg F 151,51	psi 2113,24	API
25/01/2010 26/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2	# ##### Gas Rate MMscf/day 37.579 37.563	STB/day 0 0,1	STB/day 17081,4 17074,3	Injection Rate MMscf/day 0 0 0	MMUS\$/day 0,91 0,91	psig 1393,58 1392,71	deg F 151,51 151,51	psi 2113,24 2112,13	API 3 3
25/01/2010 26/01/2010 27/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068	###### Gas Rate MMscf/day 37.579 37.563 37.550	STB/day 0 0,1 0,1	STB/day 17081,4 17074,3 17068,1	Injection Rate MMscf/day 0 0 0	MMUS\$/day 0,91 0,91 0,91	psig 1393,58 1392,71 1391,48	deg F 	psi 2113,24 2112,13 2111,25	API 3 3
25/01/2010 26/01/2010 27/01/2010 28/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2	####### Gas Rate MMscf/day 37.579 37.563 37.550 37.909	STB/day 0 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3	Injection Rate MMscf/day 0 0 0	MMUS\$/day 0,91 0,91 0,91 0,92	psig 1393,58 1392,71 1391,48 1398,96	deg F 151,51 151,51 151,5 151,6	psi 2113,24 2112,13 2111,25 2074,23	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9	######################################	STB/day 0 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324	Injection Rate MMscf/day 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,91 0,92 0,92	psig 1393,58 1392,71 1391,48 1398,96 1401,41	deg F 151,51 151,51 151,6 151,6	psi 2113,24 2112,13 2111,25 2074,23 2053,77	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5	######################################	STB/day 0 0,1 0,1 0,1 0,1 0,1	STB/day 	Injection Rate MMscf/day 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,92	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28	deg F 151,51 151,51 151,6 151,6 151,65 151,79	psi	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010 31/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5 17539,8	####### Gas Rate MMscf/day 37.579 37.563 37.550 37.909 38.113 38.613 38.587	STB/day 0 0,1 0,1 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324 17551,5 17539,8	Injection Rate MMscf/day 0 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,92 0,94 0,93	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28 1409,06	deg F 151,51 151,51 151,5 151,6 151,65 151,79 151,78	psi	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010 31/01/2010 01/02/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5 17539,8 17534,9	####### Gas Rate MMscf/day 37.579 37.563 37.550 37.909 38.113 38.613 38.587 38.577	STB/day 0 0,1 0,1 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324 17551,5 17539,8 17535	Injection Rate MMscf/day 0 0 0 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,94 0,93 0,93	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28 1409,06 1407,76	deg F 151,51 151,51 151,5 151,6 151,65 151,79 151,78 151,78	psi 2113,24 2112,13 2111,25 2074,23 2053,77 2007,74 2005,11 2004,44	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010 31/01/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5 17539,8	####### Gas Rate MMscf/day 37.579 37.563 37.550 37.909 38.113 38.613 38.587	STB/day 0 0,1 0,1 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324 17551,5 17539,8	Injection Rate MMscf/day 0 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,92 0,94 0,93	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28 1409,06	deg F 151,51 151,51 151,5 151,6 151,65 151,79 151,78	psi	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010 31/01/2010 01/02/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5 17539,8 17534,9	###### Gas Rate MMscf/day 37.579 37.563 37.550 37.909 38.113 38.613 38.587 38.577 38.577	STB/day 0 0,1 0,1 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324 17551,5 17539,8 17535	Injection Rate MMscf/day 0 0 0 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,94 0,93 0,93	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28 1409,06 1407,76	deg F 151,51 151,51 151,5 151,6 151,65 151,79 151,78 151,78	psi 2113,24 2112,13 2111,25 2074,23 2053,77 2007,74 2005,11 2004,44	API
25/01/2010 26/01/2010 27/01/2010 28/01/2010 29/01/2010 30/01/2010 31/01/2010 01/02/2010	# Well: P5 ######### Oil Rate STB/day 17081,4 17074,2 17068 17231,2 17323,9 17551,5 17539,8 17534,9 17534,9 ####################################	###### Gas Rate MMscf/day 37.579 37.563 37.550 37.909 38.113 38.613 38.587 38.577 38.577	STB/day 0 0,1 0,1 0,1 0,1 0,1 0,1	STB/day 17081,4 17074,3 17068,1 17231,3 17324 17551,5 17539,8 17535	Injection Rate MMscf/day 0 0 0 0 0 0 0 0 0 0	MMUS\$/day 0,91 0,91 0,92 0,92 0,94 0,93 0,93	psig 1393,58 1392,71 1391,48 1398,96 1401,41 1407,28 1409,06 1407,76	deg F 151,51 151,51 151,5 151,6 151,65 151,79 151,78 151,78	psi 2113,24 2112,13 2111,25 2074,23 2053,77 2007,74 2005,11 2004,44	API

25/01/2010	9983,5	21.964	0	9983,5	0	0,53	1393,58	146,88	2276,35	38
26/01/2010	9978,3	21.952	0	9978,4	0	0,53	1392,71	146,87	2275,27	38
27/01/2010	9973,7	21.942	0	9973,7	0	0,53	1391,48	146,86	2274,45	38
28/01/2010	9970,1	21.934	0	9970,2	0	0,53	1398,96	146,85	2265,01	38
29/01/2010	9971,4	21.937	0	9971,4	0	0,53	1401,41	146,85	2259,53	38
30/01/2010	9970,8	21.936	0	9970,8	0	0,53	1407,28	146,85	2251,06	38
31/01/2010	9972,1	21.939	0	9972,2	0	0,53	1409,06	146,85	2246,26	38
01/02/2010	9968,9	21.932	0,1	9969	0	0,53	1407,76	146,85	2245,57	38
02/02/2010	9968,9	21.932	0,1	9969	0	0,53	1407,76	146,85	2245,57	38
	######################################	#								
Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi	API
25/01/2010	20750 6	10.380	1 5	20761.1	0	1.05	1224.02	151 72	1356,09	30
26/01/2010	20759,6 20700,1	10.350	1,5	20761,1 20701,7	0	1,05 1,05	1324,92 1323,4	151,72 151,71	1351,67	30
	20638,8		1,6		0					30
27/01/2010		10.319	1,7	20640,6		1,05	1322,17	151,69	1347	
28/01/2010	20647,4	10.324	1,9	20649,3	0	1,05	1328,81	151,69	1326,31	30
29/01/2010	20580,9	10.290	2	20582,9	0	1,04	1330,83	151,68	1318,84	30
30/01/2010	20807,3	10.404	2,2	20809,5	0,019	1,06	1332,54	151,73	1277,72	30
31/01/2010	20720,8	10.360	2,4	20723,2	0,018	1,05	1333,86	151,71	1272,93	30
01/02/2010	20656,9	10.328	2,5	20659,4	0,018	1,05	1332,56	151,7	1268,31	30
02/02/2010	20656,9	10.328	2,5	20659,4	0,018	1,05	1332,56	151,7	1268,31	30
	######################################	#								
Date	Oil Rate	Gas Rate	Water Rate	Liquid Rate	Gas Lift Injection Rate	Revenue	Pressure	Temperature	dP Choke	Oil gravity
	STB/day	MMscf/day	STB/day	STB/day	MMscf/day	MMUS\$/day	psig	deg F	psi 	API
25/01/2010	0	0	0	0	0	0		0	0	0
26/01/2010	0	0	0	0	0	0		0	0	0
27/01/2010	0	0	0	0	0	0		0	0	0
28/01/2010	0	0	0	0	0	0		0	0	0
29/01/2010	0	0	0	0	0	0		0	0	0
30/01/2010	0	0	0	0	0	0		0	0	0
31/01/2010	0	0	0	0	0	0		0	0	0
01/02/2010	0	0	0	0	0	0		0	0	0

02/02/2010

Bibliografía

Aguilar, José, Isabel Besembel, Mariela Cerrada, Francisco Hidrobo, and Flor Narciso. "Una Metodología para el Modelado de Sistemas de Ingeniería Orientado a Agentes." *Inteligencia Artificial, Revista Iberoamericana de IA*, 2008: 39-60.

Apache Foundation. *Apache POI Project.* http://poi.apache.org/.

Apache Foundation. The Apache Ant Project. ant.apache.org.

Babicenau, Radu, and Frank Chen. "Development and applications of holonic manufacturing systems: a survey." *Journal of Intelligent Manufacturing*, 2006: 111–131.

Barry, D. Web Services and Service Oriented Architecture. The Savvy Manager's Guide. USA: MG Publishers. Elsevier, 2003.

Bieker, H.P., O. Slupphaug, and T.A. Johansen. "Real Time Production Optimization of Offshore Oil and Gas Production Systems: A Technology Survey." *2006 SPE Intelligent Energy Conference and Exhibition*. Amsterdam, 2006.

Bigus, Joseph, and Jennifer Bigus. *Constructing Intelligent Agents Using Java*. USA: Jhon Wiley and Sons, Inc., 2001.

Bravo, C., J. Aguilar, F. Rivas, and M. Cerrada. "Design of an Architecture for Industrial Automation based on Multi-agents Systems." *Proceedings of 16th IFAC World Congress.* Prague, 2005.

CERA. *Digital Oil Field of the Future. Lessons from Other Industries. White Paper.* Cambridge Energy Research Institute Inc., 2006.

CERA. *DOFF-related Transitions and Transformations. DIGITAL OIL FIELD OF THE FUTURE Forum.* Cambridge Energy Research Institute Inc., 2006.

CERA. *Making the Leap Toward DOFF Adoption. White Paper. Winter 2005.* Cambridge Energy Research Associates Inc., 2005.

Chacón, Edgar. "Modelado y control de sistemas continuos de producción bajo una visión holónica" Grupo de Trabajo de Automatización Integrada. ULA. USB. UDO., 2001.

Chacón, Edgar, Isabel Besembel, and Jean C. Hennet. "Coordination and Optimization in Oil & Gas Production Complexes." Universiad de los Andes - LAAS, 2003.

CIMOSA. CIM Open System Architecture. http://cimosa.cnt.pl/.

Ella, R., L. Reid, D. Russell, D. Jhonson, and S. Davidson. "The Central Role and Challenges of Integrated Production Operations." *2006 SPE Intelligent Energy Conference and Exhibition*. Amsterdam, 2006.

Energistics. Energistics. www.energistics.org.

Esteva, Marc, Juan Antonio Rodríguez, Carles Sierra, Pere García, and Josep Lluís Arcos. "On the forma specifications of electronic institutions. Lecture Notes in Artificial Intelligence." *Agent-Mediated Electronic Commerce (The AgentLink Perspective)*. Frank Dignum and Carles Sierra Editors, 2001. 126-147.

FIPA. Foundation for Intelligent Physical Agents. www.fipa.org.

Foundation for Intelligent Physical Agents. *FIPA Communicative Act Library Specification*. Geneva, 1996-2002.

García-Camino, A., P. Noriega, and J.A. Rodríguez. "Implementing Norms in Electronic Institutions." *AAMAS'05*. Utrecht, Netherlands, 2005.

Halliburton. AssetConnect™ Integrated Asset Model. http://www.halliburton.com/ps/default.aspx?pageid=1609&navid=228&prodid=PRN::JK7DIC15.

Hydro. "An Oil and Gas Ontology is required for Integrated Operations." *Norwegian Semantic Days* 2007. Stavanger, 2007.

IIIA-CSIC. *Electronic Institutions Development Environment (EIDE).* http://e-institutions.iiia.csic.es/eide/pub.

IIIA-CSIC eMarkets Group UTS. "Towards Organisational-oriented ProgrammingElectronic Institutions Development Environment." Belaterra, Catalonia.

IIIA-CSIC. Instituto de Investigación en Inteligencia Artificial IIIA. http://www.iiia.csic.es.

International Society of Automation. "ANSI/ISA 95.00.01. Enterprise Control System Integration. Part 1: Models and Terminology." 2003.

International Standard Organization (ISO). "Industrial automation systems and integration -- Open systems application integration framework -- Part 1: Generic reference description." 2003.

ISA. ANSI/ISA-88.01-1995 Batch Control Part 1: Models and Terminology (Formerly ANSI/ISA-588.01-1995). ISA, 1995.

ISA. ANSI/ISA-95.00.01-2000 Enterprise-Control System Integration Part 1: Models and Terminology. ISA, 2000.

ISO. ISO 15926: Industrial Automation Systemd and Integration - Integration of Lifecycle of data for process plans including oil & gas production facilities. International Standards Organization, 2003.

ISO/OSI. Industrial automation systems and integration -- Product data representation and exchange -- Part 42: Integrated generic resources: Geometric and topological representation. 1994.

JBoss. JBoss Community. www.jboss.org.

Jennings, N., and S. Bussmann. "Agent Based Control Systems." *IEEE Control Systems Magazine*, 2003.

Landmark. Landmark. www.landmark.com.

Litchicum, David. *Next Generation Application Integration. From Simple Information to Web Services.* Addison Wesley Information Technology Series, 2004.

Marik, Vladimir, and Pavel Vrba. "Simulation in Agent Based Control Systems: a MAST Case Study." *16th IFAC World Congress Proceedings.* Prague, 2005.

Muñoz, Ana, and José Aguilar. "Ontología para Bases de Datos Orientadas a Objetos y Multimedia" *Revista Avances en Sistemas e Informática, Vol.4 No. 3,,* 2007.

NASA. Jet Propulsion Laboratory. California Institute of Technology. *SWEET Ontologies*. 2009. http://sweet.jpl.nasa.gov/ontology/.

Noriega, Pablo, and Carles Sierra. "Electronic institutions: Future trends and challenges. ." *Lecture Notes in Artificial Intelligence*. Matthias Klusch, Sascha Ossowski and Onn Shehory (Eds.)., 2002. 14-17.

Olmheim, Jorn, Einar Landre, and Eileen Quale. "Improving Production by Use of Autonomous Systems." 2008 SPE Intelligent Energy Conference and Exhibition. Amsterdam, 2008.

OpenSpirit. OpenSpirit. www.openspirit.com.

PABADIS. "Plant Automation bases on Distributed Systems. Revolutionising Plant Automation - The PABADIS Approach." 2002. www.pabadis.org.

POSC. "Integrated Operations in the High North." 2009. https://www.posccaesar.org/wiki/IOHN.

POSC. "Oil & Gas Ontology." https://www.posccaesar.org/wiki/PCA/IO/OilAndGasOntology.

POSC. "Reference Architecture PRODML 1.0. ." 2006. www.prodml.org.

POSC. "WITSML Data Schema Overview." 2003-2006.

Potters, H., and P. Kapteijn. "Reservoir Survelliance and Smart Fields." *International Petroleum Technology Conference*. Doha, Qatar, 2005.

PSLX Consortium. *PSLX Consortium Planning & Scheduling Language on XML Specification*. 2005. http://www.pslx.org/en/.

Purdue University. PERA Enterprise Integration Web Site. www.pera.net.

Reddick, Chris. "Field of the Future Program: Planning for Success." 2007 SPE Digital Energy Conference and Exhibition. Houston, 2007.

Russell, Stuart, and Peter Norvig. *Inteligencia Artificial. Un enfoque Moderno.* Madrid: Pearson. Prentice Hall, 2004.

Saputelli, L., M. Nikolau, and M.J. Economides. "Self Learning Reservoir Management." *2003 SPE Annual Technical Conference and Exhibition*. Denver, 2003.

Satter, Abdus, and Ganesh Thakur. *Integrated Petroleum Reservoir Management*. Tulsa: PennWell Books, 1994.

Schulte, Roy. Magic Quadrant for Integration Backbone Software 1H05. Gartner Group, 2005.

Shlumberger. SLB. www.slb.com.

Shoham, Y., and M. Tennenholtz. *On Social Laws for Artificial Agent Societies: Off-line Design.* Stanford, CA: Robotics Laboratory. Department of Computers Sciences. Stanford University, 2005.

Sierra, Carles. "Electronics institutions: Methodology of multi-agent systems development." *PRICAI* 2004: Trends in Artificial Intelligence, 8th Pacific Rim International Conference on Artificial Intelligence. Auckland: Chengqi Zhang, Hans W. Guesgen, and Wai-Kiang Yeap, editors., 2004.

Singh, Munindar, and Michael Huhns. *Service-Oriented Computing. Semantics, Processes, Agents.* Wiltshire: Wiley, 2005.

Sisk, Carl, Scott Fanty, and David Knox. "Application of Field of the Future to BP's North American Gas Operations." *2007 SPE Digital Energy Conference and Exhibition*. Houston, 2007.

Soma, R., A. Bakshi, A. Orangi, V.K. Prassana, and W. Da Sie. "A Service-Oriented Data Composition Architecture for Integrated Asset Management ." *2006 SPE Intelligent Energy Conference and Exhibition*. Amsterdam, 2006.

Soma, R., A. Bakshi, V. Prassanna, W. DaSie, and B. Bourgeois. "Semantic Web Technologies for Smart Oilfiled Applications." *2008 SPE Intelligent Energy Conference & Exhibition.* Amsterdam, 2008.

Stanford University. *Protégé*. 2009. http://protege.stanford.edu/.

Sun Microsystems Learning Services. *Developing Java Web Services*. Santa Clara: Sun Microsystems Inc., 2006.

The Eclipse Foundation. *Eclipse*. http://www.eclipse.org/.

The Norwegian Oil Industry Association (OLF). "Integrated Operations and the Oil & Gas Ontology." 2008. http://www.olf.no/io/.

UDT IA. IIIA-CSIC. *Islander User Guide. Chapter 3. Agents and Roles.* Barcelona, Catalunya, May 11, 2009.

Unneland, Trond, and Mike Hauser. "Real-Time Asset Management: From Vision to Engagement – An Operator's Experience." 2005 SPE Annual Technical Conference and Exhibition. Dallas, 2005.

W3C. "Extensible Markup Language (XML)." 1996-2003. http://www.w3.org/XML/.

W3C. OWL Web Ontology Language. 2004. http://www.w3.org/TR/owl-features/.

W3C. W3C Semantic Web. Resource Description Framework (RDF). 2004. http://www.w3.org/RDF/.

W3C. Web Ontology Language. www.w3.org/TR/owl-ref/.

Weatherford. LOWIS. www.weatherford.com.

Weiss, Gerard. *Multiagent Systems. A modern Approach to Distributed Artificial Intelligent.* London: The MIT Press, 1999.

Wins, J. Architecture for Holonic Manufacturing Systems: The Key to Support Evolution and Reconguration. Leuven: K.P Leuven PMA Division, 1999.

Wooldridge, Michael. An Introduction to Multiagent Systems. England: Wiley, 2002.

World Batch Forum. "B2MML: Business to Manufacturing Markup Language. Releases Notes." June 2004. www.wbf.org.

Zambrano, Alexander. *Fundamentos Básicos de un Pozo Consciente*. Caracas: Centro de Excenlencia de Producción. PDVSA EPM, 1999.

Zhang, C., A. Orangi, A. Bakshi, W. Da Sie, and V.K. Prassana. "Model-Based Framework for Oil Production Forecasting and Optimization: A Case Study in Integrated Asset Management." *2006 SPE Intelligent Energy Conference and Exhibition*. Amsterdam, 2006.