
Master in Statistics for Data Science
2023-2024

Master’s Thesis

”Quantum Support Vector Machines: Analysis in
Binary and Multiclass Classification”

Iván Torresano Villafranca

Tutors
Rosa Elvira Lillo Rodríguez

José Lisandro Aguilar Castro
Madrid, June 25, 2024

DETECCIÓN DEL PLAGIO
La Universidad utiliza el programa Turnitin Feedback Studio para comparar la originalidad del trabajo
entregado por cada estudiante con millones de recursos electrónicos y detecta aquellas partes del
texto copiadas y pegadas. Copiar o plagiar en un TFM es considerado una Falta Grave, y puede
conllevar la expulsión definitiva de la Universidad.

Esta obra se encuentra sujeta a la licencia Creative Commons Reconocimiento - No Comercial - Sin
Obra Derivada

CONTENTS

1. INTRODUCTION. 1

2. INTRODUCTION TO QUANTUM MECHANICS 2

2.1. Tensor product and multiple Quantum States 3

3. QUANTUM COMPUTING . 5

3.1. Systems of one qubit . 5

3.1.1. Quantum gates in systems of one qubit . 6

3.2. Multi-qubit systems . 7

3.2.1. Multi-qubit quantum gates . 8

4. QUANTUM SUPPORT VECTOR MACHINES 9

4.1. Quantum Machine Learning. 9

4.2. Support Vector Machines (SVM) . 10

4.2.1. Training a linear SVM for binary classification 10

4.2.2. Extension of SVM for multiclass classification 13

4.2.3. Kernel trick . 15

4.3. Extrapolation of SVM to quantum . 16

4.3.1. Quantum feature maps . 17

5. CONTRIBUTIONS TO THE QSVM: METHODOLOGY AND CASE STUDY
DESIGN . 20

5.1. Implementation of QSVM models in Python 22

6. RESULTS . 24

6.1. Binary classification . 24

6.2. Multiclass classification . 31

7. DISCUSSION OF THE RESULTS AND CONCLUSIONS 43

7.0.1. Implementing the QSVM on Pennylane .

i

1. INTRODUCTION

Machine learning, situated at the crossroads of computer science, statistics, and arti-
ficial intelligence, has revolutionized numerous fields by empowering computers to learn
from data and make predictions or decisions autonomously, without explicit program-
ming. In today’s digital era, its applications in classification are pivotal in sectors includ-
ing spam mail filters, iris recognition for security systems, customer behavior analysis,
and risk assessment in the financial industry. On the other hando, quantum machine
learning (QML) integrates principles from quantum mechanics into machine learning al-
gorithms, promising enhanced computational power for solving complex problems. It
is expected that in the near future, quantum computers will be able to efficiently solve
these and other complex tasks related to processing the growing amounts of global infor-
mation. Some of the prominent algorithms in QML explored to date include Quantum
K-Nearest Neighbors, Quantum Support Vector Machines, Quantum Neural Networks,
and Quantum clustering algorithms [2].

Quantum Support Vector Machines (QSVMs) were one of the first machine learning
algorithms to be explored in their quantum version for classification tasks. One of the
advantages of these models is that they do not require a deep understanding of quan-
tum computing, which facilitates their use by professionals who do not have expertise
in quantum computing. These models are based on calculating kernel products using
quantum circuits. This study delves into the application of quantum computing principles
in QML, focusing on QSVM for binary and multiclass classification tasks. This Master
Thesis analyzes their potential to outperform classical SVMs and other commonly used
ML algorithms such as Logistic Regression and Random Forest in terms of efficiency and
performance on tabular datasets.

In Chapter 2, fundamental principles of Quantum Mechanics are introduced, essential
for understanding the basics of Quantum Computing. Chapter 3 explores quantum circuits
and their main elements for isolated qubits and multi-qubit systems, which are crucial for
grasping the theory underpinning QSVM models. Chapter 4 provides an overview of
Quantum Machine Learning types, a detailed development of classical SVMs, the emer-
gence of their quantum counterparts, and a description of the most well-known Quantum
Kernels. Next, Chapters 5 and 6 introduce the Case Design structure and include the
generation of synthetic datasets with different characteristics. These datasets serve as
a foundation for applying QSVM models, classical SVMs with traditional kernels, and
other classical Machine Learning algorithms. Their performance and efficiency are com-
pared using metrics such as accuracy, F1, Mathews Correlation Coefficient (MCC), and
by measuring the execution time of each model. Finally, Chapter 7 discusses the results
obtained from these comparisons and draws conclusions based on the findings.

1

2. INTRODUCTION TO QUANTUM MECHANICS

To understand the basic principles of Quantum Computing and Quantum Machine
Learning it is necessary to introduce some concepts about Quantum Mechanics, which is
a very consolidated theory in physics. Unlike other physical theories, it is not a determin-
istic one, instead, it is based on computing probabilities

In Quantum Mechanics, the state of a physical system is represented by a "ket" |ψ⟩,
which is a vector that belongs to a Vector Space ξ called "Hilbert Space". This notation is
called "Dirac Notation" and is widely used in Quantum Mechanics. The dimension of ξ
can be finite or infinite, depending on the system. In Quantum Computing, the dimension
of the Hilbert Space is always finite, in other words, the kets that represent the quantum
states, are vectors of Cn with n ∈ Z. Given a ket |ψ⟩, the notation for its dual vector is
⟨ψ| and the inner product between 2 kets ψ1 and ψ2 is written as ⟨ψ1|ψ2⟩. Bearing in mind
this notation, we will define the postulates of Quantum Mechanics that will be essential
to introduce the underlying theory of Quantum Computing.

1. Postulated I: The state of a physical system is defined by a ket |ψ⟩ belonging to Cn.

As a consequence of the properties of Vector Spaces, this principle implies that a
linear combination of kets is a valid physical state.

2. Postulated II: Every physical quantity is represented by an operator A that acts
on Cn and the only possible values obtained when measuring A are its eigenvalues.
Concretely, if there is a physical system with state |ψ⟩ and a physical quantity re-
presented by the operator A, the probability of obtaining ai when measuring A is:

P(ai) = |⟨ui|ψ⟩|
2 (2.1)

Where |ui⟩ is the eigenvector of A with eigenvalue ai. It is useful to stress that a
physical state |ψ⟩ can always be expressed as a linear combination of the eigenvec-
tors |ui⟩ since they form an orthonormal basis in Cn.

|ψ⟩ =

n∑︂
i=1

ci|ui⟩ with ci = ⟨ui|ψ⟩ (2.2)

3. Postulated III: If a measurement of the quantity A on the state |ψ⟩ gives, as a result,
ai, the state ceases being in a superposition of states and instead assumes a single
state given by the normalized eigenvector |ui⟩ associated with ai. This quantum
phenomenon is known as Wave Function Collapse

2

4. Postulated IV: As a consequence of postulates 2 and 3, using the Probability prop-
erties, all kets that represent quantum states must be normalized:

⟨ψ|ψ⟩ = 1 (2.3)

A corollary of these results is that matrices A representing operators acting on kets
must be unitary. In other words, they must satisfy the following condition:

A†A = AA† = I (2.4)

The reason behind using unitary matrices is that, after applying these transforma-
tions, the resulting state |ψ′⟩ = A|ψ⟩ remains normalized.

⟨ψA†|Aψ⟩ = ⟨ψ|A†Aψ⟩ = ⟨ψ|ψ⟩ = 1

5. Postulated V: The evolution in time of a state |ψ⟩ is given by the popular Shrödinger
equation.

iℏ
d|ψ(t)⟩

dt
= H|ψ(t)⟩ (2.5)

In this equation, H is an operator called ’Hamiltonian’. In physics, the Hamiltonian
represents the total energy of a system. The parameter ℏ is a fundamental constant
in physics, often referred to as the reduced Planck constant. In this equation, ℏ
appears multiplied by i, which denotes the imaginary unit. In quantum computing,
although with a different meaning, the Hamiltonian appears in important algorithms
such as Quadratic Unconstrained Binary Optimization(QUBO) and Variational
Quantum Eigensolver(VQE). For this project, there is no need to know how to
solve the Shrödinger equation. It is only necessary to know that being a linear
differential equation, if there are several solution states |ui⟩ to the equation, then a
new state ψ =

∑︁n
i=1 ci|ui⟩ which is a linear combination of these states will also be a

solution to the Schrödinger equation. This property of quantum systems is known
as Superposition Principle

2.1. Tensor product and multiple Quantum States

Until now, we have explored the rules that an isolated quantum system |ψ⟩ follows. Nev-
ertheless, there are situations in which there exist several quantum systems |ψi⟩, and we
want to treat them as a whole system, taking into account the interactions among them.
In such situations, the mathematical concept of tensor product arises.

3

The tensor product ⊗ is a well-defined mathematical operation. The notation for the
tensor product of 2 kets |ψ⟩ and |ϕ⟩ is:

c (2.6)

Among the most important properties of tensor product are:

1. Linearity for the multiplication by complex numbers

|λϕ1ϕ2⟩ = λ|ϕ1ϕ2⟩ (2.7)

2. Distributive with respect to the sum of kets

|ψ⟩ ⊗ (|ϕ1⟩ + |ϕ2⟩) = |ψϕ1⟩ + |ψϕ2⟩ (2.8)

3. If there are n quantum states |ϕi⟩, each of them with dimension mi, the dimension
of the ket representing the overall state |ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ ... ⊗ |ϕn⟩ is m1m2..mn

When considering quantum systems composed of several isolated systems or ’parti-
cles’ a new interesting property comes to light. This property is called Entanglement and
plays a crucial role in Quantum Computing. To understand this property, it is necessary to
introduce the term "product states", which is used to describe quantum states formed by
taking the tensor product of multiple states. By definition, "product states" are said to be
not entangled. Thus, entangled states are all states that cannot be expressed as the tensor
product of other states. To see what it implies for a quantum state to be entangled, we
will consider a simple case in which there are 2 single systems S 1 and S 2, each of them
with dimension 2 and basis kets |0⟩ and |1⟩. Assuming that S is in the the following state,
which is not a product space:

|ψ⟩ =
1
√

2
(|00⟩ + |11⟩) (2.9)

The possible results obtained when measuring the state of S 1 are |0⟩ and |1⟩, both with
probability p = 1/2. If we find that S 1 is in the state |1⟩, then, |ψ⟩ will collapse to |11⟩
and hence, the probability that S 2 is in the state |1⟩ is 1, that is, when the state of S 1 is
measured, the state of S 2 becomes completely determined.

|ψ⟩
S 1=1
−−−→ |˜︁ψ⟩ = |11⟩

P(S 2 = 1|S 1 = 1) = |⟨11|˜︁ψ⟩|2 = 1

(2.10)

In essence, it is as if both systems were ’entangled’ between them, and after measur-
ing the state of one system, the other ’knows’ the result and its state becomes completely
determined. Therefore, this phenomenon is called Entanglement, and despite how coun-
terintuitive may seem, this quantum property has been experimentally measured plenty of
times.

4

3. QUANTUM COMPUTING

First of all, let’s define what is quantum computing. The term "quantum computing"
refers to the use of properties of a quantum system such as superposition and entangle-
ment to reduce the computational cost of certain algorithms. In contrast with classical
computers, in quantum computers, these properties are explicitly used and as a conse-
quence, there are certain types of algorithms and computational tasks in which they can
be useful and outperform classical computers in terms of computational efficiency.

In the paradigm of quantum computing, there are several different models. The most
popular one that will be used, is the quantum model circuit. As its name suggests, it is
based on classical logical circuits and applies the properties of the quantum world.

Figure 3.1
An example of a basic quantum circuit with 2 qubits.

Figure 3.1 shows the schematic representation of a basic quantum circuit, where the
letters q0 and q1 represent the qubits of the circuit, X and H are the gates applied to each
qubit and the black box with a downward arc crossing a line depicts the measurement of
a qubit causing its quantum state to collapse yielding a specific measured value or state.

Qubits are the most fundamental unit in quantum circuits. They are analogous to
classical bits, which can be in states 0 and 1. In Quantum Computing, the corresponding
states are |0⟩ and |1⟩ respectively. In each quantum circuit, the kets are represented by
vectors that belong to Cn where n denotes the number of qubits in that quantum circuit.

3.1. Systems of one qubit

In quantum systems with one qubit, the kets |0⟩ and |1⟩ form an orthonormal basis in
C2. Unlike classical bits, a qubit can exist not only in one of these states but also in a
superposition of them due to the Superposition Principle.

5

Generally, for systems with a single qubit, the expression for its state |ψ⟩ is written as:

|ψ⟩ = a |0⟩ + b |1⟩ (3.1)

The parameters a and b are complex numbers called amplitudes and they satisfy the
expression |a|2 + |b|2 = 1 due to the normality condition (2.3). We can compute the
probability that when we measure the state of the system, its state collapses to |0⟩ or |1⟩.
These probabilities are calculated with the following formulas:

P(|ψ⟩ = |0⟩) = |⟨0|ψ⟩|2 = |a|2 P(|ψ⟩ = |1⟩) = |⟨1|ψ⟩|2 = |b|2 (3.2)

3.1.1. Quantum gates in systems of one qubit

In the quantum circuit model, the operators that act on the qubits are called quantum
gates. These gates are represented by unitary matrices, that is, matrices that meet the
condition (2.4). For one-qubit systems, as each state corresponds to a vector belonging
to C2, quantum gates are represented by 2x2 complex matrices. The most important and
commonly used quantum gates are:

1. -NOT or X gate: It is analogous to the NOT gate in classical circuits

X|0⟩ = |1⟩ X|1⟩ = |0⟩ (3.3)

2. - Hadamard or H gate: It has no classical analog and it creates a superposition of
quantum states

H|0⟩ =
1
√

2
(|0⟩ + |1⟩) H|1⟩ =

1
√

2
(|0⟩ − |1⟩) (3.4)

3. -Z gate: It is obtained by applying an H gate, then an X gate and, finally, another
H gate.

Z|0⟩ = |0⟩ Z|1⟩ = −|1⟩ (3.5)

Representation of the Z gate applied in a one-qubit system.

6

The quantum gates mentioned above constitute a specific case of more general gates
known as rotation gates. To comprehend rotation gates, it is useful to fact that the state of
a one-qubit system can be expressed as:

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ (3.6)

The parameters θ and ϕ satisfy that θ ∈ [0, π] and ϕ ∈ [0, 2π] and they can be interpreted
as the polar and azimuthal angles of a sphere. Thus, the quantum states of a single qubit
can be thought of as points on the surface of a sphere. In this context, it is natural to define
the rotation gates RX(θ), RY(θ), RZ(θ) which apply a rotation of θ degrees around the X,Y
and Z axes respectively. It is important to state that for one-qubit systems, any quantum
gate U can be expressed as a composition of these rotation gates.

U = RX(α)RY(β)RZ(γ) (3.7)

3.2. Multi-qubit systems

For systems with n qubits, the global state of the system is obtained by ’multiplying’
the individual states of each qubit using the tensor product ⊗. The simplest and most
illustrative case of multi-qubit systems is a quantum circuit with 2 qubits.

|ψ⟩ = a00|00⟩ + a01|01⟩ + a10|10⟩ + a11|11⟩

|a00|
2 + |a01|

2 + |a10|
2 + |a11|

2 = 1
(3.8)

In this case, the kets that represent each possible state, form an orthonormal basis in
C4. From this particular case, it is easy to generalize and obtain an expression for the
quantum state of a system with n qubits:

|ψ⟩ =

2n−1∑︂
k=0

ak|k⟩

2n−1∑︂
k=0

|ak|
2 = 1

(3.9)

Where the ket |0⟩ corresponds to all qubits in the state 0, |1⟩ corresponds to the first
qubit in the state 1 and the rest in the state 0, and so on. It is key to observe that the
number of parameters required to describe the general state of an n-qubit system grows
exponentially with n. Part of the strength of quantum computing lies in the ability to
implicitly handle 2n complex numbers by manipulating only n qubits.

7

3.2.1. Multi-qubit quantum gates

As we have seen above, the state of a system with n qubits is represented by a vector
belonging to R2n

. Therefore, the corresponding quantum gates will be 2nx2n matrices. If
we apply a quantum gate Ui to the i-th qubit of the system, the resulting state will be given
by:

(U1 ⊗ U2 ⊗ ... ⊗ Un)|ψ1ψ2...ψn⟩ = |U1ψ1U2ψ2...Unψn⟩ (3.10)

If no quantum gate is applied on the i-th qubit, then Ui = I. It is worth noting that
not all quantum gates within a multi-qubit system can be expressed as the tensor product
of one-qubit quantum gates. An illustration of such quantum gates is found in controlled
gates. To apply a controlled gate, we must select the qubits in which we want to apply
this gate and the target qubit. In this scenario, the quantum gate modifies the state of the
target qubit only if the remaining selected qubits are in the state |1⟩. Worthy examples
of controlled gates include the CNOT gate for systems of 2 qubits and the CCNOT or
Toffoli gate for systems with 3 qubits, both of which execute a controlled-NOT gate on
the target qubit.

8

4. QUANTUM SUPPORT VECTOR MACHINES

4.1. Quantum Machine Learning

Quantum machine learning (QML) involves using quantum computing to enhance clas-
sical ML algorithms, in order to improve performance and reduce computational time.
QML algorithms can be categorized into four different families, depending on the nature
of the data (classical or quantum) and the utilization of quantum computing during model
training:

1. CC: Both the data and model training are classical, but the algorithms draw inspi-
ration from quantum computing principles.

2. QC: The machine learning algorithm is classical, but the data is quantum, obtained
by measuring the states of a quantum circuit.

3. CQ: The data is classical, but quantum computing is employed in certain steps of
the model.

4. QQ: Both the data and algorithm are quantum. However, these QML algorithms
face challenges due to the current limitations in quantum technology development.

One of the most known CQ quantum machine learning is Quantum Supported Vec-
tor Machine (QSVM) which is a classical machine learning algorithm that uses quantum
computing for mapping the data into a space of higher dimension (kernel) [1]. Other
examples of QC algorithms include Quantum Neural Networks, Hybrid Networks, and
Quantum Generative Adversarial Networks [2].

As mentioned, QSVM constitutes a family of QML algorithms that leverage quantum
computing for model training. QSVM was among the earliest QML algorithms to be
developed and is widely used in binary classification. In the following section, we will
explore the underlying theory behind Quantum Supported Vector Machines. First, we
will provide a detailed explanation of classical Supported Vector Machines for binary
classification as well as its extension for classification tasks with more than 2 classes.

9

4.2. Support Vector Machines (SVM)

A Support Vector Machine (SVM) is a supervised machine learning algorithm used for
classification and regression, although, in this project, we will only focus on its applica-
tion for classification purposes. Firstly, we will discuss SVM models for binary classifi-
cation tasks, and then we will extend the discussion to multiclass classification.

In classification tasks, SVM models treat the rows of tabular data as points x⃗ living in
an Euclidean space Rp, where p is the number of features in the dataset. The aim is to
find a hyperplane that separates points belonging to different classes. Mathematically, a
hyperplane in a euclidean space Rp can be represented by the equation:

π : w⃗x⃗ + b = 0 (4.1)

Where w⃗ ∈ Rp is a vector orthogonal to the hyperplane and b ∈ R is a constant.
Bearing (4.1) in mind, it can be distinguished the side on which a point y⃗ is located with
respect to the hyperplane by looking at the sign of w⃗x⃗+ b. What an SVM does in practice
is to label a row x⃗ of the dataset depending on which side of the hyperplane is. The
adjustable parameters of this model are the components of the normal vector w⃗ and the
parameter b.

4.2.1. Training a linear SVM for binary classification

In a tabular dataset used for training in binary classification tasks, each row represents
an observation and is represented by a feature vector x j⃗ in Rp, where j denotes the in-
dex of the observation. The corresponding label for each observation is denoted as y j.
For convenience in binary classification, the labels of the target variable are encoded as
y j = −1 for one class and y j = 1 for the other one. During training, the Support Vector
Machine searches for the hyperplane that maximizes the distance to the training points
x j⃗ while separating points belonging to different classes. The reason behind this is that
is expected that points coming from unseen data belonging to one class will be close to
the training points of the same class. A very important assumption made in this model
is that data can be perfectly separated by a plane, which is known as linear SVM. Nev-
ertheless, this assumption does not always hold since data may not be linearly separable.
In these cases, it is defined a function known as kernel to map the data from a space with
dimension p to a space of higher dimension, where it is more likely to be linearly sep-
arable. Supported Vector Machine models with kernel functions are key in building the
corresponding quantum version.

There are two distinct types of models to find the hyperplane that separates the classes
depending on the nature of the data: hard-margin and soft-margin.

10

1. Hard-margin model

It assumes that data points belonging to different classes can be perfectly separable
by a hyperplane, which is not a realistic assumption at all but serves as a benchmark
to build a model with less restrictive constraints. Considering that there exists one
hyperplane that perfectly divides the data, then there exist infinitely many of them.
To select the optimal one, a hyperplane H that perfectly separates the data is initially
identified. Subsequently, a hyperplane H+ parallel to H is chosen, which contains
the closest point to H, and the reflection of H+ over H, denoted as H−. It is essential
to note that both hyperplanes H+ and H− are parallel to H and equidistant from
it. The distance between these auxiliary planes is known as the margin, and the
primary objective of the model is to maximize this quantity.

Equations of the hyperplanes

H : w⃗x⃗ + b = 0

H+ : w⃗x⃗ + b = C

H− : w⃗x⃗ + b = −C

(4.2)

Choosing the parameters w⃗ = w⃗/C and˜︁b = b/C, the equations corresponding to the
hyperplanes (4.2) simplify to:

H : w⃗x⃗ +˜︁b = 0

H+ : w⃗x⃗ +˜︁b = 1

H− : w⃗x⃗ +˜︁b = −1

(4.3)

For this choice of parameters, the value of the margin is 2/∥w⃗∥. Therefore, the
problem of finding the optimal hyperplane for separating the data can be formulated
as the following optimization problem:

minimize
w⃗2

2
sub ject to y j(w⃗.x j⃗ +˜︁b) ≥ 1 ∀ j = 1, ..., n

(4.4)

Maximizing the value of the margin corresponds to finding the minimum of ∥w⃗∥.
As the Euclidean norm ∥ · ∥ contains square roots, it is minimized w⃗2 instead, which
is mathematically simpler. The constraint equations from (4.4), indicate that there
cannot be any points x j⃗ between H+ and H− (inside the margins) and are derived
from the hyperplane’s equations (4.3).

11

2. Soft-margin model

This model relaxes the assumption of perfect separability between data points be-
longing to different classes. It allows for points to exist within the margin and for
data points of one class to reside on the opposite side of the hyperplane. This relax-
ation of the constraints is facilitated by incorporating small quantities ϵ j in equation
(3.4), allowing points to reside within a distance ϵ j inside the margins. To con-
struct an SVM model with strong predictive capability, it is convenient to choose
the smallest possible values of ϵ j. This constraint is integrated as a cost term in the
minimization function, penalizing larger values of ϵ j.

minimize
w⃗2

2
+C

n∑︂
j=1

ϵ j

sub ject to y j(w⃗.x j⃗ +˜︁b) ≥ 1 − ϵ j ∀ j = 1, ..., n

ϵ j ≥ 0

(4.5)

The constant C is a hyperparameter of the model, and finding its optimal value
involves using techniques such as grid-search, random-search, or K-fold cross-
validation. When C is set to higher values, it tightens the margin and reduces mis-
classification. However, excessively high values of this hyperparameter can lead to
overfitting, as it makes the model less tolerant of errors and more prone to capturing
noise in the data, which is equivalent to the hard-margin case.

The optimization problem of the soft-margin model can be reformulated as an
equivalent optimization problem, which is generally, easier to solve:

Maximize
∑︂

j

α j −
1
2

∑︂
j,k

y jykα jαkx j⃗ .xk⃗

sub ject to 0 ≤ α j ≤ C∑︂
j

y jα j = 0

(4.6)

This formulation is known as Lagrangian dual formulation and the parameters α j

are known as support vectors and are the reason behind the name of SVM models.
Once the optimization problem has been solved, the parameters w⃗ and b can be
derived from the support vectors α j. Obtaining the vector orthogonal to the hyper-
plane w⃗ is straightforward:

w⃗ =
∑︂

j

y jα jx j⃗ (4.7)

This expression is very revealing since it shows that the normal vector w⃗ only de-
pends on the rows x j⃗ with non-zero support vectors.

12

The parameter b can be obtained by solving the following equation

ys(w⃗.xs⃗ + b) = 1 (4.8)

Obtaining:
b = ys −

∑︂
j

y jα jx j⃗ .xs⃗ (4.9)

Where it is satisfied that the support vector corresponding to the index s is strictly
positive αs > 0 [3]. Therefore, to assign the class of a new data point x⃗, it has to be
computed the following quantity:

w⃗.x⃗ + b = ys +
∑︂

j

y jα jx j⃗ .(x⃗ − xs⃗) (4.10)

If the sign of this expression is greater than 0, x⃗ is classified as positive (y = 1);
otherwise, it is classified as negative (y = −1)

4.2.2. Extension of SVM for multiclass classification

Vanilla SVM models, by default, are designed for regression and binary classification
tasks and do not inherently support multiclass classification. However, SVM models can
be extended to handle multiclass classification by decomposing the problem into multiple
binary classification tasks. This extension of multiclass classification for SVM models
can be achieved in two primary ways:

1. One vs One approach

This approach utilizes a binary SVM classifier to separate each pair of classes,
neglecting the rest of the points when determining the hyperplane for each pair
(Figure 4.1). In this method, if there are m different classes, the model will require
training m(m−1)

2 different classifiers.

Consequently, the complexity and computational time of the model grow quadrati-
cally with the number of classes m.

13

Figure 4.1
Graphical representation of the hyperplanes separating each pair of classes in the One vs One approach [9]

2. One vs The Rest approach

This approach uses a binary SVM classifier to separate one class from all others.
When finding the hyperplane that separates a single class from the rest, all points
are taken into account, dividing them into two groups: one for the points of the
target class and another for all other points (Figure 4.2). In this approach, if there
are m different classes, this model will require training m different classifiers.

Consequently, the complexity and computational time of the model grow linearly
with the number of classes m. As in this case, each model must be trained with all
the data. For the same number of classes, depending on the value of n, one method
may be more computationally expensive than the other.

Figure 4.2
Graphical representation of the hyperplanes separating each class from the remaining ones in the One vs The Rest approach [9]

14

4.2.3. Kernel trick

As briefly mentioned before, the kernel trick allows SVM models to map the input data
x⃗ ∈ Rp into a higher-dimensional space RN via a map ϕ : Rp → RN . In the new space,
known as "feature space", the data is more likely to be linearly separable. An important
advantage of using the kernel trick is that is not necessary to know the expression of ϕ
explicitly since according to (4.10), in order to classify a new data point xi⃗, it is only
necessary to know the scalar product among the rows of the dataset x j⃗ xk⃗. Hence, it is
merely required to know the expression of the scalar product ϕ(x j⃗).ϕ(xk⃗). The function
K(x⃗, y⃗) = ϕ(x⃗).ϕ(y⃗) it is commonly known as kernel and is completely characterized by
Mercer’s Theorem [1]. According to this theorem, a function K(x⃗, y⃗) can be expressed
as a scalar product ϕ(x⃗).ϕ(y⃗) if it satisfies Mercer’s Condition. This condition states that
the integral of K(x⃗, y⃗) multiplied by any pair of square-integrable functions g(x⃗), g(y⃗) over
the entire input space must be non-negative."

g(x⃗)g(y⃗)K(x⃗, y⃗)dx⃗dy⃗ ≥ 0 (4.11)

This condition is completely equivalent to these other two:

1. Positive Definiteness: For any set of coefficients ci with j = 1, ..., n, it is satisfied
that
∑︁

i, j cic jK(xi⃗, x j⃗) ≥ 0

2. Symmetry: It is satisfied K(x⃗, y⃗) = K(y⃗, x⃗), ∀x⃗, y⃗

In traditional Machine Learning, the most used kernels are:

1. Linear kernel: It is the most efficient and computationally fast kernel. It is suitable
for high-dimensional datasets.

K(x⃗, y⃗) = x⃗ y⃗ (4.12)

2. Polynomial kernel: It is effective for high-dimensional datasets with a relatively
small number of observations. One of its main advantages is that it can capture non-
linear relationships in the data. The computational cost increases with the degree of
the polynomial α.

K(x⃗, y⃗) = (x⃗ y⃗ + c)α (4.13)

15

3. Gaussian Radial Basis Formula (RBF): It is one of the most preferred and used
kernel functions in SVM. It is usually chosen for highly non-linear data. It helps to
make proper separations when there is no prior knowledge of data.

K(x⃗, y⃗) = e−∥x⃗−y⃗∥/2σ2
(4.14)

4. Sigmoid kernel: This kernel is also known as the Multilayer Perceptron kernel.
An SVM model using this kernel is equivalent to a neural network with 2 layers. It
is used for non-linear data, but it has the drawback that it is quite sensitive to the
selection of the hyperparameters γ and c (4.15):

K(x⃗, y⃗) = tanh(γx⃗ y⃗ + c) (4.15)

4.3. Extrapolation of SVM to quantum

Quantum Support Vector Machine models represent a specialized form of SVM models
that leverage quantum circuits to compute the kernel function K(x⃗, y⃗). In this context, a
quantum kernel is completely characterized by a quantum circuit that maps the rows from
the original data into a feature space of quantum states |ψ j⟩. This circuit is represented
by a quantum gate Φ(x j⃗) parametrized by the rows of the dataset x j and acts on the initial
state of the quantum circuit. Usually, the initial state of the quantum circuit is |ψ j⟩ = |0⟩⊗n,
that is, all the qubits are in the individual quantum state |0⟩. Then, the expression of the
resulting state after applying the quantum circuit is |˜︁ψ j⟩ = Φ(x j⃗)|ψ j⟩.

In practice, computing the quantum kernel K(xi⃗, x j⃗) involves taking two rows of the
dataset as vectors, mapping them into quantum states via Φ(x⃗) and finally, compute the
kernel function or "scalar product" among the resulting quantum states. To take advantage
of the benefits offered by quantum computing, the kernel function employed must be
easily obtainable with a quantum computer and must also satisfy Mercer’s condition.
Considering 2 quantum states |x⟩ = Φ(x⃗)|0⟩ and |y⟩ = Φ(y⃗)|0⟩, a possible quantum kernel
is given by:

K(x⃗, y⃗) = |⟨x|y⟩|2 = |⟨0|Φ†(x⃗)Φ(y⃗)0⟩|2 (4.16)

The meaning of this equation can be interpreted as the probability (3.2) that all the
qubits are in the individual quantum state |0⟩when measuring the quantum stateΦ†(x⃗)Φ(y⃗)0⟩.
This quantum state is achieved by applying the quantum circuit Φ(x⃗) to the initial state
|0⟩⊗n followed by applying the quantum circuit Φ†(y⃗) to the resulting state. Taking into
account that in quantum computing, a circuit Φ(x⃗) consists of multiple quantum gates,
which are represented by unitary matrices (2.4), then, the circuit Φ†(x⃗) have the same
quantum gates as Φ(x⃗) but they are applied from left to right instead.

16

It is important to check that the quantum kernel function defined in (4.16) fulfills
Mercer’s condition, that is, it is symmetric and positive definite. For that, we first prove
that ⟨x|y⟩ is a kernel and then use the fact that the product of kernels is also a kernel [4].
As the inner product of quantum states is symmetric by definition, it is only left to prove
that is positive definite:

∑︂
i, j

cic∗j⟨xi|x j⟩ =

⎛⎜⎜⎜⎜⎜⎝∑︂
i

ci⟨xi|

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝∑︂

j

c∗j |x j⟩

⎞⎟⎟⎟⎟⎟⎟⎠ =
⃦⃦⃦⃦⃦
⃦⃦∑︂

i

ci|xi⟩

⃦⃦⃦⃦⃦
⃦⃦2 ≥ 0. (4.17)

The symbol ∥.∥ in (4.17) denotes the norm of the vector associated with a quantum
state, which, by definition, is always non-negative.

4.3.1. Quantum feature maps

In this section, we will introduce the most widely used types of quantum circuits Φ(x⃗)
employed for mapping the data into a space of quantum states:

1. Angle encoding: Angle encoding stands out as a foundational technique in quan-
tum circuits, offering simplicity and effectiveness. When applied to a circuit with
n qubits, angle encoding can accommodate n numerical inputs x1, x2, ..., xn . This
encoding method involves the application of rotation gates to each qubit, with the
rotation angles determined by the respective x j values. These x j values essentially
dictate the rotation angles, hence the name ’angle encoding’. In quantum circuits
that use angle encoding, it can be used any rotational gate RX(θ),RY(θ),RZ(θ). How-
ever, when rotational gates RZ(θ) are used, it is necessary to apply a Hadamard gate
to each qubit before, since the action of a rotation gate RZ(θ) on the zero quantum
states has no effect at all. RZ(θ)|0⟩ = |0⟩. One important aspect of using angle en-
coding is normalizing the variables x j. Recalling that applying a quantum rotational
gate RXi(x j) to a quantum state |ψ⟩ can be physically interpreted as a rotation of x j

degrees around the Xi axe. Therefore, the values of the dataset’s attributes should
be within the closed interval [0, 4π]. Nevertheless, normalizing the variables within
this interval has one drawback, which is that the points with values 0 and 2π are
mapped to the same quantum state since RXi(0) = RXi . This could lead to data
points that are very different being indistinguishable. To solve this, the variables
can be normalized within the smallest interval, such as [0, 1].

2. Amplitude encoding: The Amplitude Encoding map is far more complicated and
less studied than Angle Encoding and is suitable for high-dimensional datasets since
it can map 2n points into a quantum circuit with only n qubits. In other words, if
the dataset has n predictors, the Amplitude Encoding map will use ⌈log2(n)⌉ qubits.
This map transforms each row of the dataset into the following quantum state:

17

Example of angle encoding quantum circuit using Hadamard and RZ quantum gates

|Φ(x⃗)⟩ =
1√︂∑︁

l x2
l

n−1∑︂
l=0

xl|l⟩, (4.18)

where the factor 1√∑︁
l x2

l

ensures the resulting quantum state is normalized. The

quantum circuit that implements this map is very complex and difficult to describe
in terms of elementary quantum gates [5]. Furthermore, it goes beyond the scope
of this project and requires deeper knowledge of quantum computing.

3. ZZ Circuit: As with the Angle Encoding map, the ZZ map takes n variables and
transforms them into the feature space using a quantum circuit with n qubits. The
ZZ feature map derives its name from the interaction term involving Pauli-Z ma-
trices. One of its primary advantages is the creation of entanglement between
qubits corresponding to different attributes. This entanglement enables the model
to capture complex patterns and relationships in the data, facilitating the learning
of highly non-linear boundaries and often outperforming classical SVMs in such
cases.

18

The construction of the quantum circuit implemented by the ZZ map proceeds through
the following steps:

1. Begin by applying a Hadamard gate on each qubit.

2. Next, apply a rotational gate RZ(2x j) j-th qubit.

3. For each pair of qubits {i, j}, apply the following quantum gates:

- Apply a CNOT gate with qubit i as the control and qubit j as the target.

-Apply a rotational gate RZ(2(π − xi)(π − x j)) on qubit j

- Apply another controlled CNOT gate.

Example of a ZZ map with 3 qubits and data x⃗ = (0.1, 0.2, 0.3)

As with models employing Angle Encoding, ZZ maps contain several rotational gates,
and therefore, variable normalization plays an important role. Typically, in the literature,
variables are normalized to the intervals [0, 1] and [0, 3] [1].

During the testing of these models with synthetic datasets and the comparison of per-
formance among different models, we will only use these maps for QSVMs. Nevertheless,
there are infinite possibilities when creating a quantum kernel, and the diverse selection
of feature maps for QSVMs is a current area of research in the field of quantum machine
learning.

In [6], additional examples of quantum maps are explored, along with proposals for
comparing different quantum kernels for quantum machine learning purposes.

19

5. CONTRIBUTIONS TO THE QSVM: METHODOLOGY AND
CASE STUDY DESIGN

In this section, the Quantum Support Vector Machine (QSVM) will be applied, using
the quantum mappings and encodings discussed earlier, to several datasets with distinct
properties for both binary and multiclass classification. Alongside the QSVM, classical
machine learning algorithms such as Logistic Regression, Random Forest, and Support
Vector Machines (SVM) with linear, polynomial, RBF, and sigmoid kernels will also be
applied. The performance of the QSVM models will be compared with these classical
algorithms, aiming to identify datasets where QSVM outperforms them, determine the
underlying patterns and characteristics of these datasets, and identify which quantum map
or encoding is most suitable for each situation.

More specifically, for each dataset, QSVMs will be evaluated using distinct maps:
Amplitude Encoding, Angle Encoding with normalization intervals of [0, 1] and [0, 4π],
and ZZ maps with normalization intervals of [0, 1] and [0, 3]. The idea behind testing
different intervals for Angle Encoding and ZZ maps is that, as mentioned in the theory,
the performance of these models can be sensitive to the range in which the predictor
variables are normalized, and it would be beneficial to empirically verify this fact.

To test and compare the performance of the models across datasets with varied char-
acteristics, such as the number of variables and class proportions, three different metrics
will be employed: accuracy, F1 score, and the Matthews correlation coefficient. Addi-
tionally, the execution time required for model training will be measured, since as it will
be discussed later, one of the primary drawbacks of Quantum Machine Learning models
nowadays is their extended execution time.

Accuracy: The accuracy metric measures the overall correctness of predictions made
by a model. It computes the proportion of correctly classified instances out of the total
number of observations in the dataset.

In binary classification:

accuracy =
T P + T N

T P + FP + T N + FN
(5.1)

In multiclass classification:

accuracy =
∑︁

i Cii∑︁
i
∑︁

j Ci j
, (5.2)

where the coefficients Ci j are the elements of the confusion matrix.

20

F1 score: This metric is defined as the harmonic mean between precision, which is
the ratio of true positive predictions to the total number of positive predictions, and recall,
which is the ratio between of predicted positives and the actual number of positives. The
possible values of F1 score range from 0 to 1. This metric is often used for comparing the
performance of different models in binary and multiclass classification tasks, even when
the classes are not balanced.

F1 =
2precision ∗ recall
precision + recall

(5.3)

In multilabel classification, the F1 score can be obtained following two different ap-
proaches: micro-averaging and macro-averaging.

1. Micro-averaging: In micro-averaging, the F1 score is computed by taking into
account the contributions of all classes collectively. It essentially computes a global
average by adding the individual true positives, false positives, and false negatives
across all classes before calculating precision and recall.

2. Macro-averaging: In macro-averaging, the F1 score is calculated for each class
independently, and then the average of these scores is taken. This treats each class
equally, regardless of its frequency.

Mathews correlation:

The Mathews Correlation Coefficient (MCC) is a powerful metric for evaluating the
performance of models in binary problems taking into account the four elements of the
confusion matrix (true positives, false positives, true negatives, and false negatives) pro-
viding a more representative picture of classifier performance compared to other metrics
such as accuracy and F1 score, which ignores true negatives and accuracy. Mathemati-
cally, the MCC is computed as follows:

MCC =
T P ∗ T N − FP ∗ FN

√
(T P + FP) ∗ (T P + FN) ∗ (T N + FP) ∗ (T N + FN)

(5.4)

According to [7], the Matthews correlation coefficient provides more accurate and
informative results than accuracy and the F1 score in binary classification and it is a more
reliable metric since MCC is high only if the prediction obtained good results in all of the
four confusion matrix categories.

In a multi-class classification problem with m classes, the expression for the MCC [8]
is generalized as:

MCC =
∑︁

k
∑︁

l
∑︁

m CkkClm −CklCmk√︂
(
∑︁

k tk pk) −
(︂∑︁

k t2
k

)︂√︂
(
∑︁

k pkn) −
(︂∑︁

k p2
k

)︂ , (5.5)

21

where:

- Ci j is the matrix element in the i-th row and the j-th column of the confusion matrix,
representing the number of samples known to be in class i and predicted to be in class j.

- tk is the total number of true instances of class k, that is, the sum of the entries in the
k-th row of the confusion matrix.

- pk denotes the total number of predicted instances of class k, which can be computed
as the sum of the k-th column of the confusion matrix.

Finally, n stands for the total number of predicted samples, which can be computed as
the sum of all the elements in the confusion matrix C.

5.1. Implementation of QSVM models in Python

Although the full potential of quantum computers is not yet realized, ideal quantum com-
puters can be simulated using classical computers, at least for a small number of qubits
[1].

We will briefly discuss two of the most widely used quantum frameworks for imple-
menting and simulating quantum circuits, which will be used in this project:

1. Qiskit

Qiskit is a quantum software framework developed by IBM. It uses Python as the
host language and has extensions for well-known machine learning libraries such as
PyTorch. One of the main features of this framework is that it provides a compre-
hensive set of tools for implementing quantum circuits, simulating them, and even
running them on real IBM quantum computers using an IBM account.

In this project, the Qiskit library will be used to implement a ZZ map and compare
the performance of this quantum encoding with the ZZ maps defined in Pennylane.
The quantum circuit representing this encoding is simulated using the Qiskit Aer
simulator. The Qiskit Aer simulator is a high-performance simulation framework
within the Qiskit ecosystem, designed to simulate quantum circuits. It allows users
to run quantum experiments on their classical computers with high fidelity and ef-
ficiency. In Qiskit, the QSVM model with a ZZ map can be implemented easily
without manually defining the kernel. Details regarding the implementation and the
code of the ZZ map in Qiskit can be found in [Appendix I].

22

2. Pennylane

PennyLane is a quantum framework developed by Xanadu, which also uses Python
as the host language. This software is specifically designed for quantum machine
learning. One of its greatest advantages is its compatibility with many Python li-
braries, such as scikit-learn, Keras, TensorFlow, and PyTorch.

Additionally, Pennylane provides a great deal of built-in maps feature maps, in-
cluding Amplitude encoding and Angle encoding ones. Besides, it allows creating
your own custom feature map. For these reasons, the QSVM models and the maps
with the quantum circuits Amplitude Encoding, Angle Encoding, and ZZ map with
different ranges of normalization of the predictor variables will be implemented
with PennyLane, which also allows using these kernels in the SVM models of
scikit-learn. The only QSVM model that will also be trained in Qiskit is the
ZZ to observe the differences with the corresponding model in the PennyLane li-
brary. The details of the creation of the quantum circuits for each feature map and
their implementation in scikit-learn can be found in the Appendix.

So far, we have discussed the different quantum and classical machine learning models
to be employed, as well as the various metrics used to evaluate the performance of each
model. It has also been specified which quantum computing libraries were used to define
the different quantum kernels. Finally, we will discuss the procedure for evaluating the
performance of each method, as well as some technical limitations in the case of datasets
with very high dimensions.

As stated earlier, the full potential and the main advantages of Quantum Computing
are not available yet and simulating quantum circuits takes a significant amount of time.
For this reason, hyperparameter tuning will not be performed on the trained models as
this would significantly increase execution times. Instead, the various QSVM models
will be trained with the default hyperparameter C that scikit-learn uses (C = 1). For
evaluating the performance of the models, it will be carried out a k− fold cross-validation
using k = 5, as a higher number of folds would drastically increase the computational
time.

Finally, it is worth noting that both in Pennylane and Qiskit, with current simula-
tors, quantum circuits of approximately 13 qubits can be implemented. This implies that
Angle encoding and ZZ maps can only be used to train models with datasets containing
a maximum of 13 variables, which is quite limited. In contrast, Amplitude encoding can
handle datasets with up to 213 = 8192 variables, which is significantly higher and allows
for studying cases with high-dimensional data. For high-dimensional datasets, the plan is
to apply PCA (Principal Component Analysis) to the predictors, iterating over the number
of components from ncomponent = 2 to ncomponent = 13. For each number of components,
metrics such as execution time and the proportion of variability explained will be cal-
culated, with the best-performing number of components shown in the table along with
these results.

23

6. RESULTS

Most datasets used to test the performance of support vector machines have been gen-
erated synthetically, as synthetic data provides complete control over data characteristics.
The remaining datasets are sourced from [10].

6.1. Binary classification

In this dataset, predictors are generated from multivariate normal distributions; Class 1
has mean vector µ⃗1 = (2, 2) and Class 2 has µ⃗2 = (6, 6), with covariance matrices having
diagonal elements of 1, ensuring uncorrelated predictors and perfect linear separability
(see Figure 6.1). The dataset includes n = 336 observations with p = 2 predictors.

Figure 6.1
Graphical Representation of Linearly Separable Dataset

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.588 0.695 0.344 225.567
QSVM Angle Encoding [0,1] 1.000 1.000 1.000 147.724
QSVM Angle Encoding [0,4π] 1.000 1.000 1.000 118.339
QSVM ZZ [0,1] 1.000 1.000 1.000 193.220
QSVM ZZ [0,3] 1.000 1.000 1.000 201.360
QSVM Qiskit 1.000 1.000 1.000 220.647
SVM Linear 1.000 1.000 1.000 0.000
SVM Poly 1.000 1.000 1.000 0.000
SVM RBF 1.000 1.000 1.000 0.000
SVM Sigmoid 0.004 0.08 -0.91 0.000
Logistic Regression 1.000 1.000 1.000 0.000
Random Forest 1.000 1.000 1.000 0.000

Table 6.1
Results of QSVM on a linearly separable dataset

24

As shown in Table 6.1, nearly all models, both classical and quantum, achieve 100%
accuracy in predicting both classes. The only exceptions are the QSVM with Amplitude
Encoding, which performs slightly better than a random assignment of classes, and the
SVM with a sigmoid kernel, which achieves an accuracy close to 0%, indicating very
poor performance.

Now, a dataset similar to the previous one is being tested, but with observations corre-
sponding to different classes now closer together; specifically, the vector means are (2,2)
and (4,4). Consequently, observations belonging to different classes overlap, resulting in
data that is not perfectly linearly separable (see Figure 6.2).

Figure 6.2
Graphical Representation of Linearly Separable Dataset with overlapping between classes

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.558 0.681 0.293 155.367
QSVM Angle Encoding [0,1] 0.912 0.906 0.823 78.912
QSVM Angle Encoding [0,4π] 0.647 0.625 0.292 86.036
QSVM ZZ [0,1] 0.897 0.888 0.793 193.553
QSVM ZZ [0,3] 0.897 0.888 0.793 169.802
QSVM Qiskit 0.897 0.892 0.794 210.311
SVM Linear 0.900 0.890 0.790 0.000
SVM Poly 0.880 0.870 0.760 0.000
SVM RBF 0.910 0.910 0.820 0.000
SVM Sigmoid 0.100 0.120 -0.790 0.000
Logistic Regression 0.897 0.888 0.793
Random Forest 0.912 0.906 0.823 1.628

Table 6.2
Results of QSVM on a linearly separable dataset with overlapping between classes

25

In this dataset, the results show some notable differences (see Table 6.2). None of the
algorithms are capable of achieving 100% accuracy anymore; RandomForest and QSVM
with Angle encoding and a normalization range of [0, 1] exhibit the best metrics. As in
the previous case, the algorithms performing worst are QSVM with Amplitude Encoding
and SVM with sigmoid kernel. An important observation is that, for this specific dataset,
the normalization range of variables appears to have an influence, particularly in QSVM
with Angle Encoding.

The following dataset has p = 2 predictors and n = 336 observations. The relationship
between the predictors and the response is non-linear. Covariates of different classes are
normally distributed with the same mean but different variances. The inner circle (class 0)
has a mean vector µ⃗ = (0, 0) and a diagonal covariance matrix with ones on the diagonal.
The outer circle (class 1) has the same mean but a different diagonal covariance matrix
with elements equal to 9. This causes significant class overlap, leading to non-linear
separability (see Figure 6.3).

Figure 6.3
Graphical Representation of a non-linearly separable dataset with concentric Gaussian distributions

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.662 0.439 0.414 164.475
QSVM Angle Encoding [0,1] 0.471 0.639 0.000 147.724
QSVM Angle Encoding [0,4π] 0.838 0.807 0.686 118.339
QSVM ZZ [0,1] 0.810 0.754 0.645 174.97
QSVM ZZ [0,3] 0.823 0.778 0.670 194.167
QSVM Qiskit 0.852 0.815 0.734 174.34
SVM Linear 0.460 0.630 -0.130 0.000
SVM Poly 0.840 0.810 0.690 0.000
SVM RBF 0.910 0.900 0.830 0.000
SVM Sigmoid 0.470 0.640 0.00 0.000
Logistic Regression 0.440 0.472 -0.109 0.000
Random Forest 0.867 0.852 0.736 8.73

Table 6.3
Results of QSVM on a non-linear separable dataset with concentric Gaussian distributions

26

As shown in Table 6.3, the algorithms with the best performance are Random Forest
and SVM with RBF kernel, surpassing the quantum models using various feature maps.
QSVM achieves significantly better results compared to Logistic Regression and SVM
with a linear kernel, both of which perform poorly due to the dataset’s highly non-linear
nature. Furthermore, the metrics for QSVM with Angle Encoding show notable differ-
ences for both normalization ranges.

Following the trend of testing highly non-linear datasets, this time, a dataset from
the qiskit library is employed. Labels are assigned using a quantum circuit, and the
dataset is perfectly balanced. It consists of n = 200 observations and p = 2 predic-
tors. The details of the quantum circuit and the rule implemented to assign the labels
can be found in https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.ml.
datasets.ad_hoc_data

Figure 6.4
Graphical representation of the dataset with classes generated using quantum circuits.

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.450 0.313 -0.110 58.46
QSVM Angle Encoding [0,1] 0.400 0.400 -0.2 33.062
QSVM Angle Encoding [0,4π] 0.775 0.791 0.548 31.35
QSVM ZZ [0,1] 0.550 0.625 0.110 66.259
QSVM ZZ [0,3] 0.525 0.558 0.045 69.877
QSVM Qiskit 0.625 0.651 0.253 69.877
SVM Linear 0.450 0.420 -0.110 0.000
SVM Poly 0.600 0.670 0.22 0.000
SVM RBF 0.570 0.590 0.150 0.000
SVM Sigmoid 0.470 0.490 -0.05 0.000
Logistic Regression 0.275 0.216 -0.45 0.000
Random Forest 0.75 0.762 0.502 14.438

Table 6.4
Results on the quantum dataset

27

https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.ml.datasets.ad_hoc_data
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.ml.datasets.ad_hoc_data

Based on Figure 6.4, there appears to be no discernible pattern, and it seems as if the
classes were assigned almost randomly. Most machine learning algorithms yield poor
metrics, with the exceptions being Random Forest, Angle encoding with normalization
in the range [0, 4π], and the ZZ map from Qiskit. Furthermore, in this specific case, the
QSVM with Angle encoding is the best-performing model, outperforming all classical
SVM models and Random Forest, despite their similar performance 6.4.

Next, a highly non-linear dataset from [10] has been chosen, which is part of a repos-
itory containing several datasets commonly used as benchmarks for clustering and ma-
chine learning algorithms. Specifically, this dataset contains 2 predictors and n = 312
observations. When both predictors are plotted, they form a spiral, with the classes alter-
nating along different segments of the spiral. More specifically, the spiral formed by both
predictors is divided into 30 segments, and the classes alternate with each segment of the
spiral.

Figure 6.5
Graphical representation of the spiral dataset.

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.539 0.171 -0.066 185.555
QSVM Angle Encoding [0,1] 0.619 0.143 0.216 84.78
QSVM Angle Encoding [0,4π] 0.635 0.530 0.23 78.31
QSVM ZZ [0,1] 0.539 0.383 0.023 174.49
QSVM ZZ [0,3] 0.667 0.571 0.302 174.64
QSVM Qiskit 0.603 0.561 0.207 180.150
SVM Linear 0.540 0.450 0.060 0.000
SVM Poly 0.480 0.560 0.060 0.000
SVM RBF 0.590 0.280 0.080 0.000
SVM Sigmoid 0.400 0.300 -0.230 0.000
Logistic Regression 0.539 0.453 0.056 0.000
Random Forest 0.889 0.857 0.7706 19.672

Table 6.5
Results of the spiral dataset

28

From Table 6.5 , it is seen that Random Forest stands out as the most effective classi-
fier in this dataset, showing superior performance across all metrics. Following Random
Forest, some QSVM models also performed well, notably the Angle Encoding with a
normalization range of [0, 4π] and the ZZ map with a normalization range of [0, 3], out-
performing Logistic Regression and classical SVM models.

So far, datasets with two predictors and a highly non-linear relationship between the
predictors and the target have been studied. Next, a couple of datasets with higher dimen-
sionality will be examined.

This one contains n = 336 observations and p = 4 predictors with a high nonlinear
relationship between the variables and the response. The first two predictors are sampled
from a uniform distribution U(−2π, 2π). The third and fourth predictors are then generated
by applying the transformation sin(X1)±Cos(X2) for one class and sin(X1)∓Cos(X2) for
the other class (see Figure 6.6).

Figure 6.6
Plots between some of the predictors of the dataset.

29

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.529 0.652 0.161 188.625
QSVM Angle Encoding [0,1] 0.515 0.602 0.068 93.875
QSVM Angle Encoding [0,4π] 0.721 0.716 0.444 97.000
QSVM ZZ [0,1] 0.588 0.533 0.169 602.0625
QSVM ZZ [0,3] 0.500 0.433 -0.0105 546.156
QSVM Qiskit 0.647 0.684 0.326 546.156
SVM Linear 0.560 0.590 0.140 0.000
SVM Poly 0.570 0.650 0.200 0.000
SVM RBF 0.620 0.691 0.300 0.000
SVM Sigmoid 0.560 0.660 0.200 0.000
Logistic Regression 0.529 0.579 0.079 0.000
Random Forest 0.867 0.897 0.745 2.110

Table 6.6
Results of the dataset that contains 4 predictors

As in the previous dataset (see Table 6.5), the Random Forest algorithm performs best,
with metrics significantly superior to the others. Following this model, the QSVMs with
Angle Encoding in the range (0, 4π) and the ZZ map from Qiskit have better metrics than
the Logistic Regression model and the classical QSVMs (see Table 6.6).

The final synthetic dataset that will be analyzed for binary classification contains 100
predictors and n = 336 observations. The values of the predictors are sampled from a
multivariate normal distribution with significant correlation among them. Specifically,
the correlation between a pair of predictors Xi and X j is given by ρ|i− j|, where the value of
ρ is set to 0.9.

For generating the response variable, an exponential function is first applied to each
predictor. This results in transformed predictor values. Subsequently, a linear combina-
tion Xβ is formed using these transformed predictors. Finally, a logit transformation is
applied to convert this linear combination into a probability. The label is then assigned
based on whether this probability is greater than or less than p = 0.5. A plot of the first
two principal components can be seen in Figure 6.7

Figure 6.7
Plot of two first principal components.

30

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.558 0.0625 0.133 2261.484
QSVM Angle Encoding [0,1] 0.632 0.444 0.26 4 254.22
QSVM Angle Encoding [0,4π] 0.573 0.408 0.120 119.437
QSVM ZZ [0,1] 0.617 0.518 0.219 857.765
QSVM ZZ [0,3] 0.588 0.461 0.155 1171.025
QSVM Qiskit 0.573 0.171 0.148 6434.26
SVM Linear 0.720 0.650 0.440 0.000
SVM Poly 0.690 0.630 0.370 0.000
SVM RBF 0.680 0.520 0.370 0.000
SVM Sigmoid 0.540 0.000 0.000 0.000
Logistic Regression 0.662 0.596 0.312 0.004
Random Forest 0.662 0.488 0.337 45.36

Table 6.7
Performance results on the dataset that contains 100 predictor variables

Method ncomponent Explained Variance Ratio
QSVM Amplitude Encoding - -
QSVM Angle Encoding [0,1] 5 0.31
QSVM Angle Encoding [0,4π] 7 0.31
QSVM ZZ [0,1] 6 0.25
QSVM ZZ [0,3] 7 0.25
QSVM Qiskit 9 0.34

Table 6.8
Optimal number of principal components and the corresponding explained variance ratio for each algorithm

As shown in 6.7, all QSVM models are outperformed by classical algorithms such as
RandomForest, Logistic Regression, and SVM with polynomial and linear kernels, which
demonstrate superior metrics. From 6.8, it is also noteworthy that across all machine
learning algorithms, the best performance is achieved with a minimal number of princi-
pal components relative to the dataset’s dimensionality, and the percentage of variability
explained by this number of components is not very high.

6.2. Multiclass classification

In this section, the One vs One and One vs The Rest approaches explained in Section
4.2.2 will be used to perform multiclass classification using Quantum and Classical Sup-
port Vector Machine models. Consequently, two tables will be presented for each dataset,
each showcasing the respective metrics for these methods

31

The first multiclass dataset to be analyzed is the Iris dataset, well-known in the fields
of statistics and machine learning, and often used as a benchmark for evaluating new ma-
chine learning methods. This dataset was initially introduced by Ronald Fisher in [Insert
reference here] as an example of discriminant analysis. It comprises 150 specimens of
iris flowers categorized into three species: Setosa, Versicolor, and Virginica. The dataset
includes four features corresponding to different attributes of the iris flowers: sepal length
(cm), sepal width (cm), petal length (cm), and petal width (cm). Additionally, all three
species are equally represented in the dataset..

Figure 6.8
Graphical representation of the relation between some of the features of the Iris dataset.

One vs One approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.567 0.517 0.555 52.984
QSVM Angle Encoding [0,1] 1.000 1.000 1.000 26.031
QSVM Angle Encoding [0,4π] 0.833 0.838 0.760 26.453
QSVM ZZ [0,1] 1.000 1.000 1.000 139.781
QSVM ZZ [0,3] 0.967 0.967 0.951 152.406
QSVM Qiskit 1.000 1.000 1.000 145.172
SVM Linear 1.000 1.000 1.000 0.000
SVM Poly 1.000 1.000 1.000 0.000
SVM RBF 1.000 1.000 1.000 0.000
SVM Sigmoid 0.333 0.333 0.291 0.000
Logistic Regression 1.000 1.000 1.000 0.000
Random Forest 1.000 1.000 1.000 14.297

Table 6.9
Results on Iris dataset using One vs One approach

32

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.567 0.517 0.555 113.078
QSVM Angle Encoding [0,1] 0.800 0.809 0.752 56.859
QSVM Angle Encoding [0,4π] 0.733 0.742 0.760 64.734
QSVM ZZ [0,1] 0.967 0.960 0.950 365.525
QSVM ZZ [0,3] 0.967 0.960 0.950 368.525
QSVM Qiskit 1.000 1.000 1.000 349.890
SVM Linear 0.833 0.841 0.787 0.000
SVM Poly 1.000 1.000 1.000 0.000
SVM RBF 1.000 1.000 1.000 0.000
SVM Sigmoid 0.567 0.464 0.339 0.000
Logistic Regression 1.000 1.000 1.000 0.000
Random Forest 1.000 1.000 1.000 14.297

Table 6.10
Results on Iris dataset using One vs Rest approach

As it is shown in Table 6.9, using the One vs One approach method, most algorithms
achieve 100% in all metrics except for QSVM with Amplitude encoding, Angle Encoding
in the range [0, 4π], ZZ map in the range [0, 3], and SVM with a sigmoid kernel, which
exhibits very poor performance. On the other hand, using the One vs The Rest approach
(see Table 6.10), there is a decrease in the metrics of most QSVM models and in the SVM
with the linear kernel; moreover, the execution times are longer. Both the reduction in
predictive power of the models and the increase in execution time when using the One vs
Rest approach, compared to the One vs One approach, are consistently observed across all
datasets studied. In the Iris dataset, observations of flowers belonging to different classes
appear to be linearly separable [Reference to corresponding plot]. Next, datasets will be
analyzed following a similar approach as used for binary classification, focusing on cases
where the relationship between predictor variables and target classes is highly non-linear.

The first non-linear dataset analyzed is sourced from [10], commonly known in the
literature as the Compound’s dataset. It serves as a benchmark for clustering and classifi-
cation algorithms, comprising n = 400 observations and p = 2 predictor variables across
6 distinct classes. While some pairs of classes may be linearly separable, others exhibit
highly nonlinear relationships (see Figure 6.9).

33

Figure 6.9
Graphical representation of Compound’s dataset

One vs One approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.388 0.201 0.101 493.500
QSVM Angle Encoding [0,1] 0.825 0.589 0.768 273.703
QSVM Angle Encoding [0,4π] 0.613 0.391 0.453 273.375
QSVM ZZ [0,1] 0.900 0.755 0.866 580.720
QSVM ZZ [0,3] 0.825 0.554 0.757 607.234
QSVM Qiskit 0.862 0.706 0.814 1097.438
SVM Linear 0.838 0.631 0.786 0.000
SVM Poly 0.900 0.746 0.866 0.000
SVM RBF 0.975 0.975 0.966 0.000
SVM Sigmoid 0.200 0.055 -0.357 0.000
Logistic Regression 0.838 0.674 0.781 0.001
Random Forest 0.988 0.988 0.983 17.000

Table 6.11
Results on Compound’s dataset using One vs One approach

Among the QSVMs employed, those using a ZZ map achieve the best metrics, al-
though they are outperformed by the Random Forest model and SVMs with polynomial
and RBF kernels. Notably, the SVM with a sigmoid kernel has quite low metrics, per-
forming worse than selecting a class at random (see Table 6.11).

34

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.338 0.319 0.092 1580.720
QSVM Angle Encoding [0,1] 0.712 0.353 0.610 825.390
QSVM Angle Encoding [0,4π] 0.562 0.296 0.379 809.343
QSVM ZZ [0,1] 0.875 0.704 0.833 1813.890
QSVM ZZ [0,3] 0.838 0.551 0.778 1777.937
QSVM Qiskit 0.850 0.689 0.800 3897.843
SVM Linear 0.712 0.353 0.610 0.000
SVM Poly 0.850 0.663 0.797 0.000
SVM RBF 0.912 0.771 0.882 0.000
SVM Sigmoid 0.000 0.000 -0.403 0.000
Logistic Regression 0.838 0.674 0.781 0.001
Random Forest 0.988 0.988 0.983 17.000

Table 6.12
Results on Compound’s dataset using One vs Rest approach

With the One vs Rest approach, the same pattern is observed: the best models are the
Random Forest and SVMs with polynomial kernels. However, overall, all SVM models
perform worse than in the One-vs-One approach, except for the ZZ Map from Qiskit (see
Table 6.12).

As in the case of binary classification, several Quantum Support Vector machine mod-
els performed well on the dataset where there was overlap between the two classes, mak-
ing it more difficult to distinguish them. In this case, a synthetic dataset with three classes
is generated, where the predictors and the response variable have a simple relationship.
Still, the classes overlap, making them harder to distinguish. The noise is added to the
dataset as white noise at the boundary between classes.

To ensure efficient execution times, the generated dataset comprises n = 200 observa-
tions. To enhance the dataset’s complexity compared to previous iterations, the number of
predictors has been increased from p = 2 to p = 8. Each predictor’s values are generated
from a normal distribution with a mean µ = 0 and standard deviation σ = 10. The class
labels are assigned based on the following criteria:

The sum s1 of the first 4 predictors includes added normal noise with a standard devi-
ation of 3. Similarly, the sum s2 of the last 4 predictors incorporates normal noise with a
standard deviation of 3.

- Class 1 is assigned if s1 > 20 and s2 > 15

- Class 2 is assigned if s2 > 15 and s1 ≤ 20

- Class 3 is assigned for the rest of values of s1 and s2.

35

Figure 6.10
Graphical representation of the first two principal components of the dataset with added white noise (σ = 3)

One vs One approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.660 0.655 0.459 249.281
QSVM Angle Encoding [0,1] 0.720 0.726 0.551 119.531
QSVM Angle Encoding [0,4π] 0.360 0.313 -0.080 126.531
QSVM ZZ [0,1] 0.480 0.363 0.152 2084.937
QSVM ZZ [0,3] 0.360 0.312 -0.058 1975.797
QSVM Qiskit 0.420 0.360 0.057 2090.547
SVM Linear 0.700 0.711 0.553 0.000
SVM Poly 0.720 0.740 0.556 0.000
SVM RBF 0.720 0.749 0.556 0.000
SVM Sigmoid 0.420 0.276 -0.012 0.000
Logistic Regression 0.660 0.672 0.516 0.000
Random Forest 0.680 0.717 0.482 18.641

Table 6.13
Results on the dataset with added white noise (σ = 3) using One vs One approach

The models with the highest metrics include the QSVM with Angle Encoding in the
range [0, 1], as well as the linear, polynomial, and RBF SVMs. Despite the QSVM with
Angle Encoding achieving higher accuracy than the linear SVM and equivalent accuracy
to the polynomial and RBF SVMs, its Matthews correlation coefficient is lower. This
coefficient proves more suitable for model comparison in this scenario, given that the
classes are not perfectly balanced.

36

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.600 0.584 0.368 569.797
QSVM Angle Encoding [0,1] 0.700 0.712 0.523 280.094
QSVM Angle Encoding [0,4π] 0.340 0.295 -0.093 276.578
QSVM ZZ [0,1] 0.340 0.255 -0.049 4222.412
QSVM ZZ [0,3] 0.360 0.339 -0.034 4144.953
QSVM Qiskit 0.400 0.345 0.017 4363.890
SVM Linear 0.640 0.616 0.437 0.000
SVM Poly 0.700 0.653 0.526 0.000
SVM RBF 0.720 0.705 0.562 0.000
SVM Sigmoid 0.280 0.210 -0.251 0.000
Logistic Regression 0.660 0.672 0.516 0.000
Random Forest 0.680 0.717 0.482 18.641

Table 6.14
Results on the dataset with added white noise (σ = 3) using One vs Rest approach

In the context of the One vs Rest approach, the metrics of most models show a slight
decrease. Currently, the QSVM with Angle encoding in the range [0, 1] outperforms the
linear SVM but lags slightly behind SVMs with polynomial and RBF kernels. It is worth
noting that in both cases, the QSVM with Angle encoding has higher metrics than both
the logistic regression model and the Random Forest.

To further investigate the performance of QSVM in managing noise during class sep-
aration, the standard deviation of the added noise is increased from σ = 3 to σ = 5. This
adjustment aims to evaluate how QSVM performs under increased noise conditions.

Figure 6.11
Graphical representation of the first two principal components of the dataset with added white noise (σ = 5)

37

One vs One approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.620 0.616 0.459 238.625
QSVM Angle Encoding [0,1] 0.740 0.723 0.630 129.625
QSVM Angle Encoding [0,4π] 0.320 0.311 0.000 130.281
QSVM ZZ [0,1] 0.240 0.206 -0.108 2062.181
QSVM ZZ [0,3] 0.300 0.267 -0.031 2023.437
QSVM Qiskit 0.460 0.459 0.239 2232.815
SVM Linear 0.620 0.591 0.474 0.000
SVM Poly 0.680 0.664 0.554 0.000
SVM RBF 0.660 0.637 0.498 0.000
SVM Sigmoid 0.200 0.185 -0.374 0.000
Logistic Regression 0.720 0.703 0.607 0.000
Random Forest 0.700 0.673 0.554 23.812

Table 6.15
Results on the dataset with added white noise (σ = 5) using One vs One approach

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.500 0.428 0.336 552.859
QSVM Angle Encoding [0,1] 0.680 0.660 0.556 320.047
QSVM Angle Encoding [0,4π] 0.340 0.334 0.033 308.015
QSVM ZZ [0,1] 0.280 0.240 -0.063 4463.234
QSVM ZZ [0,3] 0.220 0.200 -0.144 4725.968
QSVM Qiskit 0.440 0.437 0.186 4984.734
SVM Linear 0.620 0.591 0.474 0.000
SVM Poly 0.480 0.491 0.227 0.000
SVM RBF 0.580 0.598 0.369 0.000
SVM Sigmoid 0.320 0.287 -0.02 0.000
Logistic Regression 0.720 0.703 0.607 0.000
Random Forest 0.700 0.673 0.554 23.812

Table 6.16
Results on the dataset with added white noise (σ = 5) using One vs Rest approach

In the context of the One vs One approach, it is noteworthy that several QSVM mod-
els exhibit poor performance. The Angle encoding model in the range [0, 1] has higher
metrics compared to other models, including Random Forest and Logistic Regression (see
Table 6.15).

Conversely, in the One vs Rest approach, Random Forest and Logistic Regression
outperform the rest of the models (see Table 6.16).

38

As a final variation of this dataset, a similar synthetic dataset is generated but with a
significantly lower standard deviation (σ = 1).

Figure 6.12
Graphical representation of the first two principal components of the dataset with added white noise (σ = 1)

One vs one approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.760 0.751 0.646 270.531
QSVM Angle Encoding [0,1] 0.900 0.896 0.846 156.000
QSVM Angle Encoding [0,4π] 0.380 0.277 -0.047 156.578
QSVM ZZ [0,1] 0.540 0.451 0.236 2038.156
QSVM ZZ [0,3] 0.400 0.296 -0.004 2319.625
QSVM Qiskit 0.520 0.381 0.198 2482.406
SVM Linear 0.860 0.850 0.787 0.000
SVM Poly 0.920 0.916 0.878 0.000
SVM RBF 0.840 0.839 0.761 0.000
SVM Sigmoid 0.380 0.183 0.000 0.000
Logistic Regression 0.960 0.961 0.939 0.000
Random Forest 0.780 0.762 0.668 21.984

Table 6.17
Results on the dataset with added white noise (σ = 1) using One vs One approach

Similarly to the other sigma values, the QSVM that performs best is the Angle En-
coding within the normalization range [0, 1], which is surpassed only by the SVM with
a polynomial kernel and the Logistic Regression model, both of which demonstrate high
performance (see Table 6.17).

39

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.780 0.747 0.650 625.890
QSVM Angle Encoding [0,1] 0.920 0.914 0.875 332.031
QSVM Angle Encoding [0,4π] 0.460 0.391 0.104 331.75
QSVM ZZ [0,1] 0.500 0.419 0.181 4999.0312
QSVM ZZ [0,3] 0.420 0.314 0.037 4979.968
QSVM Qiskit 0.500 0.382 0.226 4936.281
SVM Linear 0.900 0.889 0.839 0.000
SVM Poly 0.820 0.786 0.706 0.000
SVM RBF 0.880 0.876 0.804 0.000
SVM Sigmoid 0.200 0.185 -0.374 0.000
Logistic Regression 0.960 0.961 0.939 0.000
Random Forest 0.780 0.762 0.668 21.984

Table 6.18
Results on the dataset with added white noise (σ = 1) using One vs Rest approach

Interestingly, in the One vs Rest approach, some SVMs and QSVMs have higher met-
rics than in the One vs One approach. In fact, for the Angle encoding in the range (0,1),
both accuracy and F1 score or Matthews correlation increase, being surpassed now only
by logistic regression (see Table 6.18).

As an example of multiclass classification tasks with high dimensions, the fruit dataset
is used. It consists of spectra from three different cultivars of cantaloupe (Cucumis melo
L. Cantaloupensis group), originally obtained from Colin Greensill at the Faculty of Engi-
neering and Physical Systems, Central Queensland University, Rockhampton, Australia.
The dataset initially comprised 1096 observations and 256 variables, but for computa-
tional feasibility, it has been reduced to 200 observations. Given the dataset’s high di-
mensionality, only the Amplitude encoding QSVM mapping can be trained without di-
mensionality reduction techniques. Other Quantum Feature Maps’ performance will be
evaluated using PCA, with the number of components ranging from 2 to 13, approaching
the simulators’ maximum qubit capacity.

Figure 6.13
Graphical representation of the first 2 principal components of the Fruit’s dataset

40

One vs one approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.975 0.658 0.953 17625.078
QSVM Angle Encoding [0,1] 0.950 0.641 0.903 53.296
QSVM Angle Encoding [0,4π] 0.700 0.478 0.428 55.156
QSVM ZZ [0,1] 0.550 0.371 0.121 252.875
QSVM ZZ [0,3] 0.525 0.328 0.072 330.875
QSVM Qiskit 0.550 0.371 0.121 386.152
SVM Linear 0.975 0.658 0.953 0.000
SVM Poly 0.750 0.497 0.370 0.000
SVM RBF 0.950 0.641 0.903 0.000
SVM Sigmoid 0.375 0.253 -0.218 0.000
Logistic Regression 1.000 1.000 1.000 1.000
Random Forest 0.975 0.982 0.953 25.390

Table 6.19
Results on the Fruit’s dataset using One vs One approach

Method ncomponent Explained Variance Ratio
QSVM Amplitude Encoding - -
QSVM Angle Encoding [0,1] 4 0.990
QSVM Angle Encoding [0,4π] 5 0.992
QSVM ZZ [0,1] 4 0.990
QSVM ZZ [0,3] 4 0.990
QSVM Qiskit 4 0.990

Table 6.20
Optimal number of principal components and the corresponding explained variance ratio for each algorithm in the Fruit’s dataset

using One vs One approach

In the case of Quantum-Supported Vector Machine (QSVM) models, the ZZ maps
do not perform well. The best QSVM model is the Amplitude Encoding one, which
is the only model that can be trained without applying dimension reduction techniques.
However, it is matched by the linear SVM, which has the highest metrics among the
SVMs. Both of these models are surpassed by Random Forest, which has a higher F1
score due to correctly predicting the only instance of class 2 in the test, and Logistic
Regression, which achieves a 100% in all metrics (see Table 6.19).

Additionally, from Table 6.22, it is observed that for the quantum models, the number
of principal components that yield the highest metrics ranges between 4 and 5, with the
percentage of variability explained by these components being nearly 100%.

41

One vs Rest approach

Method Accuracy F1 Score Matthews Correlation Time(s)
QSVM Amplitude Encoding 0.975 0.658 0.953 37437.859
QSVM Angle Encoding [0,1] 0.950 0.641 0.903 141.984
QSVM Angle Encoding [0,4π] 0.700 0.468 0.428 121.828
QSVM ZZ [0,1] 0.550 0.368 0.119 732.859
QSVM ZZ [0,3] 0.500 0.319 0.039 414.296
QSVM Qiskit 0.550 0.368 0.119 751.985
SVM Linear 0.975 0.658 0.953 0.000
SVM Poly 0.775 0.514 0.602 0.000
SVM RBF 0.950 0.641 0.903 0.000
SVM Sigmoid 0.350 0.239 -0.239 0.000
Logistic Regression 1.000 1.000 1.000 1.000
Random Forest 0.975 0.982 0.953 25.390

Table 6.21
Results on the Fruit’s dataset using One vs Rest approach

Method ncomponent Explained Variance Ratio
QSVM Amplitude Encoding - -
QSVM Angle Encoding [0,1] 4 0.990
QSVM Angle Encoding [0,4π] 4 0.990
QSVM ZZ [0,1] 4 0.990
QSVM ZZ [0,3] 4 0.990
QSVM Qiskit 4 0.990

Table 6.22
Optimal number of principal components and the corresponding explained variance ratio for each algorithm in the Fruit’s dataset

using One vs Rest approach

As shown in Tables 6.21 and 6.22, there is practically no variation in the metrics of
each model or in the optimal number of principal components. Since the logistic regres-
sion model achieves 100% accuracy on this dataset, it may be due to the classes being
easily linearly separable. This results in a minimal difference between the One-vs-One
and One-vs-Rest methods in the SVM models.

42

7. DISCUSSION OF THE RESULTS AND CONCLUSIONS

In this Master’s thesis, we have introduced the fundamental principles of Quantum
Mechanics, as well as Quantum Computing, and the key elements of basic quantum cir-
cuits. This foundation has been used to explain the theory behind Quantum Support Vec-
tor Machines (QSVMs) and various quantum kernels.

The primary objective of this work was to explore the application of quantum entan-
glement properties in constructing various quantum circuits. These circuits were used as
kernels in Quantum Support Vector Machine (QSVM) models. The research focused on
determining whether these quantum models offer any advantages in terms of performance
and metrics compared to traditional Machine Learning algorithms. To this end, a consid-
erable number of synthetic datasets with different characteristics were used to test these
models in both binary and multiclass classification tasks, and to compare them with other
classical algorithms in terms of execution times and other metrics of interest.

The first thing that stands out is that, despite the datasets having a small number of
observations and generally a small number of predictors, the average execution time of
the QSVM models was significantly high. In contrast, the execution time of the classical
algorithms used was practically zero, accurate to three decimal places. The long execution
times of these quantum algorithms make it challenging to analyze and compare these
models, as more exhaustive analyses would require simulations for each dataset. These
simulations would then be used to obtain statistics on various metrics and execution times.
The two primary causes of the long execution times are:

1. Quantum Circuit Depth: Usually, the quantum circuits implemented in Quantum
Kernels for QSVM models can be very complex and require a good deal of quantum
gates, even for small datasets. Each operation made by each gate must be simulated,
adding to the computational load. The depth and complexity of these circuits can
significantly slow down computations.

2. Hardware Limitations: Although Qiskit and Pennylane are quantum software
specially designed to interface with actual quantum hardware, simulating quan-
tum computations on classical hardware is constrained by available computational
power and memory. These limitations can lead to considerable delays, particularly
for complex quantum algorithms.

Nevertheless, it is expected that these limitations will continue to improve, and exe-
cution times will decrease as these software programs continue to develop, which indeed
they are doing at a rapid pace.

43

Another major limitation is the maximum number of qubits that can be included in the
Qiskit and Pennylane libraries, significantly restricting the number of predictor vari-
ables that can be considered for certain quantum kernels such as Angle Encoding and ZZ
maps without using dimensionality reduction techniques. This limitation arises because
simulating quantum circuits classically requires substantial computational resources, as
a quantum state with n qubits requires representing 2n complex numbers. This overhead
increases exponentially with the number of qubits and operations.

Setting aside execution times and the maximum number of qubits that can be used,
another aspect that stands out is the difference in metric values in quantum kernels of
Angle Encoding and ZZ maps for different normalization ranges, especially in Angle
Encoding. This suggests that in future projects, particularly when time constraints are
not an issue, the normalization range of the predictor variables should be considered as a
hyperparameter and the optimal range should be determined.

Finally, regarding the performance results, it is observed that there is significant vari-
ability among the different quantum kernels and for each type of quantum kernel, perfor-
mance depends on the normalization range of their predictor variables and, in the case
of the ZZ map, on whether it is implemented in Qiskit or Pennylane. In general, it
has been observed that for the majority of datasets, except for the latest ones, the Am-
plitude Encoding quantum kernel performs considerably worse than the others, despite
its advantage of using a quantum circuit with n qubits for a dataset with 2n variables.
After applying these models to the entire set of datasets, no clear advantage was found
for binary and multiclass classification tasks, especially compared to the Random Forest
algorithm. The only datasets where any QSVM outperformed Random Forest were the
binary classification dataset generated with a quantum circuit and the multiclass dataset
where white noise with a standard deviation of σ = 5 was added to separate the classes.
Considering these results, it would be interesting to further explore datasets with these
characteristics in future analyses to see if this generally holds. Nevertheless, despite Ran-
dom Forest outperforming the other models in most datasets, there are many cases where
a quantum kernel outperforms basic kernel SVMs.

In conclusion, QSVM models currently face significant technical limitations, such
as excessively long execution times and constraints on the maximum number of qubits
they can handle. These limitations hinder the analysis of datasets with large numbers of
observations and variables (big data), which are of primary interest today. Despite these
challenges, and setting aside execution time considerations, QSVMs do not demonstrate a
clear advantage over classical machine learning algorithms like Random Forest. However,
they do show superiority over other algorithms such as SVMs with classical kernels in
certain scenarios. Similar to SVMs, the performance of QSVM models varies depending
on the quantum kernel used, highlighting the importance of comparing different kernels
across different datasets.

44

Furthermore, it has been observed that certain quantum kernels, such as Angle En-
coding and ZZ maps, exhibit sensitivity to the range of predictor variables, suggesting
the introduction of variable range normalization as a new hyperparameter alongside the
traditional C parameter. Notably, hyperparameter tuning was not extensively explored in
this analysis due to its potential to significantly increase algorithm execution times.

As quantum software tools like Qiskit and Pennylane continue to evolve and ex-
ecution times decrease, future research can expand these analyses to encompass high-
dimensional datasets. This evolution will facilitate the comparison and identification of
quantum circuits suitable for use as kernels, potentially offering advantages over classical
machine learning algorithms.

45

BIBLIOGRAPHY

[1] E. F. Combarro and S. González-Castillo, A practical guide to Quantum Machine
Learning and Quantum Optimization. Packt, 2023.

[2] M. Schulda, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine
learning, Quantum Research Group, School of Chemistry and Physics, University
of KwaZulu-Natal, Durban, KwaZulu-Natal, 4001, South Africa, National Institute
for Theoretical Physics (NITheP), KwaZulu-Natal, 4001, South Africa, September
11, 2014.

[3] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data. AML-
Book, 2

[4] M. Schuld, Supervised quantum machine learning models are kernel methods,
Xanadu, Toronto, ON, M5G 2C8, Canada, 2021.

[5] M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Quan-
tum Science and Technology, Springer International Publishing, 2021.

[6] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capa-
bility of parameterized quantum circuits for hybrid quantum-classical algorithms,
Advanced Quantum Technologies, vol. 2, no. 12, p. 1 900 070, 2019.

[7] D. Chicco and G. Jurman, The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation, BMC Ge-
nomics 21, 2020.

[8] G. Jurman, S. Riccadonna, and C. Furlanello,A Comparison of MCC and CEN Error
Measures in Multi-Class Prediction, PLoS ONE 7(8): e41882 (2012).

[9] E. Martin, Multiclass Classification Using Support Vector Machines. Baeldung,
2021.
https://www.baeldung.com/cs/svm-multiclass-classification.

[10] P. Fänti and S. Sieranoja, K-means properties on six clustering benchmark datasets,
Applied Intelligence, vol. 48, no. 12, pp. 4743-4759, 2018.
https://doi.org/10.1007/s10489-018-1238-7

46

https://www.baeldung.com/cs/svm-multiclass-classification
https://doi.org/10.1007/s10489-018-1238-7

APPENDIX

Implementing the ZZ map in Qiskit

Implementing a QSVM model in Qiskit is quite simple using the class ZZFeatureMap
from the library quantum_machine_learning. This class contains three main parame-
ters:

1. feature_dimension: This parameter specifies the number of qubits used to encode
the input data or problem size. In the ZZ feature Map, it corresponds to the number
of the predictor variables p.

2. reps: This parameter stands for repetitions or layers in the quantum circuit. The
number of reps n indicates that the quantum feature map consists of n repeated
blocks or layers. Each layer typically includes a set of quantum gates designed to
perform computations on the input data encoded in the qubits. For this particular
case, it has been used a number of reps equal to 3. By increasing the number of reps,
the quantum circuit becomes more complex, thus the QSVM model will require a
longer training time.

3. entanglement: It specifies how qubits are entangled within each layer of the quan-
tum circuit. In this case, it has been selected the option ’linear’ entanglement,
which means that each qubit is entangled with its neighboring qubits in sequence.
Some other entanglement options are: ’full entanglement’, ’circular Entanglement’,
’sparsely entanglement’, etc.

In general, both the number of repetitions and the type of entanglement are hyper-
parameters that should be adjusted when implementing QSVM models in Qiskit.

Qiskit Machine Learning introduces various computational tools, among them Quan-
tum Kernels, which play a pivotal role in quantum machine learning applications
such as classification and regression. One particularly significant component is the
FidelityQuantumKernel class. This kernel class is designed to compute kernel
matrices directly from datasets, facilitating rapid prototyping of models even for
users with limited expertise in quantum computing.

Here is an example of code in Python where a QSVM model is trained using the
ZZ map from Qiskit using FidelityQuantumKernel class:

from qiskit.circuit.library import ZZFeatureMap

from qiskit_machine_learning.kernels import FidelityQuantumKernel

from qiskit.primitives import Sampler

from qiskit_algorithms.state_fidelities import ComputeUncompute

#number of variables in the dataset

p = X_train.shape[1]

#define the feature map that we are going to use

feature_map = ZZFeatureMap(feature_dimension = p, reps = 3,

entanglement = ’linear’)

#draw the circuit in qiskit

#Apply the algorithm

sampler = Sampler()

fidelity = ComputeUncompute(sampler=sampler)

quantum_kernel = FidelityQuantumKernel(fidelity = fidelity,

feature_map = feature_map)

quantum_svc = SVC(kernel = quantum_kernel.evaluate)

quantum_svc.fit(X_train, y_train)

Additionally, in this code, Sampler() is used to simulate the execution of the quan-
tum circuit and collect the probabilities of different measurement outcomes. The ComputeUncompute()
function calculates the fidelity between quantum states by executing the quantum cir-
cuit and obtaining the necessary results using the sampler. More details cab ne found in
https://qiskit-community.github.io/qiskit-machine-learning/.

7.0.1. Implementing the QSVM on Pennylane

As detailed in the Methodology section, most QSVM models are implemented in Pen-
nylane, a library specifically focused on Quantum Machine Learning. Pennylane of-
fers a straightforward approach to defining Quantum kernels and implementing them in
scikit-learn [1], particularly for Amplitude and Angle Encoding. In all cases, the
code starts as follows:

import pennylane as qml

nqubits = 4

dev = qml.device("lightning.qubit", wires = nqubits)

In the first line, the library Pennylane is imported with the alias ’qml’. Next, the
number of qubits for the circuit is defined. In this particular example, the number of
qubits is set to 4. However, in general, depending on the Quantum Kernel, it will be
equal to the number of predictor variables p for Angle Encoding and ZZ Map, or log2 ⌈p⌉
for Amplitude Encoding. Finally, a quantum device is established using qml.device. A
quantum device is a physical or simulated system used to perform quantum computations.
In this case, the computations are carried out using the simulator ’lightning.qubit’, a high-
performance simulator capable of handling the specified number of qubits, provided it
does not exceed the software’s qubit limit.

https://qiskit-community.github.io/qiskit-machine-learning/

Additionally, for each Quantum Kernel, the quantum circuit that computes the kernel
(4.16) has to be defined using a function.

1. Amplitude Encoding: In the Amplitude Encoding, the function that computes
(4.16) is implemented as follows [1]:

@qml.qnode(dev)

def kernel_circ(x, y):

qml.AmplitudeEmbedding(

x, wires=range(nqubits), pad_with=0, normalize=True)

qml.adjoint(qml.AmplitudeEmbedding(

y, wires=range(nqubits), pad_with=0, normalize=True))

return qml.probs(wires = range(nqubits))

The decorator @qml.qnode(dev) must be applied before defining any quantum
circuit. It transforms the function into a quantum node that is executable on the
specified quantum device. The key function here is AmplitudeEmbedding(),
which maps any vector x⃗ into the quantum state (4.18). Additionally, the function
Adjoint(), computes the adjoint of that quantum state. Finally, with qml.probs(),
it is estimated the probability that after applying the quantum gatesΦ†(x⃗)Φ(y⃗)|0⟩, all
the qubits are in the individual quantum state |0⟩, which is an estimation of (4.18).
The command pad_width=0 ensures that when 2nqubit is greater than the number of
predictor variables, the basis vectors of the quantum state (4.18) that are not used,
are filled with zeros. Additionally, normalize = True ensures that the resulting
quantum state is normalized. Once the function that computes the quantum kernel
is defined, a matrix is constructed where each element represents the value of the
quantum kernel between every pair of rows in the dataset. This matrix is then passed
as an argument to the function SVC(), where the Support Vector Classifier (SVC)
model is trained using the quantum kernel. This step remains consistent across all
quantum mappings.

from sklearn.svm import SVC

def qkernel(X, Y):

return np.array([[kernel_circ(x, y)[0] for y in Y] for x in X])

svm = SVC(kernel = qkernel).fit(X_train, y_train)

2. Angle Encoding: For Angle Encoding, the process of defining the quantum kernel
and training the QSVM model follows the same steps as described previously, but
utilizes the AngleEmbedding() function when implementing the quantum circuit
that computes the kernel [1]:

def kernel_circ(x, y):

qml.AngleEmbedding(x, wires=range(nqubits))

qml.adjoint(qml.AngleEmbedding(y, wires=range(nqubits)))

return qml.probs(wires = range(nqubits))

3. ZZ Feature Map: Finally, in the ZZ map, unlike the kernels of Amplitude Enco-
ding and Angle Encoding, there is no automatic implementation function provided
by Pennylane. It requires manual implementation following the steps described
on page 18. Bearing in mind those steps, the function that applies the ZZ Map to a
row x⃗ of the dataset can be defined as follows [1]:

from itertools import combinations

def ZZFeatureMap(nqubits, data):

for i in range(nqubits):

qml.Hadamard(i)

qml.RZ(2.0 * data[i], wires = i)

for pair in list(combinations(range(nqubits), 2)):

q0 = pair[0]

q1 = pair[1]

qml.CZ(wires = [q0, q1])

qml.RZ(2.0 * (np.pi - data[q0])*(np.pi - data[q1]), wires = q1)

qml.CZ(wires = [q0, q1])

After defining the ZZ map implementation function, the kernel calculation function
is defined:

dev = qml.device("lightning.qubit", wires = nqubits)

@qml.qnode(dev)

def kernel_circ(x, y):

ZZFeatureMap(nqubits, x)

qml.adjoint(ZZFeatureMap)(nqubits, y)

return qml.probs(wires = range(nqubits))

	Introduction
	Introduction to quantum mechanics
	Tensor product and multiple Quantum States

	Quantum computing
	Systems of one qubit
	Quantum gates in systems of one qubit

	Multi-qubit systems
	Multi-qubit quantum gates

	Quantum Support Vector Machines
	Quantum Machine Learning
	Support Vector Machines (SVM)
	Training a linear SVM for binary classification
	Extension of SVM for multiclass classification
	Kernel trick

	Extrapolation of SVM to quantum
	Quantum feature maps

	Contributions to the QSVM: Methodology and Case Study Design
	Implementation of QSVM models in Python

	Results
	Binary classification
	Multiclass classification

	Discussion of the results and conclusions
	Implementing the QSVM on Pennylane

