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Resumen

Este trabajo presenta un enfoque novedoso de explicabilidad dinámica aplicado a los Mapas Cognitivos
Difusos (MCD) en tareas de clasificación. El objetivo es analizar las relaciones causales y la evolución
temporal de los conceptos a lo largo del proceso de razonamiento. Se propone un método de explicabilidad
local que permite evaluar la importancia relativa de las variables a través del tiempo basada en sus
relaciones causales, facilitando así una interpretación más precisa y detallada del comportamiento del
modelo. El método fue evaluado en cuatro conjuntos de datos: dengue, COVID-19, diabetes y fallos
en vehículos submarinos autónomos. Se comparó su rendimiento explicativo con métodos clásicos como
SHapley Additive exPlanations (SHAP), Feature Permutatio (FP), y medidas de centralidad basadas en
teoría de grafos. Además, se analizo la calidad de las explicaciones generadas por el método propuesto
mediante el enfoque ROAR (RemOve And Retrain), y se verifico que cumpliera con las propiedades
deseables en los métodos de explicabilidad. Los resultados demuestran que las explicaciones obtenidas
son coherentes con la dinámica de los MCD, superando en calidad a las obtenidas con SHAP y FP.
Se concluye que la propuesta mejora significativamente la comprensión y la confianza en los MCD en
tareas de clasificación, posicionándose como una herramienta valiosa en contextos sensibles donde la
explicabilidad es un requisito fundamental.

Palabras clave: Inteligencia Artificial Explicable, Causalidad, Mapas Cognitivos Difusos,
Aprendizahe Automático, Clasificación.





Abstract

This work presents a novel approach to dynamic explainability applied to Fuzzy Cognitive Maps (FCM)
in classification tasks. The objective is to analyze the causal relationships and the temporal evolution
of concepts throughout the reasoning process. A local explainability method is proposed that allows
evaluating the relative importance of variables over time based on their causal relationships, thus
facilitating a more precise and detailed interpretation of the model’s behavior. The method was evaluated
on four datasets: dengue, COVID-19, diabetes, and failures in autonomous underwater vehicles. Its
explanatory performance was compared with classical methods such as SHapley Additive exPlanations
(SHAP), Feature Permutation (FP), and centrality measures based on graph theory. Also, the quality of
the explanations generated by the proposed method is analyzed using the ROAR (RemOve And Retrain)
approach, and the fulfillment of desirable properties in explainability method is verified. The results
demonstrate that the explanations obtained are consistent with the dynamics of FCM, surpassing in
quality those obtained with SHAP and FP. It is concluded that the proposal significantly improves the
understanding and trust of FCMs in classification tasks, positioning itself as a valuable tool in sensitive
contexts where explainability is a fundamental requirement.

Keywords: ,Explainable Artificial Intelligence, Causality, Fuzzy Cognitive Maps, Machine Learning,
Classification.
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Capítulo 1

Introducción

1.1 Contexto y Justificación

La creciente adopción de modelos de inteligencia artificial (IA) en entornos críticos como la medicina, la
ingeniería de sistemas, la ciberseguridad o la administración pública, entre otros ámbitos, ha generado una
atención creciente hacia la necesidad de transparencia, fiabilidad e interpretabilidad en los procesos de
decisión automatizados. Si bien los avances recientes en aprendizaje automático han permitido desarrollar
modelos de alta capacidad predictiva, estos a menudo presentan un comportamiento opaco que dificulta
la comprensión del razonamiento interno que guía sus decisiones. Este fenómeno, ampliamente conocido
como el ”problema de la caja negra”, ha impulsado el desarrollo del campo de la Inteligencia Artificial
Explicable (IAE), cuya finalidad es dotar a los sistemas inteligentes de mecanismos que permitan entender,
auditar y justificar su comportamiento de forma comprensible para humanos, sin renunciar a su potencia
técnica.

En los últimos años, la investigación en IAE ha ganado un papel central dentro del desarrollo de
sistemas inteligentes, especialmente a raíz del despliegue masivo de modelos altamente complejos como
las redes neuronales profundas o las ténicas de ensamblado como random forests o boosting. A pesar del
excelente rendimiento de estas técnicas en tareas de clasificación, predicción y generación, los modelos
que generan carecen de interpretabilidad inherente, lo que dificulta su validación, genera desconfianza en
usuarios finales, y puede conllevar a riesgos de aceptación en entornos sensibles [1], [2].

Este conflicto entre precisión y transparencia ha motivado la aparición de métodos de explicabilidad,
entre las que destacan métodos locales agnósticos como Local Interpretable Model-agnostic Explanations
(LIME) [3], aproximaciones basadas en teoría de juegos como SHapley Additive exPlanations (SHAP)
[4], y modelos visuales como Gradient-weighted Class Activation Mapping (Grad-CAM) [5]. Sin embargo,
gran parte de estas propuestas han sido diseñadas para modelos discriminativos estáticos basado en el
comportamiento de los datos, y no consideran el comportamiento iterativo o dinámico de ciertos sistemas
de inferencia, limitando así su capacidad explicativa en escenarios más complejos. En este contexto, resulta
crucial desarrollar nuevas metodologías de explicabilidad capaces de capturar la evolución temporal y
causal de los modelos, particularmente en aquellos que presentan una estructura explícita de razonamiento
causal como los Mapas Cognitivos Difusos (MCDs).

Los MCDs se han consolidado como una herramienta de modelado especialmente adecuada para
representar sistemas complejos, dinámicos y con incertidumbre inherente. Su estructura basada en grafos
dirigidos ponderados permite integrar conocimiento experto e inferencia basada en relaciones causales
difusas, lo cual facilita su aplicación en dominios como el diagnóstico médico, la predicción de fenómenos
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sociales, el análisis de sistemas industriales, o el diseño de políticas públicas [6]-[8]. A pesar de su
reconocida interpretabilidad estructural, el análisis de explicabilidad en MCDs ha estado tradicionalmente
limitado a medidas estáticas, como las métricas de centralidad en teoría de grafos, la reducción de la red
conceptual, o el estudio de pesos causales sin considerar su evolución temporal [9]-[13]. Estos enfoques, si
bien útiles, presentan limitaciones al momento de capturar la dinámica real del modelo durante el proceso
de inferencia, donde las influencias causales entre conceptos no son constantes, sino que varían a medida
que el sistema se actualiza. Esta laguna metodológica motiva la necesidad de enfoques explicativos que
no solo identifiquen qué conceptos son relevantes, sino también cómo y cuándo emergen esas influencias
a lo largo del tiempo, en función de la evolución interna del sistema.

El presente trabajo parte de la hipótesis de que, para lograr una comprensión profunda y contextual
del comportamiento de los MCDs, es necesario un enfoque de explicabilidad que no solo identifique
las relaciones relevantes, sino que también analice cómo evoluciona dinámicamente el comportamiento
del modelo a partir de una instancia específica a predecir. En este contexto, se propone un método de
explicabilidad dinámico y local para MCDs, diseñado específicamente para analizarlas relaciones causales
y la evolución temporal de los conceptos a lo largo del proceso de razonamiento. Este método permite
evaluar la importancia relativa de las variables a través del tiempo, facilitando una interpretación más
precisa y detallada del comportamiento del modelo.

El objetivo central de esta investigación es diseñar, implementar y validar empíricamente este enfoque,
evaluando su capacidad para generar explicaciones consistentes, interpretables y útiles en contextos de
clasificación basados en MCDs. Además, se propone comparar el método desarrollado con técnicas de
explicabilidad ampliamente utilizadas en la literatura, como SHAP y Feature Permutation (FP), así
como evaluar su calidad usando medidas derivadas de la teoría de grafos aplicadas a MCDs.

Con el fin de evaluar la validez y aplicabilidad del método, se han empleado cuatro conjuntos de datos
reales: diagnóstico clínico de dengue, diagnóstico de COronaVIrus Disease 2019 (COVID-19), diagnóstico
de pacientes con diabetes, y detección de fallos en vehículos submarinos autónomos. Estos casos permiten
comprobar la robuztez del enfoque, su capacidad para generar conocimiento útil, y su aplicabilidad en
escenarios donde la explicabilidad no es un complemento, sino una necesidad funcional y ética.

Para el desarrollo de este trabajo, se ha seguido una metodología basada en el estándar Cross Industry
Standard Process for Data Mining (CRISP-DM), adaptado al contexto de la IAE. Los resultados obtenidos
muestran que el método propuesto permite no solo identificar con mayor precisión las variables que más
influyen en la salida del modelo para una instancia dada, sino también trazar una trayectoria causal
coherente a lo largo de las iteraciones, la cual refleja fielmente el comportamiento dinámico del sistema.
Además, las explicaciones generadas han demostrado cumplir con las propiedades esperadas en términos
de calidad, robustez y eficiencia en todo método de explicabilidad, lo que respalda su utilidad práctica y
su adecuación para tareas de clasificación basadas en MCDs.

Esta tesis, por tanto, propone un nuevo método de explicabilidad, el cual es una contribución
completamente original en el campo de la IAE, al plantear un enfoque dinámico y local específicamente
diseñado para MCDs, que no tiene precedentes en la literatura actual. A diferencia de los métodos
existentes, que se centran en explicaciones estáticas, el enfoque presentado analiza la evolución temporal
del modelo, permitiendo identificar no solo qué conceptos influyen en su salida, sino también, cómo varía
su influencia a lo largo del proceso iterativo de razonamiento.

Este método ha sido desarrollado íntegramente en el marco de esta investigación, y representa una
innovación metodológica sustancial, al integrar propiedades estructurales, dinámicas y causales en la
generación de explicaciones. Hasta la fecha, no se ha reportado en la literatura un enfoque con las
características definidas en esta investigación aplicado a MCDs, lo que sitúa esta propuesta como un
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avance pionero con alto potencial de impacto. Además, este enfoque abre nuevas líneas de investigación
en torno a la integración de explicabilidad dinámica en MCDs, con aplicaciones en contextos donde
la transparencia, la comprensión y la justificación del modelo son elementos indispensables para su
aceptación y uso responsable.

1.2 Objetivos

El presente trabajo tiene como propósito desarrollar un método de explicabilidad dinámico para modelos
de clasificación basados en MCDs, centrado en la evolución de la relación causal entre los conceptos a lo
largo del proceso de inferencia. Este enfoque propone abordar las limitaciones de los métodos existentes
en la literatura, que a menudo ignoran la naturaleza dinámica de los MCD. Los objetivos específicos son:

1. Analizar las relaciones causales entre las variables: Desarrollar un sistema que permita
observar y estudiar cómo evolucionan las relaciones causales entre conceptos durante el proceso
de inferencia ante entradas específicas. Este sistema debe evaluar la importancia relativa de las
variables a lo largo del tiempo a partir de alli, proporcionando una comprensión más profunda de
la dinámica del modelo y de las interacciones entre conceptos.

2. Desarrollar un método de explicabilidad local para MCD: Proponer un método que, a
partir de una instancia dada como entrada a un modelo de clasificación basado en un MCD, sea
capaz de identificar con precisión las características más relevantes que influyen en su resultado.
Este método debe ofrecer explicaciones locales, centradas en instancias particulares, facilitando una
interpretación clara de cómo se llega a un especifico resultado.

3. Observar el comportamiento global del modelo a partir de explicaciones locales: Aplicar
el método de explicabilidad a un conjunto de instancias para obtener una visión general del
comportamiento del modelo. Aunque no se trata de una explicación global del modelo, este análisis
permite describir cómo ciertas variables afectan de forma recurrente las decisiones, revelando
patrones de comportamiento consistentes a lo largo del conjunto de datos.

4. Comparación del método propuesto con clasicos métodos de explicabilidad: Evaluar
el desempeño del método propuesto comparándolo con otros métodos, particularmente poshoc
ampliamente utilizados en la literatura para la generación de explicaciones. Esta evaluación
permitirá identificar las fortalezas, debilidades y diferencias del enfoque desarrollado respecto a
alternativas existentes.

5. Evaluación de la calidad de las explicaciones generadas: Verificar la calidad de las
explicaciones locales producidas por el método propuesto mediante métricas adecuadas. Se busca
determinar su utilidad, precisión e interpretabilidad, así como su impacto en la confianza y
comprensión por parte de los usuarios.

1.3 Contribuciones

A continuación, se presentan las principales contribuciones de este trabajo:

• Se propone un método de explicabilidad dinámica para modelos de clasificación basados en MCD,
que permite analizar el comportamiento temporal del sistema durante el proceso de inferencia, y
extraer las variables más relevantes asociadas a una predicción específica.
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• Se introduce un enfoque de explicabilidad local centrado en instancias particulares, que facilita la
interpretación de las decisiones individuales del modelo a partir del método desarrollado.

• Se realiza una evaluación cuantitativa para compararlo con métodos de explicabilidad existentes,
evidenciando mejoras en fidelidad, interpretabilidad y utilidad de las explicaciones generadas.

• Se valida el método propuesto en diversos dominios del mundo real, demostrando su aplicabilidad,
utilidad y robustez en escenarios prácticos.

1.4 Metodología

Para la realización de este trabajo, se adopta la metodología CRISP-DM [14], la cual estructura el ciclo
de vida de un proyecto de análisis de datos. Dado que el enfoque de este estudio se centra en el desarrollo
de un método de explicabilidad, se propone una adaptación de la estructura tradicional de CRISP-DM
para ajustarse a los objetivos del proyecto. A continuación, se describen brevemente las fases de este
proyecto, las cuales serán explicadas con mayor detalle en la sección 3.

1. Comprensión del negocio: En esta fase se definen los objetivos del proyecto desde una perspectiva
aplicada, identificando los casos de uso pertinentes de los MCD. A su vez, se analiza cómo la
interpretabilidad dinámica puede abordar necesidades específicas en sectores como la salud, las
finanzas, el ámbito legal, la seguridad y las ciencias sociales.

2. Desarrollo del método de explicabilidad para MCD: Se diseña y construye un método de
explicabilidad local enfocado en el comportamiento dinámico de los MCD. Este método permitirá
identificar variables claves a partir del comportamiento de las relaciones causales a lo largo del
tiempo, generando explicaciones comprensibles para instancias individuales.

3. Entendimiento de los datos: Esta etapa comprende la recopilación, exploración y análisis de los
conjunto de datos a ser usados durante la experimentacion con nuestro método de explicabilidad.
Se evalúa la calidad de los datos, entre otras cosas.

4. Preparación de los datos: Incluye el procesamiento necesario para limpiar, transformar y
seleccionar las variables. También se analizan las relaciones causales entre las variables, que se
utilizarán en la construcción de los modelos MCD.

5. Modelado: Se desarrollan los modelos de clasificación basados en MCD. Además, se entrenan otros
modelos de clasificación usando otras técnicas de aprendizaje automático. En el caso concreto de
los MCD, en esta fase se modelan las relaciones entre conceptos y se calibran los pesos difusos para
capturar adecuadamente la evolución de las interacciones entre variables.

6. Evaluación: Se lleva a cabo la evaluación del método propuesto, comparando su rendimiento
explicativo con otros métodos de explicabilidad de tipo pos- hoc de la literatura. Asimismo, se
analiza la calidad, utilidad e interpretabilidad de las explicaciones generadas, así como su impacto
en la confianza de los usuarios en el modelo.

7. Implantación: Finalmente, se formalizan los resultados obtenidos mediante la elaboración de
informes técnicos y documentos científicos. Esta fase incluye la difusión de los hallazgos y posibles
aplicaciones prácticas del método de explicabilidad desarrollado en distintos contextos.
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Estudio teórico

En este capítulo se presenta un análisis detallado del marco teórico que sustenta el presente trabajo. Se
inicia con una revisión del estado del arte, donde se examinan los avances y enfoques más relevantes en
los temas relacionados a la tesis. Posteriormente, se profundiza en los MCDs, abordando su fundamento,
aplicaciones recientes, y las técnicas y variantes más destacadas. A continuación, se introduce el
concepto de IAE, incluyendo sus diversas taxonomías, las propiedades que debe cumplir un método de
explicabilidad, junto con una introducción a la explicabilidad causal, su necesidad y los avances logrados
en esta área. Luego, se analiza el uso de los MCDs en el contexto de la explicabilidad.

2.1 Estado del Arte

El campo de la IAE ha experimentado un crecimiento significativo en su adopción a lo largo de múltiples
sectores [15]. Esta expansión se refleja en la distribución sectorial de sus aplicaciones, presentada en la
Figura 2.1, donde se evidencia que el desarrollo y la implementación de técnicas de IAE se han extendido
a diversos dominios. Entre ellos, el sector médico destaca por concentrar el 24 % de los casos reportados,
constituyendo la mayor proporción de aplicaciones documentadas hasta la fecha [16].

Este crecimiento ha impulsado tanto la creación de frameworks robustos y versátiles, que facilitan
la integración de capacidades explicativas en sistemas de IA, como el desarrollo de métodos novedosos
orientados a mejorar la transparencia, interpretabilidad y explicabilidad de modelos complejos. Asimismo,
la comunidad investigadora ha mostrado un interés creciente en la incorporación de principios causales
para fortalecer la fundamentación teórica y práctica de la explicabilidad. Las siguientes subsecciones
abordan estos avances recientes, organizados en tres ejes: frameworks, métodos explicativos e integración
de causalidad.

2.1.1 Frameworks y Herramientas Recientes

La industria y la academia han promovido el desarrollo de herramientas orientadas a la IAE, incluyendo
frameworks capaces de integrar capacidades explicativas en sistemas complejos. Por ejemplo, Wang y otros
[17] propusieron un framework modular basado en microservicios y APIs abiertas que permite generar
explicaciones configurables y reproducibles a lo largo del ciclo de vida de un modelo de Aprendizaje
Automático (AA). Otro enfoque híbrido propuesto en [18] combina imágenes médicas con datos tabulares
para detectar cáncer de mama, incorporando mecanismos interpretables que identifican variables clínicas
clave.
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IAE en Medicina

24.0%
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12.0%

IAE en Justicia

12.0%

IAE en Finanzas
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IAE en Ciberseguridad

10.0%

IAE en Redes Sociales
9.0%

IAE en Educación

9.0%

IAE en Medio Ambiente

9.0%

Otros

5.0%

Figura 2.1: Distribución porcentual de las aplicaciones de IAE según el dominio.

En el ámbito de los sistemas IoT, Gummadi y otros [19] propusieron una solución orientada a
la detección de anomalías que integra técnicas de AA con siete métodos explicativos para evaluar la
relevancia de distintas características, resultando especialmente útil en la monitorización de sensores
industriales y la identificación de ataques tipo botnet. Finalmente, la literatura reciente reporta
diversos frameworks adicionales [20]-[24], lo que evidencia un interés creciente por desarrollar soluciones
explicativas adaptadas a distintas aplicaciones y dominios.

2.1.2 Métodos Recientes en Explicabilidad

Paralelamente al desarrollo de herramientas, se observa una intensa actividad de investigación orientada
a la creación de nuevos métodos, o a la mejora de los métodos existentes de explicabilidad.

Entre los avances recientes en métodos de explicabilidad se incluyen mejoras en técnicas de atribución,
refinamientos de algoritmos conceptuales, eliminación de artefactos en explicaciones sintéticas, y el
desarrollo de técnicas que garantizan explicaciones más robustas y fiables frente a variaciones en datos
o modelos [25]. Destacan, por ejemplo, propuestas como un método basado en SHAP aplicado a análisis
de grafos que integra correlaciones mediante grafos no dirigidos, superando en precisión y eficiencia a
enfoques tradicionales [26]. De forma similar, se ha desarrollado una estrategia iterativa para la selección
explicable de características, especialmente útil en conjuntos de datos pequeños y de alta dimensionalidad
[27]. Asimismo, los métodos contrafactuales han ampliado su campo de aplicación a nuevos dominios como
grafos [28] e imágenes [29], extendiendo considerablemente su utilidad.

Por otra parte, se han propuesto métodos recientes como el Análisis de Casos Cercanos (ACC) [30],
que examina etiquetas con probabilidades similares en clasificación de imágenes, generando grafos y
agrupaciones jerárquicas para construir conceptos interpretables y explicaciones verbales. De manera
complementaria, las Explicaciones Calibradas (EC) [31] incorporan un método basado en Venn-Abers
que calibra las salidas del modelo, asigna pesos confiables a las características, y cuantifica con precisión
la incertidumbre.
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Finalmente, el interés por adaptar los métodos explicativos a modelos emergentes, tales como los
generativos o aquellos basados en aprendizaje distribuido y colaborativo, ha ido en aumento, dada la
complejidad particular que presentan en términos de interpretabilidad [32]-[35].

2.1.3 Explicabilidad Causal

En los últimos años, la incorporación explícita de la causalidad en los métodos de explicabilidad ha
cobrado gran relevancia, superando las limitaciones de los enfoques correlacionales tradicionales (véase
2.3.4). El objetivo es generar explicaciones que no solo describan cómo se llegó a una decisión, sino
también por qué, considerando las relaciones causa-efecto subyacentes. Un elemento clave en esta
integración son los Modelos Causales Estructurales (SCMs), que formalizan el conocimiento causal
de forma matemática, permitiendo no solo explicar decisiones basadas en relaciones causa-efecto, sino
también simular intervenciones hipotéticas y prever cómo cambios en ciertas variables impactan los
resultados del modelo.

Desde un punto de vista conceptual y teórico, algunos autores han desarrollado marcos que conectan
la contrafactualidad de la inferencia causal con la explicabilidad en inteligencia artificial, promoviendo
una convergencia entre ambas disciplinas [36]. Asimismo, se ha propuesto la redefinición de la causalidad y
contrafactualidad actual como explicaciones accionables, proporcionando una base filosófico-metodológica
robusta para el desarrollo de sistemas explicativos causales [37]. En ese contexto, también se han planteado
enfoques como el de Explicabilidad Emergente (EE) [38], que integra cadenas causales directamente en
el flujo de inferencia de redes neuronales, para facilitar explicaciones más estructuradas y reveladoras de
las relaciones internas entre variables.

A su vez, la causalidad se ha incorporado en el diseño de modelos intrínsecamente interpretables,
como árboles de decisión causales o redes neuronales con estructuras causales predefinidas, mejorando la
transparencia y evitando divisiones o correlaciones espurias [39], [40].

En el plano metodológico, se han desarrollado técnicas que integran conocimiento causal en etapas
concretas del proceso explicativo. Por ejemplo, se ha adaptado el cálculo de valores de Shapley para
preservar dependencias causales entre características, logrando explicaciones más fieles [41], y se han
extendido métodos locales como LIME con muestreos guiados por relaciones causales para mejorar la
coherencia y estabilidad de las explicaciones [42]. Estas ideas se están implementando en áreas críticas,
como modelos predictivos para cuidados intensivos que emplean descubrimiento causal para mejorar la
interpretabilidad y la generalización [43], así como en el análisis tridimensional de imágenes médicas,
donde el razonamiento contrafactual proporciona explicaciones más precisas que métodos tradicionales
[44]

2.2 Introducción a los Mapas Cognitivos Difusos

Los MCDs son una técnica de inteligencia artificial utilizada para representar y analizar conocimiento
en dominios caracterizados por la incertidumbre, la complejidad y la ambigüedad [6], [45]. Los MCDs
permiten modelar sistemas complejos mediante una representación gráfica que combina conceptos y
relaciones causales, incorporando la lógica difusa para manejar la incertidumbre e imprecisión inherente a
estos sistemas [46]-[48]. Los MCDs fueron introducidos por Kosko en 1986 [6], [48], basándose en la lógica
difusa definida por Lofti Zadeh en 1965 [46] y en los Mapas Cognitivos (MC) desarrollados por Axelrod
en 1976 [47], [48]. Axelrod propuso los MC como una herramienta para representar el conocimiento en
ciencias sociales. Kosko amplió esta formulación al permitir valores difusos tanto en los conceptos como
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en las relaciones causales entre ellos. Esta ampliación otorgó a los MCDs una mayor expresividad para
capturar la incertidumbre y la ambigüedad propias de muchos sistemas reales.

Los MCDs se emplean para modelar sistemas complejos debido a su facilidad de construcción e
interpretación, especialmente en dominios como sistemas sociales, ecológicos o económicos, donde las
relaciones causales suelen ser inciertas y difíciles de cuantificar [49]. Un MCD es un grafo dirigido donde
cada vértice representa un concepto relevante del sistema (una variable, entidad, evento o condición),
y cada arista dirigida indica una relación causal entre conceptos, con un peso que expresa el grado e
intensidad de esa influencia [8]. La Figura 2.2 ilustra un ejemplo de un MCD simple compuesto por siete
(7) conceptos y siete (7) aristas ponderadas. Estas aristas reflejan cómo un concepto influye sobre otro,
constituyendo las relaciones causales. Cada concepto ci tiene asociado un valor de activación ai, que suele
estar acotado en el intervalo [0, 1]. Este valor indica su nivel de importancia o estado en un instante dado.
Las conexiones causales están definidas por pesos wij , los cuales pueden tomar valores en el intervalo
[−1, 1]. Estos valores permiten modelar distintos tipos de relaciones:

• Si wij > 0: existe una relación de causalidad positiva; un aumento en ci provoca un aumento en cj ,
con intensidad proporcional a |wij |.

• Si wij < 0: hay una relación de causalidad negativa; un aumento en ci produce una disminución en
cj , también proporcional a |wij |.

• Si wij = 0: no hay relación causal entre los conceptos ci y cj .

Figura 2.2: Representación gráfica de un MCD simple.

Como se ha mencionado, el valor del peso wij indica el grado de influencia entre el concepto ci y el
concepto cj . Formalmente, un MCD se representa mediante una cuádrupla (C, W, A, f), donde:

• C = [c1, . . . , cm] es el conjunto de m conceptos que representan las variables o nodos del grafo que
conforman el sistema. La figura 2.2 muestra un MCD con siete conceptos.

• W es la matriz de adyacencia que indica las relaciones de causalidad entre los conceptos, es decir,
las aristas del grafo. A continuación se presenta la matriz de adyacencia correspondiente al MCD
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mostrado en la figura 2.2:

W =



c1 c2 c3 c4 c5 c6 c7

c1 0 0 w13 0 0 0 0
c2 0 0 w23 0 0 0 0
c3 0 0 0 w34 0 0 0
c4 0 0 0 0 w45 w46 0
c5 0 0 0 0 0 0 0
c6 0 0 0 0 w65 0 0
c7 0 0 0 0 0 w76 0


(2.1)

• A = (a1, . . . , am) es el vector de activación que indica el nivel de activación o estado de cada
concepto. En un instante de tiempo t, el valor ai representa el grado de activación del concepto ci.

• f(·) es la función de umbral o activación, que se utiliza para mantener los valores de activación dentro
de un rango definido. La selección de esta función depende del problema específico a resolver. Las
funciones más comunes en la literatura son:

– Bivalente:

f(x) =

1, x > 0

0, x ≤ 0
(2.2)

– Sigmoidal:

f(x) = 1
1 + e−λx

(2.3)

– Trivalente:

f(x) =


1, x > 0

0, x = 0

−1, x < 0

(2.4)

– Tangente hiperbólica:

f(x) = tanh(λx) (2.5)

La elección de la función de activación depende del tipo de análisis deseado: la función sigmoidal es útil
en tareas donde se requiere suavizar la salida, mientras que la bivalente o trivalente es preferible cuando
se necesita una interpretación lógica categórica.

La actualización del valor de activación del concepto ci en el instante t + 1 se realiza aplicando la
función de activación f(·) sobre la suma ponderada de las influencias recibidas desde todos los conceptos
cj que tienen una relación causal dirigida hacia ci (es decir, desde los nodos cj con aristas que apuntan
a ci):

ai(t + 1) = f

 M∑
j=1

wji · aj(t)

 (2.6)

En la ecuación 2.6, wji representa el peso de la arista que conecta el concepto cj con ci, indicando la
intensidad y tipo de influencia que cj ejerce sobre ci. Este proceso de actualización se repite iterativamente
hasta que el sistema alcanza una condición de estabilidad o convergencia.

La construcción de un MCD y la asignación de los pesos a las relaciones pueden realizarse con apoyo
de expertos del dominio o mediante métodos de AA. Existen tres enfoques principales para el aprendizaje
de la matriz de pesos W :

• Métodos basados en Hebbian: Aprendizaje no supervisado que ajusta pesos según si los dos
conceptos se activan simultaneamente (refuerza pesos) o no (debilita pesos) [8], [50]-[52].
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• Métodos basados en Expertos: Aprendizaje que ajusta pesos según el conocimiento experto sin
necesidad de datos. Son útiles para pequeños ajustes que mantienen el significado de las relaciones
causales, pero su baja flexibilidad y dependencia del experto limitan su desempeño en problemas
de clasificación complejos [50], [51].

• Métodos basados en poblaciones: En este caso, el aprendizaje es supervisado y se emplean
algoritmos de optimización para ajustar la matriz de pesos. Estos algoritmos buscan reducir la
discrepancia entre las salidas esperadas y las predicciones generadas por el modelo conceptual
difuso, optimizando los pesos para mejorar el rendimiento del sistema [53].

• Métodos híbridos: Esta estrategia combina el conocimiento experto para la inicialización del
modelo conceptual difuso con un proceso de aprendizaje supervisado/ no supervisado basado
en datos históricos. El objetivo es ajustar las matrices de pesos en dos etapas, partiendo de
la experiencia previa y refinando el modelo con datos reales. Aunque esta aproximación resulta
prometedora, la literatura sobre métodos híbridos en MCD es limitada y su aplicación práctica en
problemas reales aún no está ampliamente difundida ni aceptada [54]-[56].

2.2.1 Técnicas Recientes y Variantes en Mapas Cognitivos Difusos

La investigación en MCD ha avanzado significativamente mediante mejoras algorítmicas y el desarrollo de
nuevas variantes que amplían su eficacia y ámbito de aplicación. Entre estas, destacan enfoques basados
en Aprendizaje Federado (AF) para entrenar modelos colaborativos sin necesidad de compartir datos
sensibles, lo cual garantiza la privacidad y seguridad, especialmente en contextos médicos. Por ejemplo,
se aplicaron tres esquemas de aprendizaje federado con MCD para predecir la mortalidad y prescribir
tratamientos en casos de dengue severo, logrando mejoras respecto a modelos centralizados [57].

En [58], se presentó Prescriptive Fuzzy Cognitive Maps (PRV-FCM), una técnica que combina
MCD con algoritmos metaheurísticos, como los genéticos, para generar modelos prescriptivos capaces
de describir, y predecir el comportamiento del sistema y recomendar acciones. Esta técnica fue validada
en diversos escenarios, mostrando resultados cercanos a los valores deseados para variables clave, y una
alta eficacia en la toma de decisiones automatizada. Otra propuesta relevante es el modelo Fuzzy General
Grey Cognitive Map (FGGCM), que incorpora la incertidumbre de datos intervalares múltiples o números
difusos dentro del marco de los MCD, mejorando así el manejo de la imprecisión inherente a muchos
sistemas reales.

Para entornos distribuidos, se diseñó el algoritmo Federated Fuzzy Cognitive Maps (F-FCM) [59],
orientado al aprendizaje no supervisado. Este preserva la privacidad de los datos, optimiza globalmente
los prototipos mediante gradientes federados y demuestra eficiencia en la construcción de estructuras
globales. Finalmente, se han desarrollado variantes híbridas que integran MCD con redes neuronales
profundas para modelar relaciones complejas [60], así como extensiones basadas en lógica difusa para
capturar mayores niveles de incertidumbre en las relaciones causales [61]. También se han propuesto
integraciones con computación cuántica, que buscan aprovechar el paralelismo cuántico para modelar
sistemas caracterizados por incertidumbres [62].

2.2.2 Aplicaciones Recientes de Mapas Cognitivos Difusos

En los últimos años, los MCD se han consolidado como herramientas efectivas para analizar y resolver
problemas en múltiples áreas. En Ecuador, por ejemplo, se utilizaron para identificar factores clave en el
desarrollo municipal. Mediante el uso de algoritmos genéticos, se diseñaron estrategias que destacan el
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papel del liderazgo, las transferencias gubernamentales y el aprovechamiento de recursos naturales [63]. En
la industria del gas, un MCD construido con la participación de expertos identificó la protección catódica
como el factor principal para mitigar la corrosión en ductos. Los resultados se validaron utilizando teoría
de Z-números, apoyando así la gestión de riesgos [64].

La combinación de MCD y Modelado Basado en Agentes (MBA) permitió simular el impacto
del comportamiento individual en la propagación del COVID-19 en Bengaluru, India, subrayando la
importancia de considerar factores conductuales en las políticas sanitarias [65]. De forma similar, se
desarrolló un sistema de apoyo para el diagnóstico del dengue, el cual clasifica su severidad con una
precisión del 89.4 %, facilitando la evaluación de variables clínicas [49].

En el ámbito de la sostenibilidad, los MCD se emplearon para evaluar la influencia de la economía
circular en las cadenas de suministro, superando la subjetividad y apoyando la toma de decisiones
estratégicas [66]. En Turquía, mediante minería de texto y mapeo cognitivo difuso, se priorizaron acciones
para mejorar la gestión de residuos farmacéuticos, destacando la necesidad de sistemas confiables y
conciencia social [67]. Finalmente, también en Turquía, se aplicaron MCD para analizar cómo las actitudes
agrícolas afectan la inflación alimentaria. A partir de escenarios construidos con entrevistas y revisión
bibliográfica, se formularon recomendaciones para la formulación de políticas públicas [68].

2.3 Explicabilidad

Esta sección introduce la explicabilidad, abordando su importancia en la IA. Se presentan las diferentes
taxonomías empleadas en la literatura para clasificar los métodos de explicabilidad, facilitando su análisis
y comparación. A continuacion, se describen las propiedades para evaluar la calidad y utilidad de
los métodos en Inteligencia Artificial Explicable. Posteriormente, se introduce la explicabilidad causal,
destacando su relevancia frente a otros enfoques tradicionales al permitir un entendimiento más profundo
de las relaciones causales en los modelos. Finalmente, la sección se enfoca en la explicabilidad específica
para MCD, resaltando técnicas basadas en teoría de grafos y análisis dinámico que contribuyen a
interpretar estos modelos. .

2.3.1 Introducción

En las últimas décadas, la IA ha transformado profundamente la manera en que interactuamos con los
sistemas tecnológicos. Desde vehículos autónomos hasta aplicaciones predictivas en salud, seguridad o
justicia, los sistemas inteligentes se están implementando en escenarios de gran impacto social [69], [70].
No obstante, esta expansión plantea un problema crítico: la creciente complejidad de los modelos hace que
sus decisiones sean cada vez más opacas o difíciles de interpretar [1], [71]. A medida que estos sistemas
se vuelven más autónomos, comprender cómo funcionan deja de ser una opción técnica para convertirse
en un imperativo ético, legal y funcional [71], [72].

La explicabilidad es fundamental para promover un uso confiable y responsable de la IA, especialmente
en ámbitos sensibles como la salud, la justicia o las finanzas, donde decisiones automatizadas pueden tener
consecuencias directas e irreversibles [2], [3]. Cuando los usuarios no comprenden las decisiones de un
sistema, es probable que disminuya su confianza, se generen malentendidos y aumente el rechazo, incluso
si el modelo tiene un alto rendimiento técnico [73]-[75]. Además, la falta de explicabilidad dificulta tareas
clave como la validación, la auditoría o la detección de sesgos, lo que compromete la equidad y justicia
en las decisiones automatizadas [76]. Existen numerosos ejemplos documentados de riesgos asociados a
modelos opacos, como sistemas de reconocimiento facial con tasas de error significativamente mayores en
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personas de piel oscura [77], o algoritmos de crédito que perjudican a minorías raciales [78]-[80]. Estos
problemas suelen tener origen en datos de entrenamiento que reflejan desigualdades sociales históricas, las
cuales los modelos pueden perpetuar o amplificar. La explicabilidad también se alinea con principios del
diseño centrado en el ser humano, al favorecer la comprensión, previsibilidad y control sobre los sistemas
inteligentes. Ofrecer explicaciones claras empodera a los usuarios, mejora la supervisión y fortalece su
confianza frente a decisiones automatizadas que afectan sus vidas.

Un reto particular lo plantean los modelos generativos, como los grandes modelos de lenguaje. Su
naturaleza probabilística y sensible al contexto dificulta trazar con precisión el razonamiento detrás de
sus respuestas, lo que introduce nuevos desafíos explicativos [1], [81]. Esta dificultad se suma a la conocida
tensión entre precisión y comprensibilidad, conocida como el trade-off entre precisión e interpretabilidad:
los modelos más precisos suelen ser complejos, mientras que los interpretables tienden a sacrificar parte
de su rendimiento. Para abordar esta tensión, han surgido estrategias como los modelos intrínsecamente
interpretables (e.g., árboles de decisión) y técnicas post-hoc (e.g., saliencias o explicaciones locales) [3],
[4]. No obstante, estas últimas no siempre reflejan fielmente el razonamiento interno, lo que limita su
confiabilidad.

A nivel regulatorio, la creciente preocupación por la opacidad ha motivado iniciativas como el
Reglamento General de Protección de Datos (RGPD), que reconoce el derecho a recibir explicaciones
sobre decisiones automatizadas [82], [83], o la Ley de Responsabilidad Algorítmica (LRA) y el Reglamento
de Inteligencia Artificial de la Unión Europea (RIA) europeos, que exigen mecanismos de transparencia
y auditoría para sistemas de alto riesgo [73], [84], [85].

Frente a estos desafíos, surge la disciplina de la IAE, que busca no solo facilitar la comprensión del
funcionamiento interno de los modelos, sino también proporcionar herramientas prácticas para evaluar,
auditar y mejorar su desempeño de manera transparente, y promueve la transparencia como pilar
fundamental. La IAE juega un papel clave en la construcción de sistemas responsables y éticos, donde
las decisiones automatizadas puedan ser verificadas y validadas, contribuyendo a la confianza social y al
cumplimiento de normativas emergentes en distintos dominios.

2.3.2 Taxonomías generales de la explicabilidad en IA

Las taxonomías son sistemas de clasificación que organizan los métodos de explicabilidad en inteligencia
artificial según criterios específicos, permitiendo analizar sus características, diferencias y relaciones de
manera ordenada. Estas clasificaciones ayudan a entender desde qué enfoques se aborda la explicabilidad,
facilitando una visión estructurada y comprensible del campo, aunque en ocasiones distintos criterios
pueden solaparse o superponerse. A continuación, se presentan las taxonomías más conocidas, basadas en
el estudio del estado del arte realizado en [86], que distingue entre: (i) funcional, (ii) basado en resultados,
(iii) conceptual, y (iv) mixto.

2.3.2.1 Taxonomía Funcional

La taxonomía funcional clasifica los métodos de explicabilidad según el mecanismo mediante el cual
extraen y procesan la información del modelo de AA. Este enfoque se focaliza en cómo los métodos
acceden a los datos internos o externos del modelo para generar explicaciones, impactando directamente
en la precisión y relevancia de las interpretaciones producidas. En [87] se identifican tres categorías
principales:

• Perturbaciones locales: Estos métodos modifican levemente las entradas para medir la influencia
de cada característica en la predicción de un caso específico. Un ejemplo representativo es LIME.
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Su principal ventaja es que son agnósticos al modelo y fáciles de aplicar en distintos contextos,
aunque pueden ser sensibles a la elección de la vecindad o al ruido, lo que afecta la estabilidad de
la explicación.

• Aprovechamiento de la estructura interna: Se basan en propiedades internas del modelo,
como gradientes en redes neuronales, para determinar la importancia de las entradas. Ejemplos
destacados incluyen Grad-CAM y DeepLIFT. Estos métodos ofrecen explicaciones más fieles al
funcionamiento real del modelo, pero requieren acceso a su arquitectura y parámetros, limitando
su aplicabilidad a modelos específicos.

• Metaexplicaciones: No operan directamente sobre el modelo, sino que combinan o comparan
explicaciones generadas por otros métodos para obtener interpretaciones más completas. Un ejemplo
es Aggregated Local Explanation (ALE).

Además, Arrieta y otros [71] proponen dos categorías adicionales que amplían esta clasificación:

• Modificación de la arquitectura: Consiste en simplificar modelos complejos mediante cambios
estructurales para mejorar su interpretabilidad. Ejemplos de ello son la creación de modelos ante-hoc
más simples o el uso de Capsule Networks. Esta estrategia prioriza la transparencia desde el diseño,
pero puede implicar una reducción en el rendimiento predictivo.

• Extracción de ejemplos: Estos métodos explican el comportamiento del modelo mediante la
presentación de ejemplos representativos o contraejemplos. Ejemplos conocidos son las Prototype
Explanations y las Counterfactual Explanations (CE). Son especialmente útiles para usuarios finales
al facilitar la comprensión intuitiva, aunque no siempre capturan completamente la lógica interna
del modelo.

La Figura 2.3 presenta la clasificación de los métodos de explicabilidad basada en las categorías
comentadas en esta subsección.

Métodos de Explicabilidad

Perturbaciones locales
Aprovechamiento de la 

Estructura interna
Metaexplicaciones Modificación de la arquitectura Extracción de ejemplos

Figura 2.3: Taxonomía funcional de los métodos de explicabilidad.

2.3.2.2 Taxonomía Basada en Resultados

Este enfoque clasifica los métodos de explicabilidad según el tipo de resultado o salida que generan para
el usuario. Tal categorización permite entender mejor cómo se presenta la información explicativa y qué
tipo de comprensión facilita. Según [88], se distinguen tres categorías principales:

• Importancia de características: Estos métodos asignan un valor cuantitativo a cada
característica de entrada, indicando su relevancia en la predicción realizada por el modelo. Son útiles
para destacar cuáles variables influyen más en una decisión específica, facilitando la identificación
de patrones y posibles sesgos. Ejemplos representativos incluyen SHAP y Permutation Importance.
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Sin embargo, la interpretación de estos valores puede resultar compleja para usuarios no expertos,
y la importancia asignada puede variar según el contexto o la instancia evaluada.

• Modelos sustitutos: Consisten en construir modelos interpretables y simples que approximan el
comportamiento de un modelo complejo, permitiendo así un entendimiento global o local de sus
decisiones. Los modelos sustitutos pueden ser árboles de decisión, reglas o regresiones lineales que
imitan la salida del modelo original, como es el caso de LIME. Su principal ventaja es ofrecer
explicaciones más accesibles, aunque su fidelidad puede ser limitada, especialmente en casos donde
el modelo original es altamente no lineal o complejo.

• Basada en Ejemplos: Se basan en la presentación de ejemplos concretos, representativos o
contraejemplos, para ilustrar y justificar las predicciones del modelo. Este enfoque es intuitivo, ya
que se apoya en casos reales o hipotéticos para mostrar cómo pequeñas modificaciones pueden alterar
la decisión. Los métodos más conocidos dentro de esta categoría incluyen las CE, que presentan
escenarios alternativos que habrían cambiado el resultado, y técnicas basadas en k-nearest neighbors.
La limitación principal radica en la selección y calidad de los ejemplos, que pueden no ser siempre
representativos o suficientemente explicativos para todos los usuarios.

La Figura 2.4 muestra la clasificación de los métodos de explicabilidad de la taxonomía basada en los
resultados, según las categorías explicadas en esta subsección.

Métodos de Explicabilidad

Importancia de características Modelos sustitutos Basada en ejemplos

Figura 2.4: Taxonomía basada en resultados de los métodos de explicabilidad

2.3.2.3 Taxonomía conceptual

La taxonomía conceptual clasifica los métodos de explicabilidad tomando como base diferentes criterios
o dimensiones teóricas que describen sus características fundamentales. Estas dimensiones sirven para
examinar los métodos desde distintos ángulos, lo que ayuda a entender mejor cómo y por qué funcionan,
así como a compararlos de forma más organizada y completa. Las principales categorías propuestas son:

• Según la Etapa: Distingue entre métodos ante-hoc, que son interpretables por diseño (como
árboles de decisión o regresiones lineales simples), y métodos post-hoc, que generan explicaciones
tras el entrenamiento de modelos complejos (como LIME o SHAP). Los métodos ante-hoc facilitan
una interpretación directa y sencilla, aunque a veces sacrifican precisión, mientras que los post-hoc
permiten explicar modelos más complejos sin modificar su arquitectura, aunque sus explicaciones
pueden ser menos fieles o confiables.

• Según la Aplicabilidad: Distingue entre métodos agnósticos al modelo, que son aplicables a
cualquier tipo de modelo (por ejemplo, SHAP), y métodos específicos del modelo, diseñados para
arquitecturas concretas (como Grad-CAM en redes convolucionales). Los primeros destacan por su
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versatilidad, aunque pueden sacrificar precisión o detalle, mientras que los segundos aprovechan
mejor las particularidades internas del modelo, pero su uso está limitado a ciertos tipos específicos.
.

• Según el Alcance: Define si la explicación se centra en una predicción específica (local, como
LIME) o en el comportamiento general del modelo (global, como reglas extraídas de un árbol de
decisión). Las explicaciones locales facilitan la interpretación de casos individuales, mientras que las
globales ofrecen una visión amplia del modelo. Sin embargo, las globales pueden resultar complejas
o imprecisas para ciertos casos, y las locales no reflejan el funcionamiento completo del sistema.

Además, otros autores como [89] y [90] han propuesto dimensiones adicionales para enriquecer esta
taxonomía:

• Granularidad: Considera niveles intermedios entre las explicaciones locales y globales, como las
explicaciones a nivel de cohortes o subgrupos de datos. Estas proporcionan un equilibrio entre
detalle y generalidad, permitiendo identificar patrones específicos en subpoblaciones, facilitando
análisis más precisos. No obstante, requieren una segmentación adecuada de los datos, lo cual
puede resultar complejo.

• Detalle de aplicabilidad: Considera niveles intermedios entre métodos completamente agnósticos
y específicos, incluyendo aquellos diseñados para clases particulares de modelos.

• Formato de salida: Clasifica los métodos según el tipo de salida que generan: numérica (por
ejemplo, importancia de características), reglas (explicaciones lógicas o simbólicas), textual (lenguaje
natural), visual (mapas de calor o gráficos) o formatos mixtos. Por ejemplo, DeepLIFT produce
salidas visuales.

• Tipo de problema: Distingue los métodos según la tarea específica a la que se aplican,
como clasificación (por ejemplo, árboles de decisión) o regresión (por ejemplo, regresión lineal
interpretable), adaptando la explicabilidad a las particularidades de cada problema.

En la Figura 2.5 se presenta la taxonomía conceptual de los métodos de explicabilidad, organizada
según los resultados que generan y conforme a las categorías descritas en esta subsección.
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Métodos de Explicabilidad

Etapa Otras dimensiones Alcance

Ante-hoc Post-hoc Formato de Salida
Tipo de 
Problema

Global Local

Específico del modelo

Según la aplicabilidad

Agnóstico al modelo

Según la aplicabilidad

Figura 2.5: Taxonomía conceptual de los métodos de explicabilidad

2.3.2.4 Taxonomía Mixta

La taxonomía mixta surge como una propuesta integradora que combina las categorias de las taxonomías
funcional, basada en resultados y conceptual, con el objetivo de ofrecer una visión más holística y
estructurada de la explicabilidad en IA. Esta perspectiva reconoce que ningún enfoque, por sí solo, logra
capturar toda la complejidad asociada a la interpretación de modelos, por lo que articula distintos criterios
complementarios. En sus niveles superiores, esta taxonomía incorpora distinciones claves provenientes del
enfoque conceptual, organizadas en torno a dos ejes fundamentales: por un lado, según la etapa en que se
aplica la explicabilidad, diferenciando entre métodos ante-hoc y post-hoc; y por otro, según la aplicabilidad
del método, distinguiendo entre enfoques agnósticos y específicos. Arrieta y otros [71] también identifican
otras categorias dentro de los métodos de explicabilidad específicos del modelo, las cuales son explicaciones
locales, visuales, basadas en la arquitectura y otras técnicas. A partir de esta integración, se distinguen
cuatro categorías principales que agrupan las formas más habituales y fundamentales mediante las cuales
los métodos de explicabilidad generan sus explicaciones:

• Explicación por simplificación: Aproxima el comportamiento de un modelo complejo mediante
uno más simple e interpretable.

• Explicación por relevancia de características: Asigna puntuaciones o pesos a las variables de
entrada en función de su influencia sobre la predicción.

• Explicación visual: Emplea representaciones gráficas que traducen el funcionamiento interno del
modelo en elementos visuales comprensibles para el ser humano. Estas representaciones permiten
identificar qué regiones, atributos o componentes de la entrada han tenido mayor influencia en la
decisión del modelo, facilitando así la interpretación, especialmente en tareas donde la información
es inherentemente visual o espacial.

• Explicación local: Se centra en explicar predicciones individuales, analizando cómo pequeñas
perturbaciones en los datos o la comparación con ejemplos similares afectan la salida del modelo.
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Métodos de Explicabilidad

Ante-hoc

Post-hoc

E.j., Árboles de Decisión

Específico del modeloAgnóstico al modelo

Simplificación
Relevancia de 
 características

Visual Local
Modificación de la 

 arquitectura
Otros métodos 

de Explicabilidad

Figura 2.6: Taxonomía mixta de los métodos de explicabilidad

Aunque existen casos intermedios, la mayoría puede clasificarse en estas categorías. En la Figura 2.6
se muestra la taxonomía mixta de los métodos de explicabilidad, organizada según las categorías descritas
en esta subsección. Las categorias de Arrieta y otros estan representadas mediante líneas discontinuas

2.3.3 Propiedades en Inteligencia Artificial Explicable

Para que un método de IAE sea considerado robusto en dominios sensibles como salud, finanzas, sistemas
autónomos o legales, debe cumplir con un conjunto de propiedades clave que permitan evaluar la calidad,
utilidad y confiabilidad de las explicaciones generadas [91]. Estas propiedades se agrupan en dos grandes
enfoques: evaluación centrada en humanos y evaluación centrada en computadora. El enfoque centrado en
humanos analiza cómo las explicaciones generadas por el sistema IAE satisfacen las necesidades cognitivas
y prácticas de los usuarios. En contraste, el enfoque centrado en computadora emplea métricas objetivas
y cuantificables, independientes del juicio humano.

En este trabajo se utiliza principalmente el enfoque centrado en computadora para evaluar el método
de explicabilidad propuesto. A continuación, se describen las propiedades que componen este enfoque.

2.3.3.1 Fidelidad

La fidelidad mide el grado de correspondencia entre la explicación generada y el comportamiento real
del modelo. Una alta fidelidad implica que la explicación refleja con precisión el razonamiento interno
del modelo. Se calcula comparando las salidas del modelo ante la entrada original x y ante entradas
perturbadas x′

i:

S = 1− 1
n

n∑
i=1

∥Y (xi)− Y (x′
i)∥

∥Y (xi)∥
,

donde n es el número total de instancias evaluadas, xi es la entrada original, y x′
i ∈ X ′ representa una

versión perturbada de la misma. Las funciones Y (xi) y Y (x′
i) son las salidas del modelo para la entrada
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original y perturbada, respectivamente. Un valor de S cercano a 1 indica que las perturbaciones apenas
afectan la salida, evidenciando una alta fidelidad en la explicación.

2.3.3.2 Consistencia

La consistencia se refiere a la estabilidad y coherencia de las explicaciones generadas por el sistema cuando
se utiliza la misma entrada en diferentes ejecuciones. Esto garantiza que el método produzca resultados
similares en condiciones idénticas, fortaleciendo la confianza en el sistema. Una métrica para evaluar la
consistencia es la estabilidad, que se cuantifica mediante la varianza entre las explicaciones obtenidas en
múltiples ejecuciones con la misma entrada:

σ2
exp = 1

N

N∑
i=1

(ei − ē)2,

donde ei es la explicación en la i-ésima ejecución, ē es el promedio de todas las explicaciones, y N es el
número de ejecuciones. Una varianza baja implica explicaciones muy similares, indicando alta estabilidad.

Además, la uniformidad evalúa cómo se distribuyen las relevancias entre las características de la
entrada. Esta métrica determina si las relevancias están repartidas equilibradamente o concentradas en
pocos atributos, lo que afecta la interpretabilidad. Se calcula como:

U = 1−

√√√√ 1
N

N∑
n=1

(
rn −

1
N

)2
,

donde rn es la relevancia asignada a la n-ésima característica y N el número total de características.
Un valor de U próximo a 1 indica una distribución uniforme de las relevancias, mientras que valores
menores reflejan concentración desigual.

Juntas, estabilidad y uniformidad, permiten evaluar la consistencia del sistema, asegurando
explicaciones coherentes, reproducibles y confiables.

2.3.3.3 Robustez

La robustez evalúa la capacidad de las explicaciones para mantenerse fiables y coherentes frente a pequeñas
modificaciones en la entrada o cambios en el modelo, incluyendo actualizaciones y posibles ataques
adversariales. Esto es crítico en dominios sensibles donde la inestabilidad puede conducir a desconfianza
o errores. Además, considera si el método sigue funcionando adecuadamente cuando se implementa en
distintas plataformas o cuando el modelo subyacente es actualizado.

Se mide comparando las explicaciones generadas para la entrada original y para versiones ligeramente
perturbadas de esta:

R = 1− 1
N

N∑
i=1
∥exp(xi)− exp(x′

i)∥,

donde exp(x) es la explicación para la entrada x, x′
i es una perturbación leve de la entrada original

xi, y N es el número de perturbaciones evaluadas. Un valor de R cercano a 1 indica alta resistencia de
las explicaciones ante cambios en la entrada.
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2.3.3.4 Eficiencia

La eficiencia del método de evaluación se refiere a la capacidad computacional y los recursos necesarios
para generar las explicaciones, así como al tiempo empleado en el proceso. Es fundamental que el método
sea escalable, capaz de manejar grandes volúmenes de datos sin degradar su rendimiento ni incrementar
excesivamente su costo computacional. La velocidad computacional, que indica la rapidez con que un
sistema IAE genera explicaciones, se expresa mediante la fórmula:

Cs = 1
T ×R

,

donde T es el tiempo requerido para generar una explicación y R los recursos computacionales
utilizados (memoria, ciclos de CPU, etc.). Un valor bajo de Cs indica mayor eficiencia, reflejando un
menor uso de tiempo y recursos para obtener explicaciones.

2.3.4 Explicabilidad Causal

La mayoría de los enfoques actuales de explicabilidad se basan en relaciones correlacionales entre las
entradas y salidas de un modelo. Métodos como LIME [3], SHAP [4] o los mapas de saliencia estiman
la importancia de las variables observando cómo varía la predicción ante cambios en los atributos
de entrada. Aunque útiles para obtener explicaciones locales, estos métodos presentan limitaciones en
entornos complejos y sensibles [1], [92]. Al estar basados en información observacional, estos enfoques no
capturan relaciones causales reales, lo que restringe su capacidad para responder preguntas contrafactuales
o identificar causas subyacentes [93]. Problemas como la multicolinealidad pueden hacer que la atribución
de importancia sea ambigua, y la presencia de variables confusoras puede introducir asociaciones
espurias [94]-[96]. Esto hace que las explicaciones basadas en correlación sean potencialmente inestables
o engañosas desde una perspectiva causal.

Ante estas limitaciones, han emergido enfoques de explicabilidad causal que incorporan nociones de
causa y efecto mediante marcos como los SCMs, los grafos acíclicos dirigidos (DAGs) y el razonamiento
contrafactual [97], [98]. Estos métodos permiten responder preguntas del tipo ”¿Qué habría pasado si la
variable X hubiera tomado otro valor?”, proporcionando explicaciones más robustas y accionables [99].
En contextos como la medicina, por ejemplo, este enfoque permite distinguir entre un síntoma que causa
un deterioro y otro que simplemente está asociado, mejorando la toma de decisiones clínicas [96], [100].
A diferencia de los métodos tradicionales, los modelos causales pueden controlar explícitamente variables
confusoras y estimar efectos directos, indirectos o colaterales [97], [101]. Esto es fundamental en dominios
de alto impacto como el derecho, la medicina o las políticas públicas, donde confundir correlación con
causalidad puede tener consecuencias serias [92]. Además, dado que las funciones objetivo de los modelos
de AA suelen capturar correlaciones en lugar de verdaderas relaciones causales, estos pueden fallar ante
cambios en la distribución de los datos o cuando enfrentan situaciones no observadas previamente [98].

En este contexto, la investigación en explicabilidad causal puede agruparse en cuatro grandes áreas: (i)
análisis causal de componentes del modelo, (ii) generación de explicaciones contrafactuales, (iii) relación
entre causalidad e imparcialidad, y (iv) verificación de relaciones causales a través de la interpretabilidad.

2.3.5 Explicabilidad en Mapas Cognitivos Difusos

En este contexto, los (MCDs) surgen como una herramienta particularmente relevante para abordar
la explicabilidad desde una perspectiva causal. Su estructura basada en grafos dirigidos y ponderados
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permite representar explícitamente relaciones causa-efecto entre conceptos, lo que los posiciona como un
marco natural para el modelado causal interpretable. No obstante, al igual que los métodos analizados
previamente, muchos enfoques de explicabilidad en MCDs han tendido a centrarse en representaciones
estáticas o estructurales, dejando de lado la dinámica inherente del sistema, fundamental para comprender
su comportamiento a lo largo del tiempo. A continuación, se exploran en detalle las principales estrategias
utilizadas para dotar de explicabilidad a los MCDs, así como sus limitaciones, y el potencial de enfoques
dinámicos para superar dichas barreras.

Existen numerosas investigaciones que utilizan los (MCDs) tanto para dotar de explicabilidad a
sistemas de IA como para desarrollar métodos específicos de explicabilidad basados en esta técnica.
Principalmente, las investigaciones orientadas a proporcionar explicabilidad a los sistemas suelen
combinar técnicas de IA con modelos de MCDs para ofrecer interpretaciones del funcionamiento del
modelo [102], [103]. Sin embargo, este enfoque presenta limitaciones. En muchos casos, solo se considera
la imagen final del modelo, sin tener en cuenta las propiedades dinámicas y los estados ocultos que
emergen de la interacción entre las condiciones iniciales, la matriz de pesos y la función de activación.
Estas dinámicas internas son fundamentales para una comprensión profunda y explicativa. Permiten
capturar el comportamiento temporal y la evolución del sistema, aspectos que un análisis estático no
puede revelar.

En [11] se identifican dos estrategias de análisis estructural comúnmente aplicadas en los MCDs para
determinar la relevancia de los conceptos: (i) medidas de centralidad basadas en teoría de grafos y (ii)
reducción de la red de conceptos. Aunque estas técnicas no son métodos de explicabilidad en sentido
estricto, contribuyen a la interpretabilidad al identificar los nodos más influyentes del sistema. Una
revisión reciente de la literatura amplía esta clasificación e incorpora un enfoque explícito orientado a
la explicabilidad en MCDs, que se organiza en una tercera categoría: (iii) análisis de la dinámica del
sistema. A continuación, se describen estas tres categorías, comenzando por las métricas estructurales.

2.3.5.1 Medidas de Centralidad en Teoría de Grafos

Una forma directa de obtener explicaciones en MCDs consiste en analizar su estructura estática mediante
técnicas de teoría de grafos. En este enfoque, el modelo se representa como un grafo dirigido y ponderado,
donde los nodos son conceptos y las aristas indican relaciones causales con pesos asociados. Las métricas
de centralidad identifican los conceptos más influyentes según su conectividad estructural.

Estas métricas se aplican sobre la representación del grafo resultante tras el proceso de inferencia. De
este modo, proporcionan una caracterización estática que, aunque no refleja el comportamiento dinámico,
resulta útil para interpretar la importancia relativa de los conceptos. Entre las métricas más usadas en
la literatura [12], [13], [104] se encuentran:

• Grado de entrada din(v): en un grafo dirigido ponderado, el grado de entrada de un nodo se
define como la suma de los valores absolutos de los pesos de las aristas que llegan a dicho nodo.

din(v) =
∑
u∈V

|wuv| (2.7)

donde wuv es el peso de la arista desde el nodo u hacia v.

• Grado de salida dout(v): en un grafo dirigido ponderado, el grado de salida de un nodo es la suma
de los valores absolutos de los pesos de las aristas que salen del nodo hacia otros nodos.

dout(v) =
∑
u∈V

|wvu| (2.8)
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• Grado total d(v): suma del grado de entrada y de salida, que da una medida global de la
conectividad del nodo en la red:

d(v) = din(v) + dout(v) (2.9)

• Intermediación B(v): mide la importancia de un nodo como intermediario en la transmisión de
información dentro del grafo. Se calcula como la proporción de caminos más cortos entre pares de
nodos que pasan por el nodo v:

B(v) =
∑

s,t∈V
s̸=v ̸=t

σst(v)
σst

(2.10)

donde σst es el número total de caminos más cortos entre los nodos s y t, y σst(v) es la cantidad
de esos caminos que atraviesan v. Un valor alto indica que el nodo actúa como un puente clave en
la red.

• PageRank PR(v): mide la importancia de un nodo no solo por el número de conexiones entrantes,
sino también considerando la importancia de los nodos que lo enlazan. Así, un nodo conectado a
otros nodos importantes recibe una puntuación mayor.

PR(v) = 1− d

N
+ d

∑
u∈In(v)

PR(u)
dout(u) (2.11)

donde d es el factor de amortiguamiento (generalmente 0.85), N es el total de nodos, In(v) es el
conjunto de nodos con aristas que apuntan a v, y dout(u) es el grado de salida del nodo u. Esta
métrica refleja la importancia global de un nodo dentro de la red, considerando la calidad y cantidad
de sus conexiones entrantes.

Estas métricas aportan información sobre la estructura y relevancia relativa de los conceptos dentro
del grafo. Sin embargo, ninguna considera los valores de activación de los nodos ni la función de activación
usada en el proceso de inferencia de los MCD. Por ello, estas medidas no capturan el comportamiento
dinámico del sistema, que es una característica fundamental y distintiva de los modelos basados en MCD.

2.3.5.2 Reducción de la Red de Conceptos

Otra forma común de mejorar la interpretabilidad de MCDs es simplificar la estructura del modelo
mediante técnicas de reducción de la red. Estos métodos eliminan conceptos redundantes, fusionan nodos
con comportamientos similares, y conservan solo los conceptos más relevantes. El objetivo es obtener
versiones compactas y manejables del modelo que mantengan su capacidad de representación y predicción,
sin afectar la precisión ni la coherencia del sistema.

En este contexto, se desarrollaron diversos enfoques para equilibrar complejidad y precisión. Por
ejemplo, un método reduce el número de conceptos agrupando aquellos similares en clústeres, y luego
optimiza los parámetros de transformación para conservar el comportamiento dinámico del sistema [105].
Otro enfoque usa técnicas de agrupamiento como K-Means y Fuzzy C-Means para simplificar modelos
complejos y simples. Este método logra que el modelo reducido mantenga un comportamiento fiel al
original y supere en fidelidad a métodos previos [106]. Además, se propone una reducción basada en
relaciones de tolerancia difusas que facilita modelos más transparentes y accesibles para los responsables
de la toma de decisiones [107].

Aunque estas técnicas ayudan a manejar la complejidad y aumentan la interpretabilidad, no bastan
para explicar completamente el modelo. La reducción puede conllevar pérdida de información importante
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y dificultar la comprensión profunda de las relaciones causales y dinámicas entre conceptos. Además, la
simplificación estructural no siempre refleja las sutilezas del razonamiento humano. Tampoco captura
adecuadamente las condiciones contextuales que influyen en la toma de decisiones. Por ello, se necesitan
enfoques complementarios que conserven tanto el significado semántico como el dinámico del sistema
original.

2.3.5.3 Dinámica

La dinámica analiza cómo evoluciona el sistema representado por el MCD a lo largo del tiempo. En lugar
de limitarse a la estructura estática del grafo, considera el comportamiento temporal de las activaciones
y las influencias causales entre conceptos durante el proceso de inferencia. Por ejemplo, Tyrovola y
otros [108] desarrollan un enfoque dinámico basado en teoría de grafos que calcula de forma eficiente el
efecto causal total entre conceptos en MCDs. Este método no solo evalúa la estructura estática, sino que
también considera la propagación acumulativa de influencias a través de múltiples caminos causales y
pasos temporales. De este modo, captura la dinámica de interacción entre conceptos.

Por otro lado, Napoles y otros [109] presentan un método basado en valores SHAP (SHapley Additive
exPlanations) que calcula la atribución de conceptos usando como entradas los valores iniciales de
activación y como salidas los estados ocultos generados durante el razonamiento recurrente. Finalmente,
un enfoque basado en el análisis de flujo de información identifica automáticamente relaciones causales
verdaderas a partir de datos, y las impone como restricciones en el aprendizaje del modelo. Esta técnica
evita la captura de correlaciones espurias y mejora la precisión, interpretabilidad y capacidad dinámica
del MCD [110].

Dado que las técnicas actuales para la explicabilidad en MCDs suelen centrarse en aspectos
estructurales o simplificaciones estáticas, y considerando la complejidad inherente de los comportamientos
dinámicos y estados ocultos que surgen durante la inferencia, se hace evidente la necesidad de enfoques
que integren explícitamente la dinámica del sistema para mejorar la interpretabilidad. En este sentido, el
presente trabajo propone un método de explicabilidad dinámico para MCDs que permite
capturar de forma transparente las relaciones causales entre los conceptos y su evolución
temporal a lo largo del proceso de razonamiento, superando así las limitaciones de los métodos
existentes al posibilitar una comprensión más profunda y precisa del modelo.

La propuesta destaca por incorporar de manera continua los valores de activación de los nodos durante
todo el proceso de inferencia, junto con las relaciones causales entre conceptos. Esta integración permite
representar con mayor exactitud la evolución interna del sistema y genera explicaciones más detalladas y
contextuales, que reflejan tanto la interacción temporal como las influencias causales entre los conceptos,
a diferencia de enfoques que se restringen a análisis estáticos o a estados finales del modelo.

.



Capítulo 3

Metodología

Para la realización de este trabajo, se adopta la metodología CRISP-DM (Cross-Industry Standard
Process for Data Mining) [14], un marco estructurado ampliamente utilizado que guía el ciclo de vida
de proyectos de análisis y minería de datos. Esta metodología establece un conjunto claro de fases, que
van desde la comprensión del negocio hasta la implantación de resultados, facilitando así un desarrollo
ordenado, sistemático y replicable. Dado que el enfoque de este estudio está orientado al desarrollo de un
método de explicabilidad para modelos de clasificación basados en MCDs, se realizó una adaptación de
la estructura tradicional de CRISP-DM para ajustarla a las particularidades y objetivos específicos del
proyecto. A continuación, se describen las fases que conforman la metodología y las acciones llevadas a
cabo en cada una de ellas.

3.1 Comprensión del negocio

La fase inicial de la metodología CRISP-DM tiene como objetivo entender los requerimientos del proyecto
desde una perspectiva de negocio, con el fin de definir los objetivos del análisis y transformar ese
conocimiento en un plan técnico. En el contexto de este trabajo, esto implicó comprender las necesidades
en torno a la explicabilidad de modelos de IA basados en MCDs, y el valor que aportaría el desarrollo de
un nuevo enfoque en este ámbito.

Se realizo un estudio teórico exhaustivo, presentado en detalle en la sección 2, que abarcó desde
la revisión del estado del arte de los métodos de explicabilidad existentes, hasta detallar las métricas
y propiedades de robustez que deben cumplir dichos métodos. Durante este proceso, se identificaron
tanto los enfoques más usados como los desarrollos recientes, además de las taxonomías empleadas para
su clasificación. Paralelamente, se revisaron mejoras y adaptaciones de métodos previos, orientadas a
corregir deficiencias o a ajustarlas para uso en ámbitos poco explorados.

También se profundizó en la teoría que sustenta los MCDs, analizando su funcionamiento, orígenes,
avances y principales líneas de investigación. Dado que estos modelos se fundamentan en principios de
causalidad, se abordó igualmente el estudio de la explicabilidad causal en IA, analizando los métodos
existentes aplicados a modelos basados en MCDs. Este análisis permitió confirmar la originalidad del
método propuesto, al no encontrarse alternativas similares en la literatura.
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3.2 Desarrollo del método de explicabilidad para MCD

Una vez finalizado el estudio teórico, se inició el diseño y desarrollo del método de explicabilidad
propuesto, con el objetivo principal de construir un enfoque capaz de generar explicaciones que reflejen el
comportamiento dinámico subyacente de los MCDs. Para ello, se partió de una idea conceptual basada en
las propiedades estructurales y temporales características de los MCDs, que se fue consolidando a través
de un análisis técnico exhaustivo, en el que se evaluaron aspectos como su viabilidad computacional, las
posibles limitaciones, y los requisitos necesarios para asegurar una correcta aplicación del método.

A partir de este análisis, se definió formalmente el método: se estableció su modelo matemático, los
algoritmos requeridos para su funcionamiento, y las condiciones bajo las cuales resulta aplicable de manera
efectiva. Este diseño consideró tanto la interpretabilidad como la coherencia causal de las explicaciones
generadas, asegurando que el enfoque fuera tanto claro como técnicamente sólido.

Finalmente, se implementó el método y se integró en modelos de clasificación construidos a partir
de MCDs, lo que permitió su validación en diferentes contextos experimentales. El desarrollo completo
y detallado del método propuesto, incluyendo sus fundamentos, algoritmos y ejemplos de aplicación, se
presenta en la sección 4. Es importante resaltar que este enfoque novedoso incorpora explícitamente la
dinámica del modelo en el proceso explicativo, constituyendo una contribución original al campo de la
IAE.

3.3 Entendimiento de los datos

Esta etapa comprendió la recopilación, exploración y análisis de los conjuntos de datos que serían
utilizados para la construcción de los modelos de clasificación basados en MCDs (descritos en la sección
5.1.1), sobre los cuales se hará posteriormente la aplicación del método de explicabilidad propuesto
en este trabajo. La selección de los conjuntos se realizó atendiendo a dos criterios fundamentales: que
pertenecieran a dominios críticos donde la explicabilidad aporte un valor añadido significativo, y que
hubieran sido previamente utilizados en la literatura científica, lo cual facilita tanto la comparación de
resultados como la validación del enfoque propuesto. Como resultado, se seleccionaron conjuntos de datos
correspondientes a casos de dengue, COVID-19, diabetes y diagnóstico de fallos en vehículos submarinos.

3.4 Preparación de los datos

Una vez seleccionados los conjuntos de datos, se realizó el preprocesamiento, que incluye tareas de
limpieza, transformación y selección de las variables relevantes. Estas operaciones se describen con mayor
detalle en la sección 5.1.2. Para cada conjunto de datos, se realizó un análisis exploratorio inicial para
comprender la estructura general y las características principales. Posteriormente, se realizó un análisis de
correlación utilizando métricas adecuadas según el tipo de variable, como el coeficiente de Pearson para
variables numéricas y Cramér’s V para variables categóricas, y se evaluó la colinealidad para detectar
posibles problemas de multicolinealidad entre las variables explicativas.

Además del procedimiento general de preprocesamiento descrito, cada conjunto de datos presentó
particularidades que requirieron tratamientos específicos. A continuación, se comentan las acciones
realizadas en cada caso, que son detalladas en la sección 5.1.2:

• Dengue: se eliminó una variable redundante cuyo valor permanecía constante en todas las
instancias, ya que no aportaba información útil al modelo.
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• COVID-19: se construyó una nueva variable, sobre la cual se aplicó un algoritmo de detección y
eliminación de instancias contradictorias, mejorando así la coherencia del conjunto. Posteriormente,
se aplicaron técnicas de sobremuestreo como Synthetic Minority Over-sampling Technique
(SMOTE) para balancear las clases.

• Diabetes y Diagnóstico de Fallos en Vehículos Submarinos Autónomos: dado que ambos
conjuntos están compuestos exclusivamente por variables numéricas, se aplicó un mismo proceso de
preprocesamiento que incluyó:

– Análisis de la distribución de las variables mediante histogramas, utilizando la regla de
Freedman-Diaconis para determinar el número de intervalos.

– Evaluación de la normalidad mediante Q-Q plots.

– Detección de valores atípicos con los métodos del rango intercuartílico (IQR) y Z-score.

– Normalización de las variables usando el método Min-Max.

– Balanceo de clases usando SMOTE.

– Análisis de la significancia de las variables predictoras respecto a la variable objetivo mediante
Analysis of Variance (ANOVA).

La razón de estos pasos extras en el caso de estos dos conjuntos de datos se debe a que están compuestos
exclusivamente por variables numéricas, cuya distribución, diferencias de rangos de valores y presencia de
valores atípicos pueden influir de forma significativa en el rendimiento de los modelos basados en técnicas
de IA, haciendo necesario un análisis estadístico riguroso y una adecuada transformación de los datos.

En el conjunto de diabetes se identificaron valores atípicos relevantes, los cuales fueron corregidos
mediante una técnica de imputación basada en vecinos más cercanos (k-nearest neighbors), lo que permitió
mejorar la distribución de las variables. Por otro lado, en el conjunto de diagnóstico de fallos se
detectaron posibles valores atípicos, aunque su impacto se consideró poco significativo, por lo que
no se aplicaron métodos de corrección. No obstante, se construyó una nueva variable que sintetiza el
comportamiento conjunto de las señales de los motores.

3.5 Modelado

El proceso incluyó la definición de la arquitectura de los modelos de MCDs, la selección de parámetros
adecuados y su construcción efectiva, tal como se detalla en la sección 5.3.1. Para validar su capacidad
predictiva, se evaluó el desempeño de estos modelos mediante métricas específicas (ver dichas métricas en
la sección 5.2). Además, con el fin de asegurar que los modelos basados en MCDs ofreciesen un rendimiento
competitivo, sus resultados se compararon con los obtenidos mediante otras técnicas clásicas de IAl, cuya
construcción se describe en la sección 5.3.2.

Dado que el objetivo principal es desarrollar un nuevo método de explicabilidad para MCDs,
una vez construidos los modelos de clasificación, se compararon las explicaciones generadas por el
método propuesto con las obtenidas mediante otros enfoques de explicabilidad existentes. Para ello, se
consideraron dos métodos clásicos de explicabilidad ampliamente usados en la literatura, concretamente
SHAP y FP. De esta manera, se realizó un análisis comparativo de los distintos métodos de explicabilidad
en los diferentes conjuntos de datos. A su vez, se emplearon medidas de centralidad de la teoría de grafos
utilizadas en la literatura para evaluar la explicabilidad en los modelos de MCDs. Esta doble comparación
permitió evaluar la calidad y consistencia de las explicaciones desde diferentes perspectivas, combinando
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una visión específica y adaptada a la estructura causal de los MCDs con un marco general que facilita
contrastar el nuevo enfoque con métodos consolidados de IAE. Los resultados de todo este análisis de
explicabilidad se presentan en la sección 5.5.2.

3.6 Evaluación

La calidad y efectividad de los resultados del método de explicabilidad propuesto se evaluaron mediante
dos enfoques complementarios que abordan tanto aspectos cuantitativos como cualitativos del desempeño
explicativo. En primer lugar, se utilizó la técnica RemOve And Retrain (ROAR) para medir el impacto
que tienen las variables declaradas como importantes por el método propuesto sobre el rendimiento
predictivo del modelo de clasificación, comparándolo con los resultados obtenidos mediante los métodos
SHAP y FP. El desarrollo y los resultados de este análisis cuantitativo se presentan con detalle en la
sección 5.5.3.

En segundo lugar, se realizó una evaluación basada en el cumplimiento de un conjunto de propiedades
deseables en los métodos de explicabilidad, tales como robustez, fidelidad, consistencia y utilidad para
el usuario final. Estas propiedades, definidas previamente en la sección 2.3.3, ofrecen una valoración más
teórica y cualitativa del método, complementando así los resultados cuantitativos, proporcionando una
visión integral sobre su comportamiento y aplicabilidad práctica.

3.7 Implantación

Esta fase no aplica directamente en nuestro trabajo. Ahora bien, los resultados obtenidos durante el
desarrollo y evaluación del método fueron formalizados y difundidos mediante la elaboración de informes
técnicos y la redacción de artículos científicos. Este proceso asegura que los hallazgos se presenten con
rigor, facilitando tanto la validación independiente como la reproducibilidad del método por parte de
otros investigadores y profesionales.

Adicionalmente, se desarrollaron materiales y recursos complementarios como código fuente
documentado, conjuntos de datos procesados disponibles en repositorios, y guías de uso para facilitar
el uso del método en proyectos reales y su aplicación práctica. Esta fase también incluyó la identificación
de posibles limitaciones y recomendaciones para su implementación en distintos entornos, estableciendo
un marco claro para futuras mejoras y adaptaciones.



Capítulo 4

Desarrollo del Método de
Explicabilidad

En esta sección se presenta un método dinámico de explicabilidad para interpretar la importancia
causal de los conceptos en un modelo MCD. En primer lugar, se describe el enfoque propuesto y,
a continuación, se muestra un ejemplo que ilustra su aplicación. Todo lo presentado en esta sección
constituye la contribución de esta investigación, completamente original. No se trata de una adaptación
ni de una extensión de propuestas previas, sino la definición de un enfoque íntegramente novedoso,
diseñado específicamente para capturar la evolución dinámica y causal de los conceptos en modelos
basados en MCDs, para usarlos en sus análisis de explicabilidad. Según nuestro conocimiento, en la
literatura científica no se ha reportado un método de explicabilidad que integre las características aquí
planteadas en el contexto de los MCDs, lo que refuerza el carácter pionero y el potencial impacto de esta
propuesta.

4.1 Especificación de Nuestro Enfoque

El método de explicabilidad está concebido para su aplicación en modelos de clasificación basados en
MCDs. La Figura 4.1 presenta de forma esquemática las fases que componen el método de explicabilidad
dinámico propuesto. Dicho enfoque permite analizar la influencia que cada concepto ejerce dentro del
sistema respecto a un concepto clase.

En primer lugar, se establecen los requisitos previos para aplicar el método: se requiere que el
modelo converja y que se disponga de la matriz de pesos junto con las activaciones dinámicas obtenidas
tras el proceso de inferencia. A partir de esta base, el método se desarrolla en cuatro fases secuenciales. En
la fase (i) se identifican los caminos causales, tanto directos como indirectos, que conectan los conceptos
en el grafo del modelo, permitiendo mapear cómo fluye la influencia de los conceptos a través de la red.
Luego, en la fase (ii) se calcula la influencia que un concepto ejerce sobre otro, considerando los pesos
causales, las activaciones temporales, y una penalización que reduce progresivamente la contribución de
los tramos más alejados. A continuación, en la fase (iii) se integran estas influencias directa e indirectas
en una única medida que captura el impacto global de un concepto sobre otro. Finalmente, en la fase (iv)
se construye un ranking de conceptos en función de su importancia relativa, lo cual permite identificar
cuáles son los más influyentes en el modelo, y facilita su interpretación desde una perspectiva explicativa.
A continuación, se describen en detalle cada una de estas fases.
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Requisitos Previos
- Convergencia del modelo
- Matriz de pesos  W 
- Instancia  x  para inferencia
- Activaciones  A  obtenidas tras inferencia en x 

Fase 1: Identificación de caminos
- Caminos directos
- Caminos indirectos

Fase 2: Cálculo de influencias
- Influencia directa
- Influencia indirecta
- Penalización λ

Fase 3: Cálculo de la importancia
- Integración de las influencias directa e indirecta

Fase 4: Ranking de conceptos
- Ordenación por importancia de los conceptos
- Visualización

Figura 4.1: Diagrama de flujo del Método de Explicabilidad

4.1.1 Requisitos para la Aplicación del Método de Explicabilidad

Como se definió en la sección 2.2, un MCD se representa mediante una 4-tupla (C, W, A, f). Como
condición fundamental para el correcto funcionamiento del método de explicabilidad, se asume que el
sistema construido converge a un estado estable, es decir, que las activaciones A alcanzan un punto fijo tras
iteraciones sucesivas. Esta convergencia es necesaria para garantizar la estabilidad y la interpretabilidad
de los resultados obtenidos mediante el método propuesto. Además, una vez que se dispone del modelo
de MCD, es necesario contar con la matriz de pesos W , la cual representa las relaciones causales directas
entre los conceptos del MCD. Finalmente, para hacer el análisis de explicabilidad, dada una instancia
x, al inferir en el modelo se obtiene una serie de activaciones A, donde cada A

(t)
i representa el nivel de

activación del concepto ci en la iteración t. Esa matriz A la requiere el método de explicabilidad.

4.1.2 Fase 1: Identificación de Caminos.

Siendo ci el concepto clase sobre el cual se desea calcular la importancia, el método utiliza caminos
directos e indirectos dentro del MCD para evaluar la influencia que cada concepto ejerce en el modelo
sobre ci. Los caminos de influencia directa son aquellos que conectan directamente a un concepto cj con
el concepto de interés ci, es decir, relaciones inmediatas en la estructura causal del modelo. Por otro lado,
los caminos de influencia indirecta involucran secuencias de conceptos intermedios que conectan cj con
ci a través de varios pasos en la red causal. Eventualmente, esto permite captar cómo conceptos más
alejados en la red pueden influir en ci.

Para definir la influencia indirecta, consideramos el conjunto Rj→i de todos los caminos causales
indirectos que conectan el concepto cj con el concepto ci. Estos caminos son rutas simples, es decir,
secuencias de nodos sin repeticiones, salvo en el caso especial cuando ci = cj . En este caso particular, se
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permite que el nodo origen aparezca dos veces, una al principio y otra al final del camino, para poder
representar ciclos simples donde un concepto se influye a sí mismo.

Dado que la cantidad total de caminos entre dos conceptos puede crecer exponencialmente en grafos
grandes o densos, y para mantener el cálculo computacionalmente viable, se limita la evaluación a los
x caminos simples más cortos. Estos caminos son generados mediante un algoritmo iterativo conocido
como algoritmo de caminos simples más cortos [111], que produce los caminos en orden creciente de
longitud. Primero devuelve el camino más corto; luego, de forma sucesiva, explora caminos más largos sin
repetir nodos, salvo la excepción mencionada para ciclos autorreferenciales, eliminando aristas o nodos
temporalmente para evitar ciclos más complejos. Por ejemplo, si tenemos un grafo con nodos A, B, C, D y
queremos encontrar caminos de A a D, el algoritmo devolverá primero el camino A→ D (si existe), luego
A → B → D, luego A → C → D, y así sucesivamente, siempre sin repetir nodos en un mismo camino,
excepto la posible segunda aparición del nodo origen en casos de ciclos autorreferenciales simples.

4.1.3 Fase 2: Cálculo de Influencias Directas e Indirectas.

La influencia directa de un concepto cj sobre otro ci se define como el promedio temporal de la
influencia ejercida a través de una conexión directa en el grafo causal durante el proceso de inferencia del
MCD, y se expresa mediante la siguiente ecuación:

Idir(cj , ci) = 1
T

T∑
t=1

wj,i ·A(t)
j (4.1)

donde wj,i ∈ R representa el elemento de la matriz de pesos W que indica la influencia directa (positiva
o negativa) del concepto cj sobre ci; A

(t)
j ∈ [−1, 1] corresponde al nivel de activación del concepto cj en la

iteración t; y T ∈ N representa el número máximo de iteraciones definidas durante la creación del modelo
para el proceso de inferencia. Se asume que el modelo converge antes o al alcanzar T iteraciones; en caso
contrario, T funciona como un límite para evitar ciclos infinitos y asegurar la finalización del cálculo.

Esta expresión representa la influencia acumulada que el concepto cj ejerce sobre ci a través de la
conexión directa entre ambos conceptos. Se ponderan el peso de la relación directa (wj,i) y la activación
temporal (A(t)

j ) del concepto origen en cada iteración del proceso de inferencia. Así, se captura el impacto
inmediato y puntual que un concepto tiene sobre otro en la dinámica del modelo.

La influencia indirecta de un concepto cj sobre otro concepto ci mide la influencia que ejerce cj

sobre ci a través de caminos causales de longitud mayor a uno en el grafo del MCD. Esta influencia se
calcula considerando todos los caminos causales R que conectan cj con ci mediante rutas indirectas. Para
cada camino r = 1, . . . , R, se toma en cuenta su longitud nr, que representa el número total de nodos
del camino, es decir, la cantidad de conceptos consecutivos conectados. Cada camino se define como una
secuencia ordenada de conceptos:

(c
p

(r)
0

, c
p

(r)
1

, . . . , c
p

(r)
nr−1

) (4.2)

donde c
p

(r)
0

= cj es el nodo origen y c
p

(r)
nr−1

= ci es el nodo destino.

La matriz de pesos W está definida tal que el elemento wj,i representa la influencia del concepto cj

sobre el concepto ci; es decir, el primer subíndice indica el nodo origen y el segundo el nodo destino de
la relación causal. Por lo tanto, para cada tramo k = 0, . . . , nr − 2 del camino r, el peso correspondiente
es
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w
p

(r)
k

,p
(r)
k+1

,

donde p
(r)
k es el índice del nodo origen y p

(r)
k+1 el índice del nodo destino para ese tramo.

Con el fin de reducir progresivamente la influencia de los conceptos según su distancia al concepto
destino ci, se introduce un hiperparámetro λ ∈ [0, 1]. Este parámetro ajusta el peso que cada tramo
causal aporta a la importancia total, de modo que los tramos más cercanos al destino tienen una mayor
contribución, mientras que los más alejados son penalizados y afectan menos la influencia acumulada.
Así, λ actúa como un factor de decaimiento que modula la relevancia de la información transmitida a
través de caminos causales de distintas longitudes:

f(k, r) =

nr − k − 1 si k < nr − 1,

0 si k = nr − 1.
(4.3)

De esta forma, los tramos más alejados del concepto destino son penalizados más fuertemente mediante
un factor λf(k,r), que disminuye la influencia acumulada conforme aumenta la distancia en el camino
causal. El valor de λ determina la intensidad de esta penalización: cuando λ se aproxima a 1, la
penalización es débil; en cambio, si λ tiende a 0, la penalización es fuerte. Esto lo que indica en los
caminos indirectos es que las conexiones lejanas tienden a tener una influencia debil, prácticamente
eliminandola en caminos largos, mientras que la influencia de las conexiones cercanas al concepto de
origen tienden a ser altas. La elección adecuada de λ depende del comportamiento esperado del modelo
y de la naturaleza del sistema causal, permitiendo equilibrar la inclusión de influencias lejanas con la
simplicidad y pertinencia de las relaciones inmediatas.

Para ilustrar el funcionamiento de f(k, r), considérese un camino causal de longitud nr = 4. En este
caso, el tramo más cercano al concepto destino tendrá f(k, r) = 0, y su penalización será λ0 = 1; el
siguiente tramo tendrá f(k, r) = 1 y será penalizado por λ1, luego f(k, r) = 2 con penalización λ2, y así
sucesivamente. De esta manera, se garantiza que los tramos más alejados del destino contribuyan menos
a la influencia total.

Finalmente, para calcular la influencia indirecta, se incorpora también el nivel de activación A
(t)
p

(r)
k

∈
[−1, 1] del concepto en la posición k del camino r durante la iteración t. Este nivel de activación refleja
la intensidad con la que un concepto participa en la inferencia en cada momento del proceso dinámico.
Así, la influencia indirecta se define como el promedio sobre todos los caminos R y todas las iteraciones
T de la suma de las influencias ponderadas en cada tramo, dada por:

Iind(cj , ci) = 1
R

R∑
r=1

nr−2∑
k=0

[
1
T

T∑
t=1

(
w

p
(r)
k

,p
(r)
k+1
·A(t)

p
(r)
k

· λf(k,r)
)]

. (4.4)

Esta expresión representa la influencia acumulada que el concepto cj ejerce sobre ci a través de todos
los caminos indirectos posibles en el grafo causal. En ella, se ponderan tres factores fundamentales:
la fuerza de conexión entre conceptos dada por los pesos w, el nivel de activación temporal de cada
concepto A en las distintas iteraciones del proceso de inferencia, y una penalización exponencial λf(k,r)

que disminuye el impacto de los tramos más alejados del concepto destino. De esta manera, se captura de
forma detallada y dinámica el impacto indirecto que un concepto puede tener sobre otro, considerando
la estructura y evolución del sistema causal a lo largo del tiempo.
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4.1.4 Fase 3: Cálculo de la Importancia Total.

Se define la importancia que un concepto cj tiene sobre otro concepto ci en un MCD como la suma de la
influencia directa e indirecta que ejerce cj sobre ci. Esta medida refleja el impacto global que un concepto
ejerce sobre otro a lo largo del proceso dinámico de inferencia, y se expresa mediante la ecuación (4.5):

Itotal(cj , ci) = Idir(cj , ci) + Iind(cj , ci). (4.5)

4.1.5 Fase 4: Ranking de Conceptos.

La importancia total Itotal(cj , ci) combina la influencia directa e indirecta que el concepto cj tiene sobre
ci. De esta forma, se obtiene una medida completa del grado de impacto que un concepto ejerce sobre
otro, considerando tanto las conexiones inmediatas como las mediadas por otros conceptos en la red. Esta
métrica permite evaluar la relevancia estructural y dinámica de las relaciones en el modelo.

En esta fase, se ordenan los conceptos según el valor de su importancia Itotal(cj , ci) respecto al concepto
ci sobjetivo, en forma descendente. El ranking también puede representarse gráficamente para facilitar
su interpretación visual y comunicar claramente cuáles son los conceptos más relevantes del modelo.

A continuación, se presenta el algoritmo para calcular la importancia total que un conjunto de
conceptos cj ejerce sobre un concepto objetivo ci en un MCD (véase el Algoritmo 1).

Según el Algoritmo 1, para cada concepto cj se identifica primero la conexión directa con ci, en caso
de existir, y se obtienen todos los caminos simples indirectos Rj→i que lo conectan con ci, permitiendo
la inclusión de ciclos autorreferenciales simples. Si el número de caminos indirectos excede un umbral
máximo x, se seleccionan únicamente los x caminos más cortos. Estos caminos representan las rutas
causales, tanto directas como indirectas, a través de las cuales se transmite la influencia dentro del
modelo. Finalmente, la importancia total se obtiene como la suma de las influencias directa e indirecta
para cada par (cj , ci), integrando así el impacto global del concepto origen sobre el destino. Para concluir,
se construye un ranking ordenando los conceptos según su importancia total, lo que permite identificar
los nodos más relevantes dentro del sistema.
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Data: Matriz de pesos W , activaciones temporales A(1), . . . , A(T ), penalización λ, número
máximo de caminos indirectos x, concepto objetivo ci

Result: Matriz de importancia total Itotal(cj , ci), ranking de conceptos según influencia sobre ci

// Fase 1: Identificación de caminos

for cada concepto cj do
// Obtener el camino directo cj → ci, si existe

CaminoDirectoj→i ← camino directo cj → ci o vacío
// Obtener todos los caminos indirectos simples desde cj hasta ci

Rj→i ← conjunto de todos los caminos indirectos desde cj hasta ci

// Si hay más de x caminos indirectos, seleccionar los x más cortos

if |Rj→i| > x then
Rj→i ← los x caminos indirectos más cortos

// Fase 2: Cálculo de influencias

for cada concepto cj do
// Calcular importancia directa si existe conexión directa

if CaminoDirectoj→i ̸= ∅ then
Idir(cj , ci)← 1

T

∑T
t=1 wj,i ·A(t)

j

else
Idir(cj , ci)← 0

// Calcular importancia indirecta sumando influencias ponderadas

sobre caminos indirectos

Iind(cj , ci)← 0
for cada camino r ∈ Rj→i do

nr ← longitud del camino r

for cada tramo k = 0 hasta nr − 2 do
f(k, r)← nr − k − 1 // Penalización por distancia al destino

for cada tiempo t = 1 hasta T do
Iind(cj , ci) += w

p
(r)
k

,p
(r)
k+1
·A(t)

p
(r)
k

· λf(k,r)

// Promediar influencia indirecta según número de caminos e

iteraciones

if |Rj→i| > 0 then
Iind(cj , ci)← 1

|Rj→i|·T · Iind(cj , ci)

else
Iind(cj , ci)← 0

// Fase 3: Importancia total

Itotal(cj , ci)← Idir(cj , ci) + Iind(cj , ci)

// Fase 4: Ranking de conceptos

Ranking← Ordenar conceptos cj por Itotal(cj , ci) descendente
return Ranking

Algoritmo 1: Cálculo completo de la importancia de cada concepto sobre un nodo objetivo ci combinando
influencias directas e indirectas a lo largo del tiempo.
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4.2 Ejemplo Ilustrativo del Funcionamiento del Método

La Figura 4.2 muestra el grafo causal correspondiente al sistema analizado, donde c4 es la variable de
clasificación sobre la cual se desea calcular la importancia del resto de los conceptos. El análisis parte de
la siguiente instancia inicial del sistema:

A(0) = [0,5, 0,056, 0,509, 0,5, c4]

A partir de esta configuración, y utilizando la dinámica del modelo definida por la matriz de pesos
W , se obtienen los vectores de activación correspondientes a las T = 3 iteraciones del sistema:

W =


0 0,6 0,4 0 0
0 0 0,3 0,5 0
0 0 0 0,7 0
0 0 0 0 0,6
0 0 0 0 0


A(1) = [0,8, 0,5, 0,3, 0,2, 0,0]

A(2) = [0,6, 0,6, 0,5, 0,4, 0,1]

A(3) = [0,9, 0,7, 0,6, 0,5, 0,2]

A continuación, se desarrollan de manera secuencial todas las fases que componen el método de
explicabilidad propuesto, aplicadas sobre el ejemplo ilustrativo.

Figura 4.2: Ejemplo de grafo causal en un MCD

4.2.1 Fase 1: Identificación de Caminos

Para cada concepto dentro del MCD, se identifican los caminos directos e indirectos que conducen al
concepto c4. Los caminos directos hacia c4 provienen de los conceptos c2 y c3. Por otro lado, los caminos
indirectos hacia c4 se originan en los conceptos c1 y c2. Desde c1 se identifican tres caminos indirectos
que conducen a c4:


Camino 1: c1 → c2 → c4, (nr = 2)

Camino 2: c1 → c3 → c4, (nr = 2)

Camino 3: c1 → c2 → c3 → c4, (nr = 3)

Mientras que desde c2 existe un único camino indirecto hacia c4, que es:

{
Camino 1: c2 → c3 → c4, (nr = 2)
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4.2.2 Fase 2: Cálculo de Influencias Directas e Indirectas

Se calcula la influencia directa que recibe el concepto c4. Como se mencionó en la Fase 1, los conceptos
c2 y c3 tienen conexiones directas hacia c4. La influencia directa que un concepto cj ejerce sobre otro
concepto ci está definida por la Ecuación (4.1).

Desde c2 hacia c4: La conexión desde c2 hacia c4 tiene un peso w2,4 = 0,5. Las activaciones del
concepto c2 durante las tres iteraciones A

(1)
2 = 0,5, A

(2)
2 = 0,6 y A

(3)
2 = 0,7. Sustituyendo en la ecuación

correspondiente, se obtiene:

Idir(2, 4) = 1
3 (0,5× 0,5 + 0,5× 0,6 + 0,5× 0,7) = 1

3(0,25 + 0,30 + 0,35) = 0,3

Desde c3 hacia c4: Para la conexión desde c3 hacia c4, el peso es w3,4 = 0,7 y las activaciones de c3

son: A
(1)
3 = 0,3, A

(2)
3 = 0,5 y A

(3)
3 = 0,6. El cálculo de la influencia directa es:

Idir(3, 4) = 1
3 (0,7× 0,3 + 0,7× 0,5 + 0,7× 0,6) = 1

3(0,21 + 0,35 + 0,42) = 0,3267

Se observa que, aunque en el grafo causal la relación entre c2 y c4 tiene un peso de 0.5, al aplicar el
método y considerar la dinámica del sistema, dicha influencia efectiva se reduce a 0.3. De forma análoga,
la relación entre c3 y c4 presenta un peso de 0.7 en el grafo, pero la influencia calculada mediante el
método disminuye a 0.3267.

4.2.2.0.1 Influencia indirecta de c1 En este apartado, se calcula la influencia indirecta que recibe
el concepto c4 a partir del resto de los nodos del grafo. Para ello, se consideran aquellos caminos que,
sin ser conexiones directas, conducen a c4 a través de secuencias de conceptos intermedios. En este
ejemplo, los conceptos que presentan caminos indirectos hacia c4 son c1 y c2. A continuación, se analiza
detalladamente la contribución indirecta de cada uno de ellos.

Influencia indirecta a través del Camino 1: c1 → c2 → c4 El peso de la relación desde c1 hacia
c2 es w1,2 = 0,6, mientras que el de c2 hacia c4 es w2,4 = 0,5. De acuerdo con la función de penalización
definida en la ecuación (4.3), y considerando que el camino tiene longitud nr = 2, se tiene que f(0, 2) = 1
y f(1, 2) = 0. Aplicando el valor λ = 0,9, se obtiene:

λf(0,2) = 0,9, λf(1,2) = 1

Sustituyendo en la ecuación de influencia indirecta (4.4), la expresión para este camino queda:

I
(t)
1 = 0,6×A

(t)
1 × 0,9 + 0,5×A

(t)
2 .

La tabla 4.1 muestra los cálculos para cada iteración:
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t A
(t)
1 A

(t)
2 I

(t)
1

1 0.8 0.5 0,6× 0,8× 0,9 + 0,5× 0,5 = 0,73
2 0.6 0.6 0,6× 0,6× 0,9 + 0,5× 0,6 = 0,66
3 0.9 0.7 0,6× 0,9× 0,9 + 0,5× 0,7 = 0,83

Tabla 4.1: Evolución de la influencia indirecta sobre c4 a través del Camino 1 (c1 → c2 → c4) con
penalización dinámica durante las iteraciones

Una vez calculada la influencia para cada iteración, se obtiene el valor promedio:

Ī1 = 0,73 + 0,66 + 0,83
3 = 0,74.

Influencia indirecta a través del Camino 2: c1 → c3 → c4 El peso de la relación desde c1 hacia
c3 es w1,3 = 0,4, mientras que el de c3 hacia c4 es w3,4 = 0,7. De acuerdo con la función de penalización
definida en la ecuación (4.3), se tiene que f(0, 2) = 1 y f(1, 2) = 0.

Sustituyendo en la ecuación de influencia indirecta (4.4), la expresión para este camino queda:

I
(t)
2 = 0,4×A

(t)
1 × 0,9 + 0,7×A

(t)
3 .

La tabla 4.2 muestra la evolución de la influencia indirecta para cada iteración:

t A
(t)
1 A

(t)
3 I

(t)
2

1 0.8 0.3 0,4× 0,8× 0,9 + 0,7× 0,3 = 0,768
2 0.6 0.5 0,4× 0,6× 0,9 + 0,7× 0,5 = 0,58
3 0.9 0.6 0,4× 0,9× 0,9 + 0,7× 0,6 = 0,766

Tabla 4.2: Evolución de la influencia indirecta sobre c4 a través del Camino 2 (c1 → c3 → c4) durante
las iteraciones

El valor promedio es:

Ī2 = 0,768 + 0,58 + 0,766
3 = 0,705.

Influencia indirecta a través del Camino 3: c1 → c2 → c3 → c4 Los pesos de las relaciones son
w1,2 = 0,6, w2,3 = 0,3 y w3,4 = 0,7. Según la función de penalización de la ecuación (4.3), se tienen los
valores f(0, 3) = 2, f(1, 3) = 1 y f(2, 3) = 0. Aplicando la ecuación de influencia indirecta (4.4) con el
factor λ = 0,9, la influencia indirecta en la iteración t es:

I
(t)
3 = 0,6×A

(t)
1 × 0,92 + 0,3×A

(t)
2 × 0,9 + 0,7×A

(t)
3 .

La tabla 4.3 presenta los cálculos para cada iteración:



36 Capítulo 4. Desarrollo del Método de Explicabilidad

t A
(t)
1 A

(t)
2 A

(t)
3 I

(t)
3

1 0.8 0.5 0.3 0,6× 0,8× 0,92 + 0,3× 0,5× 0,9 + 0,7× 0,3 = 0,734
2 0.6 0.6 0.5 0,6× 0,6× 0,92 + 0,3× 0,6× 0,9 + 0,7× 0,5 = 0,804
3 0.9 0.7 0.6 0,6× 0,9× 0,92 + 0,3× 0,7× 0,9 + 0,7× 0,6 = 1,046

Tabla 4.3: Evolución de la influencia indirecta sobre c4 a través del Camino 3 (c1 → c2 → c3 → c4)
durante las iteraciones

El promedio de la influencia es:

Ī3 = 0,734 + 0,804 + 1,046
3 = 0,861.

Influencia total indirecta de c1 sobre c4 La influencia indirecta total que recibe c4 desde c1 se
calcula como el promedio de las influencias a través de cada camino:

Ītotal = Ī1 + Ī2 + Ī3

3 = 0,74 + 0,705 + 0,861
3 = 0,769.

4.2.2.0.2 Influencia indirecta de c2

Influencia indirecta a través del Camino 1: c2 → c3 → c4 El peso de la relación desde c2 hacia
c3 es w2,3 = 0,3, mientras que el de c3 hacia c4 es w3,4 = 0,7. De acuerdo con la función de penalización
definida en la ecuación (4.3), y considerando que el camino tiene longitud nr = 2, se tiene que:

f(0, 2) = 1, f(1, 2) = 0.

Aplicando el valor λ = 0,9, se obtiene:

λf(0,2) = 0,9, λf(1,2) = 1.

Sustituyendo en la ecuación de influencia indirecta (4.4), la expresión para este camino queda:

I
(t)
1 = 0,3×A

(t)
2 × 0,9 + 0,7×A

(t)
3 .

La tabla 4.4 muestra los cálculos para cada iteración:

t A
(t)
2 A

(t)
3 I

(t)
1

1 0.5 0.3 0,3× 0,5× 0,9 + 0,7× 0,3 = 0,345
2 0.6 0.5 0,3× 0,6× 0,9 + 0,7× 0,5 = 0,512
3 0.7 0.6 0,3× 0,7× 0,9 + 0,7× 0,6 = 0,609

Tabla 4.4: Evolución de la influencia indirecta sobre c4 a través del Camino 1 (c2 → c3 → c4) con
penalización dinámica durante las iteraciones

Una vez calculada la influencia para cada iteración, se obtiene el valor promedio:

Ī1 = 0,345 + 0,512 + 0,609
3 = 0,489.
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Influencia total indirecta de c2 sobre c4 Dado que hay un único camino, la influencia indirecta
total es simplemente:

Ī
(c2)
total = 0,489.

4.2.3 Fase 3: Cálculo de la importancia Total.

En esta sección se presenta el cálculo de la influencia total que cada concepto ejerce sobre el concepto c4,
la cual se obtiene como la suma de su influencia directa e indirecta, según lo establecido en la ecuación
(4.5). La Tabla 4.5 resume los valores de importancia calculados para cada concepto en relación con c4.

Concepto Influencia Directa Influencia Indirecta Importancia Total
c1 0.000 0.769 0.769
c2 0.300 0.489 0.789
c3 0.327 0.000 0.327

Tabla 4.5: Influencia directa, indirecta e importancia total de cada concepto

Se observa que el componente c2 presenta la mayor influencia total en el sistema, con un valor de
0.789. Esto se debe a que combina una influencia directa moderada (0.300) con una influencia indirecta
significativa (0.489), lo que indica que su efecto se propaga notablemente a través de otros nodos. En
segundo lugar se encuentra c1, que aunque no presenta influencia directa, tiene una influencia indirecta
alta (0.769), sugiriendo que su impacto se manifiesta a través de caminos intermedios. Finalmente, c3

muestra una influencia total menor (0.327), compuesta únicamente por una influencia directa.

Este análisis permite contrastar con la percepción inicial basada en el grafo causal. Por ejemplo,
aunque c3 tiene una relación causal directa hacia c4 con un peso elevado (0.7), los resultados muestran
que su influencia global es la más limitada, ya que no se amplifica indirectamente. En cambio, c1 y c2

poseen una mayor relevancia estructural en el sistema al considerar tanto las influencias directas como
las indirectas.

4.2.4 Fase 4: Ranking de Conceptos.

Se construye el ranking de los conceptos en función de su importancia relativa respecto al concepto c4.
La Tabla 4.6 presenta dicho ranking, con los conceptos ordenados de mayor a menor según su impacto
global sobre c4, donde se observa que el concepto c2 es el más importante, seguido por c1 y, en último
lugar, c3.

Ranking Concepto Importancia
1 c2 0.789
2 c1 0.769
3 c3 0.327

Tabla 4.6: Ranking de conceptos según su importancia total respecto a c4

De forma complementaria, y para facilitar la interpretación visual, se propone una representación
gráfica. La Figura 4.3 muestra esta representación de la importancia de los conceptos respecto a c4,
en la cual se observa el orden de importancia de cada concepto. Además, aunque en este caso todos
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los conceptos contribuyen de forma positiva, la representación admite también valores negativos, que
reflejarían influencias contrarias, lo que no ocurre en este ejemplo.
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Importancia total
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Importancia total de los conceptos respecto a c4

Figura 4.3: Representación gráfica de la importancia total de los conceptos respecto al concepto c4.



Capítulo 5

Experimentos

Una vez presentado el método de explicabilidad propuesto en este trabajo, en esta sección se describen
los conjuntos de datos empleados en los experimentos, incluyendo el proceso de preparación aplicado. A
continuación se especifican las métricas de rendimiento utilizadas para evaluar los modelos de aprendizaje
construidos, así como aquellas empleadas para evaluar la explicabilidad aportada por los distintos métodos
usados. Seguidamente se expone el proceso de modelado usando los MCD y las tecnicas de AA usadas
en este trabajo, para despues hacer una evaluacion de la calidad de dichos modelos. Finalmente, se
hace un analisis de explicabilidad basadas en los rankings de variables establecidos por los métodos
de explicabilidad (incluyendo nuestro métodos), y se realiza una comparación con otros métodos de
explicabilidad basada en la degradación de los modelos según las variables relevantes definidas por cada
método. Es bueno acotar que todos los experimentos realizados son para modelos de clasificación.

5.1 Datasets

En esta sección se describen los conjuntos de datos empleados en los experimentos, su procedencia, las
variables que los conforman y el proceso de preparación aplicado.

5.1.1 Descripción

A continuación se describen los datasets empleados en la costrucción de los modelos de clasificación de
MCDs.

5.1.1.1 Conjunto de Datos de Dengue

El dataset de dengue fue presentado en [49] y fue recopilado a partir de 52.051 pacientes que acudieron a
Instituciones Prestadoras de Servicios de Salud (IPS) con diagnóstico de dengue, reportados al Sistema
Nacional de Vigilancia en Salud Pública (SIVIGILA) de Colombia [112] durante el período comprendido
entre 2008 y 2018 en Medellín, Colombia.

El dataset final utilizado, tras el proceso de preparación aplicado, consta de 19 variables dicotómicas
que representan la presencia o ausencia de síntomas en los pacientes, codificadas como 0 o 1. También
incluye una variable dicotómica que indica si el paciente pertenece a un grupo etario de riesgo, es decir,
si tiene más de 60 años o menos de 5 años, así como una variable objetivo.
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Nombre Descripción
Edad Indica pertenencia a grupos de riesgo (mayores de 60 años o

menores de 5 años).
Cefalea Dolor de cabeza.
Dolor retroocular Dolor localizado detrás de los ojos.
Mialgias Dolor o molestias musculares.
Artralgia Dolor en las articulaciones.
Erupción Presencia de lesiones cutáneas o sarpullido.
Dolor abdominal Dolor localizado en la zona abdominal.
Vómito Expulsión forzada del contenido gástrico por la boca.
Somnolencia Estado de sueño o adormecimiento anormal.
Hipotensión Presión arterial baja.
Hepatomegalia Agrandamiento del hígado.
Hemorragias en mucosas Sangrado visible en encías, nariz u otras mucosas.
Hipotermia Disminución anormal de la temperatura corporal.
Aumento de hematocrito Incremento en la concentración de glóbulos rojos en sangre.
Caída de plaquetas Disminución en el número de plaquetas en sangre.
Acumulación de líquidos Presencia anormal de líquido en cavidades corporales.
Extravasación Fuga de líquido desde vasos sanguíneos hacia tejidos.
Hemorragias hemáticas Sangrados internos o externos en tejidos o cavidades.
Shock Insuficiencia circulatoria crítica.
Daño orgánico Disfunción o lesión de órganos vitales.
Severidad Nivel general de gravedad del dengue en el paciente.

Tabla 5.1: Descripción de las variables del conjunto de datos de dengue.

Este conjunto se emplea en tareas de clasificación y predicción. En la predicción, la variable objetivo
presenta tres estados posibles: DWS-negativo, DWS-positivo y Dengue severo. Para esta tarea, se calcula
la Probabilidad de Severidad del Dengue (PDS) mediante la siguiente función:

PDS(S1) =


0, si S1 ≤ 0,5(

S1 − 0,5
0,5

)
× 100 %, si S1 > 0,5

Donde S1 representa la probabilidad predicha por el modelo para la severidad del dengue.

El valor de PDS varía entre 0 y 100, clasificando la severidad del caso según el PDS : valores menores
a 20 indican DWS-negativo; entre 20 y 60, DWS-positivo; y superiores a 60, Dengue severo. En las tareas
de clasificación, el modelo predice directamente una de las tres categorías posibles de la variable objetivo.
El dataset final consta de 32.559 registros, distribuidos de forma balanceada entre las tres clases, con
un 34,5 % para DWS-negativo, 34,3 % para DWS-positivo y 31,4 % para Dengue severo. Las variables
consideradas en este conjunto se detallan en la tabla 5.1.

5.1.1.2 Conjunto de Datos de COVID-19

El conjunto de datos de COVID-19 empleado en este estudio fue presentado en [113]. Se trata de un recurso
clínico estandarizado, amplio e internacional que recopila información de pacientes hospitalizados con
sospecha o diagnóstico confirmado de infección por COVID-19. La recolección de datos se realizó de forma
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prospectiva en los centros de salud participantes, mediante observación directa o revisión de historias
clínicas y registros médicos electrónicos, utilizando los formularios de reporte de caso desarrollados por
el Consorcio Internacional para Infecciones Respiratorias Agudas Graves y Emergentes (CIIRAGE) y la
Organización Mundial de la Salud (OMS).

Tras el proceso de preparación, el conjunto final incluye un total de diez variables. Cinco de ellas
son dicotómicas e indican la presencia (valor 1) o ausencia (valor 0) de determinados síntomas clínicos.
Además, se incluye una variable dicotómica que identifica si el paciente pertenece al grupo de riesgo
(60 años o más), junto con otra que representa el sexo del paciente. Otras dos variables están asociadas
al motivo por el cual se realizó la prueba diagnóstica: una indica exposición a un caso confirmado de
COVID-19, y la otra, si el paciente se sometió a la prueba por haber llegado del extranjero y estar
sujeto a un requisito sanitario obligatorio. Ambas se codifican de forma binaria (1 para presencia de la
condición, 0 para su ausencia). Finalmente, se contempla una variable que refleja el resultado de la prueba
diagnóstica para la detección del COVID-19, codificada como positiva o negativa. La Tabla 5.2 presenta
una descripción detallada de las variables incluidas en el conjunto, que consta de aproximadamente
100,000 registros, balanceados en una proporción cercana al 50 % entre resultados positivos y negativos.

Nombre Descripción

Tos Expulsión involuntaria y repentina de aire desde los pulmones.

Fiebre Temperatura corporal por encima del rango normal.

Dolor de garganta Sensación dolorosa o irritativa en la mucosa faríngea.

Dificultad respiratoria Sensación de falta de aire o dificultad para respirar.

Dolor de cabeza Dolor localizado en la región cefálica.

Edad 60 o más Indica pertenencia al grupo de riesgo (mayores de 60 años).

Género Sexo del paciente (masculino o femenino).

Contacto con infectado Prueba realizada por contacto con caso confirmado.

Procedencia del extranjero Prueba obligatoria realizada por haber llegado del extranjero.

Resultado de la prueba Resultado del test de COVID-19

Tabla 5.2: Descripción detallada de las variables del conjunto de datos de COVID-19.

5.1.1.3 Conjunto de Datos de Diabetes

El conjunto de datos de Diabetes utilizado en este estudio es un conjunto de referencia ampliamente
conocido en la literatura científica. Fue originalmente introducido por el Instituto Nacional de Diabetes
y Enfermedades Digestivas y Renales de los Estados Unidos, y está disponible públicamente a través
del repositorio de aprendizaje automático de la Universidad de California en Irvine [114]. Este conjunto
contiene información médica de mujeres de origen pima, un grupo indígena del sur de Arizona, mayores
de 21 años. Su objetivo es predecir la aparición de diabetes tipo 2 basándose en ciertas mediciones
diagnósticas comunes. Después del proceso de preparación, el conjunto incluye un total de 9 variables,
todas numéricas y continuas, que incluyen mediciones relacionadas con el paciente. La tabla 5.3
presenta una descripción detallada de las variables incluidas, que consta de 1000 instancias, balanceadas
aproximadamente en un 50 % entre los resultados positivos y negativos de diagnóstico.
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Nombre Descripción

Número de embarazos Número de embarazos que ha tenido la paciente.

Glucosa Concentración de glucosa en plasma (mg/dL).

Presión sanguínea Presión arterial diastólica (mm Hg).

Grosor cutáneo Espesor del pliegue cutáneo del tríceps (mm).

Insulina Nivel de insulina en suero (mu U/mL).

Índice Masa Corporal
(BMI)

Calculado como peso dividido por estatura al cuadrado (kg/m2).

DPF (Pedigree Diabetes) Medida del riesgo genético familiar de diabetes.

Edad Edad de la paciente (años).

Diagnóstico Resultado del test de diabetes (positivo o negativo).

Tabla 5.3: Descripción detallada de las variables del conjunto de datos de diabetes.

Este conjunto ha sido ampliamente utilizado como benchmark en tareas de clasificación, especialmente
en investigaciones relacionadas con modelos de predicción médica y evaluación de algoritmos de AA
[115]-[118].

5.1.1.4 Conjunto de Datos de Diagnóstico de Fallos en Vehículos Submarinos Autónomos

Este conjunto de datos fue generado empleando el vehículo submarino autónomo Haizhe, desarrollado en
laboratorio [119]. Para su recopilación, se realizaron múltiples pruebas en las que el Vehículo Submarinos
Autónomo (VAS) ejecutó un programa de navegación bajo el agua mientras se inducían fallos. Durante
cada prueba, se registraron automáticamente los datos de estado del vehículo, incluyendo lecturas de
sensores y variables de control, sin intervención humana. El conjunto final, tras el preprocesamiento,
contiene 7 variables: 6 de ellas son continuas, y una variable objetivo denominada Diagnóstico, que indica
el estado del submarino, especificando si se encuentra funcionando correctamente o si se ha detectado
algún fallo. La tabla 5.4 presenta la descripción de las variables utilizadas. El dataset cuenta con 5000
instancias, balanceadas equitativamente entre ambos estados (funcionamiento correcto y con fallo).

Nombre Descripción

pwm Señal de modulación por ancho de pulso enviada a los actuadores.

voltaje Voltaje eléctrico medido en voltios (V).

presión Presión medida en pascales (Pa).

ángulo inclinación Ángulo de inclinación en grados (°).

profundidad Profundidad medida en metros (m).

ángulo rodar Ángulo de rodar en grados (°).

velocidad angular de guiñada Velocidad angular de guiñada en grados por segundo (°/s).

Tabla 5.4: Descripción detallada de las variables del conjunto de datos de diagnóstico de fallos en
vehículos submarinos.
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5.1.2 Preparación

En esta sección se detallan las operaciones de preprocesamiento realizadas sobre los distintos conjuntos
de datos utilizados en el presente estudio. El propósito de este proceso es asegurar que los datos se
encuentren en un formato adecuado y cuenten con la calidad necesaria para la construcción de modelos
de aprendizaje automático robustos, precisos y fiables. Las tareas de preparación incluyeron, entre otras, la
limpieza de datos (eliminación de registros incompletos o erróneos), la transformación de variables (como
la normalización o estandarización de variables numéricas), la codificación de variables categóricas, la
detección y tratamiento de valores atípicos, así como la selección de características relevantes. Estas
acciones resultan esenciales para minimizar el ruido en los datos, mejorar el rendimiento predictivo de
los modelos y mitigar riesgos como el sobreajuste.

Adicionalmente, en función de las particularidades de cada conjunto de datos, se llevaron a cabo ajustes
específicos, tales como la creación de nuevas variables derivadas o la reestructuración del formato original
de los datos. Es importante señalar que, en esta sección, se ha sintetizado la explicación del proceso
general de análisis y preprocesamiento. La exposición se limita a las operaciones efectivamente realizadas
y a los hallazgos más relevantes. No se abordan en profundidad los aspectos teóricos ni estadísticos del
análisis exploratorio, ya que este no constituye el objeto principal del estudio.

5.1.2.1 Conjunto de Datos de Dengue

Se llevó a cabo un análisis exploratorio preliminar con el objetivo de comprender la estructura del conjunto
de datos. Este conjunto está constituido principalmente por variables de tipo dicotómico, con excepción
de la variable objetivo, Severidad, que presenta tres clases, tal como se describió previamente. En primer
lugar, se verificó el tipo de dato de cada variable y, dado que la mayoría son categóricas, se evaluó el número
de valores únicos presentes en cada una. Adicionalmente, se calcularon estadísticas descriptivas básicas,
como la media y la desviación estándar, que, aunque aplicadas a variables dicotómicas, proporcionan
información relevante sobre la distribución de los datos.

Se confirmó la ausencia de valores nulos en las variables, por lo que no fue necesario realizar labores
adicionales de preprocesamiento. La Figura 5.1 presenta el gráfico de sectores correspondiente a las
variables, en el que se representa el porcentaje relativo de cada categoría dentro de las variables analizadas.
Se identificó que la variable Fiebre presentaba un único valor en todas las instancias, por lo que se consideró
una constante. Dado que una variable constante no aporta variabilidad ni información útil para el análisis,
se procedió a eliminarla del conjunto de datos.

Se calculó la correlación de Cramér, una medida especialmente adecuada para variables categóricas
binarias, ya que evalúa la asociación entre variables cualitativas sin asumir un orden o una escala numérica.
Esta métrica se basa en la tabla de contingencia y permite cuantificar la fuerza de la relación entre
dos variables categóricas. La Figura 5.2 presenta los resultados de la correlación, donde se destaca
que la variable Dolor Abdominal es la que presenta mayor correlación con la variable objetivo (0.62),
seguida por Caída de Plaquetas (0.56) y Hemorragias Hemáticas (0.53). Esta matriz de correlación se
usa posteriormente en el análisis de explicabilidad

Se calculó el Factor de Inflación de la Varianza (VIF), que mide el grado de colinealidad entre las
variables predictoras. Los resultados indicaron que el valor máximo de VIF correspondió a la variable
Dolor Abdominal con un valor de 1.70. Dado que estos valores son inferiores a los umbrales críticos
comúnmente aceptados (generalmente 5 o 10) [120]-[122], no se consideró necesario eliminar ninguna
variable por multicolinealidad.
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Figura 5.1: Gráfico de sectores del conjunto de datos de Dengue.

Figura 5.2: Correlación de Cramér para el conjunto de datos de Dengue.
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5.1.2.2 Conjunto de Datos de COVID-19

Se verificó el número de valores únicos de cada variable. Además, se calcularon estadísticas básicas, como
la media y la varianza, que resultan relevantes pese a tratarse de variables categóricas. Se analizó la
proporción de valores positivos y negativos mediante gráficos de sectores. En la Figura 5.3 se observa
que la variable objetivo Resultado de Prueba presenta un marcado desequilibrio, con una cantidad
significativamente mayor de casos negativos respecto a los positivos. Para corregir esta desproporción, se
aplicó la técnica de sobremuestreo sintético SMOTE[123] , que genera nuevas muestras sintéticas de la
clase minoritaria con el propósito de equilibrar la distribución de clases y mejorar el rendimiento de los
modelos predictivos.

Figura 5.3: Gráfico de sectores del conjunto de datos de COVID-19.

Dado que la variable Motivo de Prueba cuenta con tres clases distintas, esta fue dividida en dos
variables binarias: Procedencia del Extranjero y Contacto con Infectado, ya que esta transformación
permitió obtener mejores resultados en la construcción de los modelos.

Se identificaron instancias con características idénticas pero con valores diferentes en la variable
objetivo Resultado de Prueba, lo que puede generar inconsistencias durante el entrenamiento de modelos
debido a la información contradictoria. Para mitigar este problema, se definió una variable auxiliar
denominada Coeficiente de Riesgo, que cuantifica la probabilidad o nivel de riesgo asociado a cada
instancia. El Coeficiente de Riesgo se estableció como una combinación lineal ponderada de variables
clínicas y demográficas relevantes, expresada mediante la siguiente fórmula:

Coeficiente de Riesgo = 0,1× Tos + 0,2× Fiebre

+ 0,1×Dolor de Garganta + 0,1×Dificultad Respiratoria

+ 0,1×Dolor de Cabeza + 0,1× Edad 60 o más

+ 0,1×Motivo Procedencia del Extranjero

+ 0,2×Motivo Contacto con Infectado
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Los pesos asignados a cada variable fueron obtenidos a partir de la literatura [124]-[126]. Esta definición
facilitó la identificación y eliminación de instancias contradictorias, contribuyendo a mejorar la calidad
del conjunto de datos para el desarrollo de modelos de clasificación.

Con base en este coeficiente, se aplicaron criterios de filtrado para eliminar observaciones
inconsistentes: se descartaron aquellas en las que el coeficiente de riesgo es elevado pero el resultado
de la prueba es negativo, y viceversa. El Algoritmo 2 muestra el procedimiento para identificar y eliminar
instancias contradictorias en el conjunto de datos. Para cada observación, calcula el Coeficiente de Riesgo,
que representa una estimación del nivel de gravedad asociado. El algoritmo elimina aquellas instancias
donde existe discrepancia entre este coeficiente y el valor real de la variable objetivo: se descartan los
casos con un coeficiente alto pero un resultado negativo, y también los que presentan un coeficiente bajo
pero un resultado positivo. Este filtrado busca mejorar la calidad, coherencia y robustez del conjunto
de datos, evitando que datos inconsistentes afecten negativamente el entrenamiento y desempeño de los
modelos predictivos.

Data: Conjunto de datos con variables predictoras y la variable objetivo Resultado de Prueba
Result: Conjunto de datos sin instancias contradictorias
// Calcular el Coeficiente de Riesgo para cada instancia

Para cada instancia x ∈ D, calcular CR(x) ∈ [0, 1], que representa el riesgo estimado
// Filtrar instancias contradictorias

for cada instancia x ∈ D do
if CR(x) ≥ 0,6 y Resultado(x) = 0 then

Eliminar x del conjunto de datos
else if CR(x) ≤ 0,3 y Resultado(x) = 1 then

Eliminar x del conjunto de datos
return Conjunto de datos filtrado D

Algoritmo 2: Filtrado de instancias contradictorias utilizando el Coeficiente de Riesgo.

La Figura 5.4 presenta el gráfico de sectores correspondiente al conjunto de datos de COVID-19
tras las operaciones de preprocesamiento descritas anteriormente. Se observa que, en comparación con
el estado inicial, la variable objetivo Resultado de Prueba presenta un balance adecuado entre clases.
Además, se evidencia un incremento en la proporción de casos positivos asociados a cada uno de los
síntomas analizados.

Se aplicó la correlación de Cramér para evaluar la asociación entre las variables categóricas y la
variable objetivo. Se observó que la variable Motivo Contacto con Infectado presenta una correlación de
0.60 con el Resultado de Prueba, seguida por Motivo Procedencia del Extranjero con 0.60, Fiebre con 0.54
y Tos con 0.51, siendo estas las variables con mayor relación destacada. Esta matriz de correlación se usa
posteriormente en el análisis de explicabilidad

Se realizó la prueba de significación chi-cuadrado para evaluar la independencia entre cada variable
y la variable objetivo. En todos los casos, se rechazó la hipótesis nula de independencia, lo que indica
que todas las variables analizadas son estadísticamente significativas respecto al Resultado de Prueba.
Finalmente, se llevó a cabo un análisis de multicolinealidad mediante el VIF. Los resultados indicaron
que la variable Resultado de Prueba presenta el valor máximo de VIF con 3.64, seguida por Fiebre con
1.59. Dado que estos valores son inferiores a umbrales críticos, no se consideró necesario eliminar ninguna
variable por multicolinealidad.
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Figura 5.4: Gráfico de sectores del conjunto de datos de COVID-19 tras el preprocesamiento.

5.1.2.3 Conjunto de Datos de Diabetes

El conjunto de datos está compuesto por variables numéricas, excepto la variable objetivo Diagnóstico,
la cual es categórica binaria, con valores 0 (negativo) y 1 (positivo). Se llevó a cabo un análisis
exploratorio en el que se examinaron estadísticas básicas y la posible presencia de valores nulos. No se
detectaron datos faltantes. Posteriormente, se analizó la distribución de las variables numéricas mediante
histogramas. La Figura 5.5 muestra los histogramas correspondientes a las variables continuas del conjunto
de datos. Para determinar el número de intervalos (bins) en cada histograma, se aplicó la regla de
Freedman–Diaconis [127], que ajusta el ancho de los intervalos en función de la dispersión de los datos:

Ancho del bin = 2× IQR
3
√

n

donde IQR es el rango intercuartílico y n el número de observaciones. En los histogramas se observa
que variables como Número de Embarazos, Grosor Cutáneo, Insulina y Edad no presentan una distribución
normal, lo cual es relevante para el modelado posterior.

Figura 5.5: Histogramas de variables numéricas del conjunto de datos de diabetes.
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Para complementar este análisis, se emplearon Q-Q plots (Quantile-Quantile plots) [128], [129], que
permiten evaluar visualmente la aproximación de una variable a una distribución normal mediante la
comparación de cuantiles teóricos y observados. La Figura 5.6 presenta los Q-Q plots de las variables
continuas. Se observa que la variable Número de Embarazos exhibe una estructura escalonada debido a su
naturaleza discreta, con múltiples observaciones compartiendo valores idénticos. Variables como Glucosa,
Presión Sanguínea, Grosor Cutáneo, Insulina e BMI presentan una concentración notable de valores
iguales a cero, lo que podría reflejar registros erróneos o datos faltantes codificados inapropiadamente.
Además, en las variables DPF, Insulina y Edad se aprecia una separación en la cola superior respecto a
la línea de referencia, sugiriendo distribuciones asimétricas o con colas pesadas.

Figura 5.6: Q-Q plots de las variables numéricas del conjunto de datos de diabetes.

A partir de lo observado en los Q-Q plots, donde se identificaron patrones como la alta concentración
de valores en cero, estructuras escalonadas, y desviaciones en las colas de algunas distribuciones, se
consideró necesario verificar la presencia de valores atípicos (outliers) en las variables analizadas. Para
ello, se emplearon dos métodos estadísticos: el rango intercuartílico (IQR) y el puntaje estándar (Z-score).

En el método del rango intercuartílico (IQR), se consideraron atípicos aquellos valores situados fuera
del rango [Q1 − 1,5 × IQR, Q3 + 1,5 × IQR], donde Q1 y Q3 son los cuartiles primero y tercero,
respectivamente, e IQR = Q3 − Q1 representa el rango intercuartílico. En el método del Z-score, se
consideraron atípicos aquellos valores cuya puntuación estándar se encontraba fuera del rango [−3, 3].
Esta puntuación se calcula mediante la fórmula Z = x−µ

σ , donde x es el valor de la observación, µ la
media de la variable y σ su desviación estándar. De esta forma, se identificaron como valores atípicos las
observaciones que se alejaban más de tres desviaciones estándar respecto a la media, ya que tales casos
son poco probables bajo una distribución normal.

Los resultados para cada variable son:

• Número de Embarazos: 4 outliers (0.52 %) detectados por ambos métodos.

• Glucosa: 5 outliers (0.65 %) identificados por ambos métodos.

• Presión Sanguínea: 45 outliers (5.86 %) por IQR y 35 (4.56 %) por Z-score.

• Grosor Cutáneo: 1 outlier (0.13 %) según ambos métodos.

• Insulina: 34 outliers (4.43 %) con IQR y 18 (2.34 %) con Z-score.
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• Índice de Masa Corporal (BMI): 19 outliers (2.47 %) por IQR y 14 (1.82 %) por Z-score.

• DPF : 29 outliers (3.78 %) detectados por IQR y 11 (1.43 %) por Z-score.

• Edad: 9 outliers (1.17 %) por IQR y 5 (0.65 %) por Z-score.

La Figura 5.7 presenta los diagramas de caja y bigotes que corroboran la detección de outliers mediante
el método IQR.

Figura 5.7: Diagramas de caja y bigotes para las variables numéricas del conjunto de datos de diabetes.

Para mitigar el impacto de los valores cero anómalos, presentes en variables como Glucosa, Presión
Sanguínea, Grosor Cutáneo, Insulina y Índice de Masa Corporal, se aplicó una técnica de imputación
basada en vecinos más cercanos (K-Nearest Neighbors Imputation). Esta técnica considera dichos valores
cero como faltantes y estima su valor a partir de la media de los k = 5 vecinos más cercanos, lo que
permite preservar la coherencia de la información y la estructura de los datos. La Figura 5.8 muestra los
histogramas posteriores a la imputación, en los cuales se observa un aumento en el número de bins y una
distribución más cercana a la normalidad para las variables que inicialmente presentaban distribuciones
atípicas. Cabe destacar que esta imputación se aplicó únicamente a las variables mencionadas, mientras
que otras como el número de embarazos y la edad mantuvieron su distribución original, ya que los valores
cero en ellas no se consideraron anómalos.

Posteriormente, se llevó a cabo un análisis ANOVA para evaluar la significancia estadística entre las
variables numéricas y la variable objetivo Diagnóstico. El ANOVA es una técnica estadística que permite
determinar si existen diferencias significativas en las medias de una variable numérica entre dos o más
grupos definidos por una variable categórica. En este caso, se utilizó para comparar las medias de cada
variable numérica entre los dos grupos de Diagnóstico (0: negativo, 1: positivo). Un resultado significativo
indica que la variable numérica contribuye a diferenciar los grupos, justificando su inclusión en el modelo
predictivo. Se comprobó que todas las variables numéricas presentan significancia estadística.

Finalmente, se calculó el VIF, obteniéndose valores entre 1.86 para BMI, seguido de Glucosa y 1
para DPF, con el resto de variables situadas en rangos intermedios. Dado que estos valores son bajos,
no se procedió a eliminar ninguna variable. Se calcularon las correlaciones entre las variables numéricas
utilizando los coeficientes de Pearson y Spearman. Se observó una correlación notable entre las variables
Número de embarazos y Edad, con un valor de 0.54 según Pearson y 0.61 según Spearman, lo que indica
una asociación positiva moderada entre ambas variables. No se detectaron otras correlaciones significativas
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de mayor magnitud entre las variables numéricas del conjunto de datos. A las variables numéricas se le
aplicó la normalización Min-Max para escalarlas, ya que muchos algoritmos de AA son sensibles a la
escala de los datos. Cuando las variables tienen rangos muy diferentes, las de mayor magnitud pueden
dominar el proceso de aprendizaje, afectando el rendimiento del modelo. Además, al escalar las variables
a un rango común, se evita que alguna variable tenga más peso simplemente por su escala numérica.
Finalmente, para balancear el conjunto de datos, se aplicó la técnica SMOTE.

Figura 5.8: Histogramas de variables numéricas del conjunto de datos de diabetes despues de la
imputación.

Tras realizar la imputación de los valores cero, se comprobó que el número de valores atípicos,
determinado mediante los métodos de IQR y Z-score, disminuyó considerablemente, por lo que no fue
necesario aplicar técnicas adicionales para su tratamiento.

5.1.2.4 Conjunto de Datos de Diagnóstico de Fallos en Vehículos Submarinos Autónomos

En el conjunto de datos correspondiente al diagnóstico de fallos en vehículos submarinos, todas las
variables son numéricas, a excepción de la variable objetivo estado, la cual es binaria: el valor 0 indica
que el vehículo se encuentra en buen estado, mientras que el valor 1 indica la presencia de una avería.
Se realizó un análisis exploratorio inicial que incluyó la visualización de estadísticas descriptivas básicas,
sin detectarse valores faltantes en ninguna de las variables. Además, se examinó la distribución de las
variables numéricas mediante histogramas, los cuales se presentan en la Figura 5.9.

Al igual que en el conjunto de datos de diabetes, se empleó la regla de Freedman–Diaconis para
determinar el número de intervalos (bins) en cada histograma. A partir de los resultados, se observa que
la mayoría de las variables presentan distribuciones cercanas a la uniforme, con excepción de aquellas
asociadas a las señales PWM de los motores y la variable velocidad angular guinada.

Para complementar este análisis, se utilizaron gráficos Q-Q plots, los cuales permitieron evaluar la
normalidad de las distribuciones. Como se muestra en la Figura 5.10, la mayoría de las variables siguen
una distribución aproximadamente normal, aunque con ligeras desviaciones en las colas. La variable
velocidad angular guinada destaca especialmente por sus desviaciones respecto a la línea de referencia, lo
que evidencia una mayor discrepancia con la normalidad teórica.
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Figura 5.9: Histogramas de variables numéricas del conjunto de datos de diagnóstico de fallos en
vehículos submarinos.

Se llevó a cabo un análisis de detección de valores atípicos (outliers) utilizando tanto el método del
IQR como el método del Z-score. En general, no se identificaron anomalías relevantes, a excepción de las
variables correspondientes a las señales PWM de los motores, en las cuales se observó una proporción
cercana al 4 % de valores atípicos en ambos métodos.

Dado que cada uno de los cuatro motores del vehículo recibe una señal PWM independiente, y
considerando que dichas señales pueden diferir en magnitud o comportamiento, se optó por combinar la
información en una única variable representativa. Para ello, se construyó una nueva variable calculando el
producto de las señales PWM de los cuatro motores Esta operación permite capturar de forma compacta
la interacción conjunta de las señales enviadas a los motores. Posteriormente, se eliminaron las columnas
originales de las señales individuales, conservando únicamente la variable compuesta pwm, que se empleará
en los análisis posteriores. A continuación, se calcularon las correlaciones entre las variables numéricas
utilizando los coeficientes de Pearson y Spearman, sin observarse asociaciones de relevancia estadística.

También se aplicó un análisis de varianza (ANOVA) para evaluar la significancia estadística de las
variables respecto a la variable objetivo. Los resultados indicaron que varias variables no presentaban
diferencias significativas entre los grupos. A su vez, se realizó un análisis de colinealidad mediante el
cálculo del VIF, sin detectarse valores que justificaran la eliminación de variables por multicolinealidad.
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Con el objetivo de equilibrar las clases del conjunto de datos, se aplicó la técnica SMOTE, seguida de
una normalización de las variables numéricas mediante escalado Min-Max.

Figura 5.10: Q-Q plots de las variables numéricas del conjunto de datos de diagnóstico de fallos en
vehículos submarinos.

Inicialmente, la variable objetivo estado presentaba cinco clases distintas. No obstante, al aplicar
modelos de MCDs, se comprobó que el algoritmo no lograba converger debido a la escasez de muestras
por clase. Esta falta de convergencia se observó tanto al incluir todas las variables, como al utilizar
únicamente las seleccionadas por ANOVA como estadísticamente significativas.

Por tal motivo, se reformuló el problema como una tarea de clasificación binaria, donde el estado 0

representa el funcionamiento normal y el estado 1 agrupa las cuatro clases asociadas a fallos. Una vez
redefinido el objetivo, se aplicó nuevamente la técnica SMOTE para abordar el desbalance de clases en
esta nueva configuración. Finalmente, se construyeron modelos utilizando tanto el conjunto de variables
significativas identificadas por ANOVA como el conjunto completo de variables. Los resultados mostraron
un mejor rendimiento al excluir las variables no significativas, lo que respalda la utilidad del análisis
ANOVA en la etapa de selección de características.
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5.2 Métricas

Esta sección presenta las métricas empleadas para evaluar el rendimiento de los modelos desarrollados
para tareas de clasificación. Se utilizan métricas clásicas de clasificación, como la matriz de confusión y
sus métricas derivadas: accuracy, precision, recall y F1-score. Además, se analiza el área bajo la curva
ROC (AUC-ROC) para medir la capacidad discriminativa de los modelos.

A continuación se describen las métricas de clasificación:

• Matriz de confusión: Es una tabla que resume el desempeño del modelo al clasificar las instancias
en:

– TP (True Positives): instancias positivas correctamente clasificadas.

– FP (False Positives): instancias negativas clasificadas incorrectamente como positivas.

– TN (True Negatives): instancias negativas correctamente clasificadas.

– FN (False Negatives): instancias positivas clasificadas incorrectamente como negativas.

Esta matriz permite calcular todas las métricas de evaluación posteriores.

• Exactitud (Accuracy): Mide la proporción de predicciones correctas sobre el total de predicciones.

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

• Precisión (Precision): Indica cuántas de las instancias clasificadas como positivas son
efectivamente positivas.

Precision = TP

TP + FP
(5.2)

• Sensibilidad (Recall): Mide la proporción de instancias positivas correctamente identificadas por
el modelo.

Recall = TP

TP + FN
(5.3)

• Puntuación F1 (F1-score): Representa la media armónica entre precisión y sensibilidad, lo cual
favorece un equilibrio entre ambas métricas.

F1 = 2 · Precision · Recall
Precision + Recall (5.4)

• Curva ROC y AUC: La curva ROC muestra la relación entre la Tasa de Verdaderos Positvos
(TPR) y Tasa de Falsos Positvos (FPR) al variar el umbral de decisión. El área bajo esta curva
(AUC) cuantifica la capacidad del modelo para distinguir entre clases.

TPR = TP

TP + FN
(5.5)

FPR = FP

FP + TN
(5.6)

Un AUC cercano a 1 indica un modelo con alta capacidad discriminativa, mientras que un valor
cercano a 0.5 sugiere un modelo sin poder de discriminación.

Además de evaluar el rendimiento del modelo, se analiza la robustez de las explicaciones generadas
por el método de explicabilidad propuesto. Para que un método explicativo se considere robusto, debe
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cumplir con un conjunto de propiedades que permitan medir su calidad, utilidad y confiabilidad. Estas
propiedades, descritas en la Sección 2.3.3, incluyen: fidelidad, consistencia, robustez y eficiencia. Además,
las explicaciones generadas por el método propuesto se comparan con medidas de centralidad provenientes
de la teoría de grafos, descritas en la Sección 2.3.5.1, con el objetivo de analizar la correspondencia entre
dichas explicaciones y la relevancia estructural de los nodos en el grafo. Las medidas consideradas incluyen:
grado de entrada, grado de salida, grado total, PageRank e intermediación.

Para realizar una comparación cuantitativa de la calidad entre distintos métodos de
explicabilidad, se utiliza la técnica ROAR, que permite estimar la importancia real de las características
seleccionadas. ROAR [130] elimina de forma progresiva las características consideradas más relevantes por
un método de explicabilidad, reentrena el modelo desde cero en cada iteración y evalúa su rendimiento.
Si el método es eficaz, la eliminación de características importantes debería provocar una caída notable
en el rendimiento del modelo. El procedimiento se repite de forma iterativa: se elimina primero la
característica más relevante y se mide el rendimiento; luego se eliminan las dos más relevantes y se
reevalúa; posteriormente tres, y así sucesivamente. Este proceso permite medir de manera objetiva el
impacto de las características seleccionadas sobre el rendimiento del modelo.

5.3 Modelado

En esta sección se presentan tanto el modelado usando los MCD como con las otras tecnicas de aprendizaje
automátivo usadas en este trabajo.

5.3.1 Modelado Usando MCDs

Esta sección describe detalladamente el proceso seguido para implementar el enfoque basado en modelos
MCD para tareas de clasificación. Se explica el uso del software FCM Experts para la construcción y
entrenamiento de los modelos, así como la optimización de sus parámetros mediante algoritmos evolutivos.
Además, se discuten las principales limitaciones encontradas en la definición estructural de los modelos.

El software FCM Experts [53] fue empleado para la construcción y entrenamiento de los modelos
de clasificación basados en MCDs. La construcción y entrenamiento de los modelos de clasificación
se fundamenta en algoritmos de optimización por poblaciones, como se explica en la Sección 2.2. En
particular, se utilizó el algoritmo Particle Swarm Optimization (PSO) [131], y específicamente su variante
Global-best PSO [132], para la optimización de la matriz de pesos W . Global-best PSO es un algoritmo
diseñado para resolver problemas de optimización mediante un enfoque estocástico inspirado en el
comportamiento colectivo de las poblaciones. En este contexto, un conjunto de partículas explora el
espacio de soluciones, donde cada partícula representa una posible solución. Cada partícula se caracteriza
por:

1. Una posición Xi en el espacio de búsqueda.

2. Una velocidad Vi que determina su desplazamiento.

3. Su mejor posición histórica pbesti.

El algoritmo también mantiene gbest, que representa la mejor posición global hallada por el enjambre.
Las partículas actualizan sus posiciones y velocidades en cada iteración usando las ecuaciones 5.7 y 5.8 :

Xt+1
i = Xt

i + Vt+1
i (5.7)
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Vt+1
i = w ·Vt

i + c1 · r1 · (pbesti −Xt
i) + c2 · r2 · (gbest−Xt

i) (5.8)

donde w es el coeficiente de inercia, y c1, c2 son los coeficientes cognitivo y social, respectivamente.
Los valores r1 y r2 son variables aleatorias uniformemente distribuidas en el intervalo [0, 1].

Global-best PSO se emplea para construir, a partir de los datos, la matriz de pesos W del MCD. En este
contexto, cada partícula del enjambre representa una posible solución, es decir, una matriz W candidata
que define las relaciones causales entre los conceptos del modelo. Durante la búsqueda, el enjambre
explora iterativamente el espacio de soluciones conformado por todas las configuraciones posibles de W ,
evaluando el desempeño de cada partícula mediante una función objetivo basada en la exactitud del
modelo. Así, las partículas actualizan sus posiciones y velocidades guiadas tanto por su mejor experiencia
individual (pbesti) como por la mejor solución global encontrada (gbest), hasta que se cumple un criterio
de parada predefinido, como alcanzar un número máximo de iteraciones o la estabilización del rendimiento
del modelo.

La selección de los hiperparámetros (tamaño de población, número máximo de iteraciones, c1, c2) se
realizó de forma empírica para cada conjunto de datos, empleando validación cruzada para garantizar
una evaluación robusta del rendimiento. El trabajo de [133] destaca que coeficientes c1 = c2 ≈ 0,2
proporcionan un equilibrio efectivo entre la exploración y explotación del espacio de búsqueda. Por otro
lado, aunque [134] sugiere valores óptimos para el tamaño del enjambre en función de las características
del conjunto de datos (específicamente, el tamaño de la población), en el presente estudio fue necesario
ajustar dicho parámetro de manera específica, ya que las recomendaciones propuestas no proporcionaron
resultados satisfactorios con los datos empleados. Sin embargo, las recomendaciones respecto a los valores
de c1 y c2 se mantuvieron en 0.2. El proceso completo seguido para construir y validar cada modelo fue
el siguiente:

1. Validación cruzada: Se llevaron a cabo diez validaciones cruzadas, dividiendo los datos en un
70 % para entrenamiento y un 30 % para prueba, con el fin de obtener una estimación robusta del
rendimiento del modelo.

2. Selección de hiperparámetros: Se establecieron los valores de los hiperparámetros relevantes,
tales como el tamaño de la población, el número máximo de iteraciones y los coeficientes cognitivo
y social.

3. Entrenamiento del modelo: Se entrenó el modelo utilizando la configuración seleccionada,
aplicando el algoritmo Global-best PSO para la optimización de la matriz de pesos.

4. Evaluación del rendimiento: El modelo fue evaluado utilizando las métricas definidas. En caso
de obtener resultados insatisfactorios, se ajustaron los hiperparámetros y se repitió el proceso de
entrenamiento, iterando hasta encontrar el modelo con el mejor rendimiento.

La herramienta FCM Experts permite construir la estructura de un MCD definiendo las relaciones
entre conceptos de forma aleatoria. Esto se realiza mediante la selección de un porcentaje entre 0 y 100,
que indica cuántas relaciones se desean establecer entre todas las posibles. Un valor de 0 genera un MCD
sin relaciones entre conceptos, mientras que un valor de 100 produce un MCD completamente conectado,
en el cual todos los elementos están relacionados entre sí, incluyendo las relaciones consigo mismos.

Este método presenta una limitación significativa, ya que la generación aleatoria no se fundamenta en
métodos basados en evidencia ni en datos observados que justifiquen o validen la selección de las relaciones
causales. Para mitigar esta limitación, se intentó aplicar algoritmos basados en poblaciones que, utilizando
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los datos disponibles, pudieran inferir la estructura causal del MCD. Sin embargo, dichos métodos no
lograron obtener una estructura adecuada ni confiable. Asimismo, se exploraron estrategias iterativas
para crear y eliminar relaciones durante la ejecución del modelo, con el fin de optimizar su rendimiento
y determinar la mejor estructura posible. Esta alternativa tampoco produjo resultados satisfactorios.
Finalmente, se optó por utilizar MCD totalmente conectados. Esta solución, aunque práctica, genera un
problema inherente: la propagación de relaciones causales a todos los nodos provoca una disminución en
el rendimiento del modelo, tanto en términos computacionales como en la calidad de sus predicciones.

5.3.2 Modelado Basado en Otras Técnicas de IA

Además de los modelos basados en MCD, se emplearon otras técnicas de IA para construir modelos
de clasificación, con el objetivo de realizar una comparación tanto en términos de rendimiento como de
explicabilidad. Las técnicas de IA usandas fueron seleccionadas utilizando la biblioteca de Python Optuna
[135], la cual esta especializada en la optimización automática de hiperparámetros, en particular, para
algoritmos de aprendizaje automático. Usando a Optuna, el proceso de optimización se estructuró en las
siguientes etapas:

1. Selección de modelos candidatos: Se evaluaron distintos algoritmos de clasificación mediante
validación cruzada de 10 pliegues, {así como utilizando segmentaciones de los conjuntos de
datos con proporciones de 20 % - 80 %, 30 % - 70 %, para analizar el desempeño en diferentes
particiones de entrenamiento y prueba. Además, en esta primera etapa se utilizó Optuna para una
primera búsqueda de los hiperparámetros de los modelos. Con base en su desempeño promedio, se
seleccionaron los cinco modelos con mejores resultados para continuar con la optimización.

2. Definición del espacio de búsqueda: Para cada modelo seleccionado, se refinó el espacio
de búsqueda inicialmente establecido en el paso 1, ajustando con precisión los rangos de los
hiperparámetros mediante su ampliación o reducción según fuera necesario. De este modo, se
identificaron los hiperparámetros clave y se definieron sus posibles valores, conformando el espacio
de búsqueda para la siguiente etapa de optimización.

3. Exploración del espacio: A partir de la función objetivo basada en métricas de rendimiento,
Optuna generó combinaciones de hiperparámetros. En lugar de explorar el espacio al azar, fue
dirigiendo la búsqueda hacia aquellas combinaciones que mostraban mayor potencial, basándose en
los resultados obtenidos en cada iteración.

4. Modelado y refinamiento: Conforme se evaluaban nuevas configuraciones, Optuna construía
y actualizaba un modelo probabilístico del espacio de búsqueda. Este modelo facilitaba la
identificación de combinaciones prometedoras, haciendo el proceso más eficiente y aumentando
las probabilidades de encontrar una configuración cercana al óptimo.

El ciclo de optimización continuó hasta cumplir un criterio de parada predefinido, como alcanzar
un número máximo de evaluaciones o estabilizar el rendimiento. Gracias a este enfoque, se obtuvieron
modelos de referencia con configuraciones bien ajustadas, lo que permitió realizar una comparación justa
y rigurosa frente a los modelos desarrollados con MCD.

Las técnicas finales seleccionadas para la comparación fueron las siguientes:

• Clasificador de Árboles Extra (ETC) [136]: Técnica de construcción de modelos basada en
ensamblados de árboles de decisión, que introduce aleatoriedad en la selección de divisiones en cada
nodo para mejorar la generalización.
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• Máquina de Vectores de Soporte (SVM) [137]: Técnica que construye modelos clasificadores
buscando un hiperplano óptimo que maximice el margen de separación entre clases en el espacio de
características.

• Perceptrón Multicapa (MLP) [138]: Técnica de construcción de modelos basada en redes
neuronales artificiales compuestas por múltiples capas de neuronas con funciones de activación
no lineales, permitiendo capturar relaciones complejas en los datos.

• Regresión Logística (LR) [139]: Técnica estadística para construir modelos que estima la
probabilidad de pertenencia a una clase mediante una función logística aplicada a una combinación
lineal de variables predictoras.

• K-Vecinos Más Cercanos (KNN) [140]: Técnica basada en instancias que construye modelos
asignando la clase de una muestra según la mayoría de las etiquetas de sus k vecinos más cercanos
en el espacio de características.

5.4 Análisis de Resultados

En esta sección se presentan los resultados obtenidos en términos de rendimiento para los modelos
MCD, comparados con aquellos generados mediante otras técnicas de AA, descritas previamente en
la Sección 5.3.2.

5.4.1 Conjunto de Datos de Dengue

Para la construcción del modelo MCD sobre el conjunto de datos de dengue, se establecieron los siguientes
hiperparámetros: número máximo de iteraciones 200, población de partículas de 65, y coeficientes
cognitivo y social en 2.01. La Tabla 5.5 presenta el desempeño de diversos modelos de clasificación
evaluados con este conjunto. Los modelos basados en técnicas tradicionales de AA mostraron un
rendimiento sobresaliente, con métricas entre 0.9960 y 0.9999. En particular, el modelo ETC alcanzó
los valores más altos en todas las métricas (0.9999), evidenciando una capacidad casi perfecta para
identificar correctamente los casos. Los modelos LR, MLP y SVM presentaron resultados muy similares,
con valores de 0.9998 en todas las métricas. El modelo KNN tuvo un rendimiento ligeramente inferior,
pero competitivo, con precisión de 0.9959 y exactitud de 0.9960, demostrando buena capacidad de
generalización. En contraste, el modelo MCD obtuvo métricas inferiores a las de los modelos clásicos,
posiblemente debido a que los nodos del grafo están completamente conectados, lo que puede limitar la
captura de patrones relevantes (ver Sección 5.3.1).

Modelo Exactitud Precision Sensibilidad
Puntuación

F1
ETC 0.9999 0.9999 0.9999 0.9999
KNN 0.9960 0.9959 0.9961 0.9960
LR 0.9998 0.9998 0.9998 0.9998

MLP 0.9998 0.9998 0.9998 0.9998
SVM 0.9998 0.9998 0.9998 0.9998
MCD 0.8487 0.8580 0.8470 0.8503

Tabla 5.5: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de dengue
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La Figura 5.14 muestra las curvas ROC y los valores de Are Under Curve (AUC) obtenidos. Los
modelos ETC, LR, SVM y MLP alcanzaron un AUC de 1.0000, reflejando discriminación perfecta. KNN
obtuvo un AUC de 0.9988 y MCD 0.8852, lo que confirma la diferencia en desempeño.

Figura 5.11: Curva ROC para el conjunto de datos de dengue

5.4.2 Conjunto de Datos de COVID-19

Para el modelo MCD construido sobre el conjunto de datos de COVID-19, se configuraron los siguientes
hiperparámetros: número máximo de iteraciones en 100, población de partículas en 30, y coeficientes
cognitivo y social en 2.01. La Tabla 5.6 presenta el desempeño de diversos modelos de clasificación
aplicados a este conjunto. En general, los modelos convencionales de AA muestran un rendimiento
homogéneo y elevado, con métricas cercanas a 0.978 en todas las evaluaciones. Los modelos ETC,
LR, MLP y SVM alcanzan valores aproximados de 0.9786 en todas las métrica, indicando capacidad
consistente para clasificar correctamente los casos. El modelo KNN exhibe un rendimiento ligeramente
inferior (aproximadamente 0.9783), aunque la diferencia no es sustancial. Finalmente, el modelo MCD
presenta una capacidad de clasificaciónn menor en comparación con las técnicas tradicionales, con una
exactitud de 0.9357, una puntuación F1 y sensibilidad de 0.9305

Modelo Exactitud Precision Sensibilidad
Puntuación

F1
ETC 0.9786 0.9795 0.9786 0.9786
KNN 0.9783 0.9791 0.9783 0.9783
LR 0.9786 0.9795 0.9786 0.9786

MLP 0.9786 0.9795 0.9786 0.9786
SVM 0.9786 0.9795 0.9786 0.9786
MCD 0.9357 0.9450 0.9305 0.9305

Tabla 5.6: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de COVID-19

La Figura 5.12 muestra las curvas ROC y valores de AUC correspondientes. Los modelos tradicionales
presentan curvas y valores muy similares, reflejando alto rendimiento. El modelo MCD se encuentra
ligeramente por debajo, indicando menor capacidad discriminativa.
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Figura 5.12: Curva ROC sobre el conjunto de datos de COVID-19

5.4.3 Conjunto de Datos de Diabetes

Para este conjunto, el modelo MCD se configuró con un límite máximo de 100 iteraciones y población de
partículas de tamaño 40, con coeficientes cognitivo y social en 2.01. La Tabla 5.7 presenta las métricas
obtenidas. Los modelos ETC y KNN mostraron mejor desempeño. Los modelos MLP, SVM y LR
presentan rendimiento intermedio, mientras que MCD evidenció desempeño menor, con una exactitud
de 0.7433 y valores similares en las demás métricas.

Modelo Exactitud Precision Sensibilidad
Puntuación

F1
ETC 0.8567 0.8653 0.8567 0.8558
KNN 0.8167 0.8349 0.8167 0.8141
RL 0.7900 0.8160 0.7900 0.7856

MLP 0.8300 0.8354 0.8300 0.8293
SVM 0.8433 0.8489 0.8433 0.8427
MCD 0.7433 0.7450 0.7450 0.7400

Tabla 5.7: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de diabetes

La Figura 5.13 muestra las curvas ROC y los valores de AUC correspondientes a los modelos evaluados
sobre el conjunto de datos de diabetes. Se observa que los modelos ETC y KNN presentan curvas muy
similares, con valores de AUC de 0.9020 y 0.9058, respectivamente, reflejando una alta capacidad para
distinguir entre clases. Los modelos MLP y SVM muestran un desempeño ligeramente inferior, con AUC
cercanos a 0.8899 y 0.8876, respectivamente. Por otro lado, LR alcanza un valor de AUC de 0.8484,
mientras que el modelo MCD presenta el menor valor, aproximadamente 0.8075.

Cabe destacar que las curvas ROC exhiben algunos escalones, característica típica cuando se trabaja
con conjuntos de datos de tamaño reducido, ya que el número limitado de muestras afecta la cantidad
de posibles puntos de corte para calcular las tasas de verdaderos y falsos positivos. Esta particularidad
puede generar una apariencia discontinua en las curvas, sin que ello afecte la validez de la evaluación
comparativa entre los modelos.
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Figura 5.13: Curva ROC dengue sobre el conjunto de datos de diabetes

5.4.4 Conjunto de Datos de Diagnóstico de Vehículos Submarinos

Para el conjunto de datos de diagnóstico de fallos en vehículos submarinos autónomos, se emplearon
los mismos parámetros del modelo MCD que en los experimentos previos, con 150 iteraciones máximas,
población de partículas de tamaño 50, y coeficientes cognitivo y social de 2.01. La Tabla 5.8 presenta las
métricas de rendimiento de los modelos evaluados. El modelo ETC alcanzó la mayor exactitud con un valor
de 0.9229, mostrando, además, valores idénticos en precision, sensibilidad y puntuación F1, lo que indica
un comportamiento equilibrado en todas las métricas. El modelo KNN obtuvo un rendimiento intermedio
con una exactitud de 0.8119 y métricas similares. Por otro lado, los modelos MLP y SVM mostraron
resultados moderados, con exactitudes de 0.8105 y 0.7633, respectivamente. El modelo LR presentó una
eficacia menor, con una exactitud de 0.7295. Finalmente, el modelo MCD registró resultados comparables
a los de SVM, con una exactitud de 0.7610 y el resto de métricas con valores cercanos.

Modelo Exactitud Precision Sensibilidad
Puntuación

F1
ETC 0.9229 0.9229 0.9229 0.9229
KNN 0.8119 0.8174 0.8126 0.8113
RL 0.7295 0.7297 0.7297 0.7295

MLP 0.8105 0.8116 0.8108 0.8104
SVM 0.7633 0.7649 0.7637 0.7631
MCD 0.7610 0.7700 0.7600 0.7600

Tabla 5.8: Métricas de rendimiento de los modelos evaluados sobre el conjunto de datos de diagnóstico
de fallos en vehículos submarinos autónomos
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Figura 5.14: Curva ROC dengue sobre el conjunto de datos de diagnóstico de fallos en vehículos
submarinos autónomos

La Figura 5.14 muestra las curvas ROC y los valores de AUC para los distintos modelos aplicados
al conjunto de datos de diagnóstico de fallos en vehículos submarinos autónomos. Se observan algunos
escalones en las curvas, característicos de conjuntos de datos con tamaño limitado, debido a la cantidad
restringida de muestras y posibles puntos de corte.

En cuanto a la capacidad discriminativa, el modelo ETC presenta el valor más alto de AUC con 0.9791,
seguido por MLP con 0.9092, KNN con 0.9026, y SVM con 0.8605. Los modelos LR y MCD alcanzan
valores de AUC de 0.8198 y 0.8242, respectivamente, reflejando una capacidad moderada para distinguir
entre clases en este escenario.

5.5 Analisis de Explicabilidad

Esta sección hace un análisis de la calidad de la explicabilidad aportada por nuestro método. Para ello,
se definirán otros métodos de explicabilidad para comparar, se hará un análisis del ranking de variables
aportada por cada método, un análisis de sensibilidad de la degradación del rendimiento de los modelos
según las variables relevantes de cada método, y finalmente, para nuestro método de explicabilidad, se
determina su comportamiento en las propiedades de explicabilidad comentadas en las secciones anteriores.

5.5.1 Métodos de Explicabilidad de Referencia

Los resultados de nuestro método de explicabilidad se contrastaron con los obtenidos mediante dos
métodos de explicabilidad clasicos que pertenecen a diferentes categorias, SHAP y FP, los cuales se
describen brevemente a continuación:

• SHAP: Este método se basa en los valores de Shapley de la teoría de juegos cooperativos. Asigna a
cada característica una contribución al resultado del modelo considerando todas las combinaciones
posibles de variables. Fue introducido por Lundberg y Lee [4] como un enfoque unificado para
interpretar las predicciones de modelos complejos, y se ha consolidado como una de las técnicas
más populares para la explicabilidad local.



62 Capítulo 5. Experimentos

• FP: Método que evalúa la importancia de una característica midiendo el aumento en el
error del modelo cuando se permutan aleatoriamente sus valores. Si dicha permutación afecta
considerablemente el rendimiento, se considera que la característica tiene un alto impacto. Esta
técnica fue propuesta por Altmann y otros [141] como una alternativa eficaz de modelo-agnóstico
para estimar la relevancia de variables.

5.5.2 Resultados de Explicabilidad

En esta sección se realiza un análisis comparativo entre los tres métodos de explicabilidad usando las
medidas de centralidad de grafos presentadas en la sección 2.3.5.1 y el ranking de relevancia propuesto
por cada método. Se realizaron n simulaciones para el método propuesto y el método SHAP, ambos
de naturaleza local y dependientes de instancias específicas de entrada. El objetivo fue recopilar una
cantidad suficiente de resultados que permitiera comparar de manera fiable su comportamiento promedio
bajo condiciones controladas y equitativas. Se fijó el valor de n en 20 simulaciones, lo que se consideró
adecuado para obtener resultados representativos y estables. Para cada simulación, se utilizaron diferentes
instancias de entrada, y posteriormente se promediaron los resultados obtenidos con cada método, lo que
permitió una comparación objetiva y cuantitativa de su desempeño relativo. El análisis agregado a partir
de múltiples ejecuciones permite obtener una estimación útil del comportamiento general de cada enfoque.
Por otro lado, en el caso de la FP, que es un método global, no fue necesario realizar múltiples simulaciones,
ya que este enfoque proporciona resultados globales por definición y no depende de instancias específicas
de entrada.

5.5.2.1 Conjunto de Datos de Dengue

La Tabla 5.9 muestra la correspondencia entre el nombre de cada variable y su concepto C dentro del
MCD asociado, con el objetivo de facilitar la interpretación de los resultados obtenidos. Los resultados
del método propuesto para MCD se muestran en la Figura 5.15, como también, los derivados de las
medidas de centralidad de grafos, representados mediante gráficos de araña, donde la variable más
relevante se indica en azul, y las siguientes en orden decreciente en sentido contrario a las agujas de
reloj. Se observa que nuestro método asigna mayor importancia a los conceptos C2, seguido de C9 y
C3 (ver Dynax-FCM en Fig. 5.15). Las medidas de centralidad de grado de entrada, grado total y
PageRank coinciden en que el concepto más relevante es C1. En el caso del grado de entrada y grado
total, el segundo lugar lo ocupa C13, mientras que en grado de salidad el valor más alto corresponde
a C16. Por su parte, la medida de intermediación ofrece resultados distintos, destacando como más
relevantes los conceptos C14, y posteriormente C20. Se observa que, en todas las medidas excepto en
PageRank, la importancia de los conceptos decrece de manera sostenida. En contraste, en PageRank la
relevancia se concentra principalmente en C1, mientras que el resto de los conceptos presentan valores
considerablemente inferiores.

Se concluye que las distintas métricas de centralidad basadas en grafos no coinciden plenamente en
la identificación de los conceptos más relevantes dentro del MCD. Mientras algunas destacan a C1, otras
asignan mayor importancia a conceptos como C13, C14 o C20, lo que evidencia que cada métrica capta
diferentes aspectos de la estructura del sistema. Esta variabilidad impide establecer una jerarquía única
basada únicamente en estas medidas, lo que refuerza la pertinencia de emplear enfoques complementarios,
como el método propuesto en este trabajo.



5.5 Analisis de Explicabilidad 63

Variable Nombre Variable Nombre Variable Nombre Variable Nombre
C1 Edad C6 Erupción C11 Hepatomegalia C16 Acumulación de Líquidos
C2 Cefalea C7 Dolor Abdominal C12 Hemorragias en Mucosas C17 Extravasación
C3 Dolor Retroocular C8 Vómito C13 Hipotermia C18 Hemorragias Hemáticas
C4 Mialgias C9 Somnolencia C14 Aumento de Hematocrito C19 Shock
C5 Artralgia C10 Hipotensión C15 Caída de Plaquetas C20 Daño Orgánico

Tabla 5.9: Relación entre concepto y nombre de concepto en el conjunto de datos de COVID-19

Figura 5.15: Importancia del método propuesto y medidas de centralidad de grafos en el conjunto de
datos dengue

La Figura 5.16 presenta el ranking de relevancia propuesto por cada método de explicabilidad. Se
observa que los modelos basados en SHAP asignan la mayor relevancia al concepto C7, correspondiente
a la variable Dolor Abdominal. Le siguen, en distintas posiciones según el modelo, los conceptos C8, C15
y C12. Un patrón similar se observa en el método FP, que también sitúa a C7 como la variable más
relevante, seguida por C8, C15 y C12, aunque con diferencias en el orden de importancia entre modelos.

En contraste, el método propuesto establece un patrón de relevancia distinto, identificando como
conceptos más importantes a C2, C9 y C3, correspondientes a Cefalea, Somnolencia y Dolor retroocular,
respectivamente. Esta divergencia sugiere que nuestro método es capaz de capturar dinámicas internas y
relaciones causales desapercibidas para métodos de explicabilidad como SHAP o FP.

Como se detalló en la Sección 5.1.2.1, tanto la Figura 5.2, que presenta las correlaciones de Cramér,
como el análisis de VIF, identifican a la variable Dolor Abdominal, correspondiente a C7, como relevante
pero propensa a alta colinealidad. El hecho de que los métodos SHAP y FP sitúen esta variable
como la más relevante, podría una limitación por la presencia de multicolinealidad. En presencia de
multicolinealidad, las variables correlacionadas contienen información redundante que contribuye de
manera similar a la predicción del modelo. Esta redundancia dificulta que los métodos de interpretación
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cuantifiquen de forma aislada la contribución individual de cada variable, ya que sus efectos se solapan
en el espacio de características. Por lo tanto, en lugar de distribuir correctamente la importancia entre
todas las variables correlacionadas, dichos métodos tienden a asignar una proporción desproporcionada
de la importancia a una sola variable, lo que conduce a una sobreestimación de su influencia real. En
consecuencia, esta asignación sesgada distorsiona la evaluación de la relevancia de las variables, generando
la falsa impresión de que una variable tiene un impacto mayor del que posee en realidad, cuando en efecto
la contribución relevante está compartida entre múltiples variables interrelacionadas.

Figura 5.16: Importancia del método propuesto y métodos SHAP y FP en el conjunto de datos dengue

5.5.2.2 Conjunto de Datos de COVID-19

La Tabla 5.10 muestra la correspondencia entre el nombre de cada variable y su concepto C en los
modelos construidos con el conjunto de datos de COVID-19, con el objetivo de facilitar la interpretación
de los resultados obtenidos. La Figura 5.17 presenta una comparación entre el método propuesto y las
medidas de centralidad basadas en grafos. Se observa que el método propuesto asigna mayor importancia
al concepto C4. En cuanto a las medidas de centralidad, todas, excepto grado de salida, identifican al
concepto C1 como el más relevante. No obstante, el orden de importancia del resto de los conceptos varía
entre métodos, aunque los conceptos C3 y C9 aparecen de forma recurrente en los distintos rankings,
incluido el método propuesto. Por su parte, la medida de grado de salida difiere del resto al situar como
más relevante al concepto C2.

En conclusión, aunque el método propuesto y las medidas de centralidad basadas en grafos coinciden
parcialmente en la identificación de conceptos clave, como C1, C3 y C9, también evidencian diferencias
significativas en la jerarquía de importancia asignada a cada concepto.
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Concepto Nombre
C1 Tos
C2 Fiebre
C3 Dolor de garganta
C4 Dificultad para respirar
C5 Dolor de cabeza
C6 Edad 60 o más
C7 Género
C8 Motivo contacto con infectado
C9 Motivo viaje al extranjero

Tabla 5.10: Correspondencia entre códigos de concepto y nombres clínicos en el conjunto de datos de
COVID-19.

Figura 5.17: Comparación de la importancia de los conceptos según el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de datos de COVID-19.

La Figura 5.18 presenta el ranking de relevancia propuesto por cada método de explicabilidad. En
relación con las explicaciones generadas por SHAP y FP, se observa que los modelos basados en SHAP
identifican como variable más importante a C8, seguida de C2 o C5, dependiendo del modelo. En el caso
de FP, la variable más relevante corresponde a C2, seguida por C5 o C8, según el modelo considerado.

Por su parte, nuestro enfoque propuesto destaca a los conceptos C4, C7 y C8, siendo únicamente C8
considerada importante por los otros métodos. Esto sugiere que ni SHAP ni FP son capaces de capturar
adecuadamente las relaciones de causalidad al calcular la importancia de las variables.
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Cabe destacar que tanto C8 como C2, correspondientes a las variables Fiebre y Motivo: contacto con
infectado, respectivamente, fueron identificadas en la sección de preparación del conjunto de datos como
variables con alta correlación según el coeficiente de Cramér y con presencia de multicolinealidad. Este
hecho pone nuevamente de manifiesto una limitación inherente a los métodos SHAP y FP, que tienden a
sobreestimar la importancia de variables cuando existe multicolinealidad en el conjunto de datos.

Figura 5.18: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de datos
COVID-19

5.5.2.3 Conjunto de Datos de Diabetes

La Tabla 5.11 presenta la correspondencia entre el nombre de cada variable y su concepto C en los modelos
construidos con el conjunto de datos diabetes. La figura 5.19 presenta los resultados de la comparación
entre el método propuesto y las distintas medidas de centralidad basadas en grafos. Se observa que el
método propuesto identifica al concepto C6 como el más relevante, seguido por C2 y C8. De forma
consistente, las medidas de grado de salida, grado total e intermediación también consideran a C6 como
el concepto más importante. En cuanto al segundo puesto, tanto el grado de salida como el grado total
coinciden con el método propuesto al destacar a C2, mientras que la medida de intermediación difiere,
situando a C1 como la segunda más relevante y relegando a C2 al quinto lugar. Por otro lado, las
medidas restantes presentan discrepancias más notables. El grado de entrada considera a C2 como la más
importante, seguida de C5, y ubica a C6 en la tercera posición. En el caso de PageRank, C2 vuelve a
ocupar el primer lugar, pero C6 desciende nuevamente a la tercera posición, a pesar de haber sido la más
destacada en otras métricas. En general, puede observarse que los conceptos C6 y C2 son considerados
entre los tres más importantes en la mayoría de las medidas, con la única excepción de la intermediación,
donde C2 desciende hasta la quinta posición en el ranking.
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Concepto Variable
C1 Número de Embarazos
C2 Glucosa
C3 Presión Sanguínea
C4 Grosor Cutáneo
C5 Insulina
C6 BMI
C7 DPF
C8 Edad

Tabla 5.11: Correspondencia entre códigos de concepto y nombres clínicos en el conjunto de datos de
diabetes.

Figura 5.19: Comparación de la importancia de los conceptos según el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de datos de diabetes.

La Figura 5.20 presenta el ranking de relevancia propuesto por cada método de explicabilidad. Se
observa que tanto SHAP como FP coinciden en identificar al concepto C2 como el más relevante. Este
es seguido en el ranking por los conceptos C8, C6 o C1, según el modelo considerado. Cabe destacar que
C2 es la segunda variable con mayor multicolinealidad, seguida de C6, la cual es señalada por nuestro
método como la más importante.



68 Capítulo 5. Experimentos

Figura 5.20: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de datos
diabetes.

5.5.2.4 Conjunto de Datos de Diagnóstico de Fallos en Vehículos Submarinos Autónomos

La Tabla 5.12 presenta la correspondencia entre el nombre de cada variable y su concepto C en los modelos
construidos con el conjunto de datos de diabetes. La Figura 5.21 muestra los resultados de la comparación
entre el método propuesto y las distintas medidas de centralidad basadas en grafos. Se observa que el
método propuesto identifica al concepto C7 como el más relevante, seguido por C3 y C6. Las medidas de
grado de salida e intermediación seleccionan como más importante al concepto C4, seguido de C6 y C2
en diferente orden. Por otro lado, las medidas de grado de entrada, grado total y PageRank consideran
al concepto C1 como el más relevante, seguido de C4. En este caso, el método propuesto no coincide con
ninguna de las medidas de centralidad evaluadas.

Concepto Nombre
C1 PWM
C2 Voltaje (V)
C3 Presión (Pa)
C4 Ángulo de Inclinación (°)
C5 Profundidad (m)
C6 Ángulo de Rodar (°)
C7 Velocidad Angular de Guinada (°/s)

Tabla 5.12: Correspondencia entre códigos de concepto y nombres en el conjunto de datos de
diagnóstico de fallos en vehículos submarinos autónomos
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Figura 5.21: Comparación de la importancia de los conceptos según el método propuesto y distintas
medidas de centralidad en grafos en el conjunto de diagnóstico de fallos en vehículos submarinos

autónomos.

La Figura 5.22 presenta el ranking de relevancia propuesto por cada método de explicabilidad. En
relación con los métodos de explicabilidad SHAP y FP, en este caso no se identifica una tendencia clara,
ya que cada modelo considera distintas variables como las más importantes. En particular, FP señala a
los conceptos C5, C3 y C1 como los más relevantes, sin que exista un claro consenso entre ellos. Por su
parte, SHAP destaca a los conceptos C3, C2 y C4 como los de mayor importancia, lo que refuerza la
ausencia de una tendencia dominante entre los modelos evaluados.

Una vez examinado el comportamiento en los cuatro conjuntos de datos, se observa que los resultados
derivados de las medidas de centralidad en grafos difieren notablemente de los obtenidos con el método
propuesto. Además, estas medidas de centralidad presentan discrepancias entre sí, reflejando diferentes
criterios y jerarquías en la identificación de los conceptos más relevantes, lo que evidencia la complejidad
de capturar la verdadera importancia dentro de redes complejas.

De manera similar, los resultados ofrecidos por SHAP y FP también presentan diferencias significativas
respecto al método propuesto. Esto se explica principalmente porque nuestro enfoque está diseñado
para capturar la dinámica de las relaciones causales entre variables, mientras que SHAP y FP evalúan
la importancia basándose fundamentalmente en asociaciones estadísticas directas. Además, el análisis
exhaustivo realizado en todos los conjuntos de datos y modelos reveló que ambos métodos tienden a
favorecer variables con alta correlación o multicolinealidad, lo que puede llevar a interpretaciones sesgadas
o erróneas. En contraste, el método propuesto permite identificar de forma más robusta y precisa las
variables verdaderamente relevantes, al considerar las interacciones causales subyacentes y la estructura
dinámica del sistema, mejorando así la calidad, coherencia y utilidad de las explicaciones generadas.
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Figura 5.22: Commportancia del método propuesto y métodos SHAP y FP en el conjunto de
diagnóstico de fallos en vehículos submarinos autónomos.

5.5.3 Comparación de la Calidad de los Métodos de Explicabilidad

Después de analizar los resultados obtenidos mediante el método propuesto, así como los proporcionados
por SHAP y FP, se propone la aplicación de ROAR con el objetivo de evaluar la calidad de las
explicaciones generadas. Se pretende comprobar que las explicaciones generadas por el método propuesto
presentan una mayor calidad que las ofrecidas por SHAP y FP, las cuales pueden verse afectadas por
problemas de multicolinealidad.

La tabla 5.13 presenta los índices de degradación calculados tras eliminar la primera variable relevante,
las dos primeras variables revelantes, y las tres primeras variables relevantes, en el conjunto de datos de
dengue según cada método de explicabilidad. Se observa que la mayor degradación se produce en los
MCD, alcanzando un valor de 0.2850 al eliminar las tres variables mas relevantes. SHAP y FP presentan
degradaciones similares para algunos modelos, e incluso mejores, cuando se eliminan una o dos variables
(como el caso de SHAP y el modelo KNN al eliminar dos variables). A pesar de ello, el método propuesto
muestra consistentemente la mayor degradación, lo que sugiere una mayor sensibilidad a las variables
eliminadas y, por tanto, una identificación más precisa de las características relevantes

Vars elim. Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM ETC KNN LR MLP SVM

1 0.0625 0.0626 0.0621 0.0584 0.0627 0.0624 0.0626 0.0621 0.0584 0.0627 0.0624
2 0.1425 0.1293 0.1834 0.1241 0.1292 0.1292 0.0966 0.1316 0.1399 0.1012 0.1007
3 0.2850 0.2653 0.2711 0.2589 0.2699 0.2625 0.1210 0.2711 0.2052 0.1305 0.1285

Tabla 5.13: Índice de degradación basado en el accuracy al eliminar las variables más importantes en el
conjunto de datos de dengue
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La tabla 5.14 presenta los índices de degradación calculados tras eliminar la primera variable relevante,
y las dos y tres primeras variables revelantes en el conjunto de datos de COVID-19 según cada método
de explicabilidad. Se observa que la mayor degradación se produce en los MCD, con un valor de 0.14 al
utilizar el método propuesto y eliminar las tres variables mas relevantes, seguida de LR con FP (0.1287) y
de KNN con FP (0.1147). De nuevo, el método propuesto muestra una mayor capacidad para identificar
las variables realmente relevantes.

Vars elim. Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM ETC KNN LR MLP SVM

1 0.02 0.0007 0.0007 -0.0010 0.0007 0.0007 0.0587 0.0710 0.0623 0.0570 0.0563
2 0.10 0.0587 0.0340 0.0363 0.0227 0.0217 0.0587 0.1137 0.0780 0.0577 0.0570
3 0.14 0.0767 0.0337 0.0373 0.0810 0.0370 0.0767 0.1147 0.1287 0.0777 0.0770

Tabla 5.14: Índice de degradación basado en el accuracy al eliminar las variables más importantes en el
conjunto de datos de COVID-19

La tabla 5.15 contiene los índices de degradación del conjunto de datos de diabetes, y muestra que
el mayor valor se alcanza con el método propuesto al eliminar las tres variables más relevantes, con una
degradación de 0.2034. Incluso, al eliminar las dos variables mas relevantes sigue siendo mejor nuestro
enfoque. En el caso de la eliminación de una variable tiene un comportamiento similar al resto.

Vars elim. Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM ETC KNN LR MLP SVM

1 0.0523 0.0400 0.0167 0.0567 0.0667 0.0567 0.0400 0.0167 0.0567 0.0667 0.0567
2 0.1491 0.0900 0.0400 0.0633 0.0767 0.0467 0.0900 0.0467 0.0633 0.1200 0.0967
3 0.2034 0.0900 0.0767 0.0700 0.1167 0.0967 0.0833 0.0767 0.0933 0.1167 0.0967

Tabla 5.15: Índice de degradación basado en el accuracy al eliminar las variables más importantes en el
conjunto de datos de diabetes.

Por último, en el conjunto de datos de diagnóstico de fallos en vehículos submarinos autónomos, la
Tabla 5.16 presenta los resultados de los índices de degradación. Se observa nuevamente que el método
propuesto produce la mayor degradación en el rendimiento al eliminar tres variables, en comparación con
el resto de métodos. No obstante, tanto SHAP como FP en ETC ofrecen un valor de degradación cercano.
En el resto de los casos, los índices de degradación son muy parecidos y significativamente menores.

Vars elim. Método propuesto SHAP FP
MCD ETC KNN LR MLP SVM ETC KNN LR MLP SVM

1 0.0929 0.0929 0.0281 0.0200 0.0738 0.0176 0.0929 0.0548 0.0443 0.1057 0.0410
2 0.1471 0.1314 0.0329 0.0419 0.1471 0.0538 0.1510 0.1005 0.0814 0.1471 0.0538
3 0.2365 0.2176 0.0211 0.0676 0.1700 0.0610 0.2176 0.1186 0.0986 0.1619 0.0610

Tabla 5.16: Índice de degradación basado en el accuracy al eliminar las variables más importantes en el
conjunto de datos diagnóstico de fallos en vehículos submarinos autónomos.

En todos los conjuntos de datos explorados, la métrica de calidad ROAR aplicado al método propuesto
muestra consistentemente los mayores índices de degradación cuando se eliminan las tres primeras
variables identificadas como más importantes. Este comportamiento indica que las variables seleccionadas
por el método propuesto son efectivamente relevantes para el modelo, ya que su eliminación provoca un
deterioro significativo en el rendimiento. En comparación, los métodos basados en SHAP y FP muestran
degradaciones más moderadas o localizadas en modelos concretos, lo que sugiere que nuestro método
propuesto tiene una mayor capacidad para detectar información verdaderamente esencial. Por tanto,
los resultados respaldan la utilidad del enfoque propuesto para tareas de selección de características,
especialmente en entornos críticos donde una identificación precisa de las variables clave es fundamental.
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5.5.4 Análisis de las Propiedades de Explicabilidad en Nuestro Método de
Explicabilidad

Se evaluó la calidad del método de explicabilidad propuesto utilizando las propiedades definidas en la
Sección 2.3.3, las cuales permiten medir su calidad, utilidad y confiabilidad. Estas propiedades incluyen:
fidelidad, estabilidad, uniformidad, robustez y eficiencia.

Para el cálculo de dichas propiedades, se emplearon n = 10 instancias distintas, sobre las cuales se
aplicó el procedimiento de evaluación. El valor de n se limitó a 10 debido a que cada instancia requiere
una verificación manual exhaustiva. Los resultados presentados en la Tabla 5.17 reflejan el desempeño
del método de explicabilidad propuesto en cuatro dominios distintos: Dengue, COVID-19, Diabetes y
diagnóstico de fallos en VAS. En general, el método muestra un comportamiento sólido en todas las
propiedades evaluadas, lo que respalda su aplicabilidad en diversos contextos.

En cuanto a la fidelidad, se observa un rendimiento consistentemente alto en todos los conjuntos,
con valores que oscilan entre 0.9162 y 0.9533. Esto indica que las explicaciones generadas son coherentes
con el comportamiento del modelo de clasificació subyacente, representando adecuadamente los factores
que influyen en sus decisiones.

La consistencia se evaluó mediante dos métricas complementarias: estabilidad y uniformidad.
Respecto a la estabilidad, se obtuvo un valor nulo (0.0) en todos los dominios. Este resultado se
debe a la naturaleza determinista del método, basado en las relaciones causales directas e indirectas
codificadas en el MCD, las cuales no varían al ejecutar múltiples veces el proceso de explicabilidad
sobre una misma instancia. Como consecuencia, tanto las activaciones como las explicaciones generadas
permanecen invariantes, garantizando una estabilidad total entre ejecuciones. Por su parte, la uniformidad
alcanzó valores elevados en todos los conjuntos (entre 0.9397 y 0.9911), lo que indica que las relevancias
asignadas a las distintas características están distribuidas de manera balanceada. Es decir, el método
no concentra toda la importancia explicativa en unas pocas variables, sino que reconoce el aporte de
múltiples características en la decisión del modelo.

En relación con la robustez, los valores obtenidos se encuentran en un rango de 0.7231 a 0.7561. Estos
resultados sugieren que las explicaciones son razonablemente estables frente a perturbaciones pequeñas
en las entradas. Aunque el método responde a las modificaciones en los datos, mantiene una consistencia
suficiente como para considerarse robusto. Cabe señalar que esta propiedad puede estar parcialmente
influenciada por la sensibilidad inherente del modelo de clasificación ante dichas perturbaciones.

Finalmente, respecto a la eficiencia, se observan diferencias notables entre los dominios. El conjunto
de Diabetes presenta el menor valor de Cs (0.0013), lo cual refleja una generación de explicaciones
altamente eficiente en ese contexto. En contraste, los conjuntos de Dengue y COVID-19 muestran
valores más elevados (0.1167 y 0.1072, respectivamente), posiblemente debido a una mayor complejidad
estructural del modelo o del grafo causal utilizado. No obstante, todos los valores se mantienen dentro de
márgenes aceptables, lo que confirma que el método es computacionalmente viable, incluso en escenarios
con recursos limitados.

En conjunto, estos resultados evidencian que el método de explicabilidad propuesto cumple
satisfactoriamente con los criterios de calidad establecidos: alta fidelidad, consistencia perfecta,
uniformidad adecuada, robustez razonable y eficiencia operativa. Estas características lo posicionan como
una herramienta confiable y útil para la interpretación de modelos en dominios sensibles o críticos.
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Propiedad Dengue COVID-19 Diabetes Fallo en VASs
Fidelidad 0.9392 0.9264 0.9533 0.9162
Estabilidad 0 0 0 0
Uniformidad 0.9911 0.9540 0.9685 0.9397
Robustez 0.7248 0.7231 0.7561 0.7300
Eficiencia 0.1167 0.1072 0.0013 0.0172

Tabla 5.17: Resultados promedio de las propiedades evaluadas del método de explicabilidad





Capítulo 6

Conclusiones y líneas futuras

6.1 Resumen

Este trabajo presenta un nuevo método para mejorar la explicabilidad en los MCDs. A diferencia de
los enfoques clásicos usados en MCDs que se basan en medidas de la teoría de grafos para la obtención
de la explicabilidad a partir de la imagen final del modelo o de técnicas de explicabilidad adaptadas a
los MCDs, este enfoque propone una explicabilidad dinámica y causal. Se centra en el comportamiento
dinámico del modelo durante cada iteración del proceso de inferencia, considerando cómo las relaciones
directas e indirectas entre conceptos influyen en la evolución de las activaciones.

El método fue evaluado en profundidad mediante una serie de experimentos comparativos. En primer
lugar, se contrastaron las explicaciones generadas con aquellas obtenidas a través de medidas clásicas
de centralidad de grafos, comúnmente utilizadas en MCDs. Se comprobó que el enfoque propuesto
ofrece explicaciones más representativas y útiles, ya que no se limita a analizar la estructura estática
del modelo, sino que incorpora la dinámica de la inferencia, capturando el papel que cada concepto
desempeña a lo largo del tiempo. Adicionalmente, se comparó el método con técnicas de explicabilidad
ampliamente utilizadas en la literatura, como SHAP y FP. Dado que estos métodos no pueden aplicarse
directamente sobre MCDs, se entrenaron distintos modelos de IA, como redes neuronales y árboles de
decisión, utilizando los mismos conjuntos de datos. Se diseñaron cuidadosamente los experimentos: se
adaptaron los datos, se construyeron los modelos, se midió su rendimiento y se generaron las explicaciones
con SHAP y FP.

La calidad de las explicaciones se evaluó desde dos perspectivas. En primer lugar, se utilizó la técnica
ROAR. El método propuesto mostró una mayor degradación de rendimiento que SHAP y FP, lo cual
indica que identifica de forma más precisa las variables clave. En segundo lugar, se comprobó la robustez
de las explicaciones generadas, evaluando el conjunto de propiedades fundamentales que debe cumplir
un método de explicabilidad para garantizar su calidad, utilidad y confiabilidad, y se verificó que las
explicaciones propuestas cumplen con dichas propiedades.

Todas las evaluaciones se realizaron sobre cuatro conjuntos de datos distintos, y en todos los
casos el método propuesto mostró resultados consistentes y superiores. Particularmente, los resultados
evidenciaron diferencias significativas con respecto a SHAP y FP. Tanto SHAP como FP tendieron a
identificar como más importantes aquellas variables con alta multicolinealidad, lo cual compromete la
calidad de las explicaciones blue ya que en presencia de multicolinealidad el modelo no puede distinguir
claramente entre variables altamente correlacionadas. Esto provoca que la importancia se distribuya
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arbitrariamente entre ellas, lo que dificulta identificar cuáles factores tienen un verdadero impacto en la
predicción.

En contraste, el método propuesto no se ve afectado por este problema, ya que evalúa la relevancia de
las variables considerando su impacto efectivo dentro del proceso inferencial del modelo. Por tanto, estas
diferencias resaltan la importancia de adoptar enfoques que integren el análisis causal dinámicamente
para una interpretación más fiel y completa de los modelos, especialmente en dominios complejos donde
la simple correlación puede resultar insuficiente o engañosa.

6.2 Hallazgos

A continuación se detallan los hallazgos mas relevantes derivados del análisis y evaluación del enfoque
propuesto. Se resaltan aspectos fundamentales que evidencian las ventajas y aportes significativos del
método propuesto frente a enfoques tradicionales:

• Desarrollo de un método de explicabilidad post-hoc para MCDs.
Se ha diseñado y validado un método de explicabilidad específico para modelos de clasificación
basados en MCDs que proporciona explicaciones precisas, confiables y coherentes con el
comportamiento del modelo.

• Incorporación de la causalidad en la explicabilidad.
A diferencia de la mayoría de los métodos existentes, el enfoque integra fundamentos causales para
explicar no solo qué influye, sino por qué influye, aspecto que ha sido escasamente explorado en la
literatura sobre MCDs.

• Consideración del comportamiento dinámico del modelo.
El método aprovecha la dinámica interna del proceso de inferencia, analizando cómo las influencias
directas e indirectas evolucionan a lo largo de las iteraciones, un aspecto poco abordado en trabajos
previos sobre explicabilidad en MCDs.

• Robustez y confiabilidad demostradas.
El método de explicabilidad cumple con las propiedades fundamentales establecidas en la literatura
que aseguran su calidad, utilidad y confiabilidad en diferentes dominios y configuraciones.

• Generación de explicaciones visuales
El método permite representar gráficamente las rutas causales y el flujo de influencia entre
conceptos, lo que facilita la interpretación por parte de expertos humanos. Estas representaciones
visuales son especialmente útiles en contextos críticos, como el médico, donde la comprensión clara
de las decisiones del modelo es fundamental.

6.3 Limitaciones

A pesar de los resultados positivos obtenidos con el enfoque propuesto, es importante reconocer una serie
de limitaciones que condicionan su aplicabilidad y generalización. Estas limitaciones están relacionadas
con la naturaleza del método, el contexto de aprendizaje en el que se probo, como con las herramientas
disponibles actualmente para el trabajo con MCDs. A continuación, se enumeran los principales aspectos
identificados durante el desarrollo y la evaluación del método:
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• Coste computacional: El método presenta un mayor coste computacional en comparación con los
enfoques estáticos, debido al análisis de caminos dinámicos y la integración de influencias temporales
durante el proceso de inferencia.

• Requiere convergencia del modelo: No todos los modelos basados en MCDs garantizan llegar
a un estado estable (converge), lo que afecta la consistencia de las explicaciones generadas.

• Limitaciones en el manejo de problemas multiclase: La herramienta empleada para la
construcción de los MCDs presenta dificultades para trabajar con problemas de clasificación
multiclase con más de tres clases, limitando su aplicación en conjuntos de datos con mayor número
de clases. A su vez, no existe otra herramienta abierta que permita el desarrollo de modelos de
clasificación multiclases con MCDs .

• Experimentacion solo con modelos supervisados de clasificación: El método propuesto
fue concebido para proporcionar explicabilidad en modelos de MCDs aplicados tanto a tareas
de clasificación como de predicción. No obstante, en este trabajo su desarrollo se ha centrado
únicamente en el contexto de clasificación. La razón principal ha sido la inexistencia de herramientas
abiertas que permitan construir MCDs orientados a tareas de predicción. Las pocas soluciones
disponibles son de uso privado, desarrolladas por laboratorios de investigación específicos.

6.4 Trabajos Futuros

El presente trabajo ha abierto nuevas líneas de investigación en el ámbito de la explicabilidad dinámica
aplicada a los (MCD). A continuación, se proponen algunas direcciones prometedoras para su desarrollo
futuro:

• Extenderlo a modelos descriptivos basados en MCD (sin una variable objetivo):
Extender el enfoque propuesto a MCDs que describan la dinamica de un sistema, que no requieren
explícitamente un concepto objetivo de salida. En este caso, el objetivo sería evaluar la importancia
relativa de cada concepto en el sistema, considerando su influencia global sobre el comportamiento
de la red para llegar a un estado estable. Esta adaptación permitiría aplicar el método en contextos
donde no se dispone de una variable objetivo bien definida, como sistemas descriptivos o de
simulación, un muy común uso de los MCD.

• Aplicarlo en problemas de regresión (predicción): Probar el enfoque propuesto a contextos de
regresión, donde existe una variable objetivo continua a predecir. En este escenario, el objetivo sería
calcular la influencia dinámica de los conceptos sobre dicha variable, lo cual permitiría identificar
cuáles son los factores más determinantes en el resultado de la regresión. Eso permitiría evaluar
nuestro método en todas las tareas de aprendizaje supervisado.

• Mejorar su eficiencia computacional: Investigar estrategias de optimización que reduzcan el
coste computacional del cálculo de caminos e influencias, especialmente en modelos de MCDs de
gran escala. Esto podría incluir técnicas de poda, heurísticas para seleccionar los caminos más
relevantes, o paralelización del proceso de cálculo.

• Explorar nuevas funciones de penalización: Evaluar el impacto de distintas funciones de
penalización dentro del proceso de cálculo de importancia de los caminos indirectos. Probar
alternativas a la función empleada actualmente podría mejorar la sensibilidad del método a distintos
patrones de interacción.
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Estas líneas futuras permitirán consolidar el enfoque propuesto y ampliar su aplicabilidad a una
mayor variedad de problemas, reforzando su utilidad en entornos reales que demandan transparencia y
comprensión en los procesos de toma de decisiones automatizados.
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