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Resumen

Este trabajo presenta un enfoque novedoso de explicabilidad dinamica aplicado a los Mapas Cognitivos
Difusos (MCD) en tareas de clasificacion. El objetivo es analizar las relaciones causales y la evolucién
temporal de los conceptos a lo largo del proceso de razonamiento. Se propone un método de explicabilidad
local que permite evaluar la importancia relativa de las variables a través del tiempo basada en sus
relaciones causales, facilitando asi una interpretacién mas precisa y detallada del comportamiento del
modelo. El método fue evaluado en cuatro conjuntos de datos: dengue, COVID-19, diabetes y fallos
en vehiculos submarinos auténomos. Se comparé su rendimiento explicativo con métodos cldsicos como
SHapley Additive exPlanations (SHAP), Feature Permutatio (FP), y medidas de centralidad basadas en
teoria de grafos. Ademads, se analizo la calidad de las explicaciones generadas por el método propuesto
mediante el enfoque ROAR (RemOve And Retrain), y se verifico que cumpliera con las propiedades
deseables en los métodos de explicabilidad. Los resultados demuestran que las explicaciones obtenidas
son coherentes con la dindmica de los MCD, superando en calidad a las obtenidas con SHAP y FP.
Se concluye que la propuesta mejora significativamente la comprensién y la confianza en los MCD en
tareas de clasificacion, posicionandose como una herramienta valiosa en contextos sensibles donde la

explicabilidad es un requisito fundamental.

Palabras clave: Inteligencia Artificial Explicable, Causalidad, Mapas Cognitivos Difusos,

Aprendizahe Automético, Clasificacién.






Abstract

This work presents a novel approach to dynamic explainability applied to Fuzzy Cognitive Maps (FCM)
in classification tasks. The objective is to analyze the causal relationships and the temporal evolution
of concepts throughout the reasoning process. A local explainability method is proposed that allows
evaluating the relative importance of variables over time based on their causal relationships, thus
facilitating a more precise and detailed interpretation of the model’s behavior. The method was evaluated
on four datasets: dengue, COVID-19, diabetes, and failures in autonomous underwater vehicles. Its
explanatory performance was compared with classical methods such as SHapley Additive exPlanations
(SHAP), Feature Permutation (FP), and centrality measures based on graph theory. Also, the quality of
the explanations generated by the proposed method is analyzed using the ROAR (RemOve And Retrain)
approach, and the fulfillment of desirable properties in explainability method is verified. The results
demonstrate that the explanations obtained are consistent with the dynamics of FCM, surpassing in
quality those obtained with SHAP and FP. It is concluded that the proposal significantly improves the
understanding and trust of FCMs in classification tasks, positioning itself as a valuable tool in sensitive

contexts where explainability is a fundamental requirement.

Keywords: ,Explainable Artificial Intelligence, Causality, Fuzzy Cognitive Maps, Machine Learning,

Classification.
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Capitulo 1

Introduccion

1.1 Contexto y Justificacion

La creciente adopcién de modelos de inteligencia artificial (IA) en entornos criticos como la medicina, la
ingenieria de sistemas, la ciberseguridad o la administracién ptublica, entre otros &mbitos, ha generado una
atencion creciente hacia la necesidad de transparencia, fiabilidad e interpretabilidad en los procesos de
decisién automatizados. Si bien los avances recientes en aprendizaje automéatico han permitido desarrollar
modelos de alta capacidad predictiva, estos a menudo presentan un comportamiento opaco que dificulta
la comprensién del razonamiento interno que guia sus decisiones. Este fenémeno, ampliamente conocido
como el "problema de la caja negra”, ha impulsado el desarrollo del campo de la Inteligencia Artificial
Explicable (IAE), cuya finalidad es dotar a los sistemas inteligentes de mecanismos que permitan entender,
auditar y justificar su comportamiento de forma comprensible para humanos, sin renunciar a su potencia

técnica.

En los ultimos anos, la investigacién en TAE ha ganado un papel central dentro del desarrollo de
sistemas inteligentes, especialmente a raiz del despliegue masivo de modelos altamente complejos como
las redes neuronales profundas o las ténicas de ensamblado como random forests o boosting. A pesar del
excelente rendimiento de estas técnicas en tareas de clasificacién, prediccién y generacion, los modelos
que generan carecen de interpretabilidad inherente, lo que dificulta su validacién, genera desconfianza en

usuarios finales, y puede conllevar a riesgos de aceptacién en entornos sensibles [1], [2].

Este conflicto entre precisién y transparencia ha motivado la aparicion de métodos de explicabilidad,
entre las que destacan métodos locales agndsticos como Local Interpretable Model-agnostic Explanations
(LIME) [3], aproximaciones basadas en teorfa de juegos como SHapley Additive exPlanations (SHAP)
[4], vy modelos visuales como Gradient-weighted Class Activation Mapping (Grad-CAM) [5]. Sin embargo,
gran parte de estas propuestas han sido disefiadas para modelos discriminativos estaticos basado en el
comportamiento de los datos, y no consideran el comportamiento iterativo o dinamico de ciertos sistemas
de inferencia, limitando asi su capacidad explicativa en escenarios mas complejos. En este contexto, resulta
crucial desarrollar nuevas metodologias de explicabilidad capaces de capturar la evolucién temporal y
causal de los modelos, particularmente en aquellos que presentan una estructura explicita de razonamiento

causal como los Mapas Cognitivos Difusos (MCDs).

Los MCDs se han consolidado como una herramienta de modelado especialmente adecuada para
representar sistemas complejos, dindmicos y con incertidumbre inherente. Su estructura basada en grafos
dirigidos ponderados permite integrar conocimiento experto e inferencia basada en relaciones causales

difusas, lo cual facilita su aplicacién en dominios como el diagnéstico médico, la prediccién de fenémenos
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sociales, el andlisis de sistemas industriales, o el disefio de politicas publicas [6]-[8]. A pesar de su
reconocida interpretabilidad estructural, el anélisis de explicabilidad en MCDs ha estado tradicionalmente
limitado a medidas estaticas, como las métricas de centralidad en teoria de grafos, la reduccién de la red
conceptual, o el estudio de pesos causales sin considerar su evolucién temporal [9]-[13]. Estos enfoques, si
bien utiles, presentan limitaciones al momento de capturar la dindmica real del modelo durante el proceso
de inferencia, donde las influencias causales entre conceptos no son constantes, sino que varian a medida
que el sistema se actualiza. Esta laguna metodologica motiva la necesidad de enfoques explicativos que
no solo identifiquen qué conceptos son relevantes, sino también cémo y cudndo emergen esas influencias

a lo largo del tiempo, en funcién de la evolucién interna del sistema.

El presente trabajo parte de la hipétesis de que, para lograr una comprensiéon profunda y contextual
del comportamiento de los MCDs, es necesario un enfoque de explicabilidad que no solo identifique
las relaciones relevantes, sino que también analice cémo evoluciona dindmicamente el comportamiento
del modelo a partir de una instancia especifica a predecir. En este contexto, se propone un método de
explicabilidad dindmico y local para MCDs, disenado especificamente para analizarlas relaciones causales
y la evolucién temporal de los conceptos a lo largo del proceso de razonamiento. Este método permite
evaluar la importancia relativa de las variables a través del tiempo, facilitando una interpretacién mas

precisa y detallada del comportamiento del modelo.

El objetivo central de esta investigacion es diseniar, implementar y validar empiricamente este enfoque,
evaluando su capacidad para generar explicaciones consistentes, interpretables y ttiles en contextos de
clasificacién basados en MCDs. Ademads, se propone comparar el método desarrollado con técnicas de
explicabilidad ampliamente utilizadas en la literatura, como SHAP y Feature Permutation (FP), asi

como evaluar su calidad usando medidas derivadas de la teoria de grafos aplicadas a MCDs.

Con el fin de evaluar la validez y aplicabilidad del método, se han empleado cuatro conjuntos de datos
reales: diagndéstico clinico de dengue, diagnéstico de COronaVIrus Disease 2019 (COVID-19), diagndstico
de pacientes con diabetes, y deteccién de fallos en vehiculos submarinos auténomos. Estos casos permiten
comprobar la robuztez del enfoque, su capacidad para generar conocimiento util, y su aplicabilidad en

escenarios donde la explicabilidad no es un complemento, sino una necesidad funcional y ética.

Para el desarrollo de este trabajo, se ha seguido una metodologia basada en el estandar Cross Industry
Standard Process for Data Mining (CRISP-DM), adaptado al contexto de la TAE. Los resultados obtenidos
muestran que el método propuesto permite no solo identificar con mayor precisién las variables que més
influyen en la salida del modelo para una instancia dada, sino también trazar una trayectoria causal
coherente a lo largo de las iteraciones, la cual refleja fielmente el comportamiento dindmico del sistema.
Ademas, las explicaciones generadas han demostrado cumplir con las propiedades esperadas en términos
de calidad, robustez y eficiencia en todo método de explicabilidad, lo que respalda su utilidad préactica y

su adecuacién para tareas de clasificacion basadas en MCDs.

Esta tesis, por tanto, propone un nuevo método de explicabilidad, el cual es una contribucién
completamente original en el campo de la IAE, al plantear un enfoque dinamico y local especificamente
disenado para MCDs, que no tiene precedentes en la literatura actual. A diferencia de los métodos
existentes, que se centran en explicaciones estaticas, el enfoque presentado analiza la evolucién temporal
del modelo, permitiendo identificar no solo qué conceptos influyen en su salida, sino también, cémo varia

su influencia a lo largo del proceso iterativo de razonamiento.

Este método ha sido desarrollado integramente en el marco de esta investigacién, y representa una
innovacién metodolégica sustancial, al integrar propiedades estructurales, dindmicas y causales en la
generacién de explicaciones. Hasta la fecha, no se ha reportado en la literatura un enfoque con las

caracteristicas definidas en esta investigacion aplicado a MCDs, lo que sitta esta propuesta como un
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avance pionero con alto potencial de impacto. Ademas, este enfoque abre nuevas lineas de investigacion
en torno a la integracién de explicabilidad dindmica en MCDs, con aplicaciones en contextos donde
la transparencia, la comprension y la justificacion del modelo son elementos indispensables para su

aceptacion y uso responsable.

1.2 Objetivos

El presente trabajo tiene como proposito desarrollar un método de explicabilidad dindmico para modelos
de clasificacién basados en MCDs, centrado en la evolucién de la relacion causal entre los conceptos a lo
largo del proceso de inferencia. Este enfoque propone abordar las limitaciones de los métodos existentes

en la literatura, que a menudo ignoran la naturaleza dindmica de los MCD. Los objetivos especificos son:

1. Analizar las relaciones causales entre las variables: Desarrollar un sistema que permita
observar y estudiar cémo evolucionan las relaciones causales entre conceptos durante el proceso
de inferencia ante entradas especificas. Este sistema debe evaluar la importancia relativa de las
variables a lo largo del tiempo a partir de alli, proporcionando una comprensiéon més profunda de

la dindmica del modelo y de las interacciones entre conceptos.

2. Desarrollar un método de explicabilidad local para MCD: Proponer un método que, a
partir de una instancia dada como entrada a un modelo de clasificacién basado en un MCD, sea
capaz de identificar con precisién las caracteristicas mas relevantes que influyen en su resultado.
Este método debe ofrecer explicaciones locales, centradas en instancias particulares, facilitando una

interpretacién clara de cémo se llega a un especifico resultado.

3. Observar el comportamiento global del modelo a partir de explicaciones locales: Aplicar
el método de explicabilidad a un conjunto de instancias para obtener una vision general del
comportamiento del modelo. Aunque no se trata de una explicacién global del modelo, este analisis
permite describir cémo ciertas variables afectan de forma recurrente las decisiones, revelando

patrones de comportamiento consistentes a lo largo del conjunto de datos.

4. Comparacién del método propuesto con clasicos métodos de explicabilidad: Evaluar
el desempeno del método propuesto comparandolo con otros métodos, particularmente poshoc
ampliamente utilizados en la literatura para la generacién de explicaciones. Esta evaluacién
permitira identificar las fortalezas, debilidades y diferencias del enfoque desarrollado respecto a

alternativas existentes.

5. Evaluacion de la calidad de las explicaciones generadas: Verificar la calidad de las
explicaciones locales producidas por el método propuesto mediante métricas adecuadas. Se busca
determinar su utilidad, precisién e interpretabilidad, asi como su impacto en la confianza y

comprensién por parte de los usuarios.

1.3 Contribuciones
A continuacién, se presentan las principales contribuciones de este trabajo:

¢ Se propone un método de explicabilidad dindmica para modelos de clasificacion basados en MCD,
que permite analizar el comportamiento temporal del sistema durante el proceso de inferencia, y

extraer las variables mas relevantes asociadas a una prediccién especifica.
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¢ Se introduce un enfoque de explicabilidad local centrado en instancias particulares, que facilita la

interpretacion de las decisiones individuales del modelo a partir del método desarrollado.

e Se realiza una evaluacién cuantitativa para compararlo con métodos de explicabilidad existentes,

evidenciando mejoras en fidelidad, interpretabilidad y utilidad de las explicaciones generadas.

¢ Se valida el método propuesto en diversos dominios del mundo real, demostrando su aplicabilidad,

utilidad y robustez en escenarios practicos.

1.4 Metodologia

Para la realizacién de este trabajo, se adopta la metodologia CRISP-DM [14], la cual estructura el ciclo
de vida de un proyecto de analisis de datos. Dado que el enfoque de este estudio se centra en el desarrollo
de un método de explicabilidad, se propone una adaptaciéon de la estructura tradicional de CRISP-DM
para ajustarse a los objetivos del proyecto. A continuacién, se describen brevemente las fases de este

proyecto, las cuales seran explicadas con mayor detalle en la seccion 3.

1. Comprensién del negocio: En esta fase se definen los objetivos del proyecto desde una perspectiva
aplicada, identificando los casos de uso pertinentes de los MCD. A su vez, se analiza cémo la
interpretabilidad dindmica puede abordar necesidades especificas en sectores como la salud, las

finanzas, el d&mbito legal, la seguridad y las ciencias sociales.

2. Desarrollo del método de explicabilidad para MCD: Se disefia y construye un método de
explicabilidad local enfocado en el comportamiento dindmico de los MCD. Este método permitira
identificar variables claves a partir del comportamiento de las relaciones causales a lo largo del

tiempo, generando explicaciones comprensibles para instancias individuales.

3. Entendimiento de los datos: Esta etapa comprende la recopilacién, exploracién y analisis de los
conjunto de datos a ser usados durante la experimentacion con nuestro método de explicabilidad.

Se evaliua la calidad de los datos, entre otras cosas.

4. Preparacién de los datos: Incluye el procesamiento necesario para limpiar, transformar y
seleccionar las variables. También se analizan las relaciones causales entre las variables, que se

utilizaran en la construccién de los modelos MCD.

5. Modelado: Se desarrollan los modelos de clasificacion basados en MCD. Ademas, se entrenan otros
modelos de clasificacion usando otras técnicas de aprendizaje automatico. En el caso concreto de
los MCD, en esta fase se modelan las relaciones entre conceptos y se calibran los pesos difusos para

capturar adecuadamente la evolucién de las interacciones entre variables.

6. Evaluacién: Se lleva a cabo la evaluacién del método propuesto, comparando su rendimiento
explicativo con otros métodos de explicabilidad de tipo pos- hoc de la literatura. Asimismo, se
analiza la calidad, utilidad e interpretabilidad de las explicaciones generadas, asi como su impacto

en la confianza de los usuarios en el modelo.

7. Implantaciéon: Finalmente, se formalizan los resultados obtenidos mediante la elaboracién de
informes técnicos y documentos cientificos. Esta fase incluye la difusion de los hallazgos y posibles

aplicaciones practicas del método de explicabilidad desarrollado en distintos contextos.



Capitulo 2

Estudio tedrico

En este capitulo se presenta un analisis detallado del marco tedrico que sustenta el presente trabajo. Se
inicia con una revisiéon del estado del arte, donde se examinan los avances y enfoques mas relevantes en
los temas relacionados a la tesis. Posteriormente, se profundiza en los MCDs, abordando su fundamento,
aplicaciones recientes, y las técnicas y variantes méas destacadas. A continuacién, se introduce el
concepto de TAE, incluyendo sus diversas taxonomias, las propiedades que debe cumplir un método de
explicabilidad, junto con una introduccion a la explicabilidad causal, su necesidad y los avances logrados

en esta area. Luego, se analiza el uso de los MCDs en el contexto de la explicabilidad.

2.1 Estado del Arte

El campo de la IAE ha experimentado un crecimiento significativo en su adopcion a lo largo de multiples
sectores [15]. Esta expansion se refleja en la distribucién sectorial de sus aplicaciones, presentada en la
Figura 2.1, donde se evidencia que el desarrollo y la implementacion de técnicas de TAE se han extendido
a diversos dominios. Entre ellos, el sector médico destaca por concentrar el 24 % de los casos reportados,

constituyendo la mayor proporcién de aplicaciones documentadas hasta la fecha [16].

Este crecimiento ha impulsado tanto la creaciéon de frameworks robustos y versatiles, que facilitan
la integracion de capacidades explicativas en sistemas de IA, como el desarrollo de métodos novedosos
orientados a mejorar la transparencia, interpretabilidad y explicabilidad de modelos complejos. Asimismo,
la comunidad investigadora ha mostrado un interés creciente en la incorporacién de principios causales
para fortalecer la fundamentacién tedrica y préactica de la explicabilidad. Las siguientes subsecciones
abordan estos avances recientes, organizados en tres ejes: frameworks, métodos explicativos e integracién

de causalidad.

2.1.1 Frameworks y Herramientas Recientes

La industria y la academia han promovido el desarrollo de herramientas orientadas a la TAE, incluyendo
frameworks capaces de integrar capacidades explicativas en sistemas complejos. Por ejemplo, Wang y otros
[17] propusieron un framework modular basado en microservicios y APIs abiertas que permite generar
explicaciones configurables y reproducibles a lo largo del ciclo de vida de un modelo de Aprendizaje
Automadtico (AA). Otro enfoque hibrido propuesto en [18] combina imdgenes médicas con datos tabulares
para detectar cancer de mama, incorporando mecanismos interpretables que identifican variables clinicas

clave.
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Figura 2.1: Distribucion porcentual de las aplicaciones de IAE segin el dominio.
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En el ambito de los sistemas IoT, Gummadi y otros [19] propusieron una solucién orientada a
la deteccién de anomalias que integra técnicas de AA con siete métodos explicativos para evaluar la
relevancia de distintas caracteristicas, resultando especialmente ttil en la monitorizacién de sensores
industriales y la identificacion de ataques tipo botnet. Finalmente, la literatura reciente reporta
diversos frameworks adicionales [20]-[24], lo que evidencia un interés creciente por desarrollar soluciones

explicativas adaptadas a distintas aplicaciones y dominios.

2.1.2 Meétodos Recientes en Explicabilidad

Paralelamente al desarrollo de herramientas, se observa una intensa actividad de investigacién orientada

a la creacién de nuevos métodos, o a la mejora de los métodos existentes de explicabilidad.

Entre los avances recientes en métodos de explicabilidad se incluyen mejoras en técnicas de atribucién,
refinamientos de algoritmos conceptuales, eliminacién de artefactos en explicaciones sintéticas, y el
desarrollo de técnicas que garantizan explicaciones mas robustas y fiables frente a variaciones en datos
o modelos [25]. Destacan, por ejemplo, propuestas como un método basado en SHAP aplicado a anélisis
de grafos que integra correlaciones mediante grafos no dirigidos, superando en precisién y eficiencia a
enfoques tradicionales [26]. De forma similar, se ha desarrollado una estrategia iterativa para la seleccién
explicable de caracteristicas, especialmente 1til en conjuntos de datos pequenos y de alta dimensionalidad
[27]. Asimismo, los métodos contrafactuales han ampliado su campo de aplicacién a nuevos dominios como

grafos [28] e imégenes [29], extendiendo considerablemente su utilidad.

Por otra parte, se han propuesto métodos recientes como el Andlisis de Casos Cercanos (ACC) [30],
que examina etiquetas con probabilidades similares en clasificacién de imagenes, generando grafos y
agrupaciones jerarquicas para construir conceptos interpretables y explicaciones verbales. De manera
complementaria, las Explicaciones Calibradas (EC) [31] incorporan un método basado en Venn-Abers
que calibra las salidas del modelo, asigna pesos confiables a las caracteristicas, y cuantifica con precisién

la incertidumbre.
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Finalmente, el interés por adaptar los métodos explicativos a modelos emergentes, tales como los
generativos o aquellos basados en aprendizaje distribuido y colaborativo, ha ido en aumento, dada la

complejidad particular que presentan en términos de interpretabilidad [32]-[35].

2.1.3 Explicabilidad Causal

En los dltimos afios, la incorporacién explicita de la causalidad en los métodos de explicabilidad ha
cobrado gran relevancia, superando las limitaciones de los enfoques correlacionales tradicionales (véase
2.3.4). El objetivo es generar explicaciones que no solo describan cémo se llegd a una decisién, sino
también por qué, considerando las relaciones causa-efecto subyacentes. Un elemento clave en esta
integracién son los Modelos Causales Estructurales (SCMs), que formalizan el conocimiento causal
de forma matematica, permitiendo no solo explicar decisiones basadas en relaciones causa-efecto, sino
también simular intervenciones hipotéticas y prever cémo cambios en ciertas variables impactan los

resultados del modelo.

Desde un punto de vista conceptual y tedrico, algunos autores han desarrollado marcos que conectan
la contrafactualidad de la inferencia causal con la explicabilidad en inteligencia artificial, promoviendo
una convergencia entre ambas disciplinas [36]. Asimismo, se ha propuesto la redefinicién de la causalidad y
contrafactualidad actual como ezplicaciones accionables, proporcionando una base filoséfico-metodolégica
robusta para el desarrollo de sistemas explicativos causales [37]. En ese contexto, también se han planteado
enfoques como el de Explicabilidad Emergente (EE) [38], que integra cadenas causales directamente en
el flujo de inferencia de redes neuronales, para facilitar explicaciones mas estructuradas y reveladoras de

las relaciones internas entre variables.

A su vez, la causalidad se ha incorporado en el diseio de modelos intrinsecamente interpretables,
como arboles de decisién causales o redes neuronales con estructuras causales predefinidas, mejorando la

transparencia y evitando divisiones o correlaciones espurias [39], [40].

En el plano metodolégico, se han desarrollado técnicas que integran conocimiento causal en etapas
concretas del proceso explicativo. Por ejemplo, se ha adaptado el cilculo de valores de Shapley para
preservar dependencias causales entre caracteristicas, logrando explicaciones mds fieles [41], y se han
extendido métodos locales como LIME con muestreos guiados por relaciones causales para mejorar la
coherencia y estabilidad de las explicaciones [42]. Estas ideas se estdn implementando en dreas criticas,
como modelos predictivos para cuidados intensivos que emplean descubrimiento causal para mejorar la
interpretabilidad y la generalizacién [43], as{ como en el andlisis tridimensional de imdgenes médicas,
donde el razonamiento contrafactual proporciona explicaciones mas precisas que métodos tradicionales
j44]

2.2 Introduccién a los Mapas Cognitivos Difusos

Los MCDs son una técnica de inteligencia artificial utilizada para representar y analizar conocimiento
en dominios caracterizados por la incertidumbre, la complejidad y la ambigiiedad [6], [45]. Los MCDs
permiten modelar sistemas complejos mediante una representacién grafica que combina conceptos y
relaciones causales, incorporando la légica difusa para manejar la incertidumbre e imprecisién inherente a
estos sistemas [46]-[48]. Los MCDs fueron introducidos por Kosko en 1986 [6], [48], basdndose en la 16gica
difusa definida por Lofti Zadeh en 1965 [46] y en los Mapas Cognitivos (MC) desarrollados por Axelrod
en 1976 [47], [48]. Axelrod propuso los MC como una herramienta para representar el conocimiento en

ciencias sociales. Kosko ampli6 esta formulaciéon al permitir valores difusos tanto en los conceptos como
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en las relaciones causales entre ellos. Esta ampliacion otorgé a los MCDs una mayor expresividad para

capturar la incertidumbre y la ambigiiedad propias de muchos sistemas reales.

Los MCDs se emplean para modelar sistemas complejos debido a su facilidad de construcciéon e
interpretacion, especialmente en dominios como sistemas sociales, ecoldogicos o econémicos, donde las
relaciones causales suelen ser inciertas y dificiles de cuantificar [49]. Un MCD es un grafo dirigido donde
cada vértice representa un concepto relevante del sistema (una variable, entidad, evento o condicién),
y cada arista dirigida indica una relacién causal entre conceptos, con un peso que expresa el grado e
intensidad de esa influencia [8]. La Figura 2.2 ilustra un ejemplo de un MCD simple compuesto por siete
(7) conceptos y siete (7) aristas ponderadas. Estas aristas reflejan cémo un concepto influye sobre otro,
constituyendo las relaciones causales. Cada concepto ¢; tiene asociado un valor de activacién a;, que suele
estar acotado en el intervalo [0, 1]. Este valor indica su nivel de importancia o estado en un instante dado.
Las conexiones causales estdn definidas por pesos w;;, los cuales pueden tomar valores en el intervalo

[—1,1]. Estos valores permiten modelar distintos tipos de relaciones:

o Siw;; > 0: existe una relacién de causalidad positiva; un aumento en ¢; provoca un aumento en c;,

con intensidad proporcional a |w;;|.

e Siw;; < 0: hay una relacién de causalidad negativa; un aumento en ¢; produce una disminucién en

¢;, también proporcional a |w;;|.

o Si w;; = 0: no hay relacién causal entre los conceptos ¢; y c;.

Figura 2.2: Representacién grafica de un MCD simple.

Como se ha mencionado, el valor del peso w;; indica el grado de influencia entre el concepto c; y el

concepto ¢;. Formalmente, un MCD se representa mediante una cuadrupla (C, W, A, f), donde:

o C=lec1,...,cm] es el conjunto de m conceptos que representan las variables o nodos del grafo que

conforman el sistema. La figura 2.2 muestra un MCD con siete conceptos.

e W es la matriz de adyacencia que indica las relaciones de causalidad entre los conceptos, es decir,

las aristas del grafo. A continuacién se presenta la matriz de adyacencia correspondiente al MCD
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mostrado en la figura 2.2:

ct {0 0 wgz O 0 0 O
c2| 0 0 awyy O 0 0 0
cs] 0 0 0 wy O 0 O
W==¢] 0 0 0 0 wys wye O (2.1)
cs| 0 0 O 0 0 0 0
c| 0 0 O 0 wes 0 O
cc \0 O 0 0 0 wp O
o A = (a1,...,a;,) es el vector de activacién que indica el nivel de activacién o estado de cada

concepto. En un instante de tiempo t, el valor a; representa el grado de activacién del concepto c;.

e f(-) esla funcién de umbral o activacién, que se utiliza para mantener los valores de activacién dentro
de un rango definido. La seleccién de esta funcién depende del problema especifico a resolver. Las

funciones mas comunes en la literatura son:

— Bivalente: — Trivalente:
fay=4 w70 (2.2) boord
v ’ = = 2.4
0, <0 fx) =40, 2=0 (2.4)
-1, <0
— Sigmoidal:
— Tangente hiperbdlica:
1
f(@) = — (2.3)
Leme f(z) = tanh(\x) (2.5)

La eleccion de la funcién de activacion depende del tipo de anélisis deseado: la funcién sigmoidal es til
en tareas donde se requiere suavizar la salida, mientras que la bivalente o trivalente es preferible cuando

se necesita una interpretacion légica categorica.

La actualizacion del valor de activacién del concepto c¢; en el instante ¢ + 1 se realiza aplicando la
funcién de activacién f(-) sobre la suma ponderada de las influencias recibidas desde todos los conceptos
¢; que tienen una relacion causal dirigida hacia ¢; (es decir, desde los nodos ¢; con aristas que apuntan

ac):

M
ait+1)=f Zwm ~a;(t) (2.6)

En la ecuacién 2.6, wj; representa el peso de la arista que conecta el concepto c; con ¢;, indicando la
intensidad y tipo de influencia que c; ejerce sobre c;. Este proceso de actualizacion se repite iterativamente

hasta que el sistema alcanza una condiciéon de estabilidad o convergencia.

La construccion de un MCD y la asignacion de los pesos a las relaciones pueden realizarse con apoyo
de expertos del dominio o mediante métodos de AA. Existen tres enfoques principales para el aprendizaje

de la matriz de pesos W:

e Métodos basados en Hebbian: Aprendizaje no supervisado que ajusta pesos segun si los dos

conceptos se activan simultaneamente (refuerza pesos) o no (debilita pesos) [8], [50]-[52].
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¢ Métodos basados en Expertos: Aprendizaje que ajusta pesos segun el conocimiento experto sin
necesidad de datos. Son 1tiles para pequenios ajustes que mantienen el significado de las relaciones
causales, pero su baja flexibilidad y dependencia del experto limitan su desempefio en problemas

de clasificacién complejos [50], [51].

e Métodos basados en poblaciones: En este caso, el aprendizaje es supervisado y se emplean
algoritmos de optimizacién para ajustar la matriz de pesos. Estos algoritmos buscan reducir la
discrepancia entre las salidas esperadas y las predicciones generadas por el modelo conceptual

difuso, optimizando los pesos para mejorar el rendimiento del sistema [53].

e Meétodos hibridos: Esta estrategia combina el conocimiento experto para la inicializacion del
modelo conceptual difuso con un proceso de aprendizaje supervisado/ no supervisado basado
en datos histéricos. El objetivo es ajustar las matrices de pesos en dos etapas, partiendo de
la experiencia previa y refinando el modelo con datos reales. Aunque esta aproximacién resulta
prometedora, la literatura sobre métodos hibridos en MCD es limitada y su aplicaciéon practica en

problemas reales atin no estd4 ampliamente difundida ni aceptada [54]-[56].

2.2.1 Técnicas Recientes y Variantes en Mapas Cognitivos Difusos

La investigacion en MCD ha avanzado significativamente mediante mejoras algoritmicas y el desarrollo de
nuevas variantes que amplian su eficacia y ambito de aplicacién. Entre estas, destacan enfoques basados
en Aprendizaje Federado (AF) para entrenar modelos colaborativos sin necesidad de compartir datos
sensibles, lo cual garantiza la privacidad y seguridad, especialmente en contextos médicos. Por ejemplo,
se aplicaron tres esquemas de aprendizaje federado con MCD para predecir la mortalidad y prescribir

tratamientos en casos de dengue severo, logrando mejoras respecto a modelos centralizados [57].

En [58], se presenté Prescriptive Fuzzy Cognitive Maps (PRV-FCM), una técnica que combina
MCD con algoritmos metaheuristicos, como los genéticos, para generar modelos prescriptivos capaces
de describir, y predecir el comportamiento del sistema y recomendar acciones. Esta técnica fue validada
en diversos escenarios, mostrando resultados cercanos a los valores deseados para variables clave, y una
alta eficacia en la toma de decisiones automatizada. Otra propuesta relevante es el modelo Fuzzy General
Grey Cognitive Map (FGGCM), que incorpora la incertidumbre de datos intervalares multiples o niimeros
difusos dentro del marco de los MCD, mejorando asi el manejo de la imprecision inherente a muchos

sistemas reales.

Para entornos distribuidos, se disefi6 el algoritmo Federated Fuzzy Cognitive Maps (F-FCM) [59],
orientado al aprendizaje no supervisado. Este preserva la privacidad de los datos, optimiza globalmente
los prototipos mediante gradientes federados y demuestra eficiencia en la construccién de estructuras
globales. Finalmente, se han desarrollado variantes hibridas que integran MCD con redes neuronales
profundas para modelar relaciones complejas [60], asi como extensiones basadas en légica difusa para
capturar mayores niveles de incertidumbre en las relaciones causales [61]. También se han propuesto
integraciones con computacién cudntica, que buscan aprovechar el paralelismo cuantico para modelar

sistemas caracterizados por incertidumbres [62].

2.2.2 Aplicaciones Recientes de Mapas Cognitivos Difusos

En los dltimos anos, los MCD se han consolidado como herramientas efectivas para analizar y resolver
problemas en multiples dreas. En Ecuador, por ejemplo, se utilizaron para identificar factores clave en el

desarrollo municipal. Mediante el uso de algoritmos genéticos, se disenaron estrategias que destacan el
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papel del liderazgo, las transferencias gubernamentales y el aprovechamiento de recursos naturales [63]. En
la industria del gas, un MCD construido con la participacién de expertos identifico la protecciéon catddica
como el factor principal para mitigar la corrosién en ductos. Los resultados se validaron utilizando teoria

de Z-nimeros, apoyando asi la gestién de riesgos [64].

La combinacién de MCD y Modelado Basado en Agentes (MBA) permitié simular el impacto
del comportamiento individual en la propagacién del COVID-19 en Bengaluru, India, subrayando la
importancia de considerar factores conductuales en las politicas sanitarias [65]. De forma similar, se
desarroll6 un sistema de apoyo para el diagnodstico del dengue, el cual clasifica su severidad con una

precisién del 89.4 %, facilitando la evaluacién de variables clinicas [49].

En el ambito de la sostenibilidad, los MCD se emplearon para evaluar la influencia de la economia
circular en las cadenas de suministro, superando la subjetividad y apoyando la toma de decisiones
estratégicas [66]. En Turquia, mediante mineria de texto y mapeo cognitivo difuso, se priorizaron acciones
para mejorar la gestién de residuos farmacéuticos, destacando la necesidad de sistemas confiables y
conciencia social [67]. Finalmente, también en Turquia, se aplicaron MCD para analizar cémo las actitudes
agricolas afectan la inflacién alimentaria. A partir de escenarios construidos con entrevistas y revisién

bibliogréfica, se formularon recomendaciones para la formulacién de politicas ptblicas [68].

2.3 Explicabilidad

Esta seccién introduce la explicabilidad, abordando su importancia en la IA. Se presentan las diferentes
taxonomias empleadas en la literatura para clasificar los métodos de explicabilidad, facilitando su anélisis
y comparacién. A continuacion, se describen las propiedades para evaluar la calidad y utilidad de
los métodos en Inteligencia Artificial Explicable. Posteriormente, se introduce la explicabilidad causal,
destacando su relevancia frente a otros enfoques tradicionales al permitir un entendimiento mas profundo
de las relaciones causales en los modelos. Finalmente, la seccién se enfoca en la explicabilidad especifica
para MCD, resaltando técnicas basadas en teoria de grafos y andlisis dindmico que contribuyen a

interpretar estos modelos. .

2.3.1 Introduccion

En las dltimas décadas, la IA ha transformado profundamente la manera en que interactuamos con los
sistemas tecnologicos. Desde vehiculos auténomos hasta aplicaciones predictivas en salud, seguridad o
justicia, los sistemas inteligentes se estdn implementando en escenarios de gran impacto social [69], [70].
No obstante, esta expansién plantea un problema critico: la creciente complejidad de los modelos hace que
sus decisiones sean cada vez mds opacas o dificiles de interpretar [1], [71]. A medida que estos sistemas
se vuelven més auténomos, comprender cémo funcionan deja de ser una opcién técnica para convertirse

en un imperativo ético, legal y funcional [71], [72].

La explicabilidad es fundamental para promover un uso confiable y responsable de la TA, especialmente
en ambitos sensibles como la salud, la justicia o las finanzas, donde decisiones automatizadas pueden tener
consecuencias directas e irreversibles [2], [3]. Cuando los usuarios no comprenden las decisiones de un
sistema, es probable que disminuya su confianza, se generen malentendidos y aumente el rechazo, incluso
si el modelo tiene un alto rendimiento técnico [73]-[75]. Ademads, la falta de explicabilidad dificulta tareas
clave como la validacion, la auditoria o la detecciéon de sesgos, lo que compromete la equidad y justicia
en las decisiones automatizadas [76]. Existen numerosos ejemplos documentados de riesgos asociados a

modelos opacos, como sistemas de reconocimiento facial con tasas de error significativamente mayores en
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personas de piel oscura [77], o algoritmos de crédito que perjudican a minorfas raciales [78]-[80]. Estos
problemas suelen tener origen en datos de entrenamiento que reflejan desigualdades sociales histéricas, las
cuales los modelos pueden perpetuar o amplificar. La explicabilidad también se alinea con principios del
disefio centrado en el ser humano, al favorecer la comprensién, previsibilidad y control sobre los sistemas
inteligentes. Ofrecer explicaciones claras empodera a los usuarios, mejora la supervision y fortalece su

confianza frente a decisiones automatizadas que afectan sus vidas.

Un reto particular lo plantean los modelos generativos, como los grandes modelos de lenguaje. Su
naturaleza probabilistica y sensible al contexto dificulta trazar con precisién el razonamiento detras de
sus respuestas, lo que introduce nuevos desafios explicativos [1], [81]. Esta dificultad se suma a la conocida
tension entre precisién y comprensibilidad, conocida como el trade-off entre precisién e interpretabilidad:
los modelos mas precisos suelen ser complejos, mientras que los interpretables tienden a sacrificar parte
de su rendimiento. Para abordar esta tensién, han surgido estrategias como los modelos intrinsecamente
interpretables (e.g., drboles de decisién) y técnicas post-hoc (e.g., saliencias o explicaciones locales) [3],

[4]. No obstante, estas tltimas no siempre reflejan fielmente el razonamiento interno, lo que limita su
confiabilidad.

A nivel regulatorio, la creciente preocupacién por la opacidad ha motivado iniciativas como el
Reglamento General de Protecciéon de Datos (RGPD), que reconoce el derecho a recibir explicaciones
sobre decisiones automatizadas [82], [83], o la Ley de Responsabilidad Algoritmica (LRA) y el Reglamento
de Inteligencia Artificial de la Unién Europea (RIA) europeos, que exigen mecanismos de transparencia

y auditoria para sistemas de alto riesgo [73], [84], [85].

Frente a estos desafios, surge la disciplina de la TAE, que busca no solo facilitar la comprensién del
funcionamiento interno de los modelos, sino también proporcionar herramientas practicas para evaluar,
auditar y mejorar su desempeno de manera transparente, y promueve la transparencia como pilar
fundamental. La TAE juega un papel clave en la construccién de sistemas responsables y éticos, donde
las decisiones automatizadas puedan ser verificadas y validadas, contribuyendo a la confianza social y al

cumplimiento de normativas emergentes en distintos dominios.

2.3.2 Taxonomias generales de la explicabilidad en TA

Las taxonomias son sistemas de clasificacién que organizan los métodos de explicabilidad en inteligencia
artificial segun criterios especificos, permitiendo analizar sus caracteristicas, diferencias y relaciones de
manera ordenada. Estas clasificaciones ayudan a entender desde qué enfoques se aborda la explicabilidad,
facilitando una visién estructurada y comprensible del campo, aunque en ocasiones distintos criterios
pueden solaparse o superponerse. A continuacion, se presentan las taxonomias mas conocidas, basadas en
el estudio del estado del arte realizado en [86], que distingue entre: (i) funcional, (ii) basado en resultados,

(iii) conceptual, y (iv) mixto.

2.3.2.1 Taxonomia Funcional

La taxonomia funcional clasifica los métodos de explicabilidad segiin el mecanismo mediante el cual
extraen y procesan la informacién del modelo de AA. Este enfoque se focaliza en cémo los métodos
acceden a los datos internos o externos del modelo para generar explicaciones, impactando directamente
en la precision y relevancia de las interpretaciones producidas. En [87] se identifican tres categorias

principales:

e Perturbaciones locales: Estos métodos modifican levemente las entradas para medir la influencia

de cada caracteristica en la prediccion de un caso especifico. Un ejemplo representativo es LIME.
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Su principal ventaja es que son agnosticos al modelo y faciles de aplicar en distintos contextos,
aunque pueden ser sensibles a la eleccién de la vecindad o al ruido, lo que afecta la estabilidad de

la explicacion.

e Aprovechamiento de la estructura interna: Se basan en propiedades internas del modelo,
como gradientes en redes neuronales, para determinar la importancia de las entradas. Ejemplos
destacados incluyen Grad-CAM y DeepLIFT. Estos métodos ofrecen explicaciones mas fieles al
funcionamiento real del modelo, pero requieren acceso a su arquitectura y pardmetros, limitando

su aplicabilidad a modelos especificos.

e Metaexplicaciones: No operan directamente sobre el modelo, sino que combinan o comparan
explicaciones generadas por otros métodos para obtener interpretaciones mas completas. Un ejemplo
es Aggregated Local Ezxplanation (ALE).

Ademads, Arrieta y otros [71] proponen dos categorias adicionales que amplian esta clasificacién:

¢ Modificacion de la arquitectura: Consiste en simplificar modelos complejos mediante cambios
estructurales para mejorar su interpretabilidad. Ejemplos de ello son la creacién de modelos ante-hoc
mas simples o el uso de Capsule Networks. Esta estrategia prioriza la transparencia desde el diseno,

pero puede implicar una reduccién en el rendimiento predictivo.

e Extraccién de ejemplos: Estos métodos explican el comportamiento del modelo mediante la
presentacion de ejemplos representativos o contraejemplos. Ejemplos conocidos son las Prototype
Ezplanations y las Counterfactual Explanations (CE). Son especialmente titiles para usuarios finales
al facilitar la comprensién intuitiva, aunque no siempre capturan completamente la 16gica interna

del modelo.

La Figura 2.3 presenta la clasificaciéon de los métodos de explicabilidad basada en las categorias

comentadas en esta subseccién.

Meétodos de Explicabilidad

/A/V\

Aprovechamiento de la
Estructura interna

Perturbaciones locales

Metaexplicaciones Modificacion de la arquitectura Extraccion de ejemplos

Figura 2.3: Taxonomia funcional de los métodos de explicabilidad.

2.3.2.2 Taxonomia Basada en Resultados

Este enfoque clasifica los métodos de explicabilidad segun el tipo de resultado o salida que generan para
el usuario. Tal categorizacion permite entender mejor como se presenta la informacién explicativa y qué

tipo de comprensién facilita. Segtn [88], se distinguen tres categorias principales:

e Importancia de caracteristicas: Estos métodos asignan un valor cuantitativo a cada
caracteristica de entrada, indicando su relevancia en la prediccién realizada por el modelo. Son ttiles
para destacar cuales variables influyen méas en una decisién especifica, facilitando la identificacién

de patrones y posibles sesgos. Ejemplos representativos incluyen SHAP y Permutation Importance.
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Sin embargo, la interpretacién de estos valores puede resultar compleja para usuarios no expertos,

y la importancia asignada puede variar segiin el contexto o la instancia evaluada.

Modelos sustitutos: Consisten en construir modelos interpretables y simples que approximan el
comportamiento de un modelo complejo, permitiendo asi un entendimiento global o local de sus
decisiones. Los modelos sustitutos pueden ser arboles de decisién, reglas o regresiones lineales que
imitan la salida del modelo original, como es el caso de LIMFE. Su principal ventaja es ofrecer
explicaciones mas accesibles, aunque su fidelidad puede ser limitada, especialmente en casos donde

el modelo original es altamente no lineal o complejo.

Basada en Ejemplos: Se basan en la presentacién de ejemplos concretos, representativos o
contraejemplos, para ilustrar y justificar las predicciones del modelo. Este enfoque es intuitivo, ya
que se apoya en casos reales o hipotéticos para mostrar como pequetias modificaciones pueden alterar
la decisién. Los métodos mas conocidos dentro de esta categoria incluyen las CE, que presentan
escenarios alternativos que habrian cambiado el resultado, y técnicas basadas en k-nearest neighbors.
La limitacién principal radica en la seleccién y calidad de los ejemplos, que pueden no ser siempre

representativos o suficientemente explicativos para todos los usuarios.

La Figura 2.4 muestra la clasificacién de los métodos de explicabilidad de la taxonomia basada en los

resultados, segin las categorias explicadas en esta subseccion.

Meétodos de Explicabilidad

—

Importancia de caracteristicas Modelos sustitutos Basada en ejemplos

Figura 2.4: Taxonomia basada en resultados de los métodos de explicabilidad

2.3.2.3 Taxonomia conceptual

La taxonomia conceptual clasifica los métodos de explicabilidad tomando como base diferentes criterios

o dimensiones tedricas que describen sus caracteristicas fundamentales. Estas dimensiones sirven para

examinar los métodos desde distintos angulos, lo que ayuda a entender mejor cémo y por qué funcionan,

asi como a compararlos de forma mads organizada y completa. Las principales categorias propuestas son:

o Segin la Etapa: Distingue entre métodos ante-hoc, que son interpretables por disefio (como

arboles de decisién o regresiones lineales simples), y métodos post-hoc, que generan explicaciones
tras el entrenamiento de modelos complejos (como LIME o SHAP). Los métodos ante-hoc facilitan
una interpretacion directa y sencilla, aunque a veces sacrifican precision, mientras que los post-hoc
permiten explicar modelos més complejos sin modificar su arquitectura, aunque sus explicaciones

pueden ser menos fieles o confiables.

Segun la Aplicabilidad: Distingue entre métodos agndsticos al modelo, que son aplicables a
cualquier tipo de modelo (por ejemplo, SHAP), y métodos especificos del modelo, disefiados para

arquitecturas concretas (como Grad-CAM en redes convolucionales). Los primeros destacan por su
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versatilidad, aunque pueden sacrificar precisién o detalle, mientras que los segundos aprovechan

mejor las particularidades internas del modelo, pero su uso esta limitado a ciertos tipos especificos.

e Segiin el Alcance: Define si la explicacién se centra en una prediccién especifica (local, como
LIME) o en el comportamiento general del modelo (global, como reglas extraidas de un arbol de
decision). Las explicaciones locales facilitan la interpretacién de casos individuales, mientras que las
globales ofrecen una vision amplia del modelo. Sin embargo, las globales pueden resultar complejas

o imprecisas para ciertos casos, y las locales no reflejan el funcionamiento completo del sistema.

Ademas, otros autores como [89] y [90] han propuesto dimensiones adicionales para enriquecer esta

taxonomia:

e Granularidad: Considera niveles intermedios entre las explicaciones locales y globales, como las
explicaciones a nivel de cohortes o subgrupos de datos. Estas proporcionan un equilibrio entre
detalle y generalidad, permitiendo identificar patrones especificos en subpoblaciones, facilitando
analisis mas precisos. No obstante, requieren una segmentacion adecuada de los datos, lo cual

puede resultar complejo.

¢ Detalle de aplicabilidad: Considera niveles intermedios entre métodos completamente agnosticos

y especificos, incluyendo aquellos disefiados para clases particulares de modelos.

o Formato de salida: Clasifica los métodos segin el tipo de salida que generan: numérica (por
ejemplo, importancia de caracteristicas), reglas (explicaciones légicas o simbélicas), teztual (lenguaje
natural), visual (mapas de calor o gréficos) o formatos mixtos. Por ejemplo, DeepLIF'T produce

salidas visuales.

e Tipo de problema: Distingue los métodos segin la tarea especifica a la que se aplican,
como clasificacion (por ejemplo, arboles de decisién) o regresion (por ejemplo, regresién lineal

interpretable), adaptando la explicabilidad a las particularidades de cada problema.

En la Figura 2.5 se presenta la taxonomia conceptual de los métodos de explicabilidad, organizada

segun los resultados que generan y conforme a las categorias descritas en esta subseccién.
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Métodos de Explicabilidad

it

Etapa Otras dimensiones Alcance
Ante-hoc Post-hoc Formato de Salida Tipo de Global Local
Problema

Segun la aplicabilidad \Segun la aplicabilidad

Especifico del modelo Agnostico al modelo

Figura 2.5: Taxonomia conceptual de los métodos de explicabilidad

2.3.2.4 Taxonomia Mixta

La taxonomia mixta surge como una propuesta integradora que combina las categorias de las taxonomias
funcional, basada en resultados y conceptual, con el objetivo de ofrecer una vision mé&s holistica y
estructurada de la explicabilidad en TA. Esta perspectiva reconoce que ningin enfoque, por si solo, logra
capturar toda la complejidad asociada a la interpretacién de modelos, por lo que articula distintos criterios
complementarios. En sus niveles superiores, esta taxonomia incorpora distinciones claves provenientes del
enfoque conceptual, organizadas en torno a dos ejes fundamentales: por un lado, segin la etapa en que se
aplica la explicabilidad, diferenciando entre métodos ante-hoc y post-hoc;y por otro, segin la aplicabilidad
del método, distinguiendo entre enfoques agndsticos y especificos. Arrieta y otros [71] también identifican
otras categorias dentro de los métodos de explicabilidad especificos del modelo, las cuales son explicaciones
locales, visuales, basadas en la arquitectura y otras técnicas. A partir de esta integracién, se distinguen
cuatro categorias principales que agrupan las formas més habituales y fundamentales mediante las cuales

los métodos de explicabilidad generan sus explicaciones:

o Explicacion por simplificacién: Aproxima el comportamiento de un modelo complejo mediante

uno mas simple e interpretable.

o Explicacion por relevancia de caracteristicas: Asigna puntuaciones o pesos a las variables de

entrada en funcién de su influencia sobre la prediccién.

o Explicacién visual: Emplea representaciones graficas que traducen el funcionamiento interno del
modelo en elementos visuales comprensibles para el ser humano. Estas representaciones permiten
identificar qué regiones, atributos o componentes de la entrada han tenido mayor influencia en la
decision del modelo, facilitando asi la interpretacion, especialmente en tareas donde la informacién

es inherentemente visual o espacial.

e Explicacion local: Se centra en explicar predicciones individuales, analizando cémo pequenas

perturbaciones en los datos o la comparacion con ejemplos similares afectan la salida del modelo.
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Meétodos de Explicabilidad
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Figura 2.6: Taxonomia mixta de los métodos de explicabilidad

Aunque existen casos intermedios, la mayorfa puede clasificarse en estas categorias. En la Figura 2.6
se muestra la taxonomia mixta de los métodos de explicabilidad, organizada segtn las categorias descritas

en esta subseccion. Las categorias de Arrieta y otros estan representadas mediante lineas discontinuas

2.3.3 Propiedades en Inteligencia Artificial Explicable

Para que un método de IAE sea considerado robusto en dominios sensibles como salud, finanzas, sistemas
auténomos o legales, debe cumplir con un conjunto de propiedades clave que permitan evaluar la calidad,
utilidad y confiabilidad de las explicaciones generadas [91]. Estas propiedades se agrupan en dos grandes
enfoques: evaluacion centrada en humanos y evaluacién centrada en computadora. El enfoque centrado en
humanos analiza como las explicaciones generadas por el sistema IAE satisfacen las necesidades cognitivas
y practicas de los usuarios. En contraste, el enfoque centrado en computadora emplea métricas objetivas

y cuantificables, independientes del juicio humano.

En este trabajo se utiliza principalmente el enfoque centrado en computadora para evaluar el método

de explicabilidad propuesto. A continuacién, se describen las propiedades que componen este enfoque.

2.3.3.1 Fidelidad

La fidelidad mide el grado de correspondencia entre la explicaciéon generada y el comportamiento real
del modelo. Una alta fidelidad implica que la explicacién refleja con precisién el razonamiento interno
del modelo. Se calcula comparando las salidas del modelo ante la entrada original x y ante entradas

perturbadas

LN Y ()~ Y
S-S

donde n es el nimero total de instancias evaluadas, z; es la entrada original, y «; € X’ representa una

versién perturbada de la misma. Las funciones Y (z;) y Y («}) son las salidas del modelo para la entrada
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original y perturbada, respectivamente. Un valor de S cercano a 1 indica que las perturbaciones apenas

afectan la salida, evidenciando una alta fidelidad en la explicacién.

2.3.3.2 Consistencia

La consistencia se refiere a la estabilidad y coherencia de las explicaciones generadas por el sistema cuando
se utiliza la misma entrada en diferentes ejecuciones. Esto garantiza que el método produzca resultados
similares en condiciones idénticas, fortaleciendo la confianza en el sistema. Una métrica para evaluar la
consistencia es la estabilidad, que se cuantifica mediante la varianza entre las explicaciones obtenidas en

multiples ejecuciones con la misma entrada:

donde e; es la explicacion en la i-ésima ejecucion, € es el promedio de todas las explicaciones, y IV es el

numero de ejecuciones. Una varianza baja implica explicaciones muy similares, indicando alta estabilidad.

Ademas, la uniformidad evalia como se distribuyen las relevancias entre las caracteristicas de la
entrada. Esta métrica determina si las relevancias estan repartidas equilibradamente o concentradas en

pocos atributos, lo que afecta la interpretabilidad. Se calcula como:

1 12
U:1— N’,;<Tn—N>,

donde r,, es la relevancia asignada a la n-ésima caracteristica y N el nimero total de caracteristicas.
Un valor de U préximo a 1 indica una distribucién uniforme de las relevancias, mientras que valores

menores reflejan concentracién desigual.

Juntas, estabilidad y uniformidad, permiten evaluar la consistencia del sistema, asegurando

explicaciones coherentes, reproducibles y confiables.

2.3.3.3 Robustez

La robustez evalia la capacidad de las explicaciones para mantenerse fiables y coherentes frente a pequenas
modificaciones en la entrada o cambios en el modelo, incluyendo actualizaciones y posibles ataques
adversariales. Esto es critico en dominios sensibles donde la inestabilidad puede conducir a desconfianza
o errores. Ademsds, considera si el método sigue funcionando adecuadamente cuando se implementa en

distintas plataformas o cuando el modelo subyacente es actualizado.

Se mide comparando las explicaciones generadas para la entrada original y para versiones ligeramente

perturbadas de esta:

N
1
R=1- N Z |exp(z;) — exp(x})]|,
i=1

donde exp(z) es la explicacién para la entrada x, x} es una perturbacién leve de la entrada original
z;, y N es el nimero de perturbaciones evaluadas. Un valor de R cercano a 1 indica alta resistencia de

las explicaciones ante cambios en la entrada.
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2.3.3.4 Eficiencia

La eficiencia del método de evaluacién se refiere a la capacidad computacional y los recursos necesarios
para generar las explicaciones, asi como al tiempo empleado en el proceso. Es fundamental que el método
sea, escalable, capaz de manejar grandes voliimenes de datos sin degradar su rendimiento ni incrementar
excesivamente su costo computacional. La velocidad computacional, que indica la rapidez con que un

sistema IAE genera explicaciones, se expresa mediante la formula:

1
CS_TXR’

donde T es el tiempo requerido para generar una explicacién y R los recursos computacionales
utilizados (memoria, ciclos de CPU, etc.). Un valor bajo de Cy indica mayor eficiencia, reflejando un

menor uso de tiempo y recursos para obtener explicaciones.

2.3.4 Explicabilidad Causal

La mayoria de los enfoques actuales de explicabilidad se basan en relaciones correlacionales entre las
entradas y salidas de un modelo. Métodos como LIME [3], SHAP [4] o los mapas de saliencia estiman
la importancia de las variables observando cémo varia la prediccién ante cambios en los atributos
de entrada. Aunque utiles para obtener explicaciones locales, estos métodos presentan limitaciones en
entornos complejos y sensibles [1], [92]. Al estar basados en informacién observacional, estos enfoques no
capturan relaciones causales reales, lo que restringe su capacidad para responder preguntas contrafactuales
o identificar causas subyacentes [93]. Problemas como la multicolinealidad pueden hacer que la atribucién
de importancia sea ambigua, y la presencia de variables confusoras puede introducir asociaciones
espurias [94]-[96]. Esto hace que las explicaciones basadas en correlacién sean potencialmente inestables

o enganosas desde una perspectiva causal.

Ante estas limitaciones, han emergido enfoques de explicabilidad causal que incorporan nociones de
causa y efecto mediante marcos como los SCMs, los grafos aciclicos dirigidos (DAGs) y el razonamiento
contrafactual [97], [98]. Estos métodos permiten responder preguntas del tipo ”;Qué habria pasado si la
variable X hubiera tomado otro valor?”, proporcionando explicaciones mds robustas y accionables [99].
En contextos como la medicina, por ejemplo, este enfoque permite distinguir entre un sintoma que causa
un deterioro y otro que simplemente esté asociado, mejorando la toma de decisiones clinicas [96], [100].
A diferencia de los métodos tradicionales, los modelos causales pueden controlar explicitamente variables
confusoras y estimar efectos directos, indirectos o colaterales [97], [101]. Esto es fundamental en dominios
de alto impacto como el derecho, la medicina o las politicas publicas, donde confundir correlacién con
causalidad puede tener consecuencias serias [92]. Ademds, dado que las funciones objetivo de los modelos
de AA suelen capturar correlaciones en lugar de verdaderas relaciones causales, estos pueden fallar ante

cambios en la distribucién de los datos o cuando enfrentan situaciones no observadas previamente [98].

En este contexto, la investigacion en explicabilidad causal puede agruparse en cuatro grandes dreas: (i)
andlisis causal de componentes del modelo, (ii) generacién de explicaciones contrafactuales, (iii) relacién

entre causalidad e imparcialidad, y (iv) verificacién de relaciones causales a través de la interpretabilidad.

2.3.5 Explicabilidad en Mapas Cognitivos Difusos

En este contexto, los (MCDs) surgen como una herramienta particularmente relevante para abordar

la explicabilidad desde una perspectiva causal. Su estructura basada en grafos dirigidos y ponderados
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permite representar explicitamente relaciones causa-efecto entre conceptos, lo que los posiciona como un
marco natural para el modelado causal interpretable. No obstante, al igual que los métodos analizados
previamente, muchos enfoques de explicabilidad en MCDs han tendido a centrarse en representaciones
estaticas o estructurales, dejando de lado la dindmica inherente del sistema, fundamental para comprender
su comportamiento a lo largo del tiempo. A continuacion, se exploran en detalle las principales estrategias
utilizadas para dotar de explicabilidad a los MCDs, asi como sus limitaciones, y el potencial de enfoques

dindmicos para superar dichas barreras.

Existen numerosas investigaciones que utilizan los (MCDs) tanto para dotar de explicabilidad a
sistemas de IA como para desarrollar métodos especificos de explicabilidad basados en esta técnica.
Principalmente, las investigaciones orientadas a proporcionar explicabilidad a los sistemas suelen
combinar técnicas de TA con modelos de MCDs para ofrecer interpretaciones del funcionamiento del
modelo [102], [103]. Sin embargo, este enfoque presenta limitaciones. En muchos casos, solo se considera
la imagen final del modelo, sin tener en cuenta las propiedades dinamicas y los estados ocultos que
emergen de la interaccion entre las condiciones iniciales, la matriz de pesos y la funcién de activacién.
Estas dindmicas internas son fundamentales para una comprensiéon profunda y explicativa. Permiten
capturar el comportamiento temporal y la evolucién del sistema, aspectos que un anélisis estatico no

puede revelar.

En [11] se identifican dos estrategias de anélisis estructural cominmente aplicadas en los MCDs para
determinar la relevancia de los conceptos: (i) medidas de centralidad basadas en teoria de grafos y (ii)
reduccion de la red de conceptos. Aunque estas técnicas no son métodos de explicabilidad en sentido
estricto, contribuyen a la interpretabilidad al identificar los nodos més influyentes del sistema. Una
revision reciente de la literatura amplia esta clasificaciéon e incorpora un enfoque explicito orientado a
la explicabilidad en MCDs, que se organiza en una tercera categoria: (iii) andlisis de la dindmica del

sistema. A continuacion, se describen estas tres categorias, comenzando por las métricas estructurales.

2.3.5.1 Medidas de Centralidad en Teoria de Grafos

Una forma directa de obtener explicaciones en MCDs consiste en analizar su estructura estatica mediante
técnicas de teoria de grafos. En este enfoque, el modelo se representa como un grafo dirigido y ponderado,
donde los nodos son conceptos y las aristas indican relaciones causales con pesos asociados. Las métricas

de centralidad identifican los conceptos mas influyentes segiin su conectividad estructural.

Estas métricas se aplican sobre la representacién del grafo resultante tras el proceso de inferencia. De
este modo, proporcionan una caracterizacién estatica que, aunque no refleja el comportamiento dinamico,
resulta ttil para interpretar la importancia relativa de los conceptos. Entre las métricas més usadas en

la literatura [12], [13], [104] se encuentran:

¢ Grado de entrada d;,(v): en un grafo dirigido ponderado, el grado de entrada de un nodo se

define como la suma de los valores absolutos de los pesos de las aristas que llegan a dicho nodo.

din(v) = Z |wuv| (27)
ueV

donde wy, es el peso de la arista desde el nodo u hacia v.

o Grado de salida d,;(v): en un grafo dirigido ponderado, el grado de salida de un nodo es la suma

de los valores absolutos de los pesos de las aristas que salen del nodo hacia otros nodos.

dout(v) = Z |w1)u| (28)

ueV



2.3 Explicabilidad 21

o Grado total d(v): suma del grado de entrada y de salida, que da una medida global de la
conectividad del nodo en la red:
d('U) = dln(v) + dout (’U) (29)

¢ Intermediacién B(v): mide la importancia de un nodo como intermediario en la transmisién de
informacién dentro del grafo. Se calcula como la proporcién de caminos mas cortos entre pares de
nodos que pasan por el nodo v:
st(v)
B(v) = LA (2.10)
>

s,teVv
s#EVFEL

donde o es el nimero total de caminos méas cortos entre los nodos s y t, y o.(v) es la cantidad

de esos caminos que atraviesan v. Un valor alto indica que el nodo actiia como un puente clave en

la red.

o PageRank PR(v): mide la importancia de un nodo no solo por el ntimero de conexiones entrantes,
sino también considerando la importancia de los nodos que lo enlazan. Asi, un nodo conectado a
otros nodos importantes recibe una puntuacién mayor.

1—-d PR(u)

PR(v) = —— +d

N u€lIn(v) dout (u)

(2.11)

donde d es el factor de amortiguamiento (generalmente 0.85), N es el total de nodos, In(v) es el
conjunto de nodos con aristas que apuntan a v, y dy:(u) es el grado de salida del nodo u. Esta
métrica refleja la importancia global de un nodo dentro de la red, considerando la calidad y cantidad

de sus conexiones entrantes.

Estas métricas aportan informacion sobre la estructura y relevancia relativa de los conceptos dentro
del grafo. Sin embargo, ninguna considera los valores de activacion de los nodos ni la funcién de activacion
usada en el proceso de inferencia de los MCD. Por ello, estas medidas no capturan el comportamiento

dindmico del sistema, que es una caracteristica fundamental y distintiva de los modelos basados en MCD.

2.3.5.2 Reduccion de la Red de Conceptos

Otra forma comin de mejorar la interpretabilidad de MCDs es simplificar la estructura del modelo
mediante técnicas de reduccion de la red. Estos métodos eliminan conceptos redundantes, fusionan nodos
con comportamientos similares, y conservan solo los conceptos mas relevantes. El objetivo es obtener
versiones compactas y manejables del modelo que mantengan su capacidad de representacion y prediccion,

sin afectar la precisién ni la coherencia del sistema.

En este contexto, se desarrollaron diversos enfoques para equilibrar complejidad y precision. Por
ejemplo, un método reduce el ntmero de conceptos agrupando aquellos similares en clasteres, y luego
optimiza los pardmetros de transformacién para conservar el comportamiento dindmico del sistema [105].
Otro enfoque usa técnicas de agrupamiento como K-Means y Fuzzy C-Means para simplificar modelos
complejos y simples. Este método logra que el modelo reducido mantenga un comportamiento fiel al
original y supere en fidelidad a métodos previos [106]. Ademds, se propone una reduccién basada en
relaciones de tolerancia difusas que facilita modelos mas transparentes y accesibles para los responsables

de la toma de decisiones [107].

Aunque estas técnicas ayudan a manejar la complejidad y aumentan la interpretabilidad, no bastan

para explicar completamente el modelo. La reducciéon puede conllevar pérdida de informacién importante
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y dificultar la comprension profunda de las relaciones causales y dindmicas entre conceptos. Ademads, la
simplificacién estructural no siempre refleja las sutilezas del razonamiento humano. Tampoco captura
adecuadamente las condiciones contextuales que influyen en la toma de decisiones. Por ello, se necesitan
enfoques complementarios que conserven tanto el significado semantico como el dindmico del sistema

original.

2.3.5.3 Dinamica

La dindmica analiza como evoluciona el sistema representado por el MCD a lo largo del tiempo. En lugar
de limitarse a la estructura estatica del grafo, considera el comportamiento temporal de las activaciones
y las influencias causales entre conceptos durante el proceso de inferencia. Por ejemplo, Tyrovola y
otros [108] desarrollan un enfoque dindmico basado en teoria de grafos que calcula de forma eficiente el
efecto causal total entre conceptos en MCDs. Este método no solo evalta la estructura estatica, sino que
también considera la propagacién acumulativa de influencias a través de multiples caminos causales y

pasos temporales. De este modo, captura la dinamica de interaccién entre conceptos.

Por otro lado, Napoles y otros [109] presentan un método basado en valores SHAP (SHapley Additive
exPlanations) que calcula la atribucién de conceptos usando como entradas los valores iniciales de
activacién y como salidas los estados ocultos generados durante el razonamiento recurrente. Finalmente,
un enfoque basado en el andlisis de flujo de informacién identifica automaticamente relaciones causales
verdaderas a partir de datos, y las impone como restricciones en el aprendizaje del modelo. Esta técnica

evita la captura de correlaciones espurias y mejora la precision, interpretabilidad y capacidad dindmica
del MCD [110].

Dado que las técnicas actuales para la explicabilidad en MCDs suelen centrarse en aspectos
estructurales o simplificaciones estaticas, y considerando la complejidad inherente de los comportamientos
dinamicos y estados ocultos que surgen durante la inferencia, se hace evidente la necesidad de enfoques
que integren explicitamente la dindmica del sistema para mejorar la interpretabilidad. En este sentido, el
presente trabajo propone un método de explicabilidad dindmico para MCDs que permite
capturar de forma transparente las relaciones causales entre los conceptos y su evoluciéon
temporal a lo largo del proceso de razonamiento, superando asi las limitaciones de los métodos

existentes al posibilitar una comprensién mas profunda y precisa del modelo.

La propuesta destaca por incorporar de manera continua los valores de activacién de los nodos durante
todo el proceso de inferencia, junto con las relaciones causales entre conceptos. Esta integracién permite
representar con mayor exactitud la evolucién interna del sistema y genera explicaciones més detalladas y
contextuales, que reflejan tanto la interaccién temporal como las influencias causales entre los conceptos,

a diferencia de enfoques que se restringen a analisis estaticos o a estados finales del modelo.
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Metodologia

Para la realizacién de este trabajo, se adopta la metodologia CRISP-DM (Cross-Industry Standard
Process for Data Mining) [14], un marco estructurado ampliamente utilizado que guia el ciclo de vida
de proyectos de andlisis y mineria de datos. Esta metodologia establece un conjunto claro de fases, que
van desde la comprension del negocio hasta la implantacién de resultados, facilitando asi un desarrollo
ordenado, sistematico y replicable. Dado que el enfoque de este estudio estd orientado al desarrollo de un
método de explicabilidad para modelos de clasificacién basados en MCDs, se realizé una adaptacién de
la estructura tradicional de CRISP-DM para ajustarla a las particularidades y objetivos especificos del
proyecto. A continuacién, se describen las fases que conforman la metodologia y las acciones llevadas a

cabo en cada una de ellas.

3.1 Comprensiéon del negocio

La fase inicial de la metodologia CRISP-DM tiene como objetivo entender los requerimientos del proyecto
desde una perspectiva de negocio, con el fin de definir los objetivos del andlisis y transformar ese
conocimiento en un plan técnico. En el contexto de este trabajo, esto implicé comprender las necesidades
en torno a la explicabilidad de modelos de TA basados en MCDs, y el valor que aportaria el desarrollo de

un nuevo enfoque en este ambito.

Se realizo un estudio tedérico exhaustivo, presentado en detalle en la seccién 2, que abarcé desde
la revisiéon del estado del arte de los métodos de explicabilidad existentes, hasta detallar las métricas
y propiedades de robustez que deben cumplir dichos métodos. Durante este proceso, se identificaron
tanto los enfoques mas usados como los desarrollos recientes, ademas de las taxonomias empleadas para
su clasificacién. Paralelamente, se revisaron mejoras y adaptaciones de métodos previos, orientadas a

corregir deficiencias o a ajustarlas para uso en ambitos poco explorados.

También se profundizé en la teoria que sustenta los MCDs, analizando su funcionamiento, origenes,
avances y principales lineas de investigacion. Dado que estos modelos se fundamentan en principios de
causalidad, se abordé igualmente el estudio de la explicabilidad causal en TA, analizando los métodos
existentes aplicados a modelos basados en MCDs. Este andlisis permitié confirmar la originalidad del

método propuesto, al no encontrarse alternativas similares en la literatura.
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3.2 Desarrollo del método de explicabilidad para MCD

Una vez finalizado el estudio tedrico, se inici6 el disenio y desarrollo del método de explicabilidad
propuesto, con el objetivo principal de construir un enfoque capaz de generar explicaciones que reflejen el
comportamiento dindmico subyacente de los MCDs. Para ello, se partié de una idea conceptual basada en
las propiedades estructurales y temporales caracteristicas de los MCDs, que se fue consolidando a través
de un analisis técnico exhaustivo, en el que se evaluaron aspectos como su viabilidad computacional, las

posibles limitaciones, y los requisitos necesarios para asegurar una correcta aplicacién del método.

A partir de este andlisis, se definié formalmente el método: se establecié su modelo matematico, los
algoritmos requeridos para su funcionamiento, y las condiciones bajo las cuales resulta aplicable de manera
efectiva. Este disenio consideré tanto la interpretabilidad como la coherencia causal de las explicaciones

generadas, asegurando que el enfoque fuera tanto claro como técnicamente sélido.

Finalmente, se implement6 el método y se integré en modelos de clasificacién construidos a partir
de MCDs, lo que permitié su validacién en diferentes contextos experimentales. El desarrollo completo
y detallado del método propuesto, incluyendo sus fundamentos, algoritmos y ejemplos de aplicacion, se
presenta en la seccion 4. Es importante resaltar que este enfoque novedoso incorpora explicitamente la
dindmica del modelo en el proceso explicativo, constituyendo una contribucién original al campo de la
IAE.

3.3 Entendimiento de los datos

Esta etapa comprendié la recopilacién, exploracién y andlisis de los conjuntos de datos que serfan
utilizados para la construccién de los modelos de clasificacién basados en MCDs (descritos en la seccién
5.1.1), sobre los cuales se hard posteriormente la aplicacién del método de explicabilidad propuesto
en este trabajo. La seleccién de los conjuntos se realizé atendiendo a dos criterios fundamentales: que
pertenecieran a dominios criticos donde la explicabilidad aporte un valor anadido significativo, y que
hubieran sido previamente utilizados en la literatura cientifica, lo cual facilita tanto la comparacién de
resultados como la validacién del enfoque propuesto. Como resultado, se seleccionaron conjuntos de datos

correspondientes a casos de dengue, COVID-19, diabetes y diagndstico de fallos en vehiculos submarinos.

3.4 Preparacion de los datos

Una vez seleccionados los conjuntos de datos, se realizé el preprocesamiento, que incluye tareas de
limpieza, transformacién y seleccién de las variables relevantes. Estas operaciones se describen con mayor
detalle en la seccién 5.1.2. Para cada conjunto de datos, se realizdé un analisis exploratorio inicial para
comprender la estructura general y las caracteristicas principales. Posteriormente, se realizd un anélisis de
correlacién utilizando métricas adecuadas segtn el tipo de variable, como el coeficiente de Pearson para
variables numéricas y Cramér’s V para variables categdricas, y se evalué la colinealidad para detectar

posibles problemas de multicolinealidad entre las variables explicativas.

Ademaés del procedimiento general de preprocesamiento descrito, cada conjunto de datos presentd
particularidades que requirieron tratamientos especificos. A continuacién, se comentan las acciones

realizadas en cada caso, que son detalladas en la secciéon 5.1.2:

e Dengue: se eliminé una variable redundante cuyo valor permanecia constante en todas las

instancias, ya que no aportaba informacién 1util al modelo.
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e COVID-19: se construyé una nueva variable, sobre la cual se aplic6 un algoritmo de deteccién y
eliminacion de instancias contradictorias, mejorando asi la coherencia del conjunto. Posteriormente,
se aplicaron técnicas de sobremuestreo como Synthetic Minority Over-sampling Technique

(SMOTE) para balancear las clases.

e Diabetes y Diagnéstico de Fallos en Vehiculos Submarinos Auténomos: dado que ambos
conjuntos estan compuestos exclusivamente por variables numéricas, se aplicé un mismo proceso de

preprocesamiento que incluyé:

— Anaélisis de la distribuciéon de las variables mediante histogramas, utilizando la regla de

Freedman-Diaconis para determinar el ntimero de intervalos.

Evaluacion de la normalidad mediante Q-Q plots.

Deteccién de valores atipicos con los métodos del rango intercuartilico (IQR) y Z-score.
— Normalizacion de las variables usando el método Min-Maz.
— Balanceo de clases usando SMOTE.

— AnAlisis de la significancia de las variables predictoras respecto a la variable objetivo mediante
Analysis of Variance (ANOVA).

La razén de estos pasos extras en el caso de estos dos conjuntos de datos se debe a que estan compuestos
exclusivamente por variables numéricas, cuya distribucion, diferencias de rangos de valores y presencia de
valores atipicos pueden influir de forma significativa en el rendimiento de los modelos basados en técnicas

de TA, haciendo necesario un analisis estadistico riguroso y una adecuada transformacion de los datos.

En el conjunto de diabetes se identificaron valores atipicos relevantes, los cuales fueron corregidos
mediante una técnica de imputacién basada en vecinos més cercanos (k-nearest neighbors), lo que permitié
mejorar la distribuciéon de las variables. Por otro lado, en el conjunto de diagndstico de fallos se
detectaron posibles valores atipicos, aunque su impacto se consideré poco significativo, por lo que
no se aplicaron métodos de correcciéon. No obstante, se construyé una nueva variable que sintetiza el

comportamiento conjunto de las senales de los motores.

3.5 Modelado

El proceso incluyé la definiciéon de la arquitectura de los modelos de MCDs, la seleccién de pardametros
adecuados y su construccién efectiva, tal como se detalla en la seccién 5.3.1. Para validar su capacidad
predictiva, se evalué el desempeno de estos modelos mediante métricas especificas (ver dichas métricas en
la seccién 5.2). Ademads, con el fin de asegurar que los modelos basados en MCDs ofreciesen un rendimiento
competitivo, sus resultados se compararon con los obtenidos mediante otras técnicas clasicas de IAl, cuya

construccién se describe en la seccién 5.3.2.

Dado que el objetivo principal es desarrollar un nuevo método de explicabilidad para MCDs,
una vez construidos los modelos de clasificacién, se compararon las explicaciones generadas por el
método propuesto con las obtenidas mediante otros enfoques de explicabilidad existentes. Para ello, se
consideraron dos métodos clasicos de explicabilidad ampliamente usados en la literatura, concretamente
SHAP y FP. De esta manera, se realizé un andlisis comparativo de los distintos métodos de explicabilidad
en los diferentes conjuntos de datos. A su vez, se emplearon medidas de centralidad de la teoria de grafos
utilizadas en la literatura para evaluar la explicabilidad en los modelos de MCDs. Esta doble comparacién

permitié evaluar la calidad y consistencia de las explicaciones desde diferentes perspectivas, combinando
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una visién especifica y adaptada a la estructura causal de los MCDs con un marco general que facilita
contrastar el nuevo enfoque con métodos consolidados de TAE. Los resultados de todo este andlisis de

explicabilidad se presentan en la secciéon 5.5.2.

3.6 Evaluacion

La calidad y efectividad de los resultados del método de explicabilidad propuesto se evaluaron mediante
dos enfoques complementarios que abordan tanto aspectos cuantitativos como cualitativos del desempeno
explicativo. En primer lugar, se utilizé la técnica RemOve And Retrain (ROAR) para medir el impacto
que tienen las variables declaradas como importantes por el método propuesto sobre el rendimiento
predictivo del modelo de clasificaciéon, comparandolo con los resultados obtenidos mediante los métodos
SHAP y FP. El desarrollo y los resultados de este andlisis cuantitativo se presentan con detalle en la

seccion 5.5.3.

En segundo lugar, se realiz6é una evaluaciéon basada en el cumplimiento de un conjunto de propiedades
deseables en los métodos de explicabilidad, tales como robustez, fidelidad, consistencia y utilidad para
el usuario final. Estas propiedades, definidas previamente en la seccién 2.3.3, ofrecen una valoracién mas
tedrica y cualitativa del método, complementando asi los resultados cuantitativos, proporcionando una

visién integral sobre su comportamiento y aplicabilidad préctica.

3.7 Implantacion

Esta fase no aplica directamente en nuestro trabajo. Ahora bien, los resultados obtenidos durante el
desarrollo y evaluacién del método fueron formalizados y difundidos mediante la elaboracién de informes
técnicos y la redacciéon de articulos cientificos. Este proceso asegura que los hallazgos se presenten con
rigor, facilitando tanto la validacién independiente como la reproducibilidad del método por parte de

otros investigadores y profesionales.

Adicionalmente, se desarrollaron materiales y recursos complementarios como codigo fuente
documentado, conjuntos de datos procesados disponibles en repositorios, y guias de uso para facilitar
el uso del método en proyectos reales y su aplicacién practica. Esta fase también incluyé la identificacién
de posibles limitaciones y recomendaciones para su implementacién en distintos entornos, estableciendo

un marco claro para futuras mejoras y adaptaciones.
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Desarrollo del Método de
Explicabilidad

En esta secciéon se presenta un método dinamico de explicabilidad para interpretar la importancia
causal de los conceptos en un modelo MCD. En primer lugar, se describe el enfoque propuesto vy,
a continuacién, se muestra un ejemplo que ilustra su aplicacién. Todo lo presentado en esta seccién
constituye la contribucion de esta investigacién, completamente original. No se trata de una adaptacion
ni de una extension de propuestas previas, sino la definicién de un enfoque integramente novedoso,
disenado especificamente para capturar la evolucién dindmica y causal de los conceptos en modelos
basados en MCDs, para usarlos en sus andlisis de explicabilidad. Segiin nuestro conocimiento, en la
literatura cientifica no se ha reportado un método de explicabilidad que integre las caracteristicas aqui
planteadas en el contexto de los MCDs, lo que refuerza el cardcter pionero y el potencial impacto de esta

propuesta.

4.1 Especificacion de Nuestro Enfoque

El método de explicabilidad estd concebido para su aplicacién en modelos de clasificacién basados en
MCDs. La Figura 4.1 presenta de forma esquematica las fases que componen el método de explicabilidad
dinamico propuesto. Dicho enfoque permite analizar la influencia que cada concepto ejerce dentro del

sistema respecto a un concepto clase.

En primer lugar, se establecen los requisitos previos para aplicar el método: se requiere que el
modelo converja y que se disponga de la matriz de pesos junto con las activaciones dindmicas obtenidas
tras el proceso de inferencia. A partir de esta base, el método se desarrolla en cuatro fases secuenciales. En
la fase (i) se identifican los caminos causales, tanto directos como indirectos, que conectan los conceptos
en el grafo del modelo, permitiendo mapear como fluye la influencia de los conceptos a través de la red.
Luego, en la fase (ii) se calcula la influencia que un concepto ejerce sobre otro, considerando los pesos
causales, las activaciones temporales, y una penalizacién que reduce progresivamente la contribuciéon de
los tramos més alejados. A continuacién, en la fase (iii) se integran estas influencias directa e indirectas
en una unica medida que captura el impacto global de un concepto sobre otro. Finalmente, en la fase (iv)
se construye un ranking de conceptos en funcién de su importancia relativa, lo cual permite identificar
cudles son los mas influyentes en el modelo, y facilita su interpretacién desde una perspectiva explicativa.

A continuacién, se describen en detalle cada una de estas fases.
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Requisitos Previos
- Convergencia del modelo
- Matriz de pesos W
- Instancia x para inferencia
- Activaciones A obtenidas tras inferencia en x

Fase 2: Calculo de influencias
- Influencia directa
- Influencia indirecta

Fase 1: Identificacion de caminos
- Caminos directos
- Caminos indirectos

- Penalizacion L

Fase 3: Célculo de la importancia
- Integracion de las influencias directa e indirecta

Fase 4: Ranking de conceptos
- Ordenacién por importancia de los conceptos
- Visualizacién

Figura 4.1: Diagrama de flujo del Método de Explicabilidad

4.1.1 Requisitos para la Aplicacién del Método de Explicabilidad

Como se definié en la seccién 2.2, un MCD se representa mediante una 4-tupla (C, W, A, f). Como
condiciéon fundamental para el correcto funcionamiento del método de explicabilidad, se asume que el
sistema construido converge a un estado estable, es decir, que las activaciones A alcanzan un punto fijo tras
iteraciones sucesivas. Esta convergencia es necesaria para garantizar la estabilidad y la interpretabilidad
de los resultados obtenidos mediante el método propuesto. Ademaés, una vez que se dispone del modelo
de MCD, es necesario contar con la matriz de pesos W, la cual representa las relaciones causales directas
entre los conceptos del MCD. Finalmente, para hacer el analisis de explicabilidad, dada una instancia
x, al inferir en el modelo se obtiene una serie de activaciones A, donde cada Al(»t) representa el nivel de

activacién del concepto ¢; en la iteracion t. Esa matriz A la requiere el método de explicabilidad.

4.1.2 Fase 1: Identificacién de Caminos.

Siendo ¢; el concepto clase sobre el cual se desea calcular la importancia, el método utiliza caminos
directos e indirectos dentro del MCD para evaluar la influencia que cada concepto ejerce en el modelo
sobre c;. Los caminos de influencia directa son aquellos que conectan directamente a un concepto c; con
el concepto de interés ¢;, es decir, relaciones inmediatas en la estructura causal del modelo. Por otro lado,
los caminos de influencia indirecta involucran secuencias de conceptos intermedios que conectan c; con
c; a través de varios pasos en la red causal. Eventualmente, esto permite captar cémo conceptos mas

alejados en la red pueden influir en c¢;.

Para definir la influencia indirecta, consideramos el conjunto R;_,; de todos los caminos causales
indirectos que conectan el concepto c; con el concepto c¢;. Estos caminos son rutas simples, es decir,

secuencias de nodos sin repeticiones, salvo en el caso especial cuando ¢; = ¢;. En este caso particular, se
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permite que el nodo origen aparezca dos veces, una al principio y otra al final del camino, para poder

representar ciclos simples donde un concepto se influye a si mismo.

Dado que la cantidad total de caminos entre dos conceptos puede crecer exponencialmente en grafos
grandes o densos, y para mantener el cilculo computacionalmente viable, se limita la evaluacién a los
x caminos simples mas cortos. Estos caminos son generados mediante un algoritmo iterativo conocido
como algoritmo de caminos simples mds cortos [111], que produce los caminos en orden creciente de
longitud. Primero devuelve el camino mas corto; luego, de forma sucesiva, explora caminos mas largos sin
repetir nodos, salvo la excepciéon mencionada para ciclos autorreferenciales, eliminando aristas o nodos
temporalmente para evitar ciclos méas complejos. Por ejemplo, si tenemos un grafo con nodos A, B,C, D y
queremos encontrar caminos de A a D, el algoritmo devolvera primero el camino A — D (si existe), luego
A — B — D, luego A — C — D, y asi sucesivamente, siempre sin repetir nodos en un mismo camino,

excepto la posible segunda aparicién del nodo origen en casos de ciclos autorreferenciales simples.

4.1.3 Fase 2: Calculo de Influencias Directas e Indirectas.

La influencia directa de un concepto c; sobre otro c¢; se define como el promedio temporal de la
influencia ejercida a través de una conexién directa en el grafo causal durante el proceso de inferencia del

MCD, y se expresa mediante la siguiente ecuacion:

T
1
Tain(cj, ¢i) = T E Wy, 'AE-t) (4.1)
t=1

donde w;; € R representa el elemento de la matriz de pesos W que indica la influencia directa (positiva
o negativa) del concepto ¢; sobre ¢;; A;t) € [—1, 1] corresponde al nivel de activacién del concepto ¢; en la
iteracion t; y T € N representa el nimero méximo de iteraciones definidas durante la creacion del modelo
para el proceso de inferencia. Se asume que el modelo converge antes o al alcanzar T iteraciones; en caso

contrario, 7" funciona como un limite para evitar ciclos infinitos y asegurar la finalizacion del calculo.

Esta expresion representa la influencia acumulada que el concepto c; ejerce sobre c; a través de la
conexién directa entre ambos conceptos. Se ponderan el peso de la relacién directa (w; ;) y la activacién
temporal (Ag )) del concepto origen en cada iteracién del proceso de inferencia. Asi, se captura el impacto

inmediato y puntual que un concepto tiene sobre otro en la dinimica del modelo.

La influencia indirecta de un concepto c¢; sobre otro concepto ¢; mide la influencia que ejerce c;
sobre ¢; a través de caminos causales de longitud mayor a uno en el grafo del MCD. Esta influencia se
calcula considerando todos los caminos causales R que conectan c¢; con ¢; mediante rutas indirectas. Para
cada camino r = 1,..., R, se toma en cuenta su longitud n,, que representa el nimero total de nodos
del camino, es decir, la cantidad de conceptos consecutivos conectados. Cada camino se define como una

secuencia ordenada de conceptos:

C (1) C (r)yenryC (r 4.2
(€005 €05 ,pigil) (4.2)
donde ¢ -y = ¢; es el nodo origen y ¢ -y = ¢; es el nodo destino.

Pg J Prp—1

La matriz de pesos W esté definida tal que el elemento w;; representa la influencia del concepto c;
sobre el concepto ¢;; es decir, el primer subindice indica el nodo origen y el segundo el nodo destino de
la relacion causal. Por lo tanto, para cada tramo k =0, ...,n, — 2 del camino r, el peso correspondiente

es
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W_(r) ()
Py Pri1’

(r)

41 €l indice del nodo destino para ese tramo.

donde p,(f) es el indice del nodo origen y p

Con el fin de reducir progresivamente la influencia de los conceptos segin su distancia al concepto
destino ¢;, se introduce un hiperpardmetro A € [0,1]. Este pardmetro ajusta el peso que cada tramo
causal aporta a la importancia total, de modo que los tramos mas cercanos al destino tienen una mayor
contribucién, mientras que los més alejados son penalizados y afectan menos la influencia acumulada.
Asi, X actiia como un factor de decaimiento que modula la relevancia de la informacién transmitida a

través de caminos causales de distintas longitudes:

n-—k—1 sik<n,.—1,
flk,r) = (4.3)
0 sik=n,—1.

De esta forma, los tramos més alejados del concepto destino son penalizados mas fuertemente mediante
un factor Af*7) | que disminuye la influencia acumulada conforme aumenta la distancia en el camino
causal. El valor de A\ determina la intensidad de esta penalizaciéon: cuando A se aproxima a 1, la
penalizacién es débil; en cambio, si A tiende a 0, la penalizacién es fuerte. Esto lo que indica en los
caminos indirectos es que las conexiones lejanas tienden a tener una influencia debil, practicamente
eliminandola en caminos largos, mientras que la influencia de las conexiones cercanas al concepto de
origen tienden a ser altas. La elecciéon adecuada de A depende del comportamiento esperado del modelo
y de la naturaleza del sistema causal, permitiendo equilibrar la inclusién de influencias lejanas con la

simplicidad y pertinencia de las relaciones inmediatas.

Para ilustrar el funcionamiento de f(k,r), considérese un camino causal de longitud n, = 4. En este
caso, el tramo més cercano al concepto destino tendra f(k,r) = 0, y su penalizacién serd \° = 1; el
siguiente tramo tendra f(k,r) = 1 y sera penalizado por A, luego f(k,r) = 2 con penalizacién \?, y asi
sucesivamente. De esta manera, se garantiza que los tramos mas alejados del destino contribuyan menos

a la influencia total.

Finalmente, para calcular la influencia indirecta, se incorpora también el nivel de activacién A;t(),.) €
[—1,1] del concepto en la posicién k del camino r durante la iteracién t. Este nivel de activacién rekﬂeja
la intensidad con la que un concepto participa en la inferencia en cada momento del proceso dindmico.
Asi, la influencia indirecta se define como el promedio sobre todos los caminos R y todas las iteraciones

T de la suma de las influencias ponderadas en cada tramo, dada por:

Nyp—2

T
1 ®) .\ fkr)
— 5oy - RACE . 4
T > (wpi Lpih Api” A (44)

t=1

LR
Iina(cj, ¢i) = = >
r=1 k=0

Esta expresion representa la influencia acumulada que el concepto c; ejerce sobre c; a través de todos
los caminos indirectos posibles en el grafo causal. En ella, se ponderan tres factores fundamentales:
la fuerza de conexién entre conceptos dada por los pesos w, el nivel de activacién temporal de cada
concepto A en las distintas iteraciones del proceso de inferencia, y una penalizacién exponencial Af(k-7)
que disminuye el impacto de los tramos més alejados del concepto destino. De esta manera, se captura de
forma detallada y dindmica el impacto indirecto que un concepto puede tener sobre otro, considerando

la estructura y evolucién del sistema causal a lo largo del tiempo.
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4.1.4 Fase 3: Calculo de la Importancia Total.

Se define la importancia que un concepto c; tiene sobre otro concepto ¢; en un MCD como la suma de la
influencia directa e indirecta que ejerce c; sobre ¢;. Esta medida refleja el impacto global que un concepto

ejerce sobre otro a lo largo del proceso dindmico de inferencia, y se expresa mediante la ecuacién (4.5):

Liotar(cj, ¢i) = ILair(cj, ¢;) + Lina(cj, ;). (4.5)

4.1.5 Fase 4: Ranking de Conceptos.

La importancia total Iiotai(cj, ¢;) combina la influencia directa e indirecta que el concepto ¢; tiene sobre
¢;. De esta forma, se obtiene una medida completa del grado de impacto que un concepto ejerce sobre
otro, considerando tanto las conexiones inmediatas como las mediadas por otros conceptos en la red. Esta

métrica permite evaluar la relevancia estructural y dindmica de las relaciones en el modelo.

En esta fase, se ordenan los conceptos segtn el valor de su importancia Jyoa1(c;, ¢;) respecto al concepto
¢; sobjetivo, en forma descendente. El ranking también puede representarse graficamente para facilitar

su interpretacion visual y comunicar claramente cuales son los conceptos mas relevantes del modelo.

A continuacién, se presenta el algoritmo para calcular la importancia total que un conjunto de

conceptos ¢; ejerce sobre un concepto objetivo ¢; en un MCD (véase el Algoritmo 1).

Segun el Algoritmo 1, para cada concepto c; se identifica primero la conexién directa con c;, en caso
de existir, y se obtienen todos los caminos simples indirectos R;_,; que lo conectan con c;, permitiendo
la inclusién de ciclos autorreferenciales simples. Si el nimero de caminos indirectos excede un umbral
maximo x, se seleccionan tnicamente los x caminos mas cortos. Estos caminos representan las rutas
causales, tanto directas como indirectas, a través de las cuales se transmite la influencia dentro del
modelo. Finalmente, la importancia total se obtiene como la suma de las influencias directa e indirecta
para cada par (¢;, ¢;), integrando asi el impacto global del concepto origen sobre el destino. Para concluir,
se construye un ranking ordenando los conceptos segin su importancia total, lo que permite identificar

los nodos mas relevantes dentro del sistema.
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Data: Matriz de pesos W, activaciones temporales A1 ... AT penalizacién \, nimero
méximo de caminos indirectos x, concepto objetivo ¢;

Result: Matriz de importancia total Iiotai(cj, ¢;), ranking de conceptos segtn influencia sobre ¢;

// Fase 1: Identificacidén de caminos

for cada concepto c; do

// Obtener el camino directo c¢; —¢;, si existe

CaminoDirecto;_,; +— camino directo ¢; — ¢; o vacio

// Obtener todos los caminos indirectos simples desde ¢; hasta ¢

R;_,; + conjunto de todos los caminos indirectos desde c; hasta c;

// Si hay més de x caminos indirectos, seleccionar los z mas cortos

if |R]_n| > x then

L R;_,; + los x caminos indirectos més cortos

// Fase 2: Cadlculo de influencias
for cada concepto c¢; do
// Calcular importancia directa si existe conexidén directa
if CaminoDirecto;_,; # () then
| Taw(ejci) £ 500w - AY
else
L Liir(cj, ;) < 0
// Calcular importancia indirecta sumando influencias ponderadas
sobre caminos indirectos
Iina(cj,ci) <0
for cada camino r € R;_,; do
n, < longitud del camino r
for cada tramo k = 0 hasta n, — 2 do
fle,r)+mn. —k—1 // Penalizacién por distancia al destino
for cada tiempo t =1 hasta T do

e ) 4= L AD k)
L]md(cj,cl) += wp;:)’pg«l)»l A;vgf) A

// Promediar influencia indirecta segin numero de caminos e
iteraciones

if |[R;_;| > 0 then
Lnd@%7Q)<—‘ﬁg&ﬂﬁ:'ﬂnd@&,@)

else

L Iina(cj,ci) <0

// Fase 3: Importancia total

B Liotar(cj, i) < lair(cj, ¢i) + Iina(cj, ¢;)

// Fase 4: Ranking de conceptos
Ranking <— Ordenar conceptos ¢; por Iiotai(c;, ¢;) descendente

return Ranking

Algoritmo 1: Célculo completo de la importancia de cada concepto sobre un nodo objetivo ¢; combinando

influencias directas e indirectas a lo largo del tiempo.
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4.2 Ejemplo Ilustrativo del Funcionamiento del Método

La Figura 4.2 muestra el grafo causal correspondiente al sistema analizado, donde ¢4 es la variable de
clasificacién sobre la cual se desea calcular la importancia del resto de los conceptos. El analisis parte de

la siguiente instancia inicial del sistema:

A©® = 10,5, 0,056, 0,509, 0,5, c4]

A partir de esta configuracién, y utilizando la dindmica del modelo definida por la matriz de pesos

W, se obtienen los vectores de activacién correspondientes a las T' = 3 iteraciones del sistema:

06 04 0 0
0 03 05 o AY=[08 05 03 02 00]

0 0 07 0 A® =06, 06, 0,5, 04, 0,1]
0 0 0 06f A® =109, 0,7, 06, 0,5, 0,2]
0 0 0 0

A continuacién, se desarrollan de manera secuencial todas las fases que componen el método de

explicabilidad propuesto, aplicadas sobre el ejemplo ilustrativo.

0.5
0.6

0.4

Figura 4.2: Ejemplo de grafo causal en un MCD

4.2.1 Fase 1: Identificacion de Caminos

Para cada concepto dentro del MCD, se identifican los caminos directos e indirectos que conducen al
concepto c¢4. Los caminos directos hacia ¢4 provienen de los conceptos cs y c¢3. Por otro lado, los caminos
indirectos hacia ¢4 se originan en los conceptos ¢; y c¢o. Desde c¢; se identifican tres caminos indirectos

que conducen a c¢y4:

Camino 1: ¢ = ¢y = ¢q, (n.=2)
Camino 2: ¢ — ¢35 —>c¢q, (n,=2)

Camino 3: ¢; > ¢y —c3 — ¢y, (n.=3)

Mientras que desde ¢y existe un tinico camino indirecto hacia ¢4, que es:

{Camino 1: cg—e3—>eq, (np=2)



34 Capitulo 4. Desarrollo del Método de Explicabilidad

4.2.2 Fase 2: Calculo de Influencias Directas e Indirectas

Se calcula la influencia directa que recibe el concepto ¢4. Como se mencioné en la Fase 1, los conceptos
c2 y c3 tienen conexiones directas hacia c4. La influencia directa que un concepto c; ejerce sobre otro

concepto ¢; estd definida por la Ecuacién (4.1).

Desde c; hacia c4: La conexién desde ¢y hacia ¢4 tiene un peso wy 4 = 0,5. Las activaciones del
concepto ¢y durante las tres iteraciones Agl) = 0,5, Ag) =006y A§3) = 0,7. Sustituyendo en la ecuacién

correspondiente, se obtiene:

1 1
I4ir(2,4) = 3 (0,5%x 0,54 0,5 x 0,6 +0,5x0,7) = 5(0,25 +0,30 +0,35) = 0,3

Desde c3 hacia cs: Para la conexién desde c3 hacia c4, el peso es ws 4 = 0,7 y las activaciones de c3

2)

son: Agl) =0,3, Aé =05y Ag?’) = 0,6. El calculo de la influencia directa es:

1 1
Lie(3,4) = 5 (0.7 x 034 0.7 x 05+ 0.7 x 0,6) = (0,21 + 0,35 + 0,42) = 0,3267

Se observa que, aunque en el grafo causal la relaciéon entre cs y ¢4 tiene un peso de 0.5, al aplicar el
método y considerar la dinamica del sistema, dicha influencia efectiva se reduce a 0.3. De forma anéloga,
la relacién entre cs y ¢4 presenta un peso de 0.7 en el grafo, pero la influencia calculada mediante el

método disminuye a 0.3267.

4.2.2.0.1 Influencia indirecta de ¢; En este apartado, se calcula la influencia indirecta que recibe
el concepto ¢4 a partir del resto de los nodos del grafo. Para ello, se consideran aquellos caminos que,
sin ser conexiones directas, conducen a c4 a través de secuencias de conceptos intermedios. En este
ejemplo, los conceptos que presentan caminos indirectos hacia ¢4 son ¢; y ¢o. A continuacién, se analiza

detalladamente la contribucién indirecta de cada uno de ellos.

Influencia indirecta a través del Camino 1: ¢; — ¢co — ¢4 El peso de la relaciéon desde ¢; hacia
c2 es wy 2 = 0,6, mientras que el de ¢y hacia c4 es w4 = 0,5. De acuerdo con la funcién de penalizacién
definida en la ecuacion (4.3), y considerando que el camino tiene longitud n, = 2, se tiene que f(0,2) =1
y f(1,2) = 0. Aplicando el valor A = 0,9, se obtiene:

Af(0:2) — 0,9, A (12) — 1

Sustituyendo en la ecuacién de influencia indirecta (4.4), la expresién para este camino queda:

I =06x A" x09+05x A

La tabla 4.1 muestra los cdlculos para cada iteracién:
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Agt) Aét) Il(t)

0.8 | 0.5 | 0,6x0,8x0,9+0,5x 0,5=0,73
0.6 | 0.6 | 0,6x0,6x 0,9+ 0,5x 0,6 = 0,66
0.9 | 0.7 [ 0,6x0,9x0940,5x0,7= 0,83

W N =+

Tabla 4.1: Evolucién de la influencia indirecta sobre ¢4 a través del Camino 1 (¢; — ¢ — ¢4) con
penalizacién dindmica durante las iteraciones

Una vez calculada la influencia para cada iteracién, se obtiene el valor promedio:

0,73+ 0,66+ 0,83
o= &t - 08 _ g4,

Influencia indirecta a través del Camino 2: ¢; — c3 — ¢4 El peso de la relacién desde ¢; hacia

cz es wy 3 = 0,4, mientras que el de ¢z hacia ¢4 es w3 4 = 0,7. De acuerdo con la funcién de penalizacién
definida en la ecuacién (4.3), se tiene que f(0,2) =1y f(1,2) =0.

Sustituyendo en la ecuacién de influencia indirecta (4.4), la expresién para este camino queda:

IQ(t) =0,4 x Agt) x 0,94 0,7 x Az(f).

La tabla 4.2 muestra la evolucién de la influencia indirecta para cada iteracién:

A(lt) Az(),t) 12(t)

0.8 | 0.3 | 0,4x0,8x 0,9+ 0,7 x 0,3 = 0,768
0.6 | 0.5 | 0,4x0,6x0,9+0,7%0,5=0,58
0.9 | 0.6 | 0,4x09x0,9+0,7x 0,6 = 0,766

W N =+

Tabla 4.2: Evolucién de la influencia indirecta sobre ¢4 a través del Camino 2 (¢; — ¢3 — ¢4) durante
las iteraciones

El valor promedio es:

_ 0,768+ 0,58 + 0,766
L= e 3 0705 _ 4 705,

Influencia indirecta a través del Camino 3: ¢; — ¢ — c3 — ¢4 Los pesos de las relaciones son

wy 2 = 0,6, wa 3 = 0,3y ws4 =0,7. Segtn la funcién de penalizacién de la ecuacién (4.3), se tienen los
valores f(0,3) = 2, f(1,3) =1y f(2,3) = 0. Aplicando la ecuacién de influencia indirecta (4.4) con el
factor A = 0,9, la influencia indirecta en la iteracién ¢ es:

10 =06 x A" x092+03x AL x0,9+0,7x AP,

La tabla 4.3 presenta los calculos para cada iteracién:
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7 7 T 7
t | AP | AP | Al "
1108 | 05| 03 |06x0,8x0,9%2+0,3x0,5x0,9+0,7x%0,3=0,734
2106 | 06 | 05 | 0,6x0,6x0,924+0,3x0,6x0,9+0,7 x 0,5=0,804
3109 ] 07| 06 |0,6x0,9x0,924+0,3x0,7x0,9+0,7 x 0,6 =1,046

Tabla 4.3: Evolucién de la influencia indirecta sobre ¢4 a través del Camino 3 (¢1 — ¢o — ¢3 — ¢4)

El promedio de la influencia es:

3

jan 0,734 + 0,804 + 1,046

durante las iteraciones

= 0,861.
3 b

Influencia total indirecta de c¢; sobre ¢4 La influencia indirecta total que recibe ¢4 desde c; se

calcula como el promedio de las influencias a través de cada camino:

_ L+1,+1I; 0,7440,705 + 0,861

Itotal =

3

4.2.2.0.2 Influencia indirecta de ¢,

= = 0,769.
3 )

Influencia indirecta a través del Camino 1: ¢y — c3 — ¢4 El peso de la relacion desde ¢y hacia

c3 es wp 3 = 0,3, mientras que el de c3 hacia cs4 es w34 = 0,7. De acuerdo con la funcién de penalizacién

definida en la ecuacién (4.3), y considerando que el camino tiene longitud n, = 2, se tiene que:

f

(0,2) =1, f(1,2)=0.

Aplicando el valor A = 0,9, se obtiene:

AM©O2 =9 N2 =1,

Sustituyendo en la ecuacién de influencia indirecta (4.4), la expresién para este camino queda:

I =03xAY x09+0,7x AP,

La tabla 4.4 muestra los cédlculos para cada iteracion:

t ] Al | Al i

1] 05| 03]03x0,5x0,9+0,7x0,3=0,345
21 06 | 05 | 0,3x0,6x09+0,7x0,5=0,512
3] 07 ] 06 |03x0,7x0,9+0,7x0,6=0,609

Tabla 4.4: Evolucién de la influencia indirecta sobre ¢4 a través del Camino 1 (¢3 — ¢3 — ¢4) con
penalizacién dindmica durante las iteraciones

Una vez calculada la influencia para cada iteracién, se obtiene el valor promedio:

I,

0,345 + 0,512 + 0,609

= 0,489.
3 ’
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Influencia total indirecta de ¢y sobre ¢4 Dado que hay un tnico camino, la influencia indirecta
total es simplemente:

1) = 0,489.

4.2.3 Fase 3: Calculo de la importancia Total.

En esta seccién se presenta el célculo de la influencia total que cada concepto ejerce sobre el concepto cy,
la cual se obtiene como la suma de su influencia directa e indirecta, segiin lo establecido en la ecuacién

(4.5). La Tabla 4.5 resume los valores de importancia calculados para cada concepto en relacién con cy.

Concepto | Influencia Directa | Influencia Indirecta | Importancia Total
c1 0.000 0.769 0.769
Ca 0.300 0.489 0.789
cs3 0.327 0.000 0.327

Tabla 4.5: Influencia directa, indirecta e importancia total de cada concepto

Se observa que el componente ¢, presenta la mayor influencia total en el sistema, con un valor de
0.789. Esto se debe a que combina una influencia directa moderada (0.300) con una influencia indirecta
significativa (0.489), lo que indica que su efecto se propaga notablemente a través de otros nodos. En
segundo lugar se encuentra ci, que aunque no presenta influencia directa, tiene una influencia indirecta
alta (0.769), sugiriendo que su impacto se manifiesta a través de caminos intermedios. Finalmente, c3

muestra una influencia total menor (0.327), compuesta inicamente por una influencia directa.

Este andlisis permite contrastar con la percepcién inicial basada en el grafo causal. Por ejemplo,
aunque c3 tiene una relacién causal directa hacia ¢4 con un peso elevado (0.7), los resultados muestran
que su influencia global es la mas limitada, ya que no se amplifica indirectamente. En cambio, ¢; y ¢
poseen una mayor relevancia estructural en el sistema al considerar tanto las influencias directas como
las indirectas.

4.2.4 Fase 4: Ranking de Conceptos.

Se construye el ranking de los conceptos en funcién de su importancia relativa respecto al concepto c4.
La Tabla 4.6 presenta dicho ranking, con los conceptos ordenados de mayor a menor segin su impacto

global sobre ¢4, donde se observa que el concepto cy es el mas importante, seguido por c; y, en tltimo

lugar, c3.
Ranking | Concepto | Importancia
1 Ca 0.789
2 c1 0.769
3 cs 0.327

Tabla 4.6: Ranking de conceptos segtin su importancia total respecto a ¢y

De forma complementaria, y para facilitar la interpretacién visual, se propone una representaciéon
grafica. La Figura 4.3 muestra esta representacion de la importancia de los conceptos respecto a ¢y,

en la cual se observa el orden de importancia de cada concepto. Ademés, aunque en este caso todos
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los conceptos contribuyen de forma positiva, la representacién admite también valores negativos, que

reflejarian influencias contrarias, lo que no ocurre en este ejemplo.

Importancia total de los conceptos respecto a ¢4

g c 24 0.789
a
91 0.769
C
S c3- 0.327
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Importancia total

Figura 4.3: Representacién grafica de la importancia total de los conceptos respecto al concepto cy.
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Experimentos

Una vez presentado el método de explicabilidad propuesto en este trabajo, en esta secciéon se describen
los conjuntos de datos empleados en los experimentos, incluyendo el proceso de preparacién aplicado. A
continuacion se especifican las métricas de rendimiento utilizadas para evaluar los modelos de aprendizaje
construidos, asi como aquellas empleadas para evaluar la explicabilidad aportada por los distintos métodos
usados. Seguidamente se expone el proceso de modelado usando los MCD y las tecnicas de AA usadas
en este trabajo, para despues hacer una evaluacion de la calidad de dichos modelos. Finalmente, se
hace un analisis de explicabilidad basadas en los rankings de variables establecidos por los métodos
de explicabilidad (incluyendo nuestro métodos), y se realiza una comparacién con otros métodos de
explicabilidad basada en la degradaciéon de los modelos segiin las variables relevantes definidas por cada

método. Es bueno acotar que todos los experimentos realizados son para modelos de clasificacién.

5.1 Datasets

En esta seccion se describen los conjuntos de datos empleados en los experimentos, su procedencia, las

variables que los conforman y el proceso de preparacién aplicado.

5.1.1 Descripciéon

A continuacion se describen los datasets empleados en la costrucciéon de los modelos de clasificacién de
MCDs.

5.1.1.1 Conjunto de Datos de Dengue

El dataset de dengue fue presentado en [49] y fue recopilado a partir de 52.051 pacientes que acudieron a
Instituciones Prestadoras de Servicios de Salud (IPS) con diagnéstico de dengue, reportados al Sistema
Nacional de Vigilancia en Salud Publica (SIVIGILA) de Colombia [112] durante el periodo comprendido
entre 2008 y 2018 en Medellin, Colombia.

El dataset final utilizado, tras el proceso de preparacién aplicado, consta de 19 variables dicotémicas
que representan la presencia o ausencia de sintomas en los pacientes, codificadas como 0 o 1. También
incluye una variable dicotémica que indica si el paciente pertenece a un grupo etario de riesgo, es decir,

si tiene mas de 60 anos o menos de 5 afios, asi como una variable objetivo.
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Nombre Descripcion
Edad Indica pertenencia a grupos de riesgo (mayores de 60 anos o
menores de 5 afos).
Cefalea Dolor de cabeza.

Dolor retroocular

Dolor localizado detras de los ojos.

Mialgias Dolor o molestias musculares.
Artralgia Dolor en las articulaciones.
Erupcién Presencia de lesiones cutaneas o sarpullido.

Dolor abdominal

Dolor localizado en la zona abdominal.

Voémito Expulsion forzada del contenido gastrico por la boca.
Somnolencia Estado de suefio o adormecimiento anormal.
Hipotension Presion arterial baja.

Hepatomegalia Agrandamiento del higado.

Hemorragias en mucosas Sangrado visible en encias, nariz u otras mucosas.
Hipotermia Disminuciéon anormal de la temperatura corporal.
Aumento de hematocrito Incremento en la concentracién de globulos rojos en sangre.
Caida de plaquetas Disminucién en el nimero de plaquetas en sangre.
Acumulacién de liquidos Presencia anormal de liquido en cavidades corporales.
Extravasacién Fuga de liquido desde vasos sanguineos hacia tejidos.

Hemorragias hematicas Sangrados internos o externos en tejidos o cavidades.

Shock Insuficiencia circulatoria critica.
Dafio organico Disfuncién o lesion de 6rganos vitales.
Severidad Nivel general de gravedad del dengue en el paciente.

Tabla 5.1: Descripcién de las variables del conjunto de datos de dengue.

Este conjunto se emplea en tareas de clasificacién y prediccién. En la prediccion, la variable objetivo
presenta tres estados posibles: DWS-negativo, DWS-positivo y Dengue severo. Para esta tarea, se calcula

la Probabilidad de Severidad del Dengue (PDS) mediante la siguiente funcién:

0, siS1 <05
PDS(51) = <51 —05

05 ) x 100%, si S > 0,5

Donde S representa la probabilidad predicha por el modelo para la severidad del dengue.

El valor de PDS varia entre 0 y 100, clasificando la severidad del caso segtin el PDS: valores menores
a 20 indican DWS-negativo; entre 20 y 60, DWS-positivo; y superiores a 60, Dengue severo. En las tareas
de clasificacién, el modelo predice directamente una de las tres categorias posibles de la variable objetivo.
El dataset final consta de 32.559 registros, distribuidos de forma balanceada entre las tres clases, con
un 34,5 % para DWS-negativo, 34,3% para DWS-positivo y 31,4% para Dengue severo. Las variables

consideradas en este conjunto se detallan en la tabla 5.1.

5.1.1.2 Conjunto de Datos de COVID-19

El conjunto de datos de COVID-19 empleado en este estudio fue presentado en [113]. Se trata de un recurso
clinico estandarizado, amplio e internacional que recopila informacién de pacientes hospitalizados con

sospecha o diagnéstico confirmado de infeccion por COVID-19. La recoleccién de datos se realizé de forma
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prospectiva en los centros de salud participantes, mediante observacion directa o revisién de historias
clinicas y registros médicos electronicos, utilizando los formularios de reporte de caso desarrollados por
el Consorcio Internacional para Infecciones Respiratorias Agudas Graves y Emergentes (CIIRAGE) y la
Organizaciéon Mundial de la Salud (OMS).

Tras el proceso de preparacién, el conjunto final incluye un total de diez variables. Cinco de ellas
son dicotémicas e indican la presencia (valor 1) o ausencia (valor 0) de determinados sintomas clinicos.
Ademas, se incluye una variable dicotémica que identifica si el paciente pertenece al grupo de riesgo
(60 anos o més), junto con otra que representa el sexo del paciente. Otras dos variables estdn asociadas
al motivo por el cual se realizé la prueba diagnodstica: una indica exposiciéon a un caso confirmado de
COVID-19, y la otra, si el paciente se sometié a la prueba por haber llegado del extranjero y estar
sujeto a un requisito sanitario obligatorio. Ambas se codifican de forma binaria (1 para presencia de la
condicién, 0 para su ausencia). Finalmente, se contempla una variable que refleja el resultado de la prueba
diagnéstica para la deteccién del COVID-19, codificada como positiva o negativa. La Tabla 5.2 presenta
una descripcién detallada de las variables incluidas en el conjunto, que consta de aproximadamente

100,000 registros, balanceados en una proporcién cercana al 50 % entre resultados positivos y negativos.

Nombre Descripcién
Tos Expulsién involuntaria y repentina de aire desde los pulmones.
Fiebre Temperatura corporal por encima del rango normal.
Dolor de garganta Sensacion dolorosa o irritativa en la mucosa faringea.
Dificultad respiratoria Sensacion de falta de aire o dificultad para respirar.
Dolor de cabeza Dolor localizado en la region cefalica.
Edad 60 o méas Indica pertenencia al grupo de riesgo (mayores de 60 afios).
Género Sexo del paciente (masculino o femenino).
Contacto con infectado Prueba realizada por contacto con caso confirmado.
Procedencia del extranjero Prueba obligatoria realizada por haber llegado del extranjero.
Resultado de la prueba Resultado del test de COVID-19

Tabla 5.2: Descripcién detallada de las variables del conjunto de datos de COVID-19.

5.1.1.3 Conjunto de Datos de Diabetes

El conjunto de datos de Diabetes utilizado en este estudio es un conjunto de referencia ampliamente
conocido en la literatura cientifica. Fue originalmente introducido por el Instituto Nacional de Diabetes
y Enfermedades Digestivas y Renales de los Estados Unidos, y estd disponible ptblicamente a través
del repositorio de aprendizaje automético de la Universidad de California en Irvine [114]. Este conjunto
contiene informacién médica de mujeres de origen pima, un grupo indigena del sur de Arizona, mayores
de 21 anos. Su objetivo es predecir la apariciéon de diabetes tipo 2 basandose en ciertas mediciones
diagnésticas comunes. Después del proceso de preparacion, el conjunto incluye un total de 9 variables,
todas numéricas y continuas, que incluyen mediciones relacionadas con el paciente. La tabla 5.3
presenta una descripciéon detallada de las variables incluidas, que consta de 1000 instancias, balanceadas

aproximadamente en un 50 % entre los resultados positivos y negativos de diagnéstico.
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Nombre Descripcion
Ntmero de embarazos Ntumero de embarazos que ha tenido la paciente.
Glucosa Concentracion de glucosa en plasma (mg/dL).
Presién sanguinea Presion arterial diastélica (mm Hg).
Grosor cutdneo Espesor del pliegue cutdneo del triceps (mm).
Insulina Nivel de insulina en suero (mu U/mL).
Indice Masa Corporal Calculado como peso dividido por estatura al cuadrado (kg/m?).
(BMI)
DPF (Pedigree Diabetes) Medida del riesgo genético familiar de diabetes.
Edad Edad de la paciente (afios).
Diagnostico Resultado del test de diabetes (positivo o negativo).

Tabla 5.3: Descripcion detallada de las variables del conjunto de datos de diabetes.

Este conjunto ha sido ampliamente utilizado como benchmark en tareas de clasificacién, especialmente
en investigaciones relacionadas con modelos de prediccion médica y evaluacién de algoritmos de AA
[115]-[118].

5.1.1.4 Conjunto de Datos de Diagnéstico de Fallos en Vehiculos Submarinos Auténomos

Este conjunto de datos fue generado empleando el vehiculo submarino auténomo Haizhe, desarrollado en
laboratorio [119]. Para su recopilacién, se realizaron multiples pruebas en las que el Vehiculo Submarinos
Auténomo (VAS) ejecuté un programa de navegaciéon bajo el agua mientras se inducian fallos. Durante
cada prueba, se registraron automaticamente los datos de estado del vehiculo, incluyendo lecturas de
sensores y variables de control, sin intervencién humana. El conjunto final, tras el preprocesamiento,
contiene 7 variables: 6 de ellas son continuas, y una variable objetivo denominada Diagndstico, que indica
el estado del submarino, especificando si se encuentra funcionando correctamente o si se ha detectado
algtin fallo. La tabla 5.4 presenta la descripcién de las variables utilizadas. El dataset cuenta con 5000

instancias, balanceadas equitativamente entre ambos estados (funcionamiento correcto y con fallo).

Nombre Descripcién
pwm Senal de modulacién por ancho de pulso enviada a los actuadores.
voltaje Voltaje eléctrico medido en voltios (V).
presién Presién medida en pascales (Pa).
angulo inclinacién Angulo de inclinacién en grados ().
profundidad Profundidad medida en metros (m).
angulo rodar Angulo de rodar en grados (°).
velocidad angular de guinada Velocidad angular de guifiada en grados por segundo (°/s).

Tabla 5.4: Descripcion detallada de las variables del conjunto de datos de diagndstico de fallos en
vehiculos submarinos.



5.1 Datasets 43

5.1.2 Preparacion

En esta seccién se detallan las operaciones de preprocesamiento realizadas sobre los distintos conjuntos
de datos utilizados en el presente estudio. El propésito de este proceso es asegurar que los datos se
encuentren en un formato adecuado y cuenten con la calidad necesaria para la construccién de modelos
de aprendizaje automatico robustos, precisos y fiables. Las tareas de preparacién incluyeron, entre otras, la
limpieza de datos (eliminacién de registros incompletos o erréneos), la transformacién de variables (como
la normalizacién o estandarizacién de variables numéricas), la codificaciéon de variables categéricas, la
deteccion y tratamiento de valores atipicos, asi como la seleccién de caracteristicas relevantes. Estas
acciones resultan esenciales para minimizar el ruido en los datos, mejorar el rendimiento predictivo de

los modelos y mitigar riesgos como el sobreajuste.

Adicionalmente, en funcion de las particularidades de cada conjunto de datos, se llevaron a cabo ajustes
especificos, tales como la creacion de nuevas variables derivadas o la reestructuracion del formato original
de los datos. Es importante senalar que, en esta secciéon, se ha sintetizado la explicacion del proceso
general de andlisis y preprocesamiento. La exposicion se limita a las operaciones efectivamente realizadas
y a los hallazgos maés relevantes. No se abordan en profundidad los aspectos tedricos ni estadisticos del

analisis exploratorio, ya que este no constituye el objeto principal del estudio.

5.1.2.1 Conjunto de Datos de Dengue

Se llevo a cabo un analisis exploratorio preliminar con el objetivo de comprender la estructura del conjunto
de datos. Este conjunto estd constituido principalmente por variables de tipo dicotémico, con excepciéon
de la variable objetivo, Severidad, que presenta tres clases, tal como se describié previamente. En primer
lugar, se verifico el tipo de dato de cada variable y, dado que la mayoria son categoricas, se evalué el niimero
de valores tinicos presentes en cada una. Adicionalmente, se calcularon estadisticas descriptivas bésicas,
como la media y la desviacién estandar, que, aunque aplicadas a variables dicotémicas, proporcionan

informacién relevante sobre la distribucién de los datos.

Se confirmé la ausencia de valores nulos en las variables, por lo que no fue necesario realizar labores
adicionales de preprocesamiento. La Figura 5.1 presenta el grafico de sectores correspondiente a las
variables, en el que se representa el porcentaje relativo de cada categoria dentro de las variables analizadas.
Se identificé que la variable Fiebre presentaba un tinico valor en todas las instancias, por lo que se considerd
una constante. Dado que una variable constante no aporta variabilidad ni informacién 1til para el anélisis,

se procedi6 a eliminarla del conjunto de datos.

Se calculé la correlacién de Cramér, una medida especialmente adecuada para variables categoricas
binarias, ya que evaliia la asociacién entre variables cualitativas sin asumir un orden o una escala numérica.
Esta métrica se basa en la tabla de contingencia y permite cuantificar la fuerza de la relacién entre
dos variables categéricas. La Figura 5.2 presenta los resultados de la correlacion, donde se destaca
que la variable Dolor Abdominal es la que presenta mayor correlacién con la variable objetivo (0.62),
seguida por Caida de Plaquetas (0.56) y Hemorragias Hemdticas (0.53). Esta matriz de correlacién se

usa posteriormente en el andlisis de explicabilidad

Se calculé el Factor de Inflacién de la Varianza (VIF), que mide el grado de colinealidad entre las
variables predictoras. Los resultados indicaron que el valor maximo de VIF correspondi6 a la variable
Dolor Abdominal con un valor de 1.70. Dado que estos valores son inferiores a los umbrales criticos
cominmente aceptados (generalmente 5 o 10) [120]-[122], no se considerd necesario eliminar ninguna

variable por multicolinealidad.
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Figura 5.1: Gréfico de sectores del conjunto de datos de Dengue.

Figura 5.2: Correlacién de Cramér para el conjunto de datos de Dengue.
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5.1.2.2 Conjunto de Datos de COVID-19

Se verificé el nimero de valores tinicos de cada variable. Ademads, se calcularon estadisticas bésicas, como
la media y la varianza, que resultan relevantes pese a tratarse de variables categoricas. Se analizé la
proporcién de valores positivos y negativos mediante graficos de sectores. En la Figura 5.3 se observa
que la variable objetivo Resultado de Prueba presenta un marcado desequilibrio, con una cantidad
significativamente mayor de casos negativos respecto a los positivos. Para corregir esta desproporcion, se
aplicé la técnica de sobremuestreo sintético SMOTE[123] , que genera nuevas muestras sintéticas de la
clase minoritaria con el propésito de equilibrar la distribucién de clases y mejorar el rendimiento de los

modelos predictivos.

Tos
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3.9%

Dolor de Garganta Dificultad Respiratoria

1.9% 0.5%

Categorias Categorfas Categorias Categorias
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Motivo Prueba
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W o
- Contacto con infectado
[l Procendencia del extranjero

Figura 5.3: Gréafico de sectores del conjunto de datos de COVID-19.

Dado que la variable Motivo de Prueba cuenta con tres clases distintas, esta fue dividida en dos
variables binarias: Procedencia del Extranjero y Contacto con Infectado, ya que esta transformacion

permitioé obtener mejores resultados en la construccién de los modelos.

Se identificaron instancias con caracteristicas idénticas pero con valores diferentes en la variable
objetivo Resultado de Prueba, lo que puede generar inconsistencias durante el entrenamiento de modelos
debido a la informacién contradictoria. Para mitigar este problema, se definié una variable auxiliar
denominada Coeficiente de Riesgo, que cuantifica la probabilidad o nivel de riesgo asociado a cada
instancia. El Coeficiente de Riesgo se establecié como una combinacién lineal ponderada de variables

clinicas y demogréaficas relevantes, expresada mediante la siguiente férmula:

Coeficiente de Riesgo = 0,1 x Tos + 0,2 x Fiebre
+ 0,1 x Dolor de Garganta 4 0,1 x Dificultad Respiratoria
+ 0,1 x Dolor de Cabeza + 0,1 x Edad 60 o mas
+ 0,1 x Motivo Procedencia del Extranjero

+ 0,2 x Motivo Contacto con Infectado
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Los pesos asignados a cada variable fueron obtenidos a partir de la literatura [124]-[126]. Esta definicién
facilité la identificacién y eliminaciéon de instancias contradictorias, contribuyendo a mejorar la calidad

del conjunto de datos para el desarrollo de modelos de clasificacion.

Con base en este coeficiente, se aplicaron criterios de filtrado para eliminar observaciones
inconsistentes: se descartaron aquellas en las que el coeficiente de riesgo es elevado pero el resultado
de la prueba es negativo, y viceversa. El Algoritmo 2 muestra el procedimiento para identificar y eliminar
instancias contradictorias en el conjunto de datos. Para cada observacion, calcula el Coeficiente de Riesgo,
que representa una estimacién del nivel de gravedad asociado. El algoritmo elimina aquellas instancias
donde existe discrepancia entre este coeficiente y el valor real de la variable objetivo: se descartan los
casos con un coeficiente alto pero un resultado negativo, y también los que presentan un coeficiente bajo
pero un resultado positivo. Este filtrado busca mejorar la calidad, coherencia y robustez del conjunto
de datos, evitando que datos inconsistentes afecten negativamente el entrenamiento y desempeno de los

modelos predictivos.

Data: Conjunto de datos con variables predictoras y la variable objetivo Resultado de Prueba
Result: Conjunto de datos sin instancias contradictorias
// Calcular el Coeficiente de Riesgo para cada instancia
Para cada instancia x € D, calcular CR(x) € [0, 1], que representa el riesgo estimado
// Filtrar instancias contradictorias
for cada instancia x € D do
if CR(z) > 0,6 y Resultado(x) =0 then
Eliminar x del conjunto de datos
else if CR(z) < 0,3 y Resultado(z) =1 then
‘ Eliminar x del conjunto de datos

return Conjunto de datos filtrado D

Algoritmo 2: Filtrado de instancias contradictorias utilizando el Coeficiente de Riesgo.

La Figura 5.4 presenta el grafico de sectores correspondiente al conjunto de datos de COVID-19
tras las operaciones de preprocesamiento descritas anteriormente. Se observa que, en comparaciéon con
el estado inicial, la variable objetivo Resultado de Prueba presenta un balance adecuado entre clases.
Ademads, se evidencia un incremento en la proporciéon de casos positivos asociados a cada uno de los

sintomas analizados.

Se aplico la correlacién de Cramér para evaluar la asociacion entre las variables categéricas y la
variable objetivo. Se observo que la variable Motivo Contacto con Infectado presenta una correlacion de
0.60 con el Resultado de Prueba, seguida por Motivo Procedencia del Extranjero con 0.60, Fiebre con 0.54
y Tos con 0.51, siendo estas las variables con mayor relaciéon destacada. Esta matriz de correlacién se usa

posteriormente en el anélisis de explicabilidad

Se realiz6 la prueba de significacion chi-cuadrado para evaluar la independencia entre cada variable
y la variable objetivo. En todos los casos, se rechazé la hipdtesis nula de independencia, lo que indica
que todas las variables analizadas son estadisticamente significativas respecto al Resultado de Prueba.
Finalmente, se llevé a cabo un andlisis de multicolinealidad mediante el VIF. Los resultados indicaron
que la variable Resultado de Prueba presenta el valor maximo de VIF con 3.64, seguida por Fiebre con
1.59. Dado que estos valores son inferiores a umbrales criticos, no se consideré necesario eliminar ninguna

variable por multicolinealidad.
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Figura 5.4: Grafico de sectores del conjunto de datos de COVID-19 tras el preprocesamiento.
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El conjunto de datos estd compuesto por variables numéricas, excepto la variable objetivo Diagndstico,

la cual es categérica binaria, con valores 0 (negativo) y 1 (positivo). Se llevé a cabo un anglisis

exploratorio en el que se examinaron estadisticas bésicas y la posible presencia de valores nulos. No se

detectaron datos faltantes. Posteriormente, se analizé la distribucién de las variables numéricas mediante

histogramas. La Figura 5.5 muestra los histogramas correspondientes a las variables continuas del conjunto

de datos. Para determinar el nimero de intervalos (bins) en cada histograma, se aplicé la regla de

Freedman—Diaconis [127], que ajusta el ancho de los intervalos en funcién de la dispersién de los datos:

Ancho del bin = 2 x

IQR

In

donde IQR es el rango intercuartilico y n el nimero de observaciones. En los histogramas se observa

que variables como Nimero de Embarazos, Grosor Cutaneo, Insulina y Edad no presentan una distribucién

normal, lo cual es relevante para el modelado posterior.
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Para complementar este andlisis, se emplearon Q-@Q plots (Quantile-Quantile plots) [128], [129], que
permiten evaluar visualmente la aproximaciéon de una variable a una distribucién normal mediante la
comparaciéon de cuantiles tedricos y observados. La Figura 5.6 presenta los @Q-Q plots de las variables
continuas. Se observa que la variable Nimero de Embarazos exhibe una estructura escalonada debido a su
naturaleza discreta, con multiples observaciones compartiendo valores idénticos. Variables como Glucosa,
Presion Sanguinea, Grosor Cutdneo, Insulina e BMI presentan una concentraciéon notable de valores
iguales a cero, lo que podria reflejar registros erréneos o datos faltantes codificados inapropiadamente.
Ademas, en las variables DPF, Insulina y Edad se aprecia una separacién en la cola superior respecto a

la linea de referencia, sugiriendo distribuciones asimétricas o con colas pesadas.
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Figura 5.6: @-Q plots de las variables numéricas del conjunto de datos de diabetes.

A partir de lo observado en los Q-Q plots, donde se identificaron patrones como la alta concentracién
de valores en cero, estructuras escalonadas, y desviaciones en las colas de algunas distribuciones, se
consider6 necesario verificar la presencia de valores atipicos (outliers) en las variables analizadas. Para

ello, se emplearon dos métodos estadisticos: el rango intercuartilico (IQR) y el puntaje estdndar (Z-score).

En el método del rango intercuartilico (IQR), se consideraron atipicos aquellos valores situados fuera
del rango [Q1 — 1,5 x IQR, Q3 + 1,5 x IQR], donde Q1 y @3 son los cuartiles primero y tercero,
respectivamente, e QR = @3 — Q1 representa el rango intercuartilico. En el método del Z-score, se
consideraron atipicos aquellos valores cuya puntuacién estdndar se encontraba fuera del rango [—3, 3].
Esta puntuacién se calcula mediante la formula Z = *=£, donde x es el valor de la observacién, u la

media de la variable y o su desviacion estdndar. De esta forma, se identificaron como valores atipicos las

observaciones que se alejaban mas de tres desviaciones estandar respecto a la media, ya que tales casos

son poco probables bajo una distribucién normal.

Los resultados para cada variable son:

o Numero de Embarazos: 4 outliers (0.52 %) detectados por ambos métodos.
o Glucosa: 5 outliers (0.65 %) identificados por ambos métodos.

o Presion Sanguinea: 45 outliers (5.86 %) por IQR y 35 (4.56 %) por Z-score.

e Grosor Cutdneo: 1 outlier (0.13 %) segtin ambos métodos.

o Insulina: 34 outliers (4.43%) con IQR y 18 (2.34 %) con Z-score.
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o Indice de Masa Corporal (BMI): 19 outliers (2.47 %) por IQR y 14 (1.82%) por Z-score.
o DPF: 29 outliers (3.78 %) detectados por IQR y 11 (1.43 %) por Z-score.

o Edad: 9 outliers (1.17%) por IQR y 5 (0.65 %) por Z-score.

La Figura 5.7 presenta los diagramas de caja y bigotes que corroboran la deteccién de outliers mediante
el método IQR.
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Figura 5.7: Diagramas de caja y bigotes para las variables numéricas del conjunto de datos de diabetes.

Para mitigar el impacto de los valores cero anémalos, presentes en variables como Glucosa, Presion
Sanguinea, Grosor Cutdneo, Insulina y Indice de Masa Corporal, se aplicé una técnica de imputacién
basada en vecinos més cercanos (K-Nearest Neighbors Imputation). Esta técnica considera dichos valores
cero como faltantes y estima su valor a partir de la media de los k& = 5 vecinos méas cercanos, lo que
permite preservar la coherencia de la informacién y la estructura de los datos. La Figura 5.8 muestra los
histogramas posteriores a la imputacion, en los cuales se observa un aumento en el niimero de bins y una
distribucién mas cercana a la normalidad para las variables que inicialmente presentaban distribuciones
atipicas. Cabe destacar que esta imputacién se aplicé Gnicamente a las variables mencionadas, mientras
que otras como el nimero de embarazos y la edad mantuvieron su distribucion original, ya que los valores

cero en ellas no se consideraron anémalos.

Posteriormente, se llevé a cabo un anélisis ANOVA para evaluar la significancia estadistica entre las
variables numéricas y la variable objetivo Diagndstico. E1 ANOVA es una técnica estadistica que permite
determinar si existen diferencias significativas en las medias de una variable numérica entre dos o més
grupos definidos por una variable categoérica. En este caso, se utiliz6 para comparar las medias de cada
variable numérica entre los dos grupos de Diagndstico (0: negativo, 1: positivo). Un resultado significativo
indica que la variable numérica contribuye a diferenciar los grupos, justificando su inclusiéon en el modelo

predictivo. Se comprobd que todas las variables numéricas presentan significancia estadistica.

Finalmente, se calculé el VIF, obteniéndose valores entre 1.86 para BMI, seguido de Glucosa y 1
para DPF, con el resto de variables situadas en rangos intermedios. Dado que estos valores son bajos,
no se procedié a eliminar ninguna variable. Se calcularon las correlaciones entre las variables numéricas
utilizando los coeficientes de Pearson y Spearman. Se observ) una correlaciéon notable entre las variables
Numero de embarazos y Edad, con un valor de 0.54 segin Pearson y 0.61 segin Spearman, lo que indica

una asociacion positiva moderada entre ambas variables. No se detectaron otras correlaciones significativas
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de mayor magnitud entre las variables numéricas del conjunto de datos. A las variables numéricas se le
aplicé la normalizacién Min-Max para escalarlas, ya que muchos algoritmos de AA son sensibles a la
escala de los datos. Cuando las variables tienen rangos muy diferentes, las de mayor magnitud pueden
dominar el proceso de aprendizaje, afectando el rendimiento del modelo. Ademés, al escalar las variables
a un rango comun, se evita que alguna variable tenga mas peso simplemente por su escala numérica.

Finalmente, para balancear el conjunto de datos, se aplicé la técnica SMOTE.
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Figura 5.8: Histogramas de variables numéricas del conjunto de datos de diabetes despues de la
imputacién.

Tras realizar la imputacion de los valores cero, se comprobé que el niimero de valores atipicos,
determinado mediante los métodos de IQR y Z-score, disminuy6 considerablemente, por lo que no fue

necesario aplicar técnicas adicionales para su tratamiento.

5.1.2.4 Conjunto de Datos de Diagnéstico de Fallos en Vehiculos Submarinos Auténomos

En el conjunto de datos correspondiente al diagnodstico de fallos en vehiculos submarinos, todas las
variables son numéricas, a excepcién de la variable objetivo estado, la cual es binaria: el valor 0 indica
que el vehiculo se encuentra en buen estado, mientras que el valor 1 indica la presencia de una averia.
Se realizé un andlisis exploratorio inicial que incluy6 la visualizacién de estadisticas descriptivas bésicas,
sin detectarse valores faltantes en ninguna de las variables. Ademads, se examiné la distribucion de las

variables numéricas mediante histogramas, los cuales se presentan en la Figura 5.9.

Al igual que en el conjunto de datos de diabetes, se empled la regla de Freedman-Diaconis para
determinar el nimero de intervalos (bins) en cada histograma. A partir de los resultados, se observa que
la mayoria de las variables presentan distribuciones cercanas a la uniforme, con excepciéon de aquellas

asociadas a las sefiales PWM de los motores y la variable velocidad angular guinada.

Para complementar este andlisis, se utilizaron grificos @Q-@Q plots, los cuales permitieron evaluar la
normalidad de las distribuciones. Como se muestra en la Figura 5.10, la mayoria de las variables siguen
una distribucién aproximadamente normal, aunque con ligeras desviaciones en las colas. La variable
velocidad angular guinada destaca especialmente por sus desviaciones respecto a la linea de referencia, lo

que evidencia una mayor discrepancia con la normalidad teérica.
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Figura 5.9: Histogramas de variables numéricas del conjunto de datos de diagnéstico de fallos en
vehiculos submarinos.

Se llev6 a cabo un andlisis de deteccién de valores atipicos (outliers) utilizando tanto el método del
IQR como el método del Z-score. En general, no se identificaron anomalias relevantes, a excepcién de las
variables correspondientes a las sefiales PWM de los motores, en las cuales se observé una proporcién

cercana al 4% de valores atipicos en ambos métodos.

Dado que cada uno de los cuatro motores del vehiculo recibe una senal PWM independiente, y
considerando que dichas sefiales pueden diferir en magnitud o comportamiento, se opté por combinar la
informacion en una tnica variable representativa. Para ello, se construyé una nueva variable calculando el
producto de las senales PWM de los cuatro motores Esta operacién permite capturar de forma compacta
la interaccién conjunta de las senales enviadas a los motores. Posteriormente, se eliminaron las columnas
originales de las senales individuales, conservando tinicamente la variable compuesta pwm, que se empleara
en los andlisis posteriores. A continuacién, se calcularon las correlaciones entre las variables numéricas

utilizando los coeficientes de Pearson y Spearman, sin observarse asociaciones de relevancia estadistica.

También se aplicé un andlisis de varianza (ANOVA) para evaluar la significancia estadistica de las
variables respecto a la variable objetivo. Los resultados indicaron que varias variables no presentaban
diferencias significativas entre los grupos. A su vez, se realiz6 un anélisis de colinealidad mediante el

calculo del VIF, sin detectarse valores que justificaran la eliminacién de variables por multicolinealidad.
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Con el objetivo de equilibrar las clases del conjunto de datos, se aplico la técnica SMOTE, seguida de

una normalizacién de las variables numéricas mediante escalado Min-Max.
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Figura 5.10: Q-Q plots de las variables numéricas del conjunto de datos de diagnostico de fallos en
vehiculos submarinos.

Inicialmente, la variable objetivo estado presentaba cinco clases distintas. No obstante, al aplicar
modelos de MCDs, se comprobé que el algoritmo no lograba converger debido a la escasez de muestras
por clase. Esta falta de convergencia se observé tanto al incluir todas las variables, como al utilizar

Unicamente las seleccionadas por ANOVA como estadisticamente significativas.

Por tal motivo, se reformulé el problema como una tarea de clasificaciéon binaria, donde el estado 0
representa el funcionamiento normal y el estado 1 agrupa las cuatro clases asociadas a fallos. Una vez
redefinido el objetivo, se aplicé nuevamente la técnica SMOTE para abordar el desbalance de clases en
esta nueva configuracién. Finalmente, se construyeron modelos utilizando tanto el conjunto de variables
significativas identificadas por ANOVA como el conjunto completo de variables. Los resultados mostraron
un mejor rendimiento al excluir las variables no significativas, lo que respalda la utilidad del andlisis

ANOVA en la etapa de seleccién de caracteristicas.
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5.2 Métricas

Esta seccién presenta las métricas empleadas para evaluar el rendimiento de los modelos desarrollados
para tareas de clasificacion. Se utilizan métricas clasicas de clasificacién, como la matriz de confusién y
sus métricas derivadas: accuracy, precision, recall y F1-score. Ademaés, se analiza el area bajo la curva
ROC (AUC-ROC) para medir la capacidad discriminativa de los modelos.

A continuacién se describen las métricas de clasificacion:

e Matriz de confusion: Es una tabla que resume el desempeno del modelo al clasificar las instancias

en:

TP (True Positives): instancias positivas correctamente clasificadas.

FP (False Positives): instancias negativas clasificadas incorrectamente como positivas.
— TN (True Negatives): instancias negativas correctamente clasificadas.

— FN (False Negatives): instancias positivas clasificadas incorrectamente como negativas.
Esta matriz permite calcular todas las métricas de evaluacién posteriores.
« Exactitud (Accuracy): Mide la proporcién de predicciones correctas sobre el total de predicciones.

TP+TN
TP+TN+FP+FN

Accuracy = (5.1)

o Precisiéon (Precision): Indica cudntas de las instancias clasificadas como positivas son

efectivamente positivas.

TP
Precision = W (52)
o Sensibilidad (Recall): Mide la proporciéon de instancias positivas correctamente identificadas por
el modelo. Tp
l=——— .
Reca TPLFN (5.3)

e Puntuacién F1 (Fl-score): Representa la media arménica entre precisién y sensibilidad, lo cual

favorece un equilibrio entre ambas métricas.

Fl—9 Precision - Recall

. 5.4
Precision + Recall (5-4)

e Curva ROC y AUC: La curva ROC muestra la relacién entre la Tasa de Verdaderos Positvos
(TPR) y Tasa de Falsos Positvos (FPR) al variar el umbral de decisién. El drea bajo esta curva

(AUC) cuantifica la capacidad del modelo para distinguir entre clases.

TP

TPR = 7o (5.5)
FP
FPR= — .
R=oprrn (5.6)

Un AUC cercano a 1 indica un modelo con alta capacidad discriminativa, mientras que un valor

cercano a 0.5 sugiere un modelo sin poder de discriminacién.

Ademaés de evaluar el rendimiento del modelo, se analiza la robustez de las explicaciones generadas

por el método de explicabilidad propuesto. Para que un método explicativo se considere robusto, debe
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cumplir con un conjunto de propiedades que permitan medir su calidad, utilidad y confiabilidad. Estas
propiedades, descritas en la Seccién 2.3.3, incluyen: fidelidad, consistencia, robustez y eficiencia. Ademads,
las explicaciones generadas por el método propuesto se comparan con medidas de centralidad provenientes
de la teoria de grafos, descritas en la Seccién 2.3.5.1, con el objetivo de analizar la correspondencia entre
dichas explicaciones y la relevancia estructural de los nodos en el grafo. Las medidas consideradas incluyen:

grado de entrada, grado de salida, grado total, PageRank e intermediacion.

Para realizar una comparacién cuantitativa de la calidad entre distintos métodos de
explicabilidad, se utiliza la técnica ROAR, que permite estimar la importancia real de las caracteristicas
seleccionadas. ROAR [130] elimina de forma progresiva las caracteristicas consideradas més relevantes por
un método de explicabilidad, reentrena el modelo desde cero en cada iteracion y evaltia su rendimiento.
Si el método es eficaz, la eliminacién de caracteristicas importantes deberfa provocar una caida notable
en el rendimiento del modelo. El procedimiento se repite de forma iterativa: se elimina primero la
caracteristica mas relevante y se mide el rendimiento; luego se eliminan las dos mads relevantes y se
reevaltia; posteriormente tres, y asi sucesivamente. Este proceso permite medir de manera objetiva el

impacto de las caracteristicas seleccionadas sobre el rendimiento del modelo.

5.3 Modelado

En esta seccién se presentan tanto el modelado usando los MCD como con las otras tecnicas de aprendizaje

automativo usadas en este trabajo.

5.3.1 Modelado Usando MCDs

Esta seccion describe detalladamente el proceso seguido para implementar el enfoque basado en modelos
MCD para tareas de clasificacion. Se explica el uso del software FCM FEzperts para la construccion y
entrenamiento de los modelos, asi como la optimizacion de sus pardmetros mediante algoritmos evolutivos.

Ademas, se discuten las principales limitaciones encontradas en la definicién estructural de los modelos.

El software FCM Experts [53] fue empleado para la construccién y entrenamiento de los modelos
de clasificacién basados en MCDs. La construccién y entrenamiento de los modelos de clasificacion
se fundamenta en algoritmos de optimizacién por poblaciones, como se explica en la Seccién 2.2. En
particular, se utiliz6 el algoritmo Particle Swarm Optimization (PSO) [131], y especificamente su variante
Global-best PSO [132], para la optimizacién de la matriz de pesos W. Global-best PSO es un algoritmo
disenado para resolver problemas de optimizacién mediante un enfoque estocastico inspirado en el
comportamiento colectivo de las poblaciones. En este contexto, un conjunto de particulas explora el
espacio de soluciones, donde cada particula representa una posible soluciéon. Cada particula se caracteriza

por:

1. Una posiciéon X; en el espacio de busqueda.
2. Una velocidad V; que determina su desplazamiento.

3. Su mejor posicién histérica pbest;.

El algoritmo también mantiene gbest, que representa la mejor posiciéon global hallada por el enjambre.

Las particulas actualizan sus posiciones y velocidades en cada iteracién usando las ecuaciones 5.7 y 5.8 :

Xt =X+ Vit (5.7)
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VIt = - Vidcp -7y - (pbest; — X!) + co - 7y - (gbest — XY) (5.8)

donde w es el coeficiente de inercia, y c¢1, co son los coeficientes cognitivo y social, respectivamente.

Los valores r1 y 72 son variables aleatorias uniformemente distribuidas en el intervalo [0, 1].

Global-best PSO se emplea para construir, a partir de los datos, la matriz de pesos W del MCD. En este
contexto, cada particula del enjambre representa una posible solucién, es decir, una matriz W candidata
que define las relaciones causales entre los conceptos del modelo. Durante la bisqueda, el enjambre
explora iterativamente el espacio de soluciones conformado por todas las configuraciones posibles de W,
evaluando el desempenio de cada particula mediante una funcién objetivo basada en la ezactitud del
modelo. Asi, las particulas actualizan sus posiciones y velocidades guiadas tanto por su mejor experiencia
individual (pbest,) como por la mejor solucién global encontrada (gbest), hasta que se cumple un criterio
de parada predefinido, como alcanzar un niimero méximo de iteraciones o la estabilizacion del rendimiento

del modelo.

La seleccién de los hiperpardmetros (tamafio de poblacién, nlimero méximo de iteraciones, ¢, ¢g) se
realizé de forma empirica para cada conjunto de datos, empleando validacién cruzada para garantizar
una evaluacién robusta del rendimiento. El trabajo de [133] destaca que coeficientes ¢; = ¢y ~ 0,2
proporcionan un equilibrio efectivo entre la exploracion y explotacion del espacio de busqueda. Por otro
lado, aunque [134] sugiere valores éptimos para el tamano del enjambre en funcién de las caracteristicas
del conjunto de datos (especificamente, el tamano de la poblacién), en el presente estudio fue necesario
ajustar dicho parametro de manera especifica, ya que las recomendaciones propuestas no proporcionaron
resultados satisfactorios con los datos empleados. Sin embargo, las recomendaciones respecto a los valores
de ¢1 y ¢ se mantuvieron en 0.2. El proceso completo seguido para construir y validar cada modelo fue

el siguiente:

1. Validacion cruzada: Se llevaron a cabo diez validaciones cruzadas, dividiendo los datos en un
70 % para entrenamiento y un 30 % para prueba, con el fin de obtener una estimacién robusta del

rendimiento del modelo.

2. Seleccion de hiperparametros: Se establecieron los valores de los hiperparametros relevantes,
tales como el tamano de la poblacion, el nimero méximo de iteraciones y los coeficientes cognitivo

y social.

3. Entrenamiento del modelo: Se entren6 el modelo utilizando la configuracién seleccionada,

aplicando el algoritmo Global-best PSO para la optimizaciéon de la matriz de pesos.

4. Evaluacién del rendimiento: El modelo fue evaluado utilizando las métricas definidas. En caso
de obtener resultados insatisfactorios, se ajustaron los hiperparametros y se repitié el proceso de

entrenamiento, iterando hasta encontrar el modelo con el mejor rendimiento.

La herramienta FCM Ezperts permite construir la estructura de un MCD definiendo las relaciones
entre conceptos de forma aleatoria. Esto se realiza mediante la selecciéon de un porcentaje entre 0 y 100,
que indica cudntas relaciones se desean establecer entre todas las posibles. Un valor de 0 genera un MCD
sin relaciones entre conceptos, mientras que un valor de 100 produce un MCD completamente conectado,

en el cual todos los elementos estan relacionados entre si, incluyendo las relaciones consigo mismos.

Este método presenta una limitacion significativa, ya que la generacién aleatoria no se fundamenta en
métodos basados en evidencia ni en datos observados que justifiquen o validen la seleccion de las relaciones

causales. Para mitigar esta limitacion, se intenté aplicar algoritmos basados en poblaciones que, utilizando
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los datos disponibles, pudieran inferir la estructura causal del MCD. Sin embargo, dichos métodos no
lograron obtener una estructura adecuada ni confiable. Asimismo, se exploraron estrategias iterativas
para crear y eliminar relaciones durante la ejecucién del modelo, con el fin de optimizar su rendimiento
y determinar la mejor estructura posible. Esta alternativa tampoco produjo resultados satisfactorios.
Finalmente, se opté por utilizar MCD totalmente conectados. Esta solucién, aunque préactica, genera un
problema inherente: la propagacion de relaciones causales a todos los nodos provoca una disminucién en

el rendimiento del modelo, tanto en términos computacionales como en la calidad de sus predicciones.

5.3.2 Modelado Basado en Otras Técnicas de TA

Ademas de los modelos basados en MCD, se emplearon otras técnicas de IA para construir modelos
de clasificacién, con el objetivo de realizar una comparacién tanto en términos de rendimiento como de
explicabilidad. Las técnicas de TA usandas fueron seleccionadas utilizando la biblioteca de Python Optuna
[135], la cual esta especializada en la optimizacién automética de hiperpardmetros, en particular, para
algoritmos de aprendizaje automatico. Usando a Optuna, el proceso de optimizacién se estructur6 en las

siguientes etapas:

1. Seleccién de modelos candidatos: Se evaluaron distintos algoritmos de clasificacién mediante
validacién cruzada de 10 pliegues, {asi como utilizando segmentaciones de los conjuntos de
datos con proporciones de 20% - 80%, 30% - 70%, para analizar el desempeno en diferentes
particiones de entrenamiento y prueba. Ademads, en esta primera etapa se utilizé Optuna para una
primera busqueda de los hiperpardmetros de los modelos. Con base en su desempefio promedio, se

seleccionaron los cinco modelos con mejores resultados para continuar con la optimizacion.

2. Definicién del espacio de busqueda: Para cada modelo seleccionado, se refind el espacio
de busqueda inicialmente establecido en el paso 1, ajustando con precision los rangos de los
hiperpardametros mediante su ampliacién o reduccién segin fuera necesario. De este modo, se
identificaron los hiperparametros clave y se definieron sus posibles valores, conformando el espacio

de busqueda para la siguiente etapa de optimizacién.

3. Exploracion del espacio: A partir de la funcién objetivo basada en métricas de rendimiento,
Optuna generd combinaciones de hiperpardmetros. En lugar de explorar el espacio al azar, fue
dirigiendo la busqueda hacia aquellas combinaciones que mostraban mayor potencial, basandose en

los resultados obtenidos en cada iteracion.

4. Modelado y refinamiento: Conforme se evaluaban nuevas configuraciones, Optuna construia
y actualizaba un modelo probabilistico del espacio de busqueda. Este modelo facilitaba la
identificacién de combinaciones prometedoras, haciendo el proceso mas eficiente y aumentando

las probabilidades de encontrar una configuracién cercana al éptimo.

El ciclo de optimizaciéon continué hasta cumplir un criterio de parada predefinido, como alcanzar
un ntmero maximo de evaluaciones o estabilizar el rendimiento. Gracias a este enfoque, se obtuvieron
modelos de referencia con configuraciones bien ajustadas, lo que permitié realizar una comparacion justa

y rigurosa frente a los modelos desarrollados con MCD.

Las técnicas finales seleccionadas para la comparacién fueron las siguientes:

+ Clasificador de Arboles Extra (ETC) [136]: Técnica de construccién de modelos basada en
ensamblados de arboles de decision, que introduce aleatoriedad en la seleccién de divisiones en cada

nodo para mejorar la generalizacion.
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o Maquina de Vectores de Soporte (SVM) [137]: Técnica que construye modelos clasificadores
buscando un hiperplano 6ptimo que maximice el margen de separacién entre clases en el espacio de

caracteristicas.

o Perceptréon Multicapa (MLP) [138]: Técnica de construccién de modelos basada en redes
neuronales artificiales compuestas por multiples capas de neuronas con funciones de activacién

no lineales, permitiendo capturar relaciones complejas en los datos.

o Regresiéon Logistica (LR) [139]: Técnica estadistica para construir modelos que estima la
probabilidad de pertenencia a una clase mediante una funcién logistica aplicada a una combinacién

lineal de variables predictoras.

o K-Vecinos Méas Cercanos (KNN) [140]: Técnica basada en instancias que construye modelos
asignando la clase de una muestra segtin la mayoria de las etiquetas de sus k vecinos méas cercanos

en el espacio de caracteristicas.

5.4 Analisis de Resultados

En esta seccion se presentan los resultados obtenidos en términos de rendimiento para los modelos
MCD, comparados con aquellos generados mediante otras técnicas de AA, descritas previamente en

la Seccion 5.3.2.

5.4.1 Conjunto de Datos de Dengue

Para la construccién del modelo MCD sobre el conjunto de datos de dengue, se establecieron los siguientes
hiperparametros: nimero méaximo de iteraciones 200, poblaciéon de particulas de 65, y coeficientes
cognitivo y social en 2.01. La Tabla 5.5 presenta el desempeiio de diversos modelos de clasificacion
evaluados con este conjunto. Los modelos basados en técnicas tradicionales de AA mostraron un
rendimiento sobresaliente, con métricas entre 0.9960 y 0.9999. En particular, el modelo ETC alcanzé
los valores més altos en todas las métricas (0.9999), evidenciando una capacidad casi perfecta para
identificar correctamente los casos. Los modelos LR, MLP y SVM presentaron resultados muy similares,
con valores de 0.9998 en todas las métricas. El modelo KNN tuvo un rendimiento ligeramente inferior,
pero competitivo, con precision de 0.9959 y exactitud de 0.9960, demostrando buena capacidad de
generalizaciéon. En contraste, el modelo MCD obtuvo métricas inferiores a las de los modelos clésicos,
posiblemente debido a que los nodos del grafo estdn completamente conectados, lo que puede limitar la

captura de patrones relevantes (ver Seccién 5.3.1).

Modelo Exactitud Precision Sensibilidad Punt];llacién
ETC 0.9999 0.9999 0.9999 0.9999
KNN 0.9960 0.9959 0.9961 0.9960

LR 0.9998 0.9998 0.9998 0.9998
MLP 0.9998 0.9998 0.9998 0.9998
SVM 0.9998 0.9998 0.9998 0.9998
MCD 0.8487 0.8580 0.8470 0.8503

Tabla 5.5: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de dengue
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La Figura 5.14 muestra las curvas ROC y los valores de Are Under Curve (AUC) obtenidos. Los
modelos ETC, LR, SVM y MLP alcanzaron un AUC de 1.0000, reflejando discriminacion perfecta. KNN
obtuvo un AUC de 0.9988 y MCD 0.8852, lo que confirma la diferencia en desemperfio.
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Figura 5.11: Curva ROC para el conjunto de datos de dengue

5.4.2 Conjunto de Datos de COVID-19

Para el modelo MCD construido sobre el conjunto de datos de COVID-19, se configuraron los siguientes
hiperparametros: nimero méaximo de iteraciones en 100, poblacién de particulas en 30, y coeficientes
cognitivo y social en 2.01. La Tabla 5.6 presenta el desempenio de diversos modelos de clasificacién
aplicados a este conjunto. En general, los modelos convencionales de AA muestran un rendimiento
homogéneo y elevado, con métricas cercanas a 0.978 en todas las evaluaciones. Los modelos ETC,
LR, MLP y SVM alcanzan valores aproximados de 0.9786 en todas las métrica, indicando capacidad
consistente para clasificar correctamente los casos. El modelo KNN exhibe un rendimiento ligeramente
inferior (aproximadamente 0.9783), aunque la diferencia no es sustancial. Finalmente, el modelo MCD
presenta una capacidad de clasificaciénn menor en comparacién con las técnicas tradicionales, con una
exactitud de 0.9357, una puntuacion F1 y sensibilidad de 0.9305

Modelo Exactitud Precision Sensibilidad Puntl;lladén
ETC 0.9786 0.9795 0.9786 0.9786
KNN 0.9783 0.9791 0.9783 0.9783

LR 0.9786 0.9795 0.9786 0.9786
MLP 0.9786 0.9795 0.9786 0.9786
SVM 0.9786 0.9795 0.9786 0.9786
MCD 0.9357 0.9450 0.9305 0.9305

Tabla 5.6: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de COVID-19

La Figura 5.12 muestra las curvas ROC y valores de AUC correspondientes. Los modelos tradicionales
presentan curvas y valores muy similares, reflejando alto rendimiento. El modelo MCD se encuentra

ligeramente por debajo, indicando menor capacidad discriminativa.
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ROC Curves para modelos
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Figura 5.12: Curva ROC sobre el conjunto de datos de COVID-19

5.4.3 Conjunto de Datos de Diabetes

Para este conjunto, el modelo MCD se configur6 con un limite maximo de 100 iteraciones y poblacion de
particulas de tamano 40, con coeficientes cognitivo y social en 2.01. La Tabla 5.7 presenta las métricas
obtenidas. Los modelos ETC y KNN mostraron mejor desempeno. Los modelos MLP, SVM y LR
presentan rendimiento intermedio, mientras que MCD evidencié desempeno menor, con una exactitud

de 0.7433 y valores similares en las demas métricas.

Modelo Exactitud Precision Sensibilidad Punt};lfcién
ETC 0.8567 0.8653 0.8567 0.8558
KNN 0.8167 0.8349 0.8167 0.8141

RL 0.7900 0.8160 0.7900 0.7856
MLP 0.8300 0.8354 0.8300 0.8293
SVM 0.8433 0.8489 0.8433 0.8427
MCD 0.7433 0.7450 0.7450 0.7400

Tabla 5.7: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de diabetes

La Figura 5.13 muestra las curvas ROC y los valores de AUC correspondientes a los modelos evaluados
sobre el conjunto de datos de diabetes. Se observa que los modelos ETC y KNN presentan curvas muy
similares, con valores de AUC de 0.9020 y 0.9058, respectivamente, reflejando una alta capacidad para
distinguir entre clases. Los modelos MLP y SVM muestran un desempeno ligeramente inferior, con AUC
cercanos a 0.8899 y 0.8876, respectivamente. Por otro lado, LR alcanza un valor de AUC de 0.8484,

mientras que el modelo MCD presenta el menor valor, aproximadamente 0.8075.

Cabe destacar que las curvas ROC exhiben algunos escalones, caracteristica tipica cuando se trabaja
con conjuntos de datos de tamano reducido, ya que el nimero limitado de muestras afecta la cantidad
de posibles puntos de corte para calcular las tasas de verdaderos y falsos positivos. Esta particularidad
puede generar una apariencia discontinua en las curvas, sin que ello afecte la validez de la evaluacién

comparativa entre los modelos.
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ROC Curves para modelos
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Figura 5.13: Curva ROC dengue sobre el conjunto de datos de diabetes

5.4.4 Conjunto de Datos de Diagnéstico de Vehiculos Submarinos

Para el conjunto de datos de diagnéstico de fallos en vehiculos submarinos auténomos, se emplearon
los mismos pardmetros del modelo MCD que en los experimentos previos, con 150 iteraciones méximas,
poblacién de particulas de tamano 50, y coeficientes cognitivo y social de 2.01. La Tabla 5.8 presenta las
métricas de rendimiento de los modelos evaluados. El modelo ETC alcanzo la mayor exactitud con un valor
de 0.9229, mostrando, ademds, valores idénticos en precision, sensibilidad y puntuacion F1, lo que indica
un comportamiento equilibrado en todas las métricas. El modelo KNN obtuvo un rendimiento intermedio
con una exactitud de 0.8119 y métricas similares. Por otro lado, los modelos MLP y SVM mostraron
resultados moderados, con exactitudes de 0.8105 y 0.7633, respectivamente. El modelo LR presenté una
eficacia menor, con una ezactitud de 0.7295. Finalmente, el modelo MCD registré resultados comparables

a los de SVM, con una ezactitud de 0.7610 y el resto de métricas con valores cercanos.

Modelo Exactitud Precision Sensibilidad Punt];llacién
ETC 0.9229 0.9229 0.9229 0.9229
KNN 0.8119 0.8174 0.8126 0.8113

RL 0.7295 0.7297 0.7297 0.7295
MLP 0.8105 0.8116 0.8108 0.8104
SVM 0.7633 0.7649 0.7637 0.7631
MCD 0.7610 0.7700 0.7600 0.7600

Tabla 5.8: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de diagnostico
de fallos en vehiculos submarinos auténomos
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Figura 5.14: Curva ROC dengue sobre el conjunto de datos de diagnéstico de fallos en vehiculos
submarinos auténomos

La Figura 5.14 muestra las curvas ROC y los valores de AUC para los distintos modelos aplicados
al conjunto de datos de diagnostico de fallos en vehiculos submarinos auténomos. Se observan algunos
escalones en las curvas, caracteristicos de conjuntos de datos con tamano limitado, debido a la cantidad

restringida de muestras y posibles puntos de corte.

En cuanto a la capacidad discriminativa, el modelo ETC presenta el valor més alto de AUC con 0.9791,
seguido por MLP con 0.9092, KNN con 0.9026, y SVM con 0.8605. Los modelos LR y MCD alcanzan
valores de AUC de 0.8198 y 0.8242, respectivamente, reflejando una capacidad moderada para distinguir

entre clases en este escenario.

5.5 Analisis de Explicabilidad

Esta seccién hace un analisis de la calidad de la explicabilidad aportada por nuestro método. Para ello,
se definiran otros métodos de explicabilidad para comparar, se hard un analisis del ranking de variables
aportada por cada método, un analisis de sensibilidad de la degradacion del rendimiento de los modelos
segun las variables relevantes de cada método, y finalmente, para nuestro método de explicabilidad, se

determina su comportamiento en las propiedades de explicabilidad comentadas en las secciones anteriores.

5.5.1 Meétodos de Explicabilidad de Referencia

Los resultados de nuestro método de explicabilidad se contrastaron con los obtenidos mediante dos
métodos de explicabilidad clasicos que pertenecen a diferentes categorias, SHAP y FP, los cuales se

describen brevemente a continuacion:

« SHAP: Este método se basa en los valores de Shapley de la teoria de juegos cooperativos. Asigna a
cada caracteristica una contribucién al resultado del modelo considerando todas las combinaciones
posibles de variables. Fue introducido por Lundberg y Lee [4] como un enfoque unificado para
interpretar las predicciones de modelos complejos, y se ha consolidado como una de las técnicas

mas populares para la explicabilidad local.
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e FP: Método que evalia la importancia de una caracteristica midiendo el aumento en el
error del modelo cuando se permutan aleatoriamente sus valores. Si dicha permutaciéon afecta
considerablemente el rendimiento, se considera que la caracteristica tiene un alto impacto. Esta
técnica fue propuesta por Altmann y otros [141] como una alternativa eficaz de modelo-agnéstico

para estimar la relevancia de variables.

5.5.2 Resultados de Explicabilidad

En esta seccion se realiza un analisis comparativo entre los tres métodos de explicabilidad usando las
medidas de centralidad de grafos presentadas en la seccion 2.3.5.1 y el ranking de relevancia propuesto
por cada método. Se realizaron n simulaciones para el método propuesto y el método SHAP, ambos
de naturaleza local y dependientes de instancias especificas de entrada. El objetivo fue recopilar una
cantidad suficiente de resultados que permitiera comparar de manera fiable su comportamiento promedio
bajo condiciones controladas y equitativas. Se fij6 el valor de n en 20 simulaciones, lo que se considerd
adecuado para obtener resultados representativos y estables. Para cada simulacién, se utilizaron diferentes
instancias de entrada, y posteriormente se promediaron los resultados obtenidos con cada método, lo que
permitié una comparacion objetiva y cuantitativa de su desempeiio relativo. El andlisis agregado a partir
de multiples ejecuciones permite obtener una estimacion 1til del comportamiento general de cada enfoque.
Por otro lado, en el caso de la FP, que es un método global, no fue necesario realizar multiples simulaciones,
ya que este enfoque proporciona resultados globales por definicién y no depende de instancias especificas

de entrada.

5.5.2.1 Conjunto de Datos de Dengue

La Tabla 5.9 muestra la correspondencia entre el nombre de cada variable y su concepto C' dentro del
MCD asociado, con el objetivo de facilitar la interpretacién de los resultados obtenidos. Los resultados
del método propuesto para MCD se muestran en la Figura 5.15, como también, los derivados de las
medidas de centralidad de grafos, representados mediante graficos de arana, donde la variable mas
relevante se indica en azul, y las siguientes en orden decreciente en sentido contrario a las agujas de
reloj. Se observa que nuestro método asigna mayor importancia a los conceptos C2, seguido de C9 y
C3 (ver Dynax-FCM en Fig. 5.15). Las medidas de centralidad de grado de entrada, grado total y
PageRank coinciden en que el concepto mas relevante es CI1. En el caso del grado de entrada y grado
total, el segundo lugar lo ocupa C13, mientras que en grado de salidad el valor mas alto corresponde
a C16. Por su parte, la medida de intermediacién ofrece resultados distintos, destacando como mas
relevantes los conceptos C14, y posteriormente C20. Se observa que, en todas las medidas excepto en
PageRank, la importancia de los conceptos decrece de manera sostenida. En contraste, en PageRank la
relevancia se concentra principalmente en C1, mientras que el resto de los conceptos presentan valores

considerablemente inferiores.

Se concluye que las distintas métricas de centralidad basadas en grafos no coinciden plenamente en
la identificacién de los conceptos mas relevantes dentro del MCD. Mientras algunas destacan a C1, otras
asignan mayor importancia a conceptos como C13, C14 o C20, lo que evidencia que cada métrica capta
diferentes aspectos de la estructura del sistema. Esta variabilidad impide establecer una jerarquia tnica
basada tinicamente en estas medidas, lo que refuerza la pertinencia de emplear enfoques complementarios,

como el método propuesto en este trabajo.
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Variable Nombre Variable Nombre Variable Nombre Variable Nombre

C1 Edad C6 Erupcién Cl11 Hepatomegalia C16 Acumulacién de Liquidos
C2 Cefalea C7 Dolor Abdominal C12 Hemorragias en Mucosas ~ C17 Extravasacién

C3 Dolor Retroocular C8 Vémito C13 Hipotermia C18 Hemorragias Hematicas
C4 Mialgias C9 Somnolencia C14 Aumento de Hematocrito  C19 Shock

C5 Artralgia C10 Hipotensién C15 Caida de Plaquetas C20 Daiio Orgénico

Tabla 5.9: Relacién entre concepto y nombre de concepto en el conjunto de datos de COVID-19

ce Cls cl0
Nuestro Enfoque Grado de Entrada Grado de Salida

cs c20 c3
Grado Total Intermedicacién PageRank

Figura 5.15: Importancia del método propuesto y medidas de centralidad de grafos en el conjunto de
datos dengue

La Figura 5.16 presenta el ranking de relevancia propuesto por cada método de explicabilidad. Se
observa que los modelos basados en SHAP asignan la mayor relevancia al concepto C7, correspondiente
a la variable Dolor Abdominal. Le siguen, en distintas posiciones segtin el modelo, los conceptos C8, C15
y C12. Un patrén similar se observa en el método FP, que también sitia a C7 como la variable méas

relevante, seguida por C8, C'15y C12, aunque con diferencias en el orden de importancia entre modelos.

En contraste, el método propuesto establece un patréon de relevancia distinto, identificando como
conceptos mas importantes a C2, C9y (3, correspondientes a Cefalea, Somnolencia y Dolor retroocular,
respectivamente. Esta divergencia sugiere que nuestro método es capaz de capturar dindmicas internas y

relaciones causales desapercibidas para métodos de explicabilidad como SHAP o FP.

Como se detall6 en la Seccién 5.1.2.1, tanto la Figura 5.2, que presenta las correlaciones de Cramér,
como el analisis de VIF, identifican a la variable Dolor Abdominal, correspondiente a C7, como relevante
pero propensa a alta colinealidad. El hecho de que los métodos SHAP y FP sitilen esta variable
como la mas relevante, podria una limitacién por la presencia de multicolinealidad. En presencia de
multicolinealidad, las variables correlacionadas contienen informacién redundante que contribuye de

manera similar a la predicciéon del modelo. Esta redundancia dificulta que los métodos de interpretacién
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cuantifiquen de forma aislada la contribucién individual de cada variable, ya que sus efectos se solapan
en el espacio de caracteristicas. Por lo tanto, en lugar de distribuir correctamente la importancia entre
todas las variables correlacionadas, dichos métodos tienden a asignar una proporcién desproporcionada
de la importancia a una sola variable, lo que conduce a una sobreestimaciéon de su influencia real. En
consecuencia, esta asignacién sesgada distorsiona la evaluacion de la relevancia de las variables, generando
la falsa impresion de que una variable tiene un impacto mayor del que posee en realidad, cuando en efecto

la contribucién relevante estd compartida entre miltiples variables interrelacionadas.
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Figura 5.16: Importancia del método propuesto y métodos SHAP y FP en el conjunto de datos dengue

5.5.2.2 Conjunto de Datos de COVID-19

La Tabla 5.10 muestra la correspondencia entre el nombre de cada variable y su concepto C en los
modelos construidos con el conjunto de datos de COVID-19, con el objetivo de facilitar la interpretacién
de los resultados obtenidos. La Figura 5.17 presenta una comparacién entre el método propuesto y las
medidas de centralidad basadas en grafos. Se observa que el método propuesto asigna mayor importancia
al concepto C4. En cuanto a las medidas de centralidad, todas, excepto grado de salida, identifican al
concepto C1 como el mas relevante. No obstante, el orden de importancia del resto de los conceptos varia
entre métodos, aunque los conceptos C3 y C9 aparecen de forma recurrente en los distintos rankings,
incluido el método propuesto. Por su parte, la medida de grado de salida difiere del resto al situar como

mas relevante al concepto C2.

En conclusion, aunque el método propuesto y las medidas de centralidad basadas en grafos coinciden
parcialmente en la identificacién de conceptos clave, como C1, C3y C9, también evidencian diferencias

significativas en la jerarquia de importancia asignada a cada concepto.
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Concepto Nombre

C1 Tos

C2 Fiebre

C3 Dolor de garganta

C4 Dificultad para respirar

C5 Dolor de cabeza

C6 Edad 60 o mas

c7 Género

C8 Motivo contacto con infectado
C9 Motivo viaje al extranjero

Tabla 5.10: Correspondencia entre cddigos de concepto y nombres clinicos en el conjunto de datos de
COVID-19.

ca Ccé c7
Nuestro Enfoque Grado de Entrada Grado de Salida

c7 C4 Ce
Grado Total Intermedicacién PageRank

Figura 5.17: Comparacién de la importancia de los conceptos segin el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de datos de COVID-19.

La Figura 5.18 presenta el ranking de relevancia propuesto por cada método de explicabilidad. En
relacién con las explicaciones generadas por SHAP y FP, se observa que los modelos basados en SHAP
identifican como variable més importante a C8, seguida de C2 o (5, dependiendo del modelo. En el caso

de FP, la variable mas relevante corresponde a C2, seguida por C5 o C8, segiin el modelo considerado.

Por su parte, nuestro enfoque propuesto destaca a los conceptos C4, C7y C8, siendo tinicamente C8
considerada importante por los otros métodos. Esto sugiere que ni SHAP ni FP son capaces de capturar
adecuadamente las relaciones de causalidad al calcular la importancia de las variables.
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Cabe destacar que tanto C'8 como C2, correspondientes a las variables Fiebre y Motivo: contacto con
infectado, respectivamente, fueron identificadas en la secciéon de preparacién del conjunto de datos como
variables con alta correlacién segtin el coeficiente de Cramér y con presencia de multicolinealidad. Este
hecho pone nuevamente de manifiesto una limitaciéon inherente a los métodos SHAP y FP, que tienden a

sobreestimar la importancia de variables cuando existe multicolinealidad en el conjunto de datos.

Concepto
c5

C6

Método_Modelo

Figura 5.18: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de datos
COVID-19

5.5.2.3 Conjunto de Datos de Diabetes

La Tabla 5.11 presenta la correspondencia entre el nombre de cada variable y su concepto C en los modelos
construidos con el conjunto de datos diabetes. La figura 5.19 presenta los resultados de la comparacién
entre el método propuesto y las distintas medidas de centralidad basadas en grafos. Se observa que el
método propuesto identifica al concepto C6 como el més relevante, seguido por C2 y C8. De forma
consistente, las medidas de grado de salida, grado total e intermediacion también consideran a C6 como
el concepto mas importante. En cuanto al segundo puesto, tanto el grado de salida como el grado total
coinciden con el método propuesto al destacar a C2, mientras que la medida de intermediacion difiere,
situando a C1 como la segunda mas relevante y relegando a C2 al quinto lugar. Por otro lado, las
medidas restantes presentan discrepancias mas notables. El grado de entrada considera a C2 como la més
importante, seguida de C5, y ubica a C6 en la tercera posicion. En el caso de PageRank, C2 vuelve a
ocupar el primer lugar, pero C6 desciende nuevamente a la tercera posicién, a pesar de haber sido la mas
destacada en otras métricas. En general, puede observarse que los conceptos C6 y C2 son considerados
entre los tres mas importantes en la mayoria de las medidas, con la tinica excepcién de la intermediacion,

donde C2 desciende hasta la quinta posiciéon en el ranking.
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Concepto Variable

C1 Nuamero de Embarazos
C2 Glucosa

C3 Presiéon Sanguinea

C4 Grosor Cuténeo

C5 Insulina

C6 BMI

C7 DPF

C8 Edad

Tabla 5.11: Correspondencia entre codigos de concepto y nombres clinicos en el conjunto de datos de
diabetes.

CL ca c5
Nuestro Enfoque Grado de Entrada Grado de Salida

T o w3
Grado Total Intermedicacién PageRank

Figura 5.19: Comparacién de la importancia de los conceptos segin el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de datos de diabetes.

La Figura 5.20 presenta el ranking de relevancia propuesto por cada método de explicabilidad. Se
observa que tanto SHAP como FP coinciden en identificar al concepto C2 como el més relevante. Este
es seguido en el ranking por los conceptos C8, C6 o C1, segin el modelo considerado. Cabe destacar que
C?2 es la segunda variable con mayor multicolinealidad, seguida de C6, la cual es senalada por nuestro

método como la més importante.
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Figura 5.20: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de datos
diabetes.

5.5.2.4 Conjunto de Datos de Diagnéstico de Fallos en Vehiculos Submarinos Auténomos

La Tabla 5.12 presenta la correspondencia entre el nombre de cada variable y su concepto Cen los modelos
construidos con el conjunto de datos de diabetes. La Figura 5.21 muestra los resultados de la comparacion
entre el método propuesto y las distintas medidas de centralidad basadas en grafos. Se observa que el
método propuesto identifica al concepto C7 como el mas relevante, seguido por C3y C6. Las medidas de
grado de salida e intermediacion seleccionan como méas importante al concepto C4, seguido de C6y C2
en diferente orden. Por otro lado, las medidas de grado de entrada, grado total y PageRank consideran
al concepto C'I como el mas relevante, seguido de CJ. En este caso, el método propuesto no coincide con

ninguna de las medidas de centralidad evaluadas.

Concepto Nombre

C1 PWM

C2 Voltaje (V)

C3 Presién (Pa)

C4 Angulo de Inclinacién (°)

C5 Profundidad (m)

C6 Angulo de Rodar (°)

cr Velocidad Angular de Guinada (°/s)

Tabla 5.12: Correspondencia entre cédigos de concepto y nombres en el conjunto de datos de
diagnostico de fallos en vehiculos submarinos auténomos
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c2 ceé CL
Nuestro Enfoque Grado de Entrada Grado de Salida

C5 3 (]
Grado Total Intermedicacion PageRank

Figura 5.21: Comparacién de la importancia de los conceptos segin el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de diagnéstico de fallos en vehiculos submarinos
auténomos.

La Figura 5.22 presenta el ranking de relevancia propuesto por cada método de explicabilidad. En
relacién con los métodos de explicabilidad SHAP y FP, en este caso no se identifica una tendencia clara,
ya que cada modelo considera distintas variables como las mdas importantes. En particular, FP senala a
los conceptos C5, C8y C1 como los mas relevantes, sin que exista un claro consenso entre ellos. Por su
parte, SHAP destaca a los conceptos C3, C2y C4 como los de mayor importancia, lo que refuerza la

ausencia de una tendencia dominante entre los modelos evaluados.

Una vez examinado el comportamiento en los cuatro conjuntos de datos, se observa que los resultados
derivados de las medidas de centralidad en grafos difieren notablemente de los obtenidos con el método
propuesto. Ademas, estas medidas de centralidad presentan discrepancias entre si, reflejando diferentes
criterios y jerarquias en la identificacion de los conceptos més relevantes, lo que evidencia la complejidad

de capturar la verdadera importancia dentro de redes complejas.

De manera similar, los resultados ofrecidos por SHAP y FP también presentan diferencias significativas
respecto al método propuesto. Esto se explica principalmente porque nuestro enfoque estd disenado
para capturar la dindmica de las relaciones causales entre variables, mientras que SHAP y FP evaltian
la importancia basidndose fundamentalmente en asociaciones estadisticas directas. Ademads, el analisis
exhaustivo realizado en todos los conjuntos de datos y modelos revel6 que ambos métodos tienden a
favorecer variables con alta correlacién o multicolinealidad, lo que puede llevar a interpretaciones sesgadas
o erréneas. En contraste, el método propuesto permite identificar de forma maés robusta y precisa las
variables verdaderamente relevantes, al considerar las interacciones causales subyacentes y la estructura

dinamica del sistema, mejorando asi la calidad, coherencia y utilidad de las explicaciones generadas.
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Figura 5.22: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de
diagndstico de fallos en vehiculos submarinos auténomos.

5.5.3 Comparacién de la Calidad de los Métodos de Explicabilidad

Después de analizar los resultados obtenidos mediante el método propuesto, asi como los proporcionados
por SHAP y FP, se propone la aplicacion de ROAR con el objetivo de evaluar la calidad de las
explicaciones generadas. Se pretende comprobar que las explicaciones generadas por el método propuesto
presentan una mayor calidad que las ofrecidas por SHAP y FP, las cuales pueden verse afectadas por

problemas de multicolinealidad.

La tabla 5.13 presenta los indices de degradacién calculados tras eliminar la primera variable relevante,
las dos primeras variables revelantes, y las tres primeras variables relevantes, en el conjunto de datos de
dengue segin cada método de explicabilidad. Se observa que la mayor degradacién se produce en los
MCD, alcanzando un valor de 0.2850 al eliminar las tres variables mas relevantes. SHAP y FP presentan
degradaciones similares para algunos modelos, e incluso mejores, cuando se eliminan una o dos variables
(como el caso de SHAP y el modelo KNN al eliminar dos variables). A pesar de ello, el método propuesto
muestra consistentemente la mayor degradacion, lo que sugiere una mayor sensibilidad a las variables

eliminadas y, por tanto, una identificacion mas precisa de las caracteristicas relevantes

Vars elim. | Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM | ETC KNN LR MLP SVM
1 0.0625 0.0626 0.0621 0.0584 0.0627 0.0624 | 0.0626 0.0621 0.0584 0.0627 0.0624
0.1425 0.1293 0.1834 0.1241 0.1292 0.1292 | 0.0966 0.1316 0.1399 0.1012 0.1007
3 0.2850 0.2653 0.2711 0.2589 0.2699 0.2625 | 0.1210 0.2711 0.2052 0.1305 0.1285

Tabla 5.13: Indice de degradacién basado en el accuracy al eliminar las variables mas importantes en el
conjunto de datos de dengue
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La tabla 5.14 presenta los indices de degradacion calculados tras eliminar la primera variable relevante,
y las dos y tres primeras variables revelantes en el conjunto de datos de COVID-19 segiin cada método
de explicabilidad. Se observa que la mayor degradacién se produce en los MCD, con un valor de 0.14 al
utilizar el método propuesto y eliminar las tres variables mas relevantes, seguida de LR con FP (0.1287) y
de KNN con FP (0.1147). De nuevo, el método propuesto muestra una mayor capacidad para identificar

las variables realmente relevantes.

Vars elim. | Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM | ETC KNN LR MLP SVM
1 0.02 0.0007 0.0007 -0.0010 0.0007 0.0007 | 0.0587 0.0710 0.0623 0.0570 0.0563
0.10 0.0587 0.0340 0.0363 0.0227 0.0217 | 0.0587 0.1137 0.0780 0.0577 0.0570
3 0.14 0.0767 0.0337 0.0373 0.0810 0.0370 | 0.0767 0.1147 0.1287 0.0777 0.0770

Tabla 5.14: Indice de degradacién basado en el accuracy al eliminar las variables més importantes en el
conjunto de datos de COVID-19

La tabla 5.15 contiene los indices de degradacion del conjunto de datos de diabetes, y muestra que
el mayor valor se alcanza con el método propuesto al eliminar las tres variables mas relevantes, con una
degradaciéon de 0.2034. Incluso, al eliminar las dos variables mas relevantes sigue siendo mejor nuestro

enfoque. En el caso de la eliminacién de una variable tiene un comportamiento similar al resto.

Vars elim. | Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM | ETC KNN LR MLP SVM
1 0.0523 0.0400 0.0167 0.0567 0.0667 0.0567 | 0.0400 0.0167 0.0567 0.0667 0.0567
0.1491 0.0900 0.0400 0.0633 0.0767 0.0467 | 0.0900 0.0467 0.0633 0.1200 0.0967
3 0.2034 0.0900 0.0767 0.0700 0.1167 0.0967 | 0.0833 0.0767 0.0933 0.1167 0.0967

Tabla 5.15: Indice de degradacién basado en el accuracy al eliminar las variables més importantes en el
conjunto de datos de diabetes.

Por ultimo, en el conjunto de datos de diagnéstico de fallos en vehiculos submarinos auténomos, la
Tabla 5.16 presenta los resultados de los indices de degradacién. Se observa nuevamente que el método
propuesto produce la mayor degradacién en el rendimiento al eliminar tres variables, en comparaciéon con
el resto de métodos. No obstante, tanto SHAP como FP en ETC ofrecen un valor de degradacién cercano.

En el resto de los casos, los indices de degradacién son muy parecidos y significativamente menores.

Vars elim. | Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM | ETC KNN LR MLP SVM
1 0.0929 0.0929 0.0281 0.0200 0.0738 0.0176 | 0.0929 0.0548 0.0443 0.1057 0.0410
0.1471 0.1314 0.0329 0.0419 0.1471 0.0538 | 0.1510 0.1005 0.0814 0.1471 0.0538
3 0.2365 0.2176 0.0211 0.0676 0.1700 0.0610 | 0.2176 0.1186 0.0986 0.1619 0.0610

Tabla 5.16: Indice de degradacién basado en el accuracy al eliminar las variables mds importantes en el
conjunto de datos diagnéstico de fallos en vehiculos submarinos auténomos.

En todos los conjuntos de datos explorados, la métrica de calidad ROAR aplicado al método propuesto
muestra consistentemente los mayores indices de degradacién cuando se eliminan las tres primeras
variables identificadas como mds importantes. Este comportamiento indica que las variables seleccionadas
por el método propuesto son efectivamente relevantes para el modelo, ya que su eliminacién provoca un
deterioro significativo en el rendimiento. En comparacién, los métodos basados en SHAP y FP muestran
degradaciones més moderadas o localizadas en modelos concretos, lo que sugiere que nuestro método
propuesto tiene una mayor capacidad para detectar informacion verdaderamente esencial. Por tanto,
los resultados respaldan la utilidad del enfoque propuesto para tareas de seleccién de caracteristicas,

especialmente en entornos criticos donde una identificacién precisa de las variables clave es fundamental.
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5.5.4 Analisis de las Propiedades de Explicabilidad en Nuestro Método de
Explicabilidad

Se evalud la calidad del método de explicabilidad propuesto utilizando las propiedades definidas en la
Seccion 2.3.3, las cuales permiten medir su calidad, utilidad y confiabilidad. Estas propiedades incluyen:

fidelidad, estabilidad, uniformidad, robustez y eficiencia.

Para el célculo de dichas propiedades, se emplearon n = 10 instancias distintas, sobre las cuales se
aplico el procedimiento de evaluacion. El valor de n se limité a 10 debido a que cada instancia requiere
una verificacion manual exhaustiva. Los resultados presentados en la Tabla 5.17 reflejan el desempenio
del método de explicabilidad propuesto en cuatro dominios distintos: Dengue, COVID-19, Diabetes y
diagnéstico de fallos en VAS. En general, el método muestra un comportamiento sélido en todas las

propiedades evaluadas, lo que respalda su aplicabilidad en diversos contextos.

En cuanto a la fidelidad, se observa un rendimiento consistentemente alto en todos los conjuntos,
con valores que oscilan entre 0.9162 y 0.9533. Esto indica que las explicaciones generadas son coherentes
con el comportamiento del modelo de clasificacié subyacente, representando adecuadamente los factores

que influyen en sus decisiones.

La consistencia se evalué mediante dos métricas complementarias: estabilidad y uniformidad.
Respecto a la estabilidad, se obtuvo un valor nulo (0.0) en todos los dominios. Este resultado se
debe a la naturaleza determinista del método, basado en las relaciones causales directas e indirectas
codificadas en el MCD, las cuales no varian al ejecutar multiples veces el proceso de explicabilidad
sobre una misma instancia. Como consecuencia, tanto las activaciones como las explicaciones generadas
permanecen invariantes, garantizando una estabilidad total entre ejecuciones. Por su parte, la uniformidad
alcanzé valores elevados en todos los conjuntos (entre 0.9397 y 0.9911), lo que indica que las relevancias
asignadas a las distintas caracteristicas estan distribuidas de manera balanceada. Es decir, el método
no concentra toda la importancia explicativa en unas pocas variables, sino que reconoce el aporte de

muiltiples caracteristicas en la decision del modelo.

En relacién con la robustez, los valores obtenidos se encuentran en un rango de 0.7231 a 0.7561. Estos
resultados sugieren que las explicaciones son razonablemente estables frente a perturbaciones pequenas
en las entradas. Aunque el método responde a las modificaciones en los datos, mantiene una consistencia
suficiente como para considerarse robusto. Cabe sefialar que esta propiedad puede estar parcialmente

influenciada por la sensibilidad inherente del modelo de clasificacién ante dichas perturbaciones.

Finalmente, respecto a la eficiencia, se observan diferencias notables entre los dominios. El conjunto
de Diabetes presenta el menor valor de Cs (0.0013), lo cual refleja una generacién de explicaciones
altamente eficiente en ese contexto. En contraste, los conjuntos de Dengue y COVID-19 muestran
valores més elevados (0.1167 y 0.1072, respectivamente), posiblemente debido a una mayor complejidad
estructural del modelo o del grafo causal utilizado. No obstante, todos los valores se mantienen dentro de
margenes aceptables, lo que confirma que el método es computacionalmente viable, incluso en escenarios

con recursos limitados.

En conjunto, estos resultados evidencian que el método de explicabilidad propuesto cumple
satisfactoriamente con los criterios de calidad establecidos: alta fidelidad, consistencia perfecta,
uniformidad adecuada, robustez razonable y eficiencia operativa. Estas caracteristicas lo posicionan como

una herramienta confiable y 1til para la interpretacién de modelos en dominios sensibles o criticos.
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Propiedad | Dengue COVID-19 Diabetes Fallo en VASs
Fidelidad 0.9392 0.9264 0.9533 0.9162
Estabilidad 0 0 0 0
Uniformidad | 0.9911 0.9540 0.9685 0.9397
Robustez 0.7248 0.7231 0.7561 0.7300
Eficiencia 0.1167 0.1072 0.0013 0.0172

Tabla 5.17: Resultados promedio de las propiedades evaluadas del método de explicabilidad






Capitulo 6

Conclusiones y lineas futuras

6.1 Resumen

Este trabajo presenta un nuevo método para mejorar la explicabilidad en los MCDs. A diferencia de
los enfoques clasicos usados en MCDs que se basan en medidas de la teoria de grafos para la obtencién
de la explicabilidad a partir de la imagen final del modelo o de técnicas de explicabilidad adaptadas a
los MCDs, este enfoque propone una explicabilidad dindmica y causal. Se centra en el comportamiento
dindmico del modelo durante cada iteracién del proceso de inferencia, considerando cémo las relaciones

directas e indirectas entre conceptos influyen en la evolucién de las activaciones.

El método fue evaluado en profundidad mediante una serie de experimentos comparativos. En primer
lugar, se contrastaron las explicaciones generadas con aquellas obtenidas a través de medidas clasicas
de centralidad de grafos, cominmente utilizadas en MCDs. Se comprobé que el enfoque propuesto
ofrece explicaciones mas representativas y tutiles, ya que no se limita a analizar la estructura estatica
del modelo, sino que incorpora la dindmica de la inferencia, capturando el papel que cada concepto
desempena a lo largo del tiempo. Adicionalmente, se comparé el método con técnicas de explicabilidad
ampliamente utilizadas en la literatura, como SHAP y FP. Dado que estos métodos no pueden aplicarse
directamente sobre MCDs, se entrenaron distintos modelos de TA, como redes neuronales y arboles de
decisién, utilizando los mismos conjuntos de datos. Se disefiaron cuidadosamente los experimentos: se
adaptaron los datos, se construyeron los modelos, se midi6 su rendimiento y se generaron las explicaciones
con SHAP y FP.

La calidad de las explicaciones se evalu6 desde dos perspectivas. En primer lugar, se utilizé la técnica
ROAR. El método propuesto mostré una mayor degradaciéon de rendimiento que SHAP y FP, lo cual
indica que identifica de forma mas precisa las variables clave. En segundo lugar, se comprobé la robustez
de las explicaciones generadas, evaluando el conjunto de propiedades fundamentales que debe cumplir
un método de explicabilidad para garantizar su calidad, utilidad y confiabilidad, y se verific6 que las

explicaciones propuestas cumplen con dichas propiedades.

Todas las evaluaciones se realizaron sobre cuatro conjuntos de datos distintos, y en todos los
casos el método propuesto mostré resultados consistentes y superiores. Particularmente, los resultados
evidenciaron diferencias significativas con respecto a SHAP y FP. Tanto SHAP como FP tendieron a
identificar como méas importantes aquellas variables con alta multicolinealidad, lo cual compromete la
calidad de las explicaciones blue ya que en presencia de multicolinealidad el modelo no puede distinguir

claramente entre variables altamente correlacionadas. Esto provoca que la importancia se distribuya
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arbitrariamente entre ellas, lo que dificulta identificar cudles factores tienen un verdadero impacto en la

prediccién.

En contraste, el método propuesto no se ve afectado por este problema, ya que evalia la relevancia de
las variables considerando su impacto efectivo dentro del proceso inferencial del modelo. Por tanto, estas
diferencias resaltan la importancia de adoptar enfoques que integren el andlisis causal dindmicamente
para una interpretacién mas fiel y completa de los modelos, especialmente en dominios complejos donde

la simple correlacién puede resultar insuficiente o enganosa.

6.2 Hallazgos

A continuacién se detallan los hallazgos mas relevantes derivados del andlisis y evaluacién del enfoque
propuesto. Se resaltan aspectos fundamentales que evidencian las ventajas y aportes significativos del

método propuesto frente a enfoques tradicionales:

e Desarrollo de un método de explicabilidad post-hoc para MCDs.
Se ha disenado y validado un método de explicabilidad especifico para modelos de clasificacién
basados en MCDs que proporciona explicaciones precisas, confiables y coherentes con el

comportamiento del modelo.

e Incorporacién de la causalidad en la explicabilidad.
A diferencia de la mayoria de los métodos existentes, el enfoque integra fundamentos causales para
explicar no solo qué influye, sino por qué influye, aspecto que ha sido escasamente explorado en la
literatura sobre MCDs.

¢ Consideraciéon del comportamiento dindmico del modelo.
El método aprovecha la dindmica interna del proceso de inferencia, analizando cémo las influencias
directas e indirectas evolucionan a lo largo de las iteraciones, un aspecto poco abordado en trabajos

previos sobre explicabilidad en MCDs.

¢ Robustez y confiabilidad demostradas.
El método de explicabilidad cumple con las propiedades fundamentales establecidas en la literatura

que aseguran su calidad, utilidad y confiabilidad en diferentes dominios y configuraciones.

¢ Generacién de explicaciones visuales
El método permite representar graficamente las rutas causales y el flujo de influencia entre
conceptos, lo que facilita la interpretacién por parte de expertos humanos. Estas representaciones
visuales son especialmente ttiles en contextos criticos, como el médico, donde la comprensién clara

de las decisiones del modelo es fundamental.

6.3 Limitaciones

A pesar de los resultados positivos obtenidos con el enfoque propuesto, es importante reconocer una serie
de limitaciones que condicionan su aplicabilidad y generalizacion. Estas limitaciones estan relacionadas
con la naturaleza del método, el contexto de aprendizaje en el que se probo, como con las herramientas
disponibles actualmente para el trabajo con MCDs. A continuacién, se enumeran los principales aspectos

identificados durante el desarrollo y la evaluaciéon del método:
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¢ Coste computacional: El método presenta un mayor coste computacional en comparacién con los
enfoques estaticos, debido al anélisis de caminos dindmicos y la integracién de influencias temporales

durante el proceso de inferencia.

« Requiere convergencia del modelo: No todos los modelos basados en MCDs garantizan llegar

a un estado estable (converge), lo que afecta la consistencia de las explicaciones generadas.

e Limitaciones en el manejo de problemas multiclase: La herramienta empleada para la
construccién de los MCDs presenta dificultades para trabajar con problemas de clasificacién
multiclase con mas de tres clases, limitando su aplicaciéon en conjuntos de datos con mayor nimero
de clases. A su vez, no existe otra herramienta abierta que permita el desarrollo de modelos de

clasificacion multiclases con MCDs .

« Experimentacion solo con modelos supervisados de clasificacién: El método propuesto
fue concebido para proporcionar explicabilidad en modelos de MCDs aplicados tanto a tareas
de clasificacién como de prediccion. No obstante, en este trabajo su desarrollo se ha centrado
unicamente en el contexto de clasificacion. La razén principal ha sido la inexistencia de herramientas
abiertas que permitan construir MCDs orientados a tareas de prediccién. Las pocas soluciones

disponibles son de uso privado, desarrolladas por laboratorios de investigacion especificos.

6.4 Trabajos Futuros

El presente trabajo ha abierto nuevas lineas de investigacion en el Ambito de la explicabilidad dindmica
aplicada a los (MCD). A continuacién, se proponen algunas direcciones prometedoras para su desarrollo

futuro:

« Extenderlo a modelos descriptivos basados en MCD (sin una variable objetivo):
Extender el enfoque propuesto a MCDs que describan la dinamica de un sistema, que no requieren
explicitamente un concepto objetivo de salida. En este caso, el objetivo seria evaluar la importancia
relativa de cada concepto en el sistema, considerando su influencia global sobre el comportamiento
de la red para llegar a un estado estable. Esta adaptacién permitiria aplicar el método en contextos
donde no se dispone de una variable objetivo bien definida, como sistemas descriptivos o de

simulacién, un muy comun uso de los MCD.

e Aplicarlo en problemas de regresién (prediccién): Probar el enfoque propuesto a contextos de
regresion, donde existe una variable objetivo continua a predecir. En este escenario, el objetivo seria
calcular la influencia dindmica de los conceptos sobre dicha variable, lo cual permitiria identificar
cuales son los factores més determinantes en el resultado de la regresién. Eso permitiria evaluar

nuestro método en todas las tareas de aprendizaje supervisado.

e Mejorar su eficiencia computacional: Investigar estrategias de optimizacion que reduzcan el
coste computacional del calculo de caminos e influencias, especialmente en modelos de MCDs de
gran escala. Esto podria incluir técnicas de poda, heuristicas para seleccionar los caminos mas

relevantes, o paralelizacién del proceso de céalculo.

e Explorar nuevas funciones de penalizacién: Evaluar el impacto de distintas funciones de
penalizaciéon dentro del proceso de calculo de importancia de los caminos indirectos. Probar
alternativas a la funcién empleada actualmente podria mejorar la sensibilidad del método a distintos

patrones de interaccién.
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Estas lineas futuras permitiran consolidar el enfoque propuesto y ampliar su aplicabilidad a una
mayor variedad de problemas, reforzando su utilidad en entornos reales que demandan transparencia y

comprensién en los procesos de toma de decisiones automatizados.
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