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SUMMARY

Classification problems are pivotal in machine learning, with applications
in fields such as medical diagnosis, image recognition, and fraud detection.
Efficiently categorizing data into predefined classes enhances decision-making
and operational processes. Support Vector Machines (SVM) and Learning
Algorithm for Multivariate Data Analysis (LAMDA) are state-of-the-art tech-
niques for these tasks. In addition, quantum computing has recently emerged
as a transformative approach to enhance computational efficiency and security.

Within this general context, the present work studies the integration of
SVM and LAMDA algorithms with quantum computing techniques to im-
prove classification performance. Objectives include implementing and com-
paring quantum and classical versions of SVM and LAMDA, particularly for
binary, multi-class, and multi-label classification (LAMDA only for binary clas-
sification). The structure of the thesis includes a review of quantum physics
fundamentals, a detailed analysis of SVM and LAMDA classical and quantum
algorithms, and a comparative study of their performance and efficiency.

Keywords: SVM, LAMDA, binary, multi-class, multi-label, quantum
computing, qubit, efficiency, performance.
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1 Introduction

Classification problems are a cornerstone in the field of machine learning, with
applications spanning a wide range of domains such as medical diagnosis, image
recognition, and anomaly or fraud detection [1]. These problems involve categoriz-
ing data into predefined classes, and their successful resolution can lead to optimized
decision-making and enhanced operational efficiency across various sectors. Success-
ful classification can streamline processes, improve accuracy in predictions, and facil-
itate better resource allocation, ultimately driving advancements and innovation in
fields such as healthcare, finance, and technology. Among the numerous algorithms
developed to tackle classification problems, Support Vector Machines (SVM) and
Learning Algorithm for Multivariate Data Analysis (LAMDA) are state-of-the-art
techniques [2] [3].

On the other hand, the concept of utilizing quantum mechanics to fundamentally
enhance the computational efficiency and security of computers has been a pivotal
idea at the intersection of physics, computer science, and mathematics for approx-
imately four decades [4]. The versatility offered by replacing the classical bit by
a qubit allows for performing an exponential number of operations with respect to
the involved qubits, paving the way for a revolutionary approach to classification
problem-solving.

Thus, combining classical machine learning techniques like SVM and LAMDA
with the principles of quantum computing opens up promising horizons for enhancing
the performance of classification algorithms. The construction of hybrid models
has the potential to process vast amounts of data at unprecedented speeds, which
is particularly beneficial for managing complex, high-dimensional datasets where
classical algorithms could face limitations.

1.1 Work objectives

In order to tackle classification problems in a variety of scenarios through the
aforementioned algorithms, the following objectives are established for this work.

• General objective: show the utility of SVM for binary, multi-class and
multi-label classification problems, and of LAMDA for the resolution of binary
classification problems, both from classical and quantum standpoints.

• Specific objectives:

• Implement a quantum algorithm for binary, multi-class and multi-label
classification SVM and compare it to its classical counterpart, in terms
of computational efficiency and scores. Proceed analogously for binary
LAMDA classification, in this case proposing a quantum alternative to
the classical algorithm.
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• Compare the performance and efficiency of SVM and LAMDA for bi-
nary classification problems, also contrasting the corresponding quantum
implementations.

In accordance with these objectives, this work is structured as follows. Section
2 presents a revision of some fundamental concepts of quantum physics that con-
textualize the quantum algorithms presented in the following sections. Section 3
is subdivided into an introductory theory subsection, 3.1, and then presents the
results obtained for the classification of two binary datasets, a multi-class and a
multi-label one in 3.2. Section 4 focuses on classical and quantum approaches for
the classification of the aforementioned binary datasets, described in Sections 4.1
and 4.2, respectively. Section 5 compares the performance and efficiency of SVM
and LAMDA for binary classification. Finally, in Section 6, the main conclusions of
this work are discussed.

2 Fundamentals of Quantum Physics

This chapter aims to present a somewhat concise description of the essential
concepts that build the foundations of quantum mechanics and that are of use
for contextualizing the ideas behind the quantum algorithms and implementations
that will follow in forthcoming sections. Some of the concepts that are included in
this summary are not intrinsically essential (this will be indicated in the respective
subsections), but pave the way for a deeper understanding of the nature of quantum
phenomena. This section is not conceived as a rigorous introduction to quantum
mechanics, but as a slightly informal introduction orientated to the sections that
this one precedes.

2.1 Preliminaries

Strictly speaking, the only system that exists is the Universe itself. Fortunately,
it is almost always possible to work with an isolatable portion of the Universe that
can be experimented upon, and whose interaction with the rest is small, controllable,
or, in the best case, practically nonexistent. Classically, one can think of a state
arbitrarily prepared and, through measurements, determine it with all the necessary
precision.

Quantum mechanically, it is more delicate because, after a measurement, the
system can change radically. This can be overcome by controlled preparation. If we
have N identical systems prepared using the same experimental operations, we can
assume that they are all in the same state. When we measure a physical quantity
A on this state, we can obtain values A1, A2, ..., AN . If N approaches infinity, we
can even calculate a probability distribution (density) function.

This knowledge of the quantity A can be indefinitely improved by reducing the
interval of the histogram (experimental resolution) and increasing N . We can con-
sider other quantities B, C, ... and follow the same procedure. If we consider all
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possible quantities and it turns out that differently prepared states lead to the same
probability distributions, we will say that both states are equal.

2.2 Pure states and measurements

A pure state must be associated with a physical state for which the maximum
information is available. In Classical Mechanics, this is straightforward: (r1, r2,
..., rN , p1, p2, ..., pN) defines a pure state with N point particles, where ri, pi,
respectively, denote the position and momentum of particle i, i ∈ {1, . . . , N}. In
Quantum Mechanics, one faces two related problems:

• Certain quantities are not compatible; for example, we cannot know the po-
sition and momentum of a particle with unlimited precision, as ∆x ·∆p ≥ ℏ

2
.

This is known as Heisenberg’s indeterminacy principle [5].

• After a measurement, the system is modified. It may even cease to exist. An
example of this would be the absorption of a particle.

In this context, it is convenient to highlight two types of measurements.

1. Measurements of the second kind: after determining a quantity, it can change.
Even the system as a whole may cease to exist.

2. Measurements of the first kind: allow the preparation of particles in a state
with infinite precision.

2.3 Postulates of quantum mechanics

The mathematical formalism that permits a rigorous description of quantum
mechanics is described through six postulates, which link quantum mechanics to
the observable world [6].

Postulate I: Each quantum system has an associated (separable) Hilbert space,
H. At each given time t, a pure state of the quantum system is described by an
element, denoted by |ϕ(t)⟩, of the Hilbert space H. The norm of |ϕ(t)⟩ must be 1
∀t.

Any vector |ϕ⟩ ∈ H has a dual one ⟨ϕ|, which is a continuous linear functional
that acts from H to C, such that, for any vector |ψ⟩ ∈ H, the action of ⟨ϕ| on |ψ⟩
is given by:

⟨ϕ|ψ⟩ = (|ϕ⟩ , |ψ⟩) ,

where (,) denotes the inner product in Hilbert space H. This is known as the bra-ket
notation, and was introduced by Paul Dirac in 1939.
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Postulate II: Every physical quantity, let us denote it as A, is described by a
linear operator, A, acting on H. A must be self-adjoint and is called an observable.
For instance, A could describe the position, momentum, or spin of a particle.

Postulate III: The outcome of the measurement of a physical quantity A can
only be the eigenvalues of A, the self-adjoint operator describing A.

Postulate IV:

a) Case of a non-degenerate eigenvalue. When the physical quantity A is mea-
sured on a quantum state described by ϕ (an element of H), the probability
that the outcome of that measurement be an, a non-degenerate eigenvalue of
A, is given by:

| ⟨an|ϕ⟩ |2,

where |an⟩ is an eigenvector, with a norm equal to 1 associated to an: A |an⟩
= an |an⟩.

b) Case of a degenerate eigenvalue. When the physical quantity A is measured
on a quantum state described by ϕ (an element of H), the probability that the
outcome of that measurement be an, a degenerate eigenvalue of A, is given by:

dn∑︂
i=1

| ⟨an, i|ϕ⟩ |2,

where |an, i⟩i=1,...,dn
is an orthonormal basis of the proper subspace of an, and

dn is the degree of degeneracy of an. Indeed,

A |an, i⟩ = an |an, i⟩ ∀i ∈ {1, . . . , dn}; ⟨an, i|an, j⟩ = δij

and, if |ψ⟩ is such that A |ψ⟩ = an |ψ⟩, then |ψ⟩ =
∑︁dn

i=1 cn |an, i⟩.

Postulate V: Reduction or collapse of the wave packet.

a) Case of a non-degenerate eigenvalue. If the outcome of a measurement of
the physical quantity A on the quantum state described by |ϕ⟩ is the non-
degenerate eigenvalue an, then the state of the quantum system immediately
after the measurement is described by |an⟩.

b) Case of a degenerate eigenvalue. If the outcome of a measurement of the
physical quantity A on the quantum state described by |ϕ⟩ is the degenerate
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eigenvalue an, then, the state of the quantum system immediately after the
measurement is described by:

|φ⟩ = P (an) |ϕ⟩√︁
⟨ϕ|P (an)|ϕ⟩

,

where P (an) is the projector onto the proper subspace of an , that is,

P (an) =
dn∑︂
i=1

|an, i⟩ ⟨an, i| .

Postulate VI: If a quantum system is isolated, i.e., it does not interact with other
systems, and its quantum state is described by |φ⟩ at t = t0, then the state of the
system when t > t0 is described by |ϕ(t)⟩, this ket being the unique solution to the
Schrödinger equation, given by:

iℏ
∂ |ϕ(t)⟩
∂t

= H(t) |ϕ(t)⟩ ,

which satisfies the initial condition |ϕ(t = t0)⟩ = |φ⟩. H(t) is the quantum Hamil-
tonian, a self-adjoint operator which describes the energy of the system.

For further details on the mathematical grounds upon which these postulates are
based (self-adjoint operators, spectrum, etc), see [6].

2.4 Entanglement and non-locality

This section briefly describes the non-local nature of the quantum phenomena,
and introduces the notion of entanglement, which is a phenomenon that has no
classical counterpart and that is of substantial importance in quantum computing.
Finally, it addresses decoherence. This subsection is not essential to follow the
forthcoming ones, although entanglement is a notion that appears assiduously, and
decoherence is one of the major setbacks for constructing a quantum computer,
which tackles the challenge of maintaining coherence.

2.4.1 EPR Paradox

The well-known EPR paradox is a thought experiment proposed by Einstein,
Podolsky, and Rosen in 1935 [7], which questions whether quantum mechanics,
through the wave function, provides a complete description of reality. The idea
is as follows. Two particles, generically labeled as 1 and 2, with position and mo-
mentum operators X1, P1 for particle 1, and X2, P2 for particle 2, are considered.
Due to the non-commutation of position and momentum operators for each parti-
cle, it is assumed that they are in an eigenstate of X1 −X2 and P1 + P2, which are
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operators that do commute. Then, a measurement of the position of particle 1 is
performed. The result should then determine the position of particle 2. However, if
both particles are sufficiently separated, the principle of locality would imply that
the measurement of the position of 1 should not affect particle 2. Nevertheless,
this experiment shows that, regardless of the separation between 1 and 2, we could
know with certainty the position of particle 2, even if X2 does not commute with
P1 + P2. Thus, it is inferred that quantum mechanics cannot be complete if only
the information provided by the wave function is taken into account. The position
of particle 2 must have been determined before the measurement on 1. This led to
the conclusion that, beyond the wave function, there are other variables that would
determine the outcome of a measurement, the so-called hidden variables.

In 1951, David Bohm proposed another thought experiment to emphasize this
strange behavior, this time considering measurements on the spin of two particles
instead of position and momentum [8, 9]. Again, the conclusion reached was the
same: if locality is assumed, then physical states must have more information than
described by quantum mechanics, and experimental results could be predicted if that
hidden information were available. Alternatively, one could consider the possibility
that quantum mechanics is non-local. This sparked a highly controversial debate
over the next three decades, leading to the formulation of various hidden variable
theories.

2.4.2 Bell Inequalities

A decade later, John Bell revisited Bohm’s experiment, considering different spin
directions for particles 1 and 2 [10]. In 1964, he concluded that any theory of hidden
variables would lead to predictions different from those of quantum mechanics. To
understand Bell’s reasoning, it is illustrative to consider, for example, two spin-1/2
fermions described by the singlet state, |ψ⟩ = (|↑↓⟩ − |↓↑⟩)/

√
2, allowing us to work

with the spin operator, σ̂ = (2/ℏ)Ŝ. Two measurement directions are considered,
defined by the unit vectors a and b. The result of these measurements will be
σ̂a = σ̂ · a and σ̂b = σ̂ · b, and the correlation between these measurements is given
by:

C(a,b) = ⟨ψ| σ̂a ⊗ σ̂b |ψ⟩ = −a · b. (1)

Now, consider a later version (1971) of Bell’s calculation for a two-particle system
where we measure observables Â and B̂ with values A = ±1, B = ±1. Let a and
b be the parameters on which the first and second detector depend, respectively,
and let λ be the hidden variable(s) determining the experimental outcome. It is
assumed that λ is distributed according to a probability distribution characterized
by a density ρ̂(λ) such that

∫︁
dρ̂(λ) = 1 and ρ̂(λ) ≥ 0.

The result of the measurement on the first particle depends only on a and λ, so
A ≡ A(a, λ). Similarly, B ≡ B(b, λ). Thus, the correlation is given by:

C(a,b) =

∫︂
dλρ̂(λ)A(a, λ)B(b, λ). (2)
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Fig. 1. Coplanar diagram of the unit vectors used to illustrate the violation of the Bell
inequality in the case of spin singlet.

If we now consider two possible settings for each detector, (a, a′) and (b,b′), oper-
ating leads to the famous Bell inequality:

|C(a,b)− C(a,b′)|+ |C(a′,b′)− C(a′,b)| ≤ 2. (3)

If quantum mechanics had exclusively local nature, this inequality should be
satisfied. However, it turns out that settings can be chosen such that the inequality
is violated, confirming that quantum mechanics is a non-local theory. For example,
in the case of the spin singlet, coplanar vectors b = a′ can be chosen, forming
angles as shown in the schematic in Fig.1. Thus, by recovering the expression (3)
for the quantum mechanics prediction, it follows that C(a,b) = − cos θ, C(a,b′) =
− cos 2θ, C(a′,b′) = − cos θ, and C(a′,b) = −1. It can then be verified that the
Bell inequality becomes:

h(θ) ≡ |cos θ − cos 2θ|+ |cos θ + 1| ≤ 2. (4)

The inequality is not satisfied for θ ∈ (0, π/2) ∪ (3π/2, 2π), as illustrated in Fig.2.

Fig. 2. Graphical representation corresponding to the violation of the Bell inequality (4).
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After Bell’s discovery, other inequalities were found, such as the CHSH [11], pro-
posed by John Clauser, Michael Horne, Abner Shimony, and Richard Holt in the late
1960s. These are more favorable for experimental testing and overcome some prob-
abilistic objections. In any case, these inequalities show that local hidden variable
theories are ruled out, and quantum mechanics is consistent with all experimental
results to date.

2.4.3 Entanglement

Entanglement is a phenomenon without a classical counterpart, which forces us
to describe all components of a system using a single wave function, without the
possibility of factorization into separate wave functions for each object. This is the
key to the quantum correlation between particle states, regardless of how far apart
they are (non-locality), and is at the heart of the EPR paradox discussed earlier.
For example, consider:

|ψ⟩ = (α0 |↑⟩+α1 |↓⟩)(β0 |↑⟩+β1 |↓⟩) = α0β0 |↑↑⟩+α0β1 |↑↓⟩+α1β0 |↓↑⟩+α1β1 |↓↓⟩ .
(5)

We have a state constructed using a product, which is therefore not entangled. On
the other hand, if we consider a state of the form:

|ϕ⟩ = γ0 |↑↑⟩+ γ1 |↓↓⟩ , (6)

it would be an entangled state because if we assume that it comes from factorization
and equate the coefficients with those of (1), then we arrive at an incompatible
system.

A very relevant example of entangled states is the set of states known as the Bell
Basis. This is a set of four normalized and entangled states that form a basis for a
system with two two-level states (qubits). They are as follows:

Ψ
(±)
12 =

…
1

2
(|↑↓⟩ ± |↓↑⟩); Φ

(±)
12 =

…
1

2
(|↑↑⟩ ± |↓↓⟩). (7)

These states are maximally entangled, as a measurement on the second system, in
the basis |↑⟩2, |↓⟩2, completely determines the state of the first system. They are
widely used in quantum information theory and quantum teleportation protocols,
so they will be referred to frequently.

A tool that allows the identification of entangled states is the so-called entangle-
ment witnesses. These are hermitian operators that define hyperplanes in the space
of density operators, establishing a cut between some separable and all entangled
states. These are observables Ŵ that satisfy Tr(Ŵ ρ̂sep) ≥ 0 for separable states and
Tr(Ŵ ρ̂) < 0 for entangled ones. The closer the cut is to the set of separable states,
the fewer entangled states share the hyperplane with separable ones, and therefore,
the better the "witness" is.

Their usefulness lies in checking whether a given state operator represents an
entangled state, which is guaranteed if Tr(Ŵ ρ̂) < 0. Experimentally, measuring
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the expected value of an observable becomes a practical approach, making them an
effective tool.

2.4.4 Decoherence

Decoherence is a fundamental concept when discussing isolated systems and is the
reason why quantum effects do not manifest at macroscopic scales in the classical
world. While in a classical system, interaction with the environment is merely a
disturbance to be mitigated in order to properly describe the physics, in a quantum
system, coupling with the environment defines the observable physical properties of
the system. There are two noteworthy consequences of the interaction between a
quantum system and its environment [12].

• The irreversible disappearance of coherence, which is the source of phenomena
like interference.

• The dynamic "definition" of the system’s observables. This is often referred
to as superselection induced by the environment, analogous to superselection
rules that restrict allowed superpositions, thereby prohibiting the existence of
certain observables. Thus, it explains that, ultimately, in the classical world,
only certain more robust quantities like position or momentum can be ob-
served.

A somewhat rudimentary but illustrative example is as follows: if one attempts
to prepare a macroscopic object in a non-classical state, a coherent superposition of
two clearly separated positions, incident light, thermal radiation, or even microwave
background radiation would quickly lead to the decoherence of such a state.

Now, consider an entangled state of the form |Ψ⟩ = 1√
2
(|ψ1⟩1 |ϕ1⟩2 ± |ψ2⟩1 |ϕ2⟩2),

where |ψi⟩1, |ϕi⟩2, i = 1, 2, are not necessarily mutually orthogonal. This condition
differs from the Bell states (7), and now entanglement is not necessarily maximal.
The greater the overlap between |ϕ1⟩2 and |ϕ2⟩2, the more challenging it is to dis-
tinguish between these states through a projective measurement on system 2. This,
in turn, complicates discerning whether system 1 is in the state |ψ1⟩1 or |ψ2⟩1. In
the extreme case where |ϕ1⟩2 = |ϕ2⟩2, the state |Ψ⟩ is factorizable, and the systems
lack correlation.

If we now identify system 2 with the environment, it opens a path to describe
decoherence. The information available about the system based on measurements of
the environment increases with entanglement, and thus, with the distinguishability
between the states of the environment. The more information there is, the less indi-
viduality the system retains. Thus, the coherence initially "localized" in the system
becomes "shared" between the system and the environment, forming a composite
system that can no longer be observed at the system level, leading to decoherence.
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2.5 Density Operators

This subsection briefly presents the notion of density operators, which describe
quantum systems in a complete way. It has been included for the sake of complete-
ness but it is not necessary to follow the forthcoming sections.

The density operator or matrix provides a complete description of the knowledge
about a quantum system. It incorporates classical uncertainty associated with each
state |ψi⟩ the system can be in, with probability pi. It is defined as:

ρ̂ ≡
∑︂
i

pi |ψi⟩ ⟨ψi| . (8)

This expression results from expanding the one for the expected value of an
operator Â, ⟨Â⟩ =

∑︁
i pi ⟨ψi| Â |ψi⟩ = Tr(ρ̂Â). It is useful to recall that it is a

self-adjoint and positive semidefinite operator, satisfying Tr(ρ̂) = 1 and also ρ̂ ≥ ρ̂2

(i.e., ⟨φ| ρ̂ |φ⟩ ≥ ⟨φ| ρ̂2 |φ⟩ ∀ |φ⟩). This last property allows distinguishing pure
states, where 8 reduces to ρ̂ = |ψ⟩ ⟨ψ|, from mixed states. In the former case, the
density operator satisfies the idempotence property ρ̂ = ρ̂2, which, in turn, implies
Tr(ρ̂2) = 1. However, for mixed states, ρ̂ ̸= ρ̂2, leading to Tr(ρ̂2) < 1.

Note that expression (8) provides information about the specific weight (pi) of
each state |ψi⟩, but it cannot distinguish between different bases in which a state
may be prepared. For example, if we consider the density operator:

ρ̂ =
3

4
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1| , (9)

we see that the system is in the state |0⟩ with probability 3/4 and in |1⟩ with
probability 1/4. However, we can also consider that the system is prepared on the
basis:

|a⟩ =
…

3

4
|0⟩+

…
1

4
|1⟩ ; |b⟩ =

…
3

4
|0⟩ −

…
1

4
|1⟩ , (10)

with a 1/2 probability in each of these states. Applying the definition (8), we find
that the same matrix (9) is obtained. Through this simple example, we see that
there is no unique set of privileged states.

Now, consider a composite system AB, described by ρ̂AB. Let M̂ be an observable
measured on A, and M̃ be the corresponding observable for the same measurement
on the composite system. Then, M̃ = M̂ ⊗ 1B, and averages over these observables
must be consistent, implying that the density operators must satisfy:

Tr(M̂ρ̂A) = Tr((M̂ ⊗ 1B)ρ̂
AB). (11)

Mathematically, there is a unique solution, given by ρ̂A = TrB(ρ̂
AB), where TrB(ρ̂AB)

is the partial trace, defined as:

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) ≡ |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b2|), (12)

10



where |a1⟩, |a2⟩ are arbitrary states of A and |b1⟩, |b2⟩ are states of B. Also,
Tr(|b1⟩ ⟨b2| = ⟨b2| |b1⟩, and the extension of (12) to an arbitrary operator of AB
follows from imposing linearity on the arguments of TrB. Of course, the definition
is entirely analogous for TrA. It is easy to verify that, for a product state ρ̂ ⊗ σ̂,
the expected result is obtained: ρ̂A = TrB(ρ̂⊗ σ̂) = ρ̂Tr(σ̂) = ρ̂, and symmetrically
ρ̂B = σ̂. Of course, the interest in the above lies in the description of entangled
states. Consider, for example, the Bell state Φ

(+)
12 ≡

»
1
2
(|00⟩+ |11⟩) defined in (7),

its density matrix is:

ρ̂ = |Ψ(+)
12 ⟩ ⟨Ψ(+)

12 | = |00⟩ ⟨00|+ |11⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨11|
2

. (13)

The reduced density operator for the first qubit is:

ρ̂1 = Tr2(ρ̂) =
Tr2(|00⟩ ⟨00|) + Tr2(|11⟩ ⟨00|) + Tr2(|00⟩ ⟨11|) + Tr2(|11⟩ ⟨11|)

2
(14)

=
|0⟩ ⟨0|+ |1⟩ ⟨1|

2
=

1

2
. (15)

2.6 Quantum Information Encoding

This is a relevant section, which introduces the quantum encoding protocols that
will be implemented in the next sections.

2.6.1 Qubits and Bloch Representation

A qubit is simply a superposition of two generic quantum states in a two-level
system, which can represent, for example, two spin states. We can write the states
using the so-called Hopf coordinates,

|ψ⟩ = cos

Å
θ

2

ã
|0⟩+ eiφ sin

Å
θ

2

ã
|1⟩ , (16)

where φ ∈ [0, 2π), θ ∈ [0, π], ultimately coinciding with a point on the unit sphere
described in spherical coordinates (sin θ cosφ, sin θ sinφ, cos θ) := a. This repre-
sentation can be mapped onto a unit-radius sphere, the Bloch sphere (see Fig. 3).
The relative phase φ encodes information that allows us to determine the results of
interference measurements between states |0⟩ and |1⟩.

However, not only the surface has physical meaning. If we consider a point in
the interior, it cannot represent a pure state, as it is not normalized, but it does
represent mixed states. Indeed, first consider the density matrix of a pure state, in
the |0⟩ → (1, 0)t, |1⟩ → (0, 1)t representation. It results in:

ρ̂|ψ⟩ = |ψ⟩ ⟨ψ| =
Å

cos θ
2

eiφ sin θ
2

ã
·(cos θ

2
e−iφ sin

θ

2
) =

1

2

Å
1 + cos θ e−iφ sin θ
eiφ sin θ 1− cos θ

ã
=

1

2
(1+a·σ̂)

(17)
Generalizing this for another vector b = (bx, by, bz), with ∥b∥ ≤ 1, the matrix is a
density matrix that necessarily corresponds to a mixed state when ∥b∥ < 1:
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Fig. 3. Representation on the Bloch sphere of a generic qubit described by the expression
(16), where the poles denote well-defined orthogonal states in the considered phys-
ical quantity (spin, polarization, etc.).

ρ̂(b) =
1

2
(1+ b · σ̂) (18)

It is easy to verify that ρ̂ = ρ̂† and that Tr(ρ̂) = 1, and the condition ρ̂ ≥ 0 follows
from calculating the eigenvalues, which are λ± = 1± ∥b∥/2 ≥ 0.

2.6.2 Qumodes

For the sake of completeness, another way of encoding information is worth men-
tioning: the so-called qumodes or quantum harmonic oscillators. In this case, the
Hilbert space is of infinite dimension, and observables have a discrete, countable, or
continuous spectrum. An example of the latter could be the amplitude or phase of
the oscillator.

A pure state in position basis is written in the usual form |ψ⟩ =
∫︁
dxψ(x) |x⟩,

and an arbitrary mixed state is given by:

ρ̂ =

∫︂
dsdtf(s, t)X(s)Z(t). (19)

where f(s, t) is a certain complex function, and X(s) = e−2isp̂, Z(t) = e+2itx̂ are the
so-called Weyl-Heisenberg operators (x̂ and p̂ are the usual position and momentum
operators of a harmonic oscillator).

Bell states for a system of two qumodes, which are maximally entangled, are
given [13] by:

|Ψ(u, v)⟩ = 1√
π

∫︂
dxe2ixv |x⟩ |x− u⟩ . (20)

2.6.3 Quantum Logic Gates

These are unitary operators that allow the manipulation of qubits in quantum
circuits. The most used ones [14] are:
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• Pauli Gates (X, Y, Z). These are Pauli matrices, and they apply a rotation
of π radians around the corresponding axis on the Bloch sphere. The X gate
(also known as NOT) exchanges |0⟩ and |1⟩.

X =

Å
0 1
1 0

ã
Y =

Å
0 −i
i 0

ã
Z =

Å
1 0
0 −1

ã
(21)

The X gate (also known as NOT) exchanges |0⟩ and |1⟩. The generalized
rotations of any angle θ around any axis (x, y, z respectively) of the Bloch
sphere are given by:

RX(θ) =

Å
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

ã
RY (θ) =

Å
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

ã
RZ =

Å
1 0
0 eiθ

ã
(22)

• Hadamard Gate (H). It maps eigenstates of Sz to those of Sx, |0⟩ → (|0⟩+
|1⟩)/

√
2, |1⟩ → (|0⟩ − |1⟩)/

√
2. Matrix form is:

H =
1√
2

Å
1 1
1 −1

ã
(23)

It is useful in quantum computers, which do not distinguish between Sx eigen-
states, so this hidden information can be recovered thanks to this gate.

• Control Gates. They act on at least two qubits, one of which serves as
control. If U = {uij}i,j=0,1 is a gate on the second qubit, then it is called a
CU gate, which can be CNOT, CY, or CZ, if U is one of the Pauli operators.

CU =

Ü
1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

ê
−→ CNOT =

Ü
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ê
(24)

Note that the gate U acts on the second qubit only if the first (control) is |1⟩.

• SWAP Gate: Swaps two qubits. If we swap |10⟩ and |01⟩ in the |00⟩ , |10⟩ , |01⟩ , |11⟩
basis,

SWAP =

Ü
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ê
(25)

Similarly, qumodes can be manipulated using their own gates. Among those for a
single mode, we find [13]:

• Weyl-Heisenberg (WH) Displacement Gate:

Z(s) |p⟩ = |p+ s⟩ , Z(s) |x⟩ = e2isx |x⟩ . (26)
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• General Phase Gate:
D = exp[if̂(x)]. (27)

• Fourier Gate, analogous to Hadamard for qumodes:

F |x⟩pos =
∫︂
dγe2ixγ |γ⟩pos = |x⟩mom . (28)

Regarding two-mode gates, it is worth mentioning the CZ gate = exp(2ix̂⊗ x̂).

CZ |x⟩pos |p⟩mom = |x⟩pos |p+ x⟩mom . (29)

2.7 Quantum Error Correction

This section has been included for the sake of completeness, since quantum error
correction is a potential tool for tackling the loss of information during transmission.

The practical implementation of information transmission protocols must address
the presence of noise. Quantum error correction techniques focus precisely on pro-
tecting and preserving this information to increase the fidelity of the transmission.
The central idea is to encode the states in a way that is resistant to noise, and then
decode them when it is appropriate to recover the original state. It is assumed that
both encoding and decoding can be done without error, presenting a suitable scheme
for transmitting quantum states through a noisy channel, but with nearly noise-free
quantum computers at both ends of the channel.

In classical cases, a simple idea for encoding a bit is to replace it with several
copies, for example, three copies of itself. Assuming that the probability p of noise
swapping bit 0 and 1, and vice versa, is low (specifically if p < 1/2), a more reliable
decoding would involve considering the bit that the majority of copies agree on, in
this case, two or three. This is known as majority decoding. Another quite natural
idea is to send the message repeatedly. In any case, the underlying notion is to add
enough redundancy to the message to recover it after the effects of noise. A priori,
translating this to the quantum context faces several challenges:

• The no-cloning theorem prevents duplicating quantum information, and even
if it were possible, measuring and comparing the three states at the output of
the channel would be unfeasible.

• Errors on a qubit are continuous, and determining exactly which errors have
occurred for correction requires precision beyond reach.

• Measurements destroy information, making it impossible to observe the chan-
nel output similarly to how it was done in the classical context.

However, it is possible to overcome these difficulties. Consider a simplified model
corresponding to a channel that leaves the qubits intact with probability 1− p and
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flips them (i.e., applies a Pauli X gate) with probability p. This type of channel is
known as a bit flip channel. Suppose we start with an initial state a |0⟩ + b |1⟩ and
encode it as:

|0⟩ −→ |000⟩ |1⟩ −→ |111⟩ (30)

resulting in the encoded state a |000⟩+ b |111⟩. This can be done using two consec-
utive CNOT gates, which will perform a flip on only one of the terms in the initial
product state resulting from adding each qubit. Each of the three qubits is passed
through an independent copy of the channel. Consider, analogous to the classical
case, that one or none of the qubits are flipped, so the majority remain intact. Then,
apply the following error correction procedure:

1. Error Detection: A measurement is made to determine if an error has oc-
curred and, if so, which one. There are four possibilities or syndromes, given
by the operators:

P0 ≡ |000⟩ ⟨000|+ |111⟩ ⟨111|
P1 ≡ |100⟩ ⟨100|+ |011⟩ ⟨011|
P2 ≡ |010⟩ ⟨010|+ |101⟩ ⟨101|
P3 ≡ |001⟩ ⟨001|+ |110⟩ ⟨110|

These correspond to the cases where no error occurs or the first, second,
or third qubit is flipped, respectively. If, for example (the other cases are
analogous), the second qubit was flipped, then the resulting state would be
|ψ⟩ ≡ a |010⟩ + b |101⟩, and it would be the case that ⟨ψ|Pi |ψ⟩ = δi2, with
δi2 being the Kronecker delta. The syndrome only provides information about
which error occurred and leaves the state intact.

2. State Recovery: It is sufficient to apply the corresponding quantum gate to
reverse the effect of noise. If the syndrome is 0, there is nothing to do, and if
it is 1, 2, or 3, the respective qubit must be flipped, recovering the state with
perfect precision.

It is worth noting the initial assumption of the maximum inversion of a qubit,
which occurs with a probability of (1− p)3 + 3p(1− p)2 = 1− (3p2 − 2p3), obtained
immediately using the binomial distribution. Like in the classical case, the proba-
bility of not correcting the error is 3p2 − 2p3, so the encoding and decoding process
again improves results when p < 1/2.

Despite being illustrative, the previous case is a simplification of a much more
complex entity. Errors can be different and even have different consequences in
different states. In the previous example, a state of the form |φ⟩ = (|0⟩ + |1⟩)/

√
2

would have been transmitted without any perception of error, being invariant under
X.

A deeper analysis would quantify the fidelity of state transmission in each en-
coding protocol, which in simple models like the previous one would depend on p.
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In this sense, a more sophisticated method, allowing the preservation of a qubit
against errors generated by bit or phase flips, is the so-called Shor Code (see [15]
for a detailed description).

2.8 Introduction to Qiskit

This section presents a simple chunk of code that implements a simple quantum
circuit, employing library Qiskit from Python, which is the one that will be used
for quantum simulations throughout this work. It is an accessory section that aims
to present a simple example to contextualize the concepts discussed in the preceding
subsections.

The code displayed at the end of this subsection implements a simple 2-qubit
quantum circuit, divided in the following steps.

1. Create the two qubits, as well as the corresponding classical bits, each of which
will collect the measurement from one of the qubits. Note that the qubit
corresponds to a 2-dimensional system, but the measurement will collapse its
state onto either |0⟩ or |1⟩, so the correspondence between qubits and bits is
one-to-one.

2. Initialize the circuit. Originally, both qubits are in state |0⟩. Then, a Hadamard
gate is applied to the first qubit, followed by a CNOT gate that affects the
whole system. Once both gates have been applied, Qiskit allows for returning
the unitary operator, which describes the concatenation of the previous ones.
Let us describe in detail how it would be computed manually and compare the
theoretical and Qiskit results.

The operator describing a Hadamard gate for the first qubit is represented by
the tensor product of the Hadamard operator H in the first subspace times
the identity operator 1 in the second one.

H ⊗ 1 =
1√
2

Å
1 1
1 −1

ã
⊗
Å
1 0
0 1

ã
=

1√
2

Ü
1 ·
Å
1 0
0 1

ã
1 ·
Å
1 0
0 1

ã
1 ·
Å
1 0
0 1

ã
−1 ·
Å
1 0
0 1

ãê
=

1√
2

Ü
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

ê (31)

The CNOT gate is given by (24), and thus the unitary operator defining the
circuit is given by:
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U =
1√
2

Ü
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ê
·

Ü
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

ê
=

1√
2

Ü
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

ê
.

(32)

The operator returned by Qiskit reads:Ü
0.7071 0.7071 0 0

0 0 0.7071 −0.7071
0 0 0.7071 0.7071

0.7071 −0.7071 0 0

ê
.

The mismatch is fixed by swapping the second and third row and column.
This is due to the fact that Qiskit orders qubits in the inverse way as it is
usually done in theory. Thus, qubit q in a circuit with n qubits is accessed
through the index n− q−1. In the previous example, this swaps the rows and
columns where the first and second qubit do not coincide, that is, the second
and third row (corresponding to |01⟩ and |10⟩ in the usual notation) and the
second and third column (⟨01| and ⟨10| in the usual notation).

3. Implement a measurement of each of the qubits separately. Given that a
single measurement provides no useful information to perform statistics, a
simulator is employed so that the previous measurements can be carried out
a significant number of times, in this case, 100. Approximately one-half of
the counts corresponds to |00⟩ while the remaining half corresponds to |11⟩.
This was the result one could predict from theory, given that initially, the
system was in state |00⟩, whose associated vector is (1, 0, 0, 0)t. Thus, the
resulting state, prior to the measurements, is given by the first column of the
unitary operator, that is, |Ψfinal⟩ = 1√

2
(|00⟩+ |11⟩) = Φ

(+)
12 . The final state

is one of the Bell states. Once we have measured it 100 times, we obtain a
count dictionary (which given the random nature of the quantum phenomena,
may vary in each execution), which in this case reads ′00′ : 49,′ 11′ : 51. As
one could have expected from the theoretical considerations, approximately
half of the observations correspond to |00⟩, while the other (approximate) half
correspond to |11⟩. This accounts for the need to reproduce an experiment a
certain amount of times in order to reach valid conclusions.

1 import qiskit as qk
2 # Creating Qubits
3 q = qk.QuantumRegister (2)
4 # Creating Classical Bits
5 c = qk.ClassicalRegister (2)
6 # Define and print an empty circuit.
7 # So far we only have an empty quantum circuit with 2 qubits (q0_0 and q0_1)
8 # and 2 classical registers (c0_0 and c0_1).
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9 circuit = qk.QuantumCircuit(q, c)
10 print(circuit)
11 # Initialize empty circuit
12 circuit = qk.QuantumCircuit(q, c)
13 # Hadamard Gate on the first Qubit
14 circuit.h(q[0])
15 # CNOT Gate on the first and second Qubits
16 circuit.cx(q[0], q[1])
17 from qiskit.providers.aer import AerSimulator
18 # We copy the circuit because otherwise , the unitary operator does not allow
19 # for later measurement simulation.
20 circuit_copy = circuit.copy()
21 sim_u = AerSimulator(method = ’unitary ’)
22 circuit_copy.save_unitary ()
23 result = qk.execute(circuit_copy , sim_u).result ()
24 U = result.get_unitary(decimals = 4)
25 print(U)
26 # Measuring the Qubits.
27 circuit.measure(q, c)
28 print (circuit)
29 # We run the circuit on the quantum simulator.
30 # Using Qiskit Aer’s Qasm Simulator: define where we want to execute the
31 # simulation.
32 simulator = qk.BasicAer.get_backend(’qasm_simulator ’)
33 # Simulating the circuit using the simulator to obtain the result.
34 job = qk.execute(circuit , simulator , shots =100)
35 result = job.result ()
36 # We obtain the aggregated binary results from the circuit.
37 counts = result.get_counts(circuit)
38 print (counts)
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3 SVM

3.1 Theory revision

Support vector machines (SVMs) are supervised learning maximum-margin mod-
els with associated learning algorithms that analyze data for classification and re-
gression analysis, which were developed in the last decade of the 20th century by
Cortes and Vapnik [16], [17]. Let us revise the theoretical background behind SVM
[18].

3.1.1 Linearly Separable Binary Classification

Suppose we have L training points, where each input xi has D attributes and
belongs to one of two classes yi = −1 or yi = 1, i.e the training data is of the form:

{xi, yi} xi ∈ RD, yi ∈ {−1, 1}, ∀i = 1, . . . , L.

We shall denote the components of xi as xi1, . . . , xiD, or simply x1, . . . , xD when
the index i of the instance is irrelevant. Let us assume that data is linearly separable,
so that a hyperplane in RD can be drawn which separates the instances of the two
classes. This hyperplane can be described by w · x+ b = 0 (w ∈ RD, b ∈ R), where
w is normal to the hyperplane and |b|/||w|| is the distance from the hyperplane to
the origin.

Support vectors are the samples closest to the separating hyperplane and the aim
of Support Vector Machines (SVM) is to orientate this hyperplane in such a way as
to be as far as possible from the closest members of both classes. Then, the aim is
to select the variables w and b such that:

xi · w + b ≥ +1 for yi = +1

xi · w + b ≤ −1 for yi = −1
⇐⇒ yi(xi · w + b)− 1 ≥ 0, ∀i ∈ {1, . . . , L}.

(33)

The support vectors lie then on the two planes H± ≡ xi · w + b = ±1, the
distance between them being 1/||w||. Since the aim is precisely to maximize this
margin, one needs to minimize ||w||, or equivalently minimize 1

2
||w||2. The Quadratic

Programming (QP) optimization problem then reads:

Minimize
1

2
||w||2 s.t yi(xi · w + b)− 1 ≥ 0 ∀i ∈ {1, . . . , L}. (34)

Problem (34) can be solved using Lagrange multipliers α, αi ≥ 0 ∀i ∈ {1, . . . , L}.
One arrives then at the function:
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LP ≡ 1

2
||w||2 −α[yi(xi · w + b)− 1] =

=
1

2
||w||2 −

L∑︂
i=1

αiyi(xi · w + b) +
L∑︂
i=1

αi.
(35)

In order to find the w and b which minimize, and α which maximizes (35) (whilst
keeping αi ≥ 0 ∀i), one differentiates LP with respect to w and b and sets the
derivatives to zero:

∂LP
∂w

= 0 −→ w =
L∑︂
i=1

αiyixi (36)

∂LP
∂b

= 0 −→
L∑︂
i=1

αiyi = 0 (37)

Substituting (36) and (37) into (35) one ends up in what is called the dual form
of LP , which one needs to maximize:

Maximize LD ≡
L∑︂
i=1

αi −
1

2
αTHα s.t αi ≥ 0, ∀i ∈ {1, . . . , L},

L∑︂
i=1

αiyi = 0,

(38)

where Hij = yiyjxi · xj. One can obtain α for (38) with a QP solver, and then use
(36) to retrieve w. Regarding b, any data point satisfying (37) that is a support
vector xs will have the form ys(xs ·w+ b) = 1. Substituting in (36) and multiplying
both sides by ys, recalling that y2s = 1, it follows that:

b = ys −
∑︂
m∈S

αmymxm · xs, (39)

where S denotes the set of indices of the support vectors, i.e., it corresponds to the
indices i ∈ {1, . . . , L} such that αi > 0. However, instead of taking an arbitrary
support vector xs, it is more appropriate to take an average over all support vectors
in S. Then,

b =
1

|S|
∑︂
s∈S

(︄
ys −

∑︂
m∈S

αmymxm · xs
)︄
. (40)
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3.1.2 Binary Classification for Data that is not Fully Linearly Separable

In order to extend the SVM methodology to deal with data that is not fully
linearly separable, we relax the constraints (33) slightly to allow for misclassified
points. This is done by introducing a positive slack variable ξi, i ∈ {1, . . . , L}.

xi · w + b ≥ +1− ξi for yi = +1

xi · w + b ≤ −1 + ξi for yi = −1
⇐⇒ yi(xi · w + b)− 1 + ξi ≥ 0 ∀i ∈ {1, . . . , L},

(41)

where ξi ≥ 0 ∀i ∈ {1, . . . , L}. Then, a suitable adaptation of (34) reads:

Minimize
1

2
||w||2+C

L∑︂
i=1

ξi s.t yi(xi ·w+ b)− 1+ ξi ≥ 0 ∀i ∈ {1, . . . , L}, (42)

where the constant C controls the trade-off between the slack variable penalty and
the size of the margin. The next step is then to reformulate (35), which can be done
as follows:

LP =
1

2
||w||2 + C

L∑︂
i=1

ξi −
L∑︂
i=1

αi[yi(xi · w + b)− 1 + ξi]−
L∑︂
i=1

µiξi, (43)

where µi ≥ 0 ∀i ∈ {1, . . . , L} denotes the Lagrange multipliers associated to the
restriction ξi ≥ 0 ∀i ∈ {1, . . . , L}. The aim is now to minimize LP in (43) with
respect to w, b, and ξi, and maximize it with respect to α (where αi, µi ≥ 0 ∀i ∈
{1, . . . , L}). Setting the corresponding derivatives equal to zero renders (36), (37)
and also:

∂LP
∂ξi

= 0 −→ C = αi + µi (44)

Substituting (36), (37) and (44) in (43), LD has the same form as (38) before.
However (44) together with µi ≥ 0 ∀i 8i, implies that α ≤ C. We therefore need to
find:

max
α

[︄
L∑︂
i=1

αi −
1

2
αTHα

]︄
s.t 0 ≤ αi ≤ C ∀i ∈ {1, . . . , L} and

L∑︂
i=1

αiyi = 0

(45)
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Parameter b is then computed analogously to (40), although in this case, the
set of support vectors used to calculate it is determined by the indices i such that
0 < αi ≤ C.

3.1.3 Kernel functions

When applying SVM to linearly separable data, a matrix H was defined (see eq
(38)) from the dot product of the input variables:

Hij = yiyjxi · xj ≡ yiyjk(xi,xj). (46)

The function k(xi,xj) = (xi)T ·xj is an example of a family called kernel functions
[19], which is known as linear kernel.

The set of kernel functions is composed of variants of the previous function in
the sense that they are all based on calculating inner products of two vectors. This
means that if the functions can be recast into a higher-dimensional space by some
potentially non-linear feature mapping function ϕ(x), only inner products of the
mapped inputs in the feature space need to be determined, without the explicit
need to calculate function ϕ.

The reason why these kernel functions turn out to be useful is that there are
certain classification problems that are not linearly separable in the space of the
inputs xi, but which could be separable in a higher dimensionality feature space
given a suitable mapping x → ϕ(x). Some of the most recurring kernel functions
are:

• Gaussian radial basis kernel function.

k(xi,xj) = e
−
Å

||xi−xj ||2

2σ2

ã
. (47)

• Polynomial kernel function.

k(xi,xj) = (xi · xj + a)b (48)

.

If a = 0, b = 1 one retrieves the linear kernel.

• Sigmoidal kernel function.

k(xi,xj) = tanh
(︁
axi · xj − b

)︁
. (49)

These are the kernel functions that will be used throughout this work. Of course,
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kernel functions are an extensive family, whose characterization is given by Mer-
cer’s theorem, based on certain properties such as symmetry (see [20] for a detailed
formulation).

3.1.4 Multi-class SVM

Sections 3.1.1, 3.1.2 and 3.1.3 provide the tools to implement binary SVM classifi-
cation. The next step is to extend this to the classification scenario where instances
are to be classified into more than two classes, i.e., the multi-class frame. Two
of the earliest and most recurrent approaches are the so-called one-against-all and
one-against-one [21].

1. One-against-all approach: it constructs K SVM models where K is the
number of classes. The ith SVM is trained with all of the examples in the
ith class with positive labels, while negative labels are assigned to all other
examples. Then, K problems like (42) are solved, one for each class. Then,
one ends up with K hyperplane configurations given by wm and bm, where
m ∈ {1, . . . , K}. One finally classifies each instance following the criterion:

class of xi = arg max
m=1,...,K

wm · xi + bm, (50)

or

class of xi = arg max
m=1,...,K

wm · ϕ
(︁
xi
)︁
+ bm (51)

if one has made use of a feature map in order to apply the so-called kernel
trick (i.e., use kernel functions).

2. One-against-one approach: This method constructsK ·(K−1)/2 classifiers,
where each one is trained on data from two classes. For training data from the
nth and the mth classes, one solves the binary classification problem given by
(42). There are different methods for doing future testing after all classifiers
are constructed. One of the most efficient [21] consists of considering the sign
of wnm ·xi+ bnm, where n,m ∈ {1, . . . , K}, K denoting the number of classes.
If this sign classifies the ith instance into the mth class, then the vote for the
mth class is increased in one unit. Finally, the predicted class for xi is the one
with the most votes. In case two classes have identical votes, one simply selects
the one with the smaller index, despite this not being a rigorous criterion.

There are more alternatives, although in this work we shall stick to the afore-
mentioned ones, which are the ones applied in the svm and svm.SVC functionalities
of the sklearn Python library. However, some of these alternatives, discussed in
[21], succeed in implementing multi-class classification by solving only one single
optimization problem, instead of K or K · (K − 1)/2 ones.
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3.1.5 Multi-label SVM

Finally, one can also seek strategies to tackle classification problems where more
than one label can be assigned to each instance, which are known as multi-label clas-
sification problems. Existing strategies to approach these problems can be roughly
categorized into three families, based on the order of correlations between labels
that the learning techniques have considered [22]:

1. First-order strategy: The task of multi-label learning is tackled in a label-
by-label style, therefore ignoring the co-existence of the other labels, for in-
stance by decomposing the multi-label learning problem into a number of
independent binary classification problems (one per label). This can be done
by binarizing the response variable so that, for each individual problem, which
corresponds to one particular label, each instance is either assigned to this
label or not. This methodology is known as binary relevance and counts on
the advantage that it can be parallelized in the number of labels.

The main asset of first-order strategies lies in its conceptual simplicity and
high efficiency. On the other hand, the effectiveness of the resulting approaches
might be suboptimal due to the ignorance of label correlations.

2. Second-order strategy: The task of multi-label learning is approached by
considering pairwise relations between labels, such as the ranking between the
relevant label and irrelevant label, or interaction between any pair of labels.
As label correlations are exploited to some extent by second-order strategy,
the resulting approaches can achieve a suitable generalization performance.
However, there are certain real-world applications where label correlations go
beyond the second-order assumption.

3. High-order strategy: one considers high-order relations among labels such
as imposing all other labels’ influences on each label, or addressing connections
among random subsets of labels. Apparently high-order strategy has stronger
correlation-modeling capabilities than first-order and second-order strategies,
while on the other hand, it is computationally more demanding and less scal-
able.

An example of these strategies is the random k-label sets algorithm, which
transforms the multi-label learning problem into an ensemble of multi-class
classification problems, where each component learner in the ensemble targets
a random subset of labels of the label space upon which a multi-class classifier
is induced. In the training phase, the algorithm converts the original multi-
label training set into a multi-class training set by treating every distinct label
set appearing in the training set as a new class. One of the main drawbacks of
this method is incompleteness since it is confined to predicting label sets that
appear in the training set. In addition, when there are many label combina-
tions, complexity scales and there are fewer training examples per constructed
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class, leading to inefficiency. However, it could be a suitable choice when there
number of label combinations is reduced compared to the number of training
instances.

3.1.6 Quantum SVM implementation

Quantum SVMs (QSVMs) are particular cases of SVMs that rely on the kernel
trick. When moving data to a higher dimensional space, or feature space, in order to
seek a linear separation, so far, we have only considered the Euclidean space. In the
quantum frame, one uses as feature space a certain space of quantum states (Hilbert
space). This idea inspired some works, such as [23], to try to use quantum circuits
in order to compute kernels and, hopefully, obtain some advantage over classical
computers by working in a sophisticated feature space.

Then, QSVMs follow the classical methodology described in the previous sections
except for the computation of the kernel function, which requires a quantum com-
puter to take two input vectors, map them onto a feature map, compute their inner
product, and return it [24].

Given a feature map φ, for each input x, we shall have a circuit Φ(x) such that
the output of the feature map will be the quantum state φ(x) = Φ(x) |0⟩ (quantum
circuits are usually initialized on state |0⟩). The kernel function will then be given
by:

k(a,b) = |⟨φ(a)|φ(b)⟩|2 =
⃓⃓
⟨0|Φ†(a)Φ(b) |0⟩

⃓⃓2
. (52)

This computation is trivial for a quantum computer since it describes the prob-
ability of measuring all zeros after preparing the state Φ†(a)Φ(b) |0⟩, given that the
computational basis is orthonormal. It is also relevant to note that, since quantum
circuits are always represented by unitary operators, then Φ† is simply the inverse of
Φ. Furthermore, since Φ is given by a sequence of quantum gates, Φ† is retrieved by
applying these gates from right to left and inverting them. Finally, these quantum
kernels fulfill the conditions required to qualify as kernel functions [25].

Regarding feature maps, these are often defined by a parametrized circuit Φ(x)
that depends on the original data and thus can be used to prepare a state that
depends on it. Two of the main procedures to encode data are:

• Angle encoding: when used on an n-qubit circuit, this feature map can take
up to n numerical inputs x1, . . . , xn. The action of its circuit consists in the
application of a rotation gate on each qubit j parametrized by the value xj. In
this case, we are using the xj values as angles in the rotations, which accounts
for the name of the encoding.

It is important to recall that circuits usually take |0⟩ as the initial state, hence
applying an operator like a Pauli Z gate (see eq.22) directly has no effect. This
is the reason why, when Z gates are used, it is customary to precede them by
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Hadamard gates acting on each qubit.

Input variables for angle encoding should also be normalized between 0 and
4π (not 2π because in eq.16 angles are divided by 2), so as to cover the whole
feature space, even if this identifies the two extrema of the data under the
action of the feature map.

• Amplitude encoding: it can take 2n inputs when implemented on an n-qubit
circuit, which allows for handling datasets with a large number of variables.
Given an input (x0, . . . , x2n−1), the (normalized) state is:

|φ(a)⟩ = 1√︁∑︁
k x

2
k

2n−1∑︂
k=0

xk |k⟩ (53)

Note that input |0⟩ is not supported by this encoding. This encoding is,
however, complex to achieve in terms of elementary quantum gates. A detailed
discussion of this matter can be found in [26].

A widespread example of feature map is Qiskit’s ZZFeatureMap, which can take
n inputs on n qubits (resembling angle encoding) and builds a parametrized circuit
as follows [25]:

1. Apply a Hadamard gate on each qu-bit.

2. Apply on each qubit j a rotation RZ(2xj) (defined in Section 2.6.3).

3. For each pair of elements {j, k}, j, k ∈ {1, . . . ,m} and j < k, do:

(a) Apply a CNOT gate targetting qubit k controlled by qu-bit j.

(b) Apply a rotation RZ (2(π − xj)(π − xk)).

(c) Repeat step 3.a.

Figure 4 represents an example of a ZZFeatureMap feature map on three qubits.
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Fig. 4. Representation of a ZZFeatureMap feature map on three qubits with inputs x1, x2
and x3.

Of course, there are other options, such as Qiskit’s ZFeatureMap or the more
general PauliFeatureMap. In Qiskit, when calling the QSVC functionality, one needs
to specify a kernel, which depends on a feature map. We shall consider two such ker-
nels, FidelityQuantumKernel and FidelityStatevectorKernel, which compute
the same inner product | ⟨φ(a)|φ(b)⟩ |, but there are efficiency differences between
them. It is also relevant to highlight the fact that all computational resources re-
quired to simulate quantum circuits, as well as computations on classical software,
significantly increase computational time with respect to a quantum computer. In
the latter, the number of operations is exponential with respect to the number of
qubits, so memory limitations would appear on classical software for significantly
smaller problems than in the quantum computing scenario. On the other hand,
the construction of quantum computers has to face the major setback of noise and
decoherence, which can be approached, among other techniques, through quantum
error correction protocols (see Section 2.7).

3.2 Results

This section is devoted to contrasting the performance and computational ef-
ficiency of binary, multi-class and multi-label SVM algorithms that rely both on
classical and quantum kernels. This comparison will be performed on two binary
datasets, a multi-class and a multi-label one. More specifically, for the binary and
multi-class scenarios, the comparison shall encompass linear SVM, gaussian kernel
SVM and Quantum SVM. The latter is subdivided into the four combinations that
span from considering the Qiskit feature maps ZFeatureMap and ZZFeatureMap
together with kernels FidelityStatevectorKernel and FidelityQuantumKernel.
Since the main goal is to contrast classical versus quantum algorithms, each of
the aforementioned quantum configurations is individually compared to its classi-
cal counterparts in separate tables. Regarding multi-label SVM, we shall make use
of the conclusions drawn from the previous scenarios to apply the most suitable
quantum configuration in terms of time efficiency.

Each table summarizes the computational time and performance scores (in this
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case, global accuracy and F1 score) of each algorithm for each combination of prin-
cipal components, with training and testing observations. The aim is to create a
significantly wide scenario variability so that conclusions on the suitability or opti-
mality of a certain method for a given scenario can be inferred.

Regarding the F1 score, it is taken in the weighted mode, that is, the metrics for
each label are computed, and then their average weighted by support (the number
of true instances for each label) is calculated. This accounts for label imbalance,
although in certain cases there is none, whenever both training and testing sets are
taken with an equal cardinality, as happens in 3.2.2. This weighted score need not
be between precision and recall.

For the sake of reproducibility, it is relevant to highlight that all the computations
hereinafter (including Section 4) have been performed using a MSI laptop with 13th
Gen Intel(R) Core(TM) i7-13700H 2.40 GHz processor and 32,0 GB RAM in 64 bits
Windows 11 Pro.

3.2.1 SVM for binary classification

The dataset considered for this scenario is the Wisconsin breast cancer one [27]
that belongs to the Scikit-Learn dataset library. It consists of 569 instances of
30 continuous variables, which include cell nuclei measures such as radius, perime-
ter, compactness, smoothness, concave points, texture, etc. The (binary) response
variable indicates whether the tumor is benign (357 instances) or malignant (212)
instances. The results drawn from applying the aforementioned SVM variants to
the previously mentioned scenarios are listed in tables 1, 2, 3, and 4. Since there
is no sheer imbalance in this dataset, both training and testing sets keep the global
response variable proportion.

Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2
30 15 0.001 s 93.3 % 0.935 0.001 s 86.7 % 0.870 0.1 s 80.0 % 0.805
90 45 0.000 s 93.3 % 0.933 0.001 s 93.3 % 0.933 0.5 s 95.6 % 0.955
180 90 0.002 s 92.2 % 0.922 0.001 s 93.3 % 0.933 1.0 s 93.3 % 0.933

5
30 15 0.001 s 93.3 % 0.935 0.001 s 93.3 % 0.935 0.3 s 86.7 % 0.870
90 45 0.001 s 95.6 % 0.955 0.001 s 95.6 % 0.955 0.8 s 97.8 % 0.978
180 90 0.003 s 93.3 % 0.933 0.001 s 95.6 % 0.956 1.9 s 94.4 % 0.945

10
30 15 0.003 s 93.3 % 0.935 0.001 s 100 % 1 0.6 s 80.0 % 0.803
90 45 0.003 s 97.8 % 0.978 0.000 s 95.5 % 0.955 1.8 s 97.8 % 0.978
180 90 0.003 s 95.6 % 0.956 0.002 s 96.7 % 0.967 11.1 s 93.3 % 0.933

20
30 15 0.004 s 100 % 1 0.001 s 93.3 % 0.931 226.3 s 86.7 % 0.867
90 45 0.003 s 97.8 % 0.978 0.002 s 95.6 % 0.955 1609.5 s 95.6 % 0.955
180 90 0.001 s 94.4 % 0.945 0.001 s 94.4 % 0.945 (3601.8 s) (91.1 %) (0.910)

Table 1: Linear SVM, Gaussian SVM and Quantum SVM results using ZFeatureMap
feature map and FidelityStatevectorKernel kernel for the breast cancer dataset.
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Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2
30 15 0.001 s 93.3 % 0.935 0.001 s 86.7 % 0.870 0.3 s 46.7 % 0.467
90 45 0.000 s 93.3 % 0.933 0.001 s 93.3 % 0.933 1.3 s 82.2 % 0.808
180 90 0.002 s 92.2 % 0.922 0.001 s 93.3 % 0.933 3.1 s 87.8 % 0.879

5
30 15 0.001 s 93.3 % 0.935 0.001 s 93.3 % 0.935 3.0 s 66.7 % 0.800
90 45 0.001 s 95.6 % 0.955 0.001 s 95.6 % 0.955 9.5 s 75.6 % 0.704
180 90 0.003 s 93.3 % 0.933 0.001 s 95.6 % 0.956 17.7 s 80.0 % 0.775

10
30 15 0.003 s 93.3 % 0.935 0.001 s 100 % 1 13.8 s 66.7 % 0.800
90 45 0.003 s 97.8 % 0.978 0.000 s 95.5 % 0.955 40.8 s 66.7 % 0.800
180 90 0.003 s 95.6 % 0.956 0.002 s 96.7 % 0.967 181.4 s 66.7 % 0.800

20
30 15 0.004 s 100 % 1 0.001 s 93.3 % 0.931 2750.9 s 66.7 % 0.800
90 45 0.003 s 97.8 % 0.978 0.002 s 95.6 % 0.955 (10885.9 s) (66.7 %) (0.800)
180 90 0.001 s 94.4 % 0.945 0.001 s 94.4 % 0.945 (19902.2 s) (66.7 %) (0.800)

Table 2: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityStatevectorKernel kernel for the breast
cancer dataset.

Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2
30 15 0.001 s 93.3 % 0.935 0.001 s 86.7 % 0.870 2.3 s 80.0 % 0.805
90 45 0.000 s 93.3 % 0.933 0.001 s 93.3 % 0.933 18.8 s 95.6 % 0.955
180 90 0.002 s 92.2 % 0.922 0.001 s 93.3 % 0.933 86.9 s 93.3 % 0.933

5
30 15 0.001 s 93.3 % 0.935 0.001 s 93.3 % 0.935 4.7 s 86.7 % 0.870
90 45 0.001 s 95.6 % 0.955 0.001 s 95.6 % 0.955 64.3 s 97.8 % 0.978
180 90 0.003 s 93.3 % 0.933 0.001 s 95.6 % 0.956 232.9 s 94.4 % 0.945

10
30 15 0.003 s 93.3 % 0.935 0.001 s 100 % 1 23.3 s 80.0 % 0.804
90 45 0.003 s 97.8 % 0.978 0.000 s 95.5 % 0.955 219.9 s 97.8 % 0.978
180 90 0.003 s 95.6 % 0.956 0.002 s 96.7 % 0.967 1760.2 s 93.3 % 0.933

20
30 15 0.004 s 100 % 1 0.001 s 93.3 % 0.931 » 3600 s - -
90 45 0.003 s 97.8 % 0.978 0.002 s 95.6 % 0.955 » 3600 s - -
180 90 0.001 s 94.4 % 0.945 0.001 s 94.4 % 0.945 » 3600 s - -

Table 3: Linear SVM, Gaussian SVM and Quantum SVM results using ZFeatureMap
feature map and FidelityQuantumKernel kernel for the breast cancer dataset.

Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2
30 15 0.001 s 93.3 % 0.935 0.001 s 86.7 % 0.870 3.3 s 46.7 % 0.467
90 45 0.000 s 93.3 % 0.933 0.001 s 93.3 % 0.933 45.6 s 82.2 % 0.808
180 90 0.002 s 92.2 % 0.922 0.001 s 93.3 % 0.933 285.2 s 87.8 % 0.879

5
30 15 0.001 s 93.3 % 0.935 0.001 s 93.3 % 0.935 43.3 s 66.7 % 0.800
90 45 0.001 s 95.6 % 0.955 0.001 s 95.6 % 0.955 479.1 s 75.6 % 0.704
180 90 0.003 s 93.3 % 0.933 0.001 s 95.6 % 0.956 1861.2 s 80.0 % 0.775

10
30 15 0.003 s 93.3 % 0.935 0.001 s 100 % 1 211.8 s 66.7 % 0.800
90 45 0.003 s 97.8 % 0.978 0.000 s 95.5 % 0.955 1868.8 s 66.7 % 0.800
180 90 0.003 s 95.6 % 0.956 0.002 s 96.7 % 0.967 » 3600 s - -

20
30 15 0.004 s 100 % 1 0.001 s 93.3 % 0.931 » 3600 s - -
90 45 0.003 s 97.8 % 0.978 0.002 s 95.6 % 0.955 » 3600 s - -
180 90 0.001 s 94.4 % 0.945 0.001 s 94.4 % 0.945 » 3600 s - -

Table 4: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityQuantumKernel kernel for the breast can-
cer dataset.
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Regarding computational efficiency, it is clear that in all cases classical SVM is
about four orders of magnitude faster. Nonetheless, it is relevant to highlight that
all the computations, including quantum ones, have been performed on a classical
computer, not on a proper quantum computer, where there is no need for simulation,
but only for letting the system evolve, which consumes significantly less time.

Comparing Tables 4 and 3 with Tables 1 and 2, one spots a difference of approxi-
mately one order of magnitude in computational time. In other words, FidelityQuantumKernel
is about one order of magnitude slower than FidelityStatevectorKernel. On a
finer scale, comparing Tables 4 and 2 with 3 and 2, one also notices that ZFeatureMap
leads to faster computations than ZZFeatureMap. Given that classical computations
tend to take thousandths of a second, for efficiency comparison purposes, the quan-
tum simulations were stopped if they took longer than one hour (that is, a difference
of six orders of magnitude). However, for the sake of completeness, in the cases
when computation ended after several hours (no more than twelve), the results are
included in brackets. This criterion shall also be held for the following sections.

As for performance, the only difference concerning quantum configurations falls
on the feature maps. While ZFeatureMap has an associated accuracy of over 80% in
all cases, while ZZFeatureMap seldom surpasses this threshold. F1 score is in gen-
eral similar to accuracy, the main differences occurring the further these are to one.
Therefore, the most suitable quantum configuration has proved to be ZFeatureMap
and FidelityStatevectorKernel (Table 1). Let us now compare the results ren-
dered by the latter configuration with those obtained classically.

• For n = 2, quantum methods outperform classical ones for 90 training ob-
servations, and are only outperformed when 180 observations are considered.

• For n = 5, the same applies, although this time, gaussian kernel SVM
outperforms quantum SVM for 180 training instances.

• For n = 10, the highest accuracies are achieved by classical methods, although
for 90 training instances quantum and linear SVM render the same accuracy.

• For n = 20, classical algorithms outperform quantum ones.

Taking everything into consideration, one observes that the potential scenarios
where quantum methodology is prone to outperforming classical computations are
the "intermediate" ones. In other words, for a (binary classification) dataset that
consists of between 2 and 5 features, and such that about 100 observations are
available for training, one could explore the quantum alternatives to slightly enhance
classical performance without a significant time consumption (< 2 s).

Let us now consider a second dataset that consists of 64709 instances of COVID
tests at the end of April 2020 in Israel. This dataset covers four categorical variables:

• cough: binary variable that indicates whether the patient coughed regularly.
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• fever: binary variable that indicates whether the patient had fever.

• gender: gender of the patient, classified into male, female and none.

• test_indication: describes patient’s recent activity, classified into abroad,
contact with positive or other.

The (binary) response variable is labelled as corona_result. This dataset con-
trasts the previous one in the significantly lower number of variables, as well as the
fact that it is made up of categorical variables, which only allow for 2 · 2 · 3 · 3 = 36
different types of patients. In addition, the response variable is substantially unbal-
anced, with only 1336 positive instances. Let us study the performance of both the
classical and quantum SVM implementations in this type of scenario.

In both implementations, we shall train the model with a balanced (50/50) train-
ing set, and then, perform the testing on a set that keeps the original response
variable proportions. In this case, given that there are only four columns in the
dataset, no PCA will be performed. The results rendered both by classical and
quantum algorithms are listed in Tables 5, 6, 7 and 8.

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

200 100 0.002 s 0.920 0.926 0.001 s 0.940 0.940 0.4 s 0.950 0.947
1000 500 0.003 s 0.920 0.931 0.009 s 0.882 0.907 7.7 s 0.932 0.938
2000 1000 0.008 s 0.913 0.926 0.035 s 0.924 0.936 32.2 s 0.920 0.933

Table 5: Linear SVM, Gaussian SVM and Quantum SVM results using ZFeatureMap
feature map and FidelityStatevectorKernel kernel for the COVID dataset.

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

200 100 0.002 s 0.920 0.926 0.001 s 0.940 0.940 0.5 s 0.950 0.947
1000 500 0.003 s 0.920 0.931 0.009 s 0.882 0.907 8.1 s 0.908 0.923
2000 1000 0.008 s 0.913 0.926 0.035 s 0.924 0.936 32.6 s 0.891 0.914

Table 6: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityStatevectorKernel kernel for the COVID
dataset.

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

200 100 0.002 s 0.920 0.926 0.001 s 0.940 0.940 274.9 s 0.950 0.947
1000 500 0.003 s 0.920 0.931 0.009 s 0.882 0.907 >3600 s - -
2000 1000 0.008 s 0.913 0.926 0.035 s 0.924 0.936 >3600 s - -

Table 7: Linear SVM, Gaussian SVM and Quantum SVM results using ZFeatureMap
feature map and FidelityQuantumKernel kernel for the COVID dataset.
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Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

200 100 0.002 s 0.920 0.926 0.001 s 0.940 0.940 549.5 s 0.950 0.947
1000 500 0.003 s 0.920 0.931 0.009 s 0.882 0.907 >3600 s - -
2000 1000 0.008 s 0.913 0.926 0.035 s 0.924 0.936 >3600 s - -

Table 8: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityQuantumKernel kernel for the COVID
dataset.

One observes that in the cases of 200 and 1000 training instances, the quantum
configuration with ZFeatureMap feature map and FidelityStatevectorKernel
kernel outperforms the linear and gaussian classical kernels, although the differ-
ence in scores is not substantial (usually 0.1-0.2). One also notes that, especially in
the quantum scenario, neither accuracy nor F1 score increase so significantly when
increasing the number of observations. The reason behind this, as discussed earlier,
could lie in the fact that there is a maximum of 36 different observations in this
dataset, so increasing the training set would not substantially increase the informa-
tion of the model, but rather readjust the hyperplane depending on the weight or
"influence" that each category has in each of the (maximum 36) types of instance.
In fact, for 200 training instances, the highest overall accuracy, as well as the lowest
false negative rate (2 %) was achieved by quantum configurations (see 6).

Regarding computational efficiency, as happened with the previous dataset, the
quantum implementations are about three orders of magnitude slower (again, re-
calling the consideration that these simulations are performed on classical software).
However, given the small number of variables considered, both methods render re-
sults in an acceptable time.

3.2.2 SVM for multi-class classification

The dataset considered for this section accounts for Dengue fever in Medellin. It
consists of 32549 instances of 21 binary attributes related to symptoms like fever,
hemorrhage, hypothermia, abdominal pain, etc. The response variable contains
three classes of dengue (labelled 0, 1 and 2). Since there is a significantly higher
number of instances than in the previous binary dataset, the number of training
instances has been updated to cover a richer variety of scenarios. It is relevant to
highlight that this is a balanced dataset, with 10210 observations for class 0 dengue,
11163 for class 1 and 11186 for class 2.

The results drawn from applying the aforementioned SVM variants to these sce-
narios are listed in Tables 9, 10, 11, and 12.
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Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2

30 15 0.001 s 66.7 % 0.634 0.002 s 73.3 % 0.733 0.1 s 46.7 % 0.478
300 150 0.002 s 72.7 % 0.713 0.004 s 82.7 % 0.819 1.3 s 74.7 % 0.731
1500 750 0.005 s 74.9 % 0.734 0.018 s 82.5 % 0.823 19.3 s 77.3 % 0.762
3000 1500 0.010 s 78.7 % 0.776 0.065 s 83.9 % 0.837 72.3 s 79.7 % 0.787

5

30 15 0.001 s 86.7 % 0.861 0.001 s 80.0 % 0.798 0.2 s 66.7 % 0.674
300 150 0.002 s 77.3 % 0.766 0.003 s 85.3 % 0.849 2.1 s 74.7 % 0.737
1500 750 0.005 s 76.4 % 0.757 0.018 s 85.6 % 0.854 29.0 s 81.6 % 0.809
3000 1500 0.008 s 76.1 % 0.754 0.065 s 88.0 % 0.879 76.6 s 84.1 % 0.839

10

30 15 0.001 s 86.7 % 0.867 0.001 s 86.7 % 0.867 0.4 s 66.7 % 0.677
300 150 0.002 s 86.7 % 0.863 0.002 s 92.0 % 0.919 4.1 s 89.3 % 0.891
1500 750 0.007 s 87.2 % 0.871 0.016 s 94.5 % 0.945 41.6 s 94.5 % 0.945
3000 1500 0.018 s 88.7 % 0.886 0.084 s 95.7 % 0.956 115.7 s 96.5 % 0.965

20

30 15 0.001 s 93.3 % 0.933 0.001 s 86.7 % 0.867 111.4 s 86.7 % 0.861
300 150 0.002 s 98.0 % 0.980 0.002 s 98.7 % 0.987 3341.5 s 98.7 % 0.987
1500 750 0.011 s 99.9 % 0.999 0.024 s 99.9 % 0.999 » 3600 s - -
3000 1500 0.016 s 99.7 % 0.997 0.039 s 100 % 1.0 » 3600 s - -

Table 9: Linear SVM, Gaussian SVM and Quantum SVM results using ZFeatureMap
feature map and FidelityStatevectorKernel kernel for the Dengue dataset.

Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2

30 15 0.001 s 66.7 % 0.634 0.002 s 73.3 % 0.733 0.4 s 60 % 0.606
300 150 0.002 s 72.7 % 0.713 0.004 s 82.7 % 0.819 5.0 s 72.0 % 0.708
1500 750 0.005 s 74.9 % 0.734 0.018 s 82.5 % 0.823 30.2 s 74.9 % 0.741
3000 1500 0.010 s 78.7 % 0.776 0.065 s 83.9 % 0.837 256.5 s 77.0 % 0.763

5

30 15 0.001 s 86.7 % 0.861 0.001 s 80.0 % 0.798 4.7 s 26.7 % 0.274
300 150 0.002 s 77.3 % 0.766 0.003 s 85.3 % 0.849 17.4 s 78.7 % 0.787
1500 750 0.005 s 76.4 % 0.757 0.018 s 85.6 % 0.854 73.0 s 95.7 % 0.957
3000 1500 0.008 s 76.1 % 0.754 0.065 s 88.0 % 0.879 355.8 s 98.0 % 0.981

10

30 15 0.001 s 86.7 % 0.867 0.001 s 86.7 % 0.867 20.9 s 53.3 % 0.511
300 150 0.002 s 86.7 % 0.863 0.002 s 92.0 % 0.919 99.5 s 80.0 % 0.792
1500 750 0.007 s 87.2 % 0.871 0.016 s 94.5 % 0.945 272.6 s 99.2 % 0.992
3000 1500 0.018 s 88.7 % 0.886 0.084 s 95.7 % 0.956 741.4 s 99.6 % 0.996

20

30 15 0.001 s 93.3 % 0.933 0.001 s 86.7 % 0.867 2904.0 s 40.0 % 0.393
300 150 0.002 s 98.0 % 0.980 0.002 s 98.7 % 0.987 » 3600 s (80.0 %) -
1500 750 0.011 s 99.9 % 0.999 0.024 s 99.9 % 0.999 » 3600 s - -
3000 1500 0.016 s 99.7 % 0.997 0.039 s 100 % 1.0 » 3600 s - -

Table 10: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityStatevectorKernel kernel for the Dengue
dataset.
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Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2

30 15 0.001 s 66.7 % 0.634 0.002 s 73.3 % 0.733 2.1 s 46.7 % 0.478
300 150 0.002 s 72.7 % 0.713 0.004 s 82.7 % 0.819 321.4 s 74.7 % 0.731
1500 750 0.005 s 74.9 % 0.734 0.018 s 82.5 % 0.823 » 3600 s - -
3000 1500 0.010 s 78.7 % 0.776 0.065 s 83.9 % 0.837 » 3600 s - -

5

30 15 0.001 s 86.7 % 0.861 0.001 s 80.0 % 0.798 4.7 s 66.7 % 0.674
300 150 0.002 s 77.3 % 0.766 0.003 s 85.3 % 0.849 660.9 s 74.7 % 0.737
1500 750 0.005 s 76.4 % 0.757 0.018 s 85.6 % 0.854 » 3600 s - -
3000 1500 0.008 s 76.1 % 0.754 0.065 s 88.0 % 0.879 » 3600 s - -

10

30 15 0.001 s 86.7 % 0.867 0.001 s 86.7 % 0.867 21.1 s 66.7 % 0.677
300 150 0.002 s 86.7 % 0.863 0.002 s 92.0 % 0.919 2734.8 s 89.3 % 0.892
1500 750 0.007 s 87.2 % 0.871 0.016 s 94.5 % 0.945 » 3600 s - -
3000 1500 0.018 s 88.7 % 0.886 0.084 s 95.7 % 0.956 » 3600 s - -

20

30 15 0.001 s 93.3 % 0.933 0.001 s 86.7 % 0.867 » 3600 s - -
300 150 0.002 s 98.0 % 0.980 0.002 s 98.7 % 0.987 » 3600 s - -
1500 750 0.011 s 99.9 % 0.999 0.024 s 99.9 % 0.999 » 3600 s - -
3000 1500 0.016 s 99.7 % 0.997 0.039 s 100 % 1.0 » 3600 s - -

Table 11: Linear SVM, Gaussian SVM and Quantum SVM results using
ZFeatureMap feature map and FidelityQuantumKernel kernel for the Dengue
dataset.

Principal
components

Train
observations

Test
observations

Linear SVM Gaussian SVM Quantum SVM
Time Accuracy F1 score Time Accuracy F1 score Time Accuracy F1 score

2

30 15 0.001 s 66.7 % 0.634 0.002 s 73.3 % 0.733 5.3 s 60.0 % 0.606
300 150 0.002 s 72.7 % 0.713 0.004 s 82.7 % 0.819 774.9 s 72.0 % 0.708
1500 750 0.005 s 74.9 % 0.734 0.018 s 82.5 % 0.823 » 3600 s - -
3000 1500 0.010 s 78.7 % 0.776 0.065 s 83.9 % 0.837 » 3600 s - -

5

30 15 0.001 s 86.7 % 0.861 0.001 s 80.0 % 0.798 76.8 s 26.7 % 0.274
300 150 0.002 s 77.3 % 0.766 0.003 s 85.3 % 0.849 » 3600 s (78.7 %) (0.787)
1500 750 0.005 s 76.4 % 0.757 0.018 s 85.6 % 0.854 » 3600 s - -
3000 1500 0.008 s 76.1 % 0.754 0.065 s 88.0 % 0.879 » 3600 s - -

10

30 15 0.001 s 86.7 % 0.867 0.001 s 86.7 % 0.867 426.7 s 53.3 % 0.511
300 150 0.002 s 86.7 % 0.863 0.002 s 92.0 % 0.919 » 3600 s - -
1500 750 0.007 s 87.2 % 0.871 0.016 s 94.5 % 0.945 » 3600 s - -
3000 1500 0.018 s 88.7 % 0.886 0.084 s 95.7 % 0.956 » 3600 s - -

20

30 15 0.001 s 93.3 % 0.933 0.001 s 86.7 % 0.867 » 3600 s - -
300 150 0.002 s 98.0 % 0.980 0.002 s 98.7 % 0.987 » 3600 s - -
1500 750 0.011 s 99.9 % 0.999 0.024 s 99.9 % 0.999 » 3600 s - -
3000 1500 0.016 s 99.7 % 0.997 0.039 s 100 % 1.0 » 3600 s - -

Table 12: Linear SVM, Gaussian SVM and Quantum SVM results using
ZZFeatureMap feature map and FidelityQuantumKernel kernel for the Dengue
dataset.

Regarding computational efficiency, the same considerations as for the binary case
hold. Comparing Tables 12 and 11 with Tables 9 and 10, one spots a difference of at
least one order of magnitude in computational time, so that FidelityQuantumKernel
is at least one order of magnitude slower than FidelityStatevectorKernel, while
ZFeatureMap leads to faster computations than ZZFeatureMap. A high number of
training instances severely penalizes computational time. This also happens in the
classical frame but on a significantly finer scale.

As for performance, the only difference concerning quantum configurations again
falls on the feature maps. This time ZZFeatureMap reaches the highest levels of
accuracy, although it is outperformed by ZFeatureMap in certain scenarios. F1
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score is in general very similar to accuracy since this dataset has completely balanced
categories, and so do the training and testing sets.

Then, the most suitable quantum configurations have proved to be FidelityStatevectorKernel
together with ZZFeatureMap and also ZFeatureMap (Tables 10 and 9, respectively).
Let us now compare the results rendered by these configurations with those obtained
classically.

• For n = 2, quantum methods are outperformed by at least one of the classical
ones in all scenarios.

• For n = 5, the same applies if we consider ZFeatureMap, but the ZZFeatureMap
configuration outperforms classical algorithms for 1500 and 3000 training in-
stances, by a margin ≥ 10 %.

• For n = 10, ZFeatureMap configuration achieves higher accuracy than classi-
cal algorithms for 3000 training instances, and is not outperformed classically
for 1500 training instances. However, both the ZFeatureMap configuration
and classical algorithms are outperformed by the ZZFeatureMap configuration,
which surpasses 99 % accuracy in both of these scenarios.

• For n = 20 (almost equivalent to no PCA), classical algorithms in general
outperform quantum ones (although for 300 instances ZFeatureMap provides
the same accuracy, but requires significant computational time), which tend
to be too computationally inefficient.

Taking everything into consideration, one again notices that the potential scenar-
ios where quantum methodology is prone to outperforming classical computations
are the "intermediate" ones. In other words, for a (multi-class) dataset that con-
sists of between 5 and 10 features, and such that about 1500 - 3000 observations are
available for training, one could explore the quantum alternatives to slightly or even
moderately enhance classical performance. It is relevant to observe that the inter-
vals of features and observations that enhance quantum performance have shifted
towards higher values, as have the number of categories from binary to 3-classes. In
addition, the required computational time has increased between one and two or-
ders of magnitude, both in the classical and quantum cases, therefore the proportion
remains similar.

3.2.3 SVM for multi-label classification

Let us now consider a dataset which contains 9.921 tweets labelled with the
concerns towards vaccines. Between 1 and 3 labels, out of a set of 12, are assigned
to each tweet. The dataset is split into 80 % training observations and 20 % testing
ones since there is a relatively high proportion of labels with respect to the global
number of instances.
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Out of the approaches discussed in Section 3.1.5, the random k-labelsets algo-
rithm proves inappropriate for this case, given that 288 training categories appear,
many of which are made up of only one instance. This technique could have been
useful, for instance, if no more than two labels were assigned to each instance. Then,
there would be a maximum of

(︁
12
2

)︁
+12 = 78 categories (counting both training and

testing), so there would be more than 100 instances per class on average.

Let us then implement the (first-order) binary relevance strategy. After some
cleaning tasks like removing emojis or mentions to other users, we perform the
train-test split. This is the starting point both for the classical and quantum imple-
mentations.

Classical implementation

We binarize the training set, i.e., convert the multi-label response variable into
a binary matrix with 12 columns, each representing a label, and as many rows as
training instances. We then use a pipeline to remove both accents and frequent
English words like "a", "the", etc. The pipeline also includes a linear kernel (which
outperformed sigmoid, polynomial and Gaussian kernels in terms of scores) one-
against-all, also known as one-versus-rest classifier. We finally fit the model and
predict on the test set, obtaining the scores given by Table 13. The time required
to fit the model is 177.0 s. Note that there are as many variables as different words
among all tweets (in this case 16762), so there are more variables than instances.
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Class Precision Recall F1-score Support
Conspiracy 0.84 0.18 0.29 91
Country 0.75 0.23 0.35 39
Ineffective 0.78 0.46 0.58 342
Ingredients 0.88 0.33 0.48 114
Mandatory 0.83 0.45 0.59 155
None 0.33 0.01 0.02 115
Pharma 0.71 0.37 0.48 258
Political 0.71 0.11 0.19 110
Religious 1.00 0.31 0.47 13
Rushed 0.83 0.56 0.67 298
Side-effect 0.86 0.74 0.80 764
Unnecessary 0.78 0.24 0.37 160
Micro avg 0.82 0.48 0.60 2459
Macro avg 0.78 0.33 0.44 2459
Weighted avg 0.79 0.48 0.57 2459
Samples avg 0.53 0.50 0.51 2459

Table 13: Multi-label classification report for the classical implementation. Micro
avg counts the total true positives, false negatives and false positives in all classes
and computes the metrics globally based on these sums. Macro avg averages the
unweighted mean per label. Weighted avg averages the support-weighted mean per
label. Sample avg calculates metrics for each instance, and finds their average (only
meaningful for multi-label classification, where this differs from the functionality
accuracy_score.

One observes that the precision scores are the highest ones, with a Micro avg,
Macro avg and Weighted avg ≈ 80%, while recall average scores are between 30%
and 50%. This means that, provided that a classifier has predicted a given label,
it is correct in ≈ 80% of cases. On the other hand, recall scores show that false
negatives are in general more frequent than true positives, so the algorithm tends
to assign less labels than it should.

If one checks the support column, one may find a plausible explanation for this.
Variable Side-effect is by far the most widespread label (in the test set, but since
train/test is random, percentages are similar in the train set), appearing with at
least twice the frequency of the other labels. This is also the label with highest F1
score (harmonic mean of precision and recall). The rest of labels have significantly
fewer observations and thus the classifier lacks the information to fit a more accurate
model. For these labels, scores are rather variable. For instance, regarding variable
Religious, with only 13 test instances, precision is 100%, and recall equals 31% ≈
100 ·4/13, which means that only 4 of the 2459 test observations were classified into
the this category, all of them correctly, but 9 more should have also been classified
into this class.

In general, this classifier would display a better performance if more labels were
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assigned to each instance, which would increase the number of training observations
for each binary classification problem, enhancing the fit of the model.

Quantum implementation

In this case, given the computational times for quantum implementations in the
previous sections, we shall reduce the binary problems to a relatively small num-
ber of variables. To that end, we first remove the words (variables) that among
all tweets appear less than a certain threshold (in this case 20, since these words
would be considered irrelevant) and then apply a PCA which reduces the number of
variables to 10 principal components. The last step is then to solve each binarized
problem as in Section 3.2.1. We use the optimal configuration in terms of computa-
tional efficiency, i.e., ZFeatureMap feature map and FidelityStatevectorKernel
kernel. The time required for this computation, whose scores are shown in Table 14,
was 10668 s.

Class Precision Recall F1-score Support
Conspiracy nan 0.00 nan 91
Country nan 0.00 nan 39
Ineffective nan 0.00 nan 342
Ingredients nan 0.00 nan 114
Mandatory nan 0.00 nan 155
None nan 0.00 nan 115
Pharma nan 0.00 nan 258
Political nan 0.00 nan 110
Religious nan 0.00 nan 13
Rushed nan 0.00 nan 298
Side-effect 0.52 0.35 0.42 764
Unnecessary nan 0.00 nan 160
Micro avg 0.52 0.11 0.18 2459
Macro avg 0.52 0.03 0.42 2459
Weighted avg 0.52 0.11 0.42 2459
Samples avg 0.52 0.12 0.95 2459

Table 14: Multi-label classification report for the quantum implementation.

The results are extremely unsatisfactory. First of all, the nan in precision come
from zero divisions that correspond to all the binary problems such that no label
was predicted. Therefore, neither true positives nor false positives were obtained,
leading to a "0/0" indetermination. These nan values subsequently extended to the
F1 score. Most predictions come as false negatives, so the denominator for recalls is
non-zero, and the absence of true positives leads to zero recall. The only exception
to this comes from variable Side-effect, which, as discussed earlier, counts on the
most substantial support.

These results can be regarded as an extreme polarization of those obtained clas-
sically. The reason behind this could lie on the considerable loss of information that
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the variable reduction through PCA implies. The prior step of removing words with
less frequency than a certain threshold plays no role since it was removed and results
did not change. In this case, the joint effect of scarce support and applying a PCA
to drastically reduce (by a factor of 1600) the number of variables accounts for the
triviality of the predictions.

In order to enhance the performance of this technique, one could consider more
principal components but is limited by classical computation resources. In a proper
quantum computer, using amplitude encoding, one could need 14 qubits to encode
approximately all the variables (214 ≈ 16000).

Both in the classical and quantum scenarios, first-order algorithms were applied,
which, in an informal way, are the natural generalizations of binary SVM to the
multi-label frame. Other second or high-order algorithms, that also account for the
correlation structure of interdependence of the labels, are bound to outperform the
ones discussed in this section (although some like the k-labelsets algorithm may not
be applicable in this context). Nonetheless, starting from the most simple or even
naive approaches paves the way for a deeper understanding of the nature of the
problem, as well as the need to implement more sophisticated alternatives.
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4 LAMDA for binary classification

This section is devoted to the second classifier that this work aims to study:
Learning Algorithm for Multivariate Data Analysis (LAMDA). Regarding this al-
gorithm, binary classification will be explored, both classically, implementing tech-
niques that are presented in the literature [3], and in the quantum scenario, where
a quantum simulation-based alternative is proposed.

4.1 Classical implementation

LAMDA is an incremental conceptual clustering method based on fuzzy logic,
which can be applied in the processes of classification and recognition of concepts
(classes). LAMDA has the following features [3]:

• It does not require beforehand knowledge on the number of classes.

• Descriptors can be qualitative, quantitative or a combination of both.

• LAMDA can use a supervised learning stage followed by an unsupervised one.

• Classification and recognition of concepts are based on the maximum adequacy
(MA) rule.

• This methodology has the possibility to control the selectivity of the classifi-
cation (exigency level) through the parameter α.

• LAMDA models the concept of maximum entropy (homogeneity). This con-
cept is represented by a class denominated Non-Informative Class (NIC). The
NIC concept plays the role of a threshold of decision, in the classification
process.

In this work, we shall consider a variant of LAMDA that sticks to the train and
test methodology instead of continous learning. Given that this work will only apply
LAMDA for binary classification, the number of classes will be known beforehand
and NIC will be omitted.

In informal terms, LAMDA seeks to classify each observation into a class by
defining certain scores that measure the degree to which, given this observation, each
of its descriptor values corresponds to each class. These scores are called marginal
adequacy degrees (MADs) and are computed through a fuzzy logic distribution.
However, there are as many of these scores as descriptors for each class. In order to
condense all this information into a single score, the global adequacy degree (GAD) is
defined as a function of MADs. This function is usually a pondered combination of a
T-norm and an S-conorm, which respectively generalize the conjunctive intersection
(’AND’) operator and the disjunctive (’OR’) operator to multi-valued logic. This
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weight is given by a coefficient called exigency level (α), which shall be taken as
hyper-parameter. Once the GAD of an observation to each class is computed, the
classification follows from taking the class whose GAD is the highest.

More in detail, the line of work that will be considered can be summarized in the
following steps.

1. Let us first define the notation that we shall consider hereinafter.

• I = {1, . . . , n}. Set of instances.

• J = {1, . . . , p}. Set of descriptors.

• C = {1, 2}. Classes.

• xi: Instance i (a row of the data frame).

• xji : value of descriptor j(∈ J) for instance i(∈ I).

• Ic = {i ∈ I : xi ∈ c, c ∈ C}: subset of instances that belong to a given
class.

2. Perform the train-test split.

3. For the training set:

(a) Standardize the descriptors so that they belong to the interval [0, 1].

xji →
xji −min

i∈I
xji

max
i∈I

xji −min
i∈I

xji

(b) Compute the average descriptor matrix, that is, a matrix Mav of size 2
x p such that each entry represents the average value of each descriptor
corresponding to each class.

Mav(c, j) =
1

|Ic|
∑︂
i∈Ic

xji (54)

(c) Compute the MAD to each class for each descriptor of each instance. To
that end, the fuzzy binomial distribution has been considered. Given an
instance i ∈ I, a class c ∈ C, and denoting ρjc ≡Mav(c, j)

41



MAD(xji , c) = (ρjc)
xji (1− ρjc)

(1−xji ) (55)

It may be informative on the behaviour of the MAD to note that, for a
fixed ρ, the MAD is an increasing, decreasing or constant function of x
for ρ > 1/2, ρ < 1/2, and ρ = 1/2 respectively.

(d) For each value of (the here hyper-parameter) exigency level α, compute
the GAD of each instance for each class. Each observation is finally
classified into the category with regard to which its GAD is the highest.
Once this is done for all the observations, one can compare the accuracy
and F1 score of the training predictions with the true value, and choose
the α value that returns the highest score (in this case, the criterion
is based on the F1 score since it takes into account both precision and
recall). This parameter will be the one taken in the testing phase.

In order to compute the GAD of each instance i ∈ I to a class c ∈ C, three
(weighted) combinations of a T-norm and an S-conorm are proposed.

Firstly, the min-max approach:

GAD(i, c) = αmin
j∈J

MAD(xji , c) + (1− α)max
j∈J

MAD(xji , c). (56)

Secondly, the product approach:

GAD(i, c) = α
∏︂
j∈J

MAD(xji , c) + (1− α)

(︄
1−

∏︂
j∈J

MAD(xji , c)

)︄
. (57)

Thirdly, the Lukasiewicz approach:

GAD(i, c) = αmax

(︄
1− n+

∑︂
j∈J

MAD(xji , c), 0

)︄
+

+ (1− α)min

(︄∑︂
j∈J

MAD(xji , c), 1

)︄
.

(58)

The term weighted by α is the T-norm while the one weighted by (1−α)
corresponds to the S-conorm. For the testing step, the combination (out
of the three that have been presented) that provides the higher F1 score,
together with the exigency level α resulting from the corresponding hyper-
parameter tuning process will be considered.
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4. For the test (validation) set: step 3.a is repeated, and then step 3.c is performed
with the same matrix Mav computed for the training set. Finally, the GAD
is computed for the T-norm, S-conorm and α obtained in step 3.d. Then, the
classification of the test set is performed considering the highest GAD for each
instance, and the score metrics are returned.

4.1.1 Binary dataset classification

Let us now apply the previous methodology to the binary dataset which was
previously studied in Section 3.2.1, with a 0.75/0.25 train-test split, i.e., 426 training
instances and 143 testing ones. Table 15 summarizes the training scores for each
T-norm and S-conorm combination, obtained from the optimal exigency level αopt.

Approach αopt Precision F1 score Fit time
min-max 0 0.200 0.277 32.3 s
Product 0 0.934 0.932 20.9 s

Lukasiewicz 0 0.187 0.373 32.4 s

Table 15: LAMDA training scores for the implemented approaches and train test
split 0.75/0.25 on the breast cancer dataset.

Clearly the product approach outperforms the others significantly. One can find
an plausible explanation for this in the number of descriptors. For this dataset J
is a set of 30 elements, so expression (56) is reducing the information provided by
a vector of 30 MADs to a combination of its minimum and maximum, leading to
a relevant loss of information. Similarly, expression (58) is considering a T-norm
and S-conorm that for large enough n is bound to reduce to

∑︁
j∈J

MAD(xji , c) since it

would be unlikely that the MADs added up to more than p−1. However, a sum does
not penalize low MADs as much as the product considered in (57), which stands
in an intermediate position between the reduction of a vector to its extreme values
as in the min-max approach and the over-conservative Lukasiewicz expression. For
the considered number of descriptors, expression (57) provides a suitable balance
that takes into consideration the information from each descriptor weighting it in
an appropriately adjusted proportion. One could conjecture that for lower values
of p, for instance p ≈ 5, expressions (56) and (58) would lead to more accurate
classifications.

It may be insightful to plot the both the true and predicted train target data on
the axes of the first two principal components (see Figure 5).
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Fig. 5. Left: true train response variable (breast cancer dataset). Right: predicted train
response variable. Blue instances stand for benign diagnosis while red ones corre-
spond to malignant diagnosis. This color pattern will be kept hereinafter.

The misclassified observations lay on the border between the benign and ma-
lignant observations. LAMDA draws this border very rigidly, while in reality it is
slightly dim.

In order to classify the test data, the product approach with α = 0 was imple-
mented, rendering the results listed in Table 16 and the plots in figure 6.

Approach α Precision F1 score Test time
Product 0 0.950 0.958 2.1 s

Table 16: (Classical) LAMDA testing scores for the breast cancer dataset.

Fig. 6. Left: true test response variable. Right: predicted test response variable. Breast
cancer dataset.
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Both precision and F1 score are over 0.95, providing a satisfactory classification.
As happened in the training phase, figure 6 shows that LAMDA again sets a rigid
border between predicted categories.

Let us now repeat the previous implementation on the COVID dataset which
was also introduced in Section 3.2.1. This time, given the dataset imbalance, the
training phase has been performed on a 2400 instance training set, which is balanced
regarding the response variable, while testing has been carried out on a 2000 instance
set that keeps the original imbalance. The training scores are summarized in Table
17.

Approach αopt Precision F1 score Fit time
min-max 0.15 0.314 0.473 52.4 s
Product 0 0.789 0.775 33.9 s

Lukasiewicz 0 0.250 0.500 54.1 s

Table 17: LAMDA training scores on the COVID dataset.

Compared to Table 15, one observes that scores have become more centralized
(product approach scores have shrunk while the rest have increased), but the product
approach still outperforms the other two alternatives. The reason for this score
centralization lies in the discussion contemplated in Section 3.2.1: we are considering
a balanced training set that consists of a maximum of 36 different observations,
some of which share the two values of the response variable. Therefore, for each
of this observations, the algorithm needs to "take a side" so that training scores
are maximized. Even if some approaches are more efficient than others, the general
tendency leads to rather centralized scores, given the balance of the training set.

In order to visualize this, one can again plot both the true and predicted train
target data on the axes of the first two principal components, which is shown in
Figure 7. However, this plot could be uninformative or even misleading, in the
sense that, unlike 5, each dot does not represent a single observation, but a set of
them, and the color corresponds to the category of the majority of observations
corresponding to a given dot.
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Fig. 7. Left: true train response variable (COVID dataset). Right: predicted train re-
sponse variable. Blue instances stand for negative diagnosis while red ones corre-
spond to positive diagnosis. This color pattern will be kept hereinafter.

Let us now implement the product approach on the testing set. Since in this
case, it is unbalanced, both the weighted and macro precision and F1 scores will be
taken into account (see caption of Figure 13 for the details on these scores). Results
are described in Table 18 and the visualization is provided by Figure 8.

Approach α Precision (weighted) Precision (macro) F1 (weighted) score F1 (macro) score Test time
Product 0 0.942 0.602 0.898 0.631 3.7 s

Table 18: (Classical) LAMDA testing scores for the COVID dataset.

Fig. 8. Left: true test response variable. Right: predicted test response variable. Breast
cancer dataset.

Despite the weighted scores being promising, macro ones are substantially lower,
which is accounted for by the imbalance in the testing set, together with the ten-
dency towards classifying instances to the dominant class, in this case, negative. As
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happened with the breast cancer dataset, LAMDA draws a rigid border between the
two classes in the PCA bidimensional plot.

In the next subsection, we shall propose a quantum approach in order to soften
this border via the intrinsic randomness of a quantum algorithm.

4.2 Quantum implementation

The methodology for the proposed quantum implementation substitutes GAD
computation for a quantum simulation-based alternative. More in detail, the pro-
cedure is identical to the one described in Section 4.1 up to step 3.d (included) for
training and up to step 3.c (also included) for testing. In other words, the quantum
simulation is performed after obtaining Mav for the training set and the MADs for
the testing set. This would only cover up to step 3.b for the training set in 4.1, but
the value of the optimum hyper-parameter α is highly relevant for the last quantum
adjustments, which requires considering steps 3.c and 3.d for training.

Then, on the basis of the testing set MADs, we propose a quantum simulation
as an alternative to GAD deterministic computation. In informal terms, one would
expect an observation to fit into a given category when the majority of its descriptors
show a higher degree of similarity with those assigned to the category. Since this
study focuses on binary classification, and MADs are already normalized in the
interval [0, 1], one could seek to seize the synergy between binary classification and
quantum qubit measurement, which would appear as a suitable generalization of
fuzzy logic in the quantum frame.

As a first consideration, which is of the utmost importance, one needs to establish
a link between MADs and classes. That is, when α is close to 0, then it is the
S-conorm that defines the GAD. On the contrary, if α is close to 1, then it is
the T-norm. In addition, T-norms ("intersections") are smaller than S-conorms
("unions"). Thus, when α is close to 0, smaller MADs lead to higher GADs and
vice versa, so when comparing the MADs of an observation with regard to a given
class, smaller MADs represent a higher degree of similarity to that class than higher
ones, despite what one might have expected from the etymology of the acronym
MAD (although this could be fixed by introducing a "dual" MAD, for instance
1 − MAD). On the other hand, if α is close to 1, then higher MADs represent
a higher degree of similarity to the given class. This highlights the importance of
performing hyper-parameter tuning with α, which is bound to return an optimal
value close to an extreme of the interval [0, 1].

Let us suppose, without loss of generality, that the optimal exigency level is close
to zero (although the formal condition is < 0.5), as happened in 4.1.1. Then, if for
a given observation, we consider the two MAD vectors that result from joining the
MADs of all descriptors for each class, then we could encode them in a quantum
circuit and carry out a certain number M of measurements. Then, for each descrip-
tor, one can compare the number of projections on |0⟩ for each of the two classes.
If both values coincide, then the descriptor is dismissed. Otherwise, the category
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corresponding to the highest number of |0⟩ projections is taken as a marginal class
for that descriptor. Finally, one classifies the observation into the category corre-
sponding to the class that has been pointed as the marginal class the majority of
times.

More concisely, the algorithm steps are the following:

1. If αopt < 0.5, then perform the steps 2-6 as presented. Otherwise, perform
them swapping |0⟩ and |1⟩.

2. For each instance (steps 2-6 are apply to each individual instance), concatenate
the MADs of all the descriptors into a vector for each class, thus obtaining
two vectors of length equal to the number of descriptors p.

3. Encode these two vectors into two separate quantum circuits of p qubits via
angle encoding, in this case, through RY gates (rotation on the Y axis). The
rotation matrix is given by:

RY (θ) =

(︄
cos
(︁
θ
2

)︁
− sin

(︁
θ
2

)︁
sin
(︁
θ
2

)︁
cos
(︁
θ
2

)︁ )︄

on the {|0⟩ , |1⟩} basis (see Section 2.6.3). Since when initializing a quantum
circuit in Qiskit, all qubits are started as |0⟩, the encoding angle is given by
θ = 2arcsin

√
µ, where µ is the corresponding entry of the MAD vector (recall

that the measurement on |1⟩ has probability sin2
(︁
θ
2

)︁
, which accounts for the

square root).

4. Simulate a certain number of measurements (in this case 120, although execu-
tions of 70-200 rendered similar or the same results) for both vectors.

5. Count the number of |0⟩ projections for each vector and each descriptor, and
create two logical vectors. The first will have a "True" entry in the position
of those descriptors where the vector for the first class had strictly more |0⟩
projections than the one for the second class. The second logical vector is
obtained analogously swapping the classes.

6. Compare the number of "True" entries of both vectors. Classify the instance
in the class whose logical vector has more "True" entries. In case of a tie,
count the overall number of |0⟩ projections of both MAD vectors and classify
the instance in the class that has more (in the highly unlikely case of another
tie, classify into any of the classes).

It is relevant to note that simulating a moderate number of times ( 100) allows
for introducing a certain degree of randomness when classifying instances that lie on
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the edge between the two classes, and may prevent a misclassification coming from
an over-conservative strategy.

4.2.1 Results

Let us present the results obtained for the quantum approach. Table 19 summa-
rizes five executions of the program.

MAD approach α Precision F1 score Number of simulations Test time
Product 0 0.913 0.924 200 2847 s
Product 0 0.938 0.944 130 4093 s
Product 0 0.938 0.944 120 3598 s
Product 0 0.921 0.930 100 2754 s
Product 0 0.921 0.930 70 3761 s

Table 19: Quantum LAMDA testing scores for the breast cancer dataset.

It is relevant to highlight that quantum simulations, unlike classical ones, are not
reproducible given the proven intrinsic random nature of the quantum processes,
this is why five simulations are presented. Several more were run, always displaying
scores in the interval [0.92, 0.97] and execution times between 2700s and 4100s.

Graphically, Figure 9 allows for comparing the true and predicted test response
variables with the quantum implementation for the extreme (70 and 200) and one
of the intermediate (120) number of executions, which cover all the combinations of
obtained scores.

49



Fig. 9. (1,1) True test response variable. (1,2) Predicted test response variable with quan-
tum implementation of LAMDA for 70 simulations per instance. (2,1) Predicted
test response variable with quantum implementation of LAMDA for 120 simulations
per instance. (2,2) Predicted test response variable with quantum implementation
of LAMDA for 200 simulations per instance. Breast cancer dataset.

We observe how quantum simulations succeed in classifying instances that, infor-
mally, are slightly immersed in the dot cloud corresponding to the opposite class.
Despite rendering slightly lower (1-2 %) scores, this quantum technique succeeds in
dimming the boundary between two classes and could be of advantage when the
plot of the true response variables is further from displaying a rigid borderline.

Let us now apply the quantum implementation to the COVID dataset. Results
are summarized in Table 20 and plotted in Figure 10.

MAD approach α Precision F1 score Number of simulations Test time
Weighted Macro Weighted Macro

Product 0 0.926 0.590 0.916 0.606 200 47.1 s
Product 0 0.925 0.584 0.914 0.598 130 45.3 s
Product 0 0.920 0.565 0.911 0.576 120 45.6 s
Product 0 0.927 0.590 0.915 0.607 100 45.2 s
Product 0 0.929 0.599 0.918 0.617 70 44.5 s

Table 20: Quantum LAMDA testing scores for the COVID dataset.
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Fig. 10. (1,1) True test response variable. (1,2) Predicted test response variable with
quantum implementation of LAMDA for 70 simulations per instance. (2,1) Pre-
dicted test response variable with quantum implementation of LAMDA for 100
simulations per instance. (2,2) Predicted test response variable with quantum
implementation of LAMDA for 120 simulations per instance. (3,1) Predicted test
response variable with quantum implementation of LAMDA for 130 simulations
per instance. (3,2) Predicted test response variable with quantum implementation
of LAMDA for 200 simulations per instance. COVID dataset.

51



One observes that the quantum approach renders similar scores for all the im-
plemented number of simulations. Again, the same difference between macro and
weighted scores becomes clear. Compared to the classical implementation (see 18),
scores are similar, with the quantum method displaying a slightly higher F1 score
but a slightly lower precision. Analogously to what happened with the breast cancer
dataset, the quantum implementation dims the boundary between the two classes.

Regarding computational efficiency, it is true that this quantum implementation
is about three orders of magnitude slower than the classical GAD one for the breast
cancer dataset, but it is relevant to highlight again the computational hindrance of
simulating quantum phenomena on classical software. On the other hand, this factor
between computational times is reduced to one order of magnitude for the COVID
dataset, since quantum circuits only need to encode vectors of four elements, instead
of thirty, as happened with the breast cancer dataset.

5 SVM and LAMDA comparison on binary classi-
fication

Since the same datasets have been used both in Section 3.2.1 and Section 4, it is
consistent to compare both SVM and LAMDA binary classifiers through the results
discussed in these sections.

In the light of Tables 1-8 on the SVM side and Tables 16-20 on the side of
LAMDA, one observes that SVM is about three orders of magnitude faster than
LAMDA, both in the classical and quantum frames, respectively. The only excep-
tion to this lies in the similar computational time for quantum SVM and quantum
LAMDA for the COVID dataset (see Tables 5-8 and Tables 17, 18, respectively).
However, a significant part of the code used for SVM is internally programmed in
Python libraries, which enhances the computational efficiency in contrast to the
rather "manual" programming of LAMDA, even if computations are less sophisti-
cated in the latter, in the sense that they imply performing elementary operations
(sums, products, powers, min, max, etc).

For each training instance, LAMDA requires the computation of MAD for all
descriptors and classes (in this case two), which scales the number of operations
by a factor of twice the number of descriptors, plus two extra computations for
computing the GAD for each class. Denoting the number of descriptors by d, this
makes a total of 2(d + 1) computations (which include two powers and a multipli-
cation) per instance, and this is all scaled by the number of parameters tested in
hyper-parameter tuning, in this case, 21 (0, 0.05, . . . , 1). Then, the previous total is
updated to 42(d + 1) computations per instance, in the training procedure imple-
mented in this work, described in Section 4.1. On the other hand, SVM (see eq.42)
implies solving a quadratic optimization problem with as many constraints as train-
ing instances, which is efficiently implemented internally, even if this QP solvers
imply more sophisticated operations like computing gradients or Hessians. In any
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case, these would concern polynomial functions, not sophisticated compositions of
functions that require of subsequently demanding approximation algorithms.

Regarding the classical-quantum comparison, it is relevant again to outline the
fact that all computational resources required to simulate quantum circuits, as well
as computations on classical software, substantially increase computational time
with respect to a quantum computer. In the latter, the number of operations is
exponential with respect to the number of qubits, so memory limitations would
appear on classical software for significantly smaller problems than in the quantum
computing scenario.

As for performance, both classical and quantum SVM (see Tables 1 and 2) out-
perform LAMDA (see Tables 16 and 19) in terms of metrics for the breast cancer
dataset. Some of the SVM configurations surpass 97.5% accuracy, while classical
LAMDA, which displays the highest scores, closely followed by quantum LAMDA,
reaches only 95%, although this is also a satisfactory result. In addition, while
LAMDA uses all the variables (30), SVM predicts with higher accuracy with 20, 10
or even 5 principal components.

Regarding the COVID dataset, which is diametrically opposed to the breast can-
cer one in terms of number and type of variables, both SVM and LAMDA render
lower scores, which can be accounted for by the bounded number (36) of differ-
ent instances, as discussed in Section 3.2.1. In this case, the highest accuracy and
weighted F1 scores come from quantum SVM (see Tables 5 and 6), reaching 95%
accuracy and 0.947 F1 score. Despite the fact that the metrics displayed by LAMDA
almost reach these scores as for precision, F1 scores slightly lag behind in both the
classical and quantum implementations (see Tables 20 and 18), although quantum
provides more satisfactory score. In general, for the COVID datasets, the differ-
ences in performance are slighter, given that the constrained number of different
observations limited the performance of the algorithms.

In general, one could conclude that in terms of performance, both SVM and
LAMDA render satisfactory results. However, SVM outperforms LAMDA in terms
of computational efficiency and scores, even if LAMDA is a more accessible and
intuitive alternative for manual programming.

6 Conclusions

The general objective of this Master Thesis consists of showing the usefulness of
SVM and LAMDA for classification problems (in the case of LAMDA for binary
ones) both from a classical and quantum standpoint. It can be stated that this
purpose has been complied with, through the specific objectives presented in Section
1.1.

After the revision of quantum physics fundamentals in Section 2, the first of the
specific objectives is approached in Sections 3 and 4. In Section 3.1, the theoretical
basis behind both classical and quantum SVM is presented, and in Section 3.2, for
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each type of classification problem (binary, multi-class and multi-label), classical and
quantum results are compared in terms of performance and efficiency. Analogously,
this analysis is repeated in Section 4 for binary classification problems with LAMDA.
Concurrently, these sections pave the way for the explicit comparison between binary
SVM and LAMDA, in both classical and quantum frames, performed in Section 5,
with the subsequent attainment of the second specific objective.

Regarding the first of the specific objectives, quantum and classical algorithms
have performed similarly both in SVM and LAMDA (except for multi-label SVM),
with slight (≈ 0.01 − 0.02 differences) in accuracy or F1 scores. An exception to
this tendency can be observed in multi-class SVM (see Section 3.2.2, where the
quantum results for 5 principal components rendered 0.1 higher metrics. Regard-
ing multi-label SVM, despite the intrinsic hindrance of most labels being scarcely
represented, with subsequent setbacks for model fitting, the binary relevance ap-
proach managed to provide moderately acceptable results. However, the transition
to the quantum frame took classification to the dominant category to the extreme
in binarized problems, invalidating this quantum approach for a dataset with such
characteristics. In terms of efficiency, as discussed in several occasions, quantum
simulations usually required computational times that were about three orders of
magnitude above classical ones. However, it is highly relevant to highlight the inef-
ficiency derived from artificially simulating quantum circuits on classical software,
and the fact that the intrinsic architecture of a quantum computer would lead to
considerably faster computations.

As for the second specific objective, given the opposed nature of each binary
dataset, one can conclude that SVM is more computationally efficient than LAMDA
and a more suitable alternative in terms of scores for higher dimensional datasets,
even if both methods render satisfactory predictions. For smaller datasets, this
differences shrink, even if LAMDA is slightly outperformed by SVM. Nevertheless, as
discussed in Section 5, SVM is more efficiently programmed internally, and LAMDA
counts on the advantage of admitting straightforward parallelization, which could
significantly enhance computational efficiency.

Finally, based on the conclusions of this Master Thesis, several potential av-
enues for future study emerge. Firstly, optimizing the computational efficiency of
LAMDA through procedures such as parallel programming. Secondly, seeking an
alternative to the multi-label quantum approach proposed in Section 3.2.3. Finally,
extending LAMDA to multi-class and multi-label classification and comparing its
performance to SVM’s, in the line of this work, or including additional classifiers in
this comparison.
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Appendix A. Confusion matrices

In this section the confusion matrices corresponding to the binary and multi-class
datasets considered for SVM throughout this work will be listed. Note that the fol-
lowing matrices are normalized by the length of the corresponding classifier vectors,
and that rows indicate the true categories while columns denote the predicted ones.

The confusion matrices are presented for each number of principal components n,
and each number of training observations (which has an associated number of testing
observations corresponding to 1/2 of the training ones). For each given scenario (6
tables, presented as a 2 x 3 frame) , the matrices appear in the following order:

1. Linear SVM. Position (1,1).

2. Gaussian kernel SVM. Position (1,2).

3. Quantum SVM with ZFeatureMap feature map and FidelityStatevectorKernel.
Position (1,3).

4. Quantum SVM with ZZFeatureMap feature map and FidelityStatevectorKernel.
Position (2,1).

5. Quantum SVM with ZFeatureMap feature map and FidelityQuantumKernel.
Position (2,2).

6. Quantum SVM with ZZFeatureMap feature map and FidelityQuantumKernel.
Position (2,3).

A.1. Breast Cancer dataset

Note that in this case, given that the proportions between instances are approx-
imately 2:1 for benign:malignant, the train and test sets are built to respect this
proportionality (which still leads to a quite balanced distribution). The same would
happen if the sample were large enough and completely random subsamples were
taken. However, we lack this high number of observations, so in order to prevent
sheer imbalance cases, these proportions have been fixed, so the columns of the
following matrices add up to 2/3 and 1/3 respectively. To obtain the number of cor-
rectly predicted instances, one could also normalize each row by the column sums,
that is, divide the first row by 2/3 and the second one by 1/3. Nonetheless, for the
sake of consistency, the same normalization (the one described at the beginning of
the section) has been implemented for all the datasets.

n=2

• 30 training observations
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B M
B 0.600 0.067
M 0 0.333

B M
B 0.533 0.133
M 0 0.333

B M
B 0.467 0.200
M 0 0.333

B M
B 0.400 0.267
M 0.267 0.067

B M
B 0.467 0.200
M 0 0.333

B M
B 0.400 0.267
M 0.267 0.067

• 90 training observations

B M
B 0.667 0
M 0.067 0.267

B M
B 0.644 0.022
M 0.044 0.289

B M
B 0.667 0
M 0.044 0.289

B M
B 0.644 0.022
M 0.155 0.178

B M
B 0.667 0
M 0.044 0.289

B M
B 0.644 0.022
M 0.155 0.178

• 180 training observations

B M
B 0.633 0.033
M 0.044 0.289

B M
B 0.644 0.022
M 0.044 0.289

B M
B 0.644 0.022
M 0.044 0.289

B M
B 0.589 0.078
M 0.044 0.289

B M
B 0.644 0.022
M 0.044 0.289

B M
B 0.589 0.078
M 0.044 0.289

n=5

• 30 training observations
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B M
B 0.600 0.067
M 0 0.333

B M
B 0.600 0.067
M 0 0.333

B M
B 0.533 0.133
M 0 0.333

B M
B 0.666 0
M 0.333 0

B M
B 0.533 0.133
M 0 0.333

B M
B 0.666 0
M 0.333 0

• 90 training observations

B M
B 0.667 0
M 0.044 0.289

B M
B 0.667 0
M 0.044 0.289

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.244 0.089

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.244 0.089

• 180 training observations

B M
B 0.633 0.033
M 0.033 0.300

B M
B 0.633 0.033
M 0.011 0.322

B M
B 0.633 0.033
M 0.022 0.311

B M
B 0.656 0.011
M 0.189 0.144

B M
B 0.633 0.033
M 0.022 0.311

B M
B 0.656 0.011
M 0.189 0.144

n=10

• 30 training observations
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B M
B 0.600 0.067
M 0 0.333

B M
B 0.667 0
M 0 0.333

B M
B 0.533 0.133
M 0.067 0.267

B M
B 0.667 0
M 0.333 0

B M
B 0.533 0.133
M 0.067 0.267

B M
B 0.667 0
M 0.333 0

• 90 training observations

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.044 0.289

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.333 0

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.333 0

• 180 training observations

B M
B 0.644 0.022
M 0.022 0.311

B M
B 0.633 0.033
M 0 0.333

B M
B 0.633 0.033
M 0.033 0.300

B M
B 0.667 0
M 0.333 0

B M
B 0.633 0.033
M 0.033 0.300

B M
B - -
M - -

n=20

• 30 training observations
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B M
B 0.667 0
M 0 0.333

B M
B 0.667 0
M 0.067 0.267

B M
B 0.600 0.067
M 0.067 0.267

B M
B 0.667 0
M 0.333 0

B M
B - -
M - -

B M
B - -
M - -

• 90 training observations

B M
B 0.667 0
M 0.022 0.311

B M
B 0.667 0
M 0.044 0.289

B M
B 0.667 0
M 0.044 0.289

B M
B (0.667) 0
M (0.333) 0

B M
B - -
M - -

B M
B - -
M - -

• 180 training observations

B M
B 0.633 0.033
M 0.022 0.311

B M
B 0.633 0.033
M 0.022 0.311

B M
B 0.633 0.033
M 0.056 0.278

B M
B - -
M - -

B M
B - -
M - -

B M
B - -
M - -

A.2. Dengue dataset

n=2

• 30 training observations
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0 1 2
0 0.333 0 0
1 0 0.067 0.267
2 0 0.067 0.267

0 1 2
0 0.333 0 0
1 0 0.200 0.133
2 0 0.133 0.200

0 1 2
0 0.133 0.067 0.133
1 0 0.133 0.200
2 0 0.133 0.200

0 1 2
0 0.200 0 0.133
1 0 0.267 0.067
2 0 0.200 0.133

0 1 2
0 0.133 0.067 0.133
1 0 0.133 0.200
2 0 0.133 0.200

0 1 2
0 0.200 0 0.133
1 0 0.267 0.067
2 0 0.200 0.133

• 300 training observations

0 1 2
0 0.333 0 0
1 0.033 0.160 0.140
2 0.060 0.040 0.233

0 1 2
0 0.333 0 0
1 0.013 0.287 0.033
2 0.060 0.067 0.207

0 1 2
0 0.333 0 0
1 0.033 0.253 0.047
2 0.087 0.087 0.160

0 1 2
0 0.327 0 0.007
1 0.060 0.213 0.060
2 0.053 0.100 0.180

0 1 2
0 0.333 0 0
1 0.033 0.253 0.047
2 0.087 0.087 0.160

0 1 2
0 0.327 0 0.007
1 0.060 0.213 0.060
2 0.053 0.100 0.180

• 1500 training observations

0 1 2
0 0.333 0 0
1 0.015 0.145 0.173
2 0.024 0.039 0.271

0 1 2
0 0.333 0 0
1 0.011 0.257 0.065
2 0.013 0.085 0.235

0 1 2
0 0.333 0 0
1 0.013 0.260 0.060
2 0.059 0.095 0.180

0 1 2
0 0.325 0 0.008
1 0.039 0.232 0.063
2 0.045 0.096 0.192

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 3000 training observations
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0 1 2
0 0.333 0 0
1 0.014 0.167 0.152
2 0.017 0.029 0.287

0 1 2
0 0.332 0 0.001
1 0.010 0.250 0.073
2 0.005 0.072 0.257

0 1 2
0 0.333 0 0.001
1 0.013 0.274 0.046
2 0.048 0.095 0.190

0 1 2
0 0.328 0 0.005
1 0.036 0.231 0.067
2 0.035 0.087 0.211

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

n=5

• 30 training observations

0 1 2
0 0.333 0 0
1 0 0.200 0.133
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0 0.267 0.067
2 0 0.133 0.200

0 1 2
0 0.200 0 0.133
1 0 0.267 0.067
2 0 0.133 0.200

0 1 2
0 0.067 0.267 0
1 0 0.133 0.200
2 0 0.267 0.067

0 1 2
0 0.200 0 0.133
1 0 0.267 0.067
2 0 0.133 0.200

0 1 2
0 0.067 0.267 0
1 0 0.133 0.200
2 0 0.267 0.067

• 300 training observations

0 1 2
0 0.333 0 0
1 0.013 0.227 0.093
2 0.053 0.067 0.213

0 1 2
0 0.333 0 0
1 0.013 0.287 0.033
2 0.047 0.053 0.233

0 1 2
0 0.327 0 0.007
1 0.013 0.240 0.080
2 0.100 0.053 0.180

0 1 2
0 0.313 0.013 0.007
1 0.007 0.267 0.006
2 0 0.127 0.207

0 1 2
0 0.327 0 0.007
1 0.013 0.240 0.080
2 0.100 0.053 0.180

0 1 2
0 - - -
1 - - -
2 - - -

• 1500 training observations
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0 1 2
0 0.333 0 0
1 0.012 0.180 0.141
2 0.020 0.063 0.251

0 1 2
0 0.333 0 0
1 0.011 0.261 0.061
2 0.012 0.060 0.261

0 1 2
0 0.333 0 0
1 0.015 0.273 0.045
2 0.052 0.072 0.209

0 1 2
0 0.329 0 0.004
1 0.004 0.297 0.032
2 0 0.003 0.331

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 3000 training observations

0 1 2
0 0.333 0 0
1 0.014 0.179 0.141
2 0.015 0.069 0.249

0 1 2
0 0.333 0 0
1 0.013 0.271 0.050
2 0.004 0.053 0.276

0 1 2
0 0.325 0 0.008
1 0.012 0.261 0.061
2 0.025 0.054 0.255

0 1 2
0 0.328 0.005 0
1 0.001 0.319 0.013
2 0 0 0.333

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

n=10

• 30 training observations

0 1 2
0 0.333 0 0
1 0 0.267 0.067
2 0 0.067 0.267

0 1 2
0 0.333 0 0
1 0 0.267 0.067
2 0 0.067 0.267

0 1 2
0 0.200 0 0.133
1 0 0.200 0.133
2 0.067 0 0.267

0 1 2
0 0.067 0.267 0
1 0 0.267 0.067
2 0 0.133 0.200

0 1 2
0 0.200 0 0.133
1 0 0.200 0.133
2 0.067 0 0.267

0 1 2
0 0.067 0.267 0
1 0 0.267 0.067
2 0 0.133 0.200

• 300 training observations
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0 1 2
0 0.333 0 0
1 0.013 0.293 0.027
2 0.027 0.067 0.240

0 1 2
0 0.333 0 0
1 0.013 0.313 0.007
2 0.013 0.047 0.273

0 1 2
0 0.327 0 0.007
1 0.013 0.300 0.020
2 0.027 0.040 0.267

0 1 2
0 0.307 0.027 0
1 0 0.333 0
2 0 0.173 0.160

0 1 2
0 0.327 0 0.007
1 0.013 0.300 0.020
2 0.027 0.040 0.267

0 1 2
0 - - -
1 - - -
2 - - -

• 1500 training observations

0 1 2
0 0.333 0 0
1 0.008 0.263 0.063
2 0.008 0.049 0.276

0 1 2
0 0.333 0 0
1 0.011 0.295 0.028
2 0.004 0.012 0.317

0 1 2
0 0.333 0 0
1 0.011 0.295 0.028
2 0.004 0.012 0.317

0 1 2
0 0.328 0.005 0
1 0 0.333 0
2 0 0.003 0.331

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 3000 training observations

0 1 2
0 0.333 0 0
1 0.007 0.272 0.054
2 0.004 0.047 0.282

0 1 2
0 0.333 0 0
1 0.007 0.300 0.026
2 0.001 0.009 0.323

0 1 2
0 0.333 0 0.001
1 0.001 0.306 0.021
2 0.001 0.005 0.327

0 1 2
0 0.329 0.004 0
1 0 0.333 0
2 0 0 0.333

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

n=20

• 30 training observations
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0 1 2
0 0.333 0 0
1 0 0.267 0.067
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0 0.267 0.067
2 0 0.067 0.267

0 1 2
0 0.333 0 0
1 0 0.200 0.133
2 0 0 0.333

0 1 2
0 0.067 0.267 0
1 0 0.200 0.133
2 0 0.200 0.133

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 300 training observations

0 1 2
0 0.333 0 0
1 0.020 0.313 0
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0.013 0.320 0
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0.007 0.320 0.007
2 0 0 0.333

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 1500 training observations

0 1 2
0 0.333 0 0
1 0.001 0.332 0
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0 0.332 0.001
2 0 0 0.333

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

• 3000 training observations
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0 1 2
0 0.333 0 0
1 0.003 0.331 0
2 0 0 0.333

0 1 2
0 0.333 0 0
1 0 0.333 0
2 0 0 0.333

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

0 1 2
0 - - -
1 - - -
2 - - -

A.3. COVID dataset

Here 0 means COVID positive and 1 COVID negative. Note that in this case,
given that the proportions between instances are approximately 19:1 for nega-
tive:positive, the test set was built to respect this proportionality, because after
taking most of the positive observations to create a balanced training set, the re-
maining ones were too scarce to maintain the original proportionality.

n=4

• 200 training observations

0 1
0 0.90 0.05
1 0.03 0.02

0 1
0 0.92 0.03
1 0.03 0.02

0 1
0 0.93 0.02
1 0.03 0.02

0 1
0 0.93 0.02
1 0.03 0.02

0 1
0 0.93 0.02
1 0.03 0.02

0 1
0 0.93 0.02
1 0.03 0.02

• 1000 training observations

0 1
0 0.888 0.062
1 0.018 0.032

0 1
0 0.846 0.104
1 0.014 0.036

0 1
0 0.904 0.046
1 0.022 0.028

0 1
0 0.876 0.074
1 0.018 0.032

0 1
0 - -
1 - -

0 1
0 - -
1 - -

• 2000 training observations
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0 1
0 0.881 0.069
1 0.018 0.032

0 1
0 0.885 0.065
1 0.011 0.039

0 1
0 0.882 0.068
1 0.012 0.038

0 1
0 0.851 0.099
1 0.01 0.04

0 1
0 - -
1 - -

0 1
0 - -
1 - -

Appendix B. Codes

Codes for Sections 3 and 4 can be accessed through GitHub. The correspondence
between codes and sections is the following.

• SVM_B and SVM_B_2: Section 3.2.1.

• SVM_MC: Section 3.2.2.

• SVM_MC: Section 3.2.3.

• LAMDA_1 and LAMDA_2: Section 4.
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https://github.com/alvarofb00/MSc-thesis.git
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