

Aplicaciones de la IA en Energía

Jose Aguilar

Octubre 2024

Al Horizons: Navegando los desafíos en Inteligencia Artificial

Contenido

Conceptos claves la IA

IA en Smart Grid

Futuros retos

Universo de la lA

Razonamiento:

Resolución de problemas mediante inferencia: deductiva, abductiva o inductiva

Aprendizaje Automático:

técnicas que que permitan que las computadoras aprendan a partir de los datos o experiencia.

Procesamiento del lenguaje natural:

humano

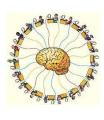
Computación Inteligente: Abarca las tres técnicas mas importantes de la IA: Redes neuronales artificiales, Lógica difusa, Computación Evolutiva

Visión Artificial:

Comprender y analizar imágenes y videos

Planificación:

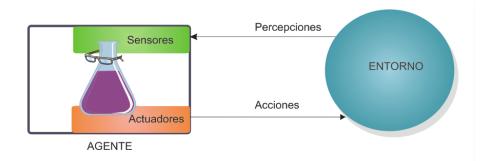
Generar **secuencias de acciones** para alcanzar un objetivo


Búsqueda:

Resolución de problemas mediante el recorrido de un espacio de posibles soluciones (meta-heurísticas, etc.).

Inteligencia colectiva

describen los procesos de aprendizaje grupales. Muchos bioinspirados como las colonias de insectos: PSO. ACO.


Sistemas auto-organizados y autonómicos

Sistemas que se auto-regulan con capacidades que emergen

Conceptos claves de la IA

Concepto de Base: Agentes

Es un sistema (quizas computacional) que está <u>situado</u>
<u>en un entorno</u>, que es capaz de realizar <u>acciones</u>
<u>autónomas</u> flexibles en ese entorno para <u>alcanzar sus</u>
<u>objetivos</u>

Caracterizado por:

-SU ESTRUCTURA (ARQUITECTURA)
-SUS ACCIONES (COMPORTAMIENTO)
Arquitectura+programa

Mecanismos para/de

- resolver un problema
- planificar sus actividades /tareas
- representar el conocimiento
- razonamiento
- aprendizaje
- percepción
- comunicarse

Agentes

Avatar



https://www.alamy.es/avatar-chica-con-pelo-largo-y-oscuro-avatar-y-rostro-unico-icono-en-el-estilo-de-dibujos-animados-de-simbolos-vectoriales-ilustracion-web-de-stock-image213116418.html

Robots Sociales

Vehículo Autónomo

Conceptos claves de la IA

Sistemas Multiagentes

Es un sistema informático formado por un grupo de agentes que interactúan entre sí utilizando protocolos y lenguajes de comunicación de alto nivel, para resolver problemas que pueden estar más allá de las capacidades o del conocimiento de cada uno.

Negociar

Resolver conflictos

Colaborar ...

Enjambre de Robots

Vehículos Autónomos en una ciudad

Conceptos claves de la IA

Ambientes Inteligentes

Las Tecnologías de Información, Comunicación y Automatización (TICAs) se están desplegando por todos lados

Es el conjunto de sistemas que hacen posible la adecuación de un ambiente (salón de clases, museos, casas, etc.)

- Integra todos los dispositivos con capacidad **inteligente y autónoma**, en la dinámica de actividades del entorno
- Dispositivos y software se auto-organizan

Analizar:

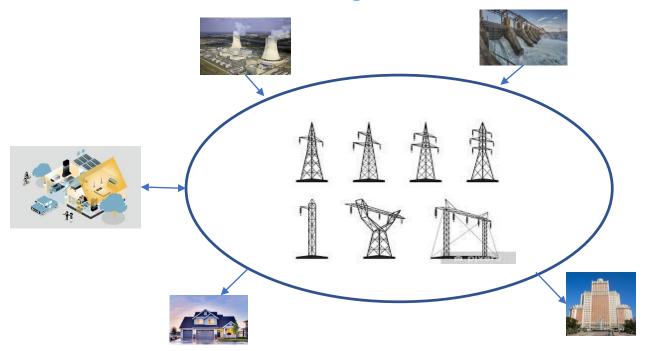
Interpreta las situaciones que acontecen en el proceso que se está estudiando: detecta, comprende, diagnostica, etc.

Monitoreo:

identifica, captura, pre-proces las variables del proceso bajo estudio,

Base de Conocimiento (Modelos)

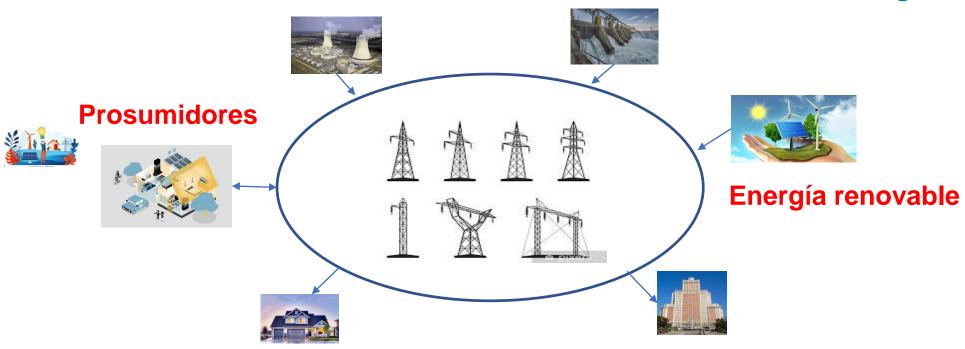
PROCESO


Toma de decisiones:

Define **acciones a tomar** sobre el proceso, con el fin de alcanzar el objetivo definido para el ciclo.

Contexto

Fuentes de Energía clásicas

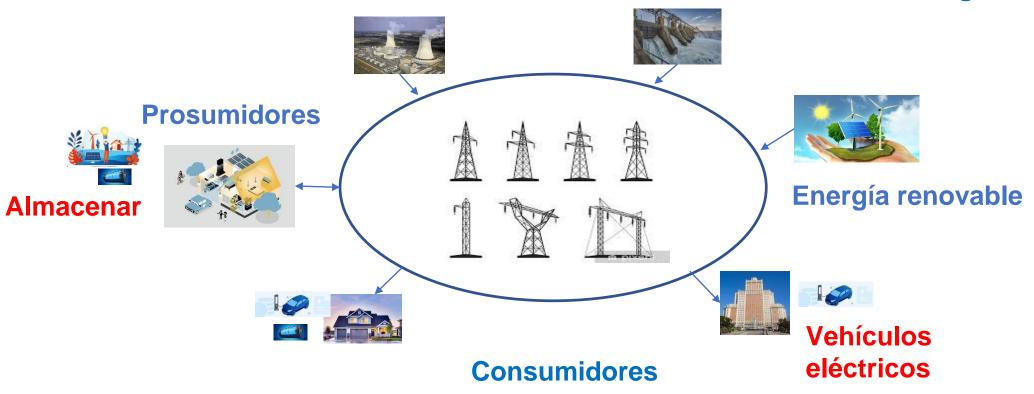

Consumidores

J. Aguilar

Contexto

Fuentes de Energía clásicas

Fuentes de Energía muy diversas

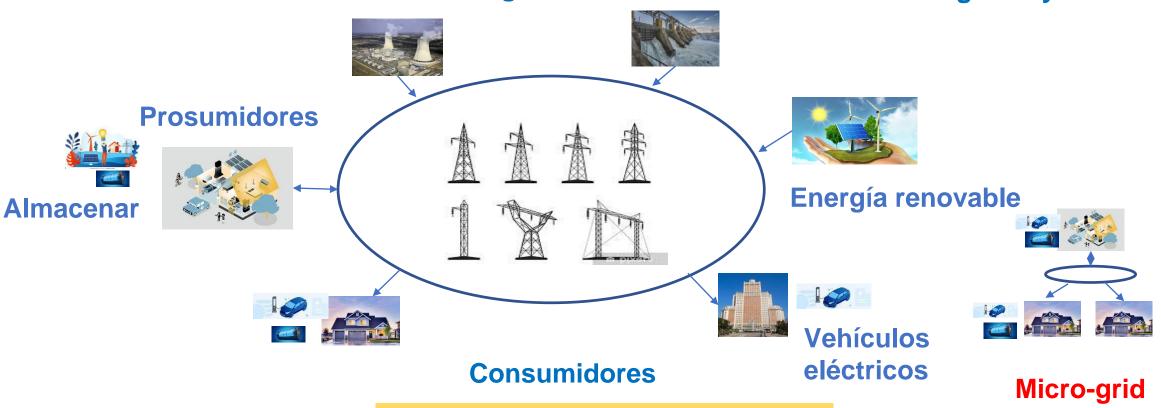

Consumidores

J. Aguilar

Contexto

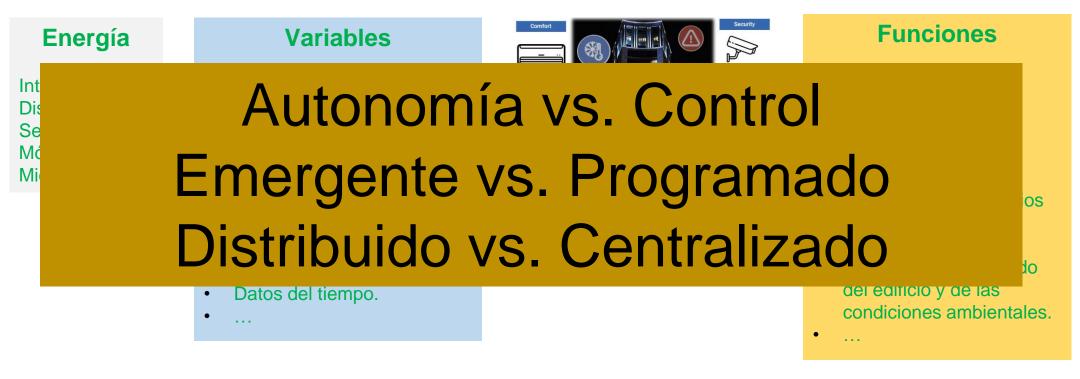
Fuentes de Energía clásicas

Fuentes de Energía muy diversas



J. Aguilar

Contexto


Fuentes de Energía muy diversas

Democratización de la producción

Una **red inteligente** energética integra el **comportamiento de sus usuarios** para asegurar un sistema energético **eficiente, sostenible**, de **alta calidad** y **fiabilidad** de suministro.

Energy Management Systems (EMS)

Gestión Inteligente Dispositivos

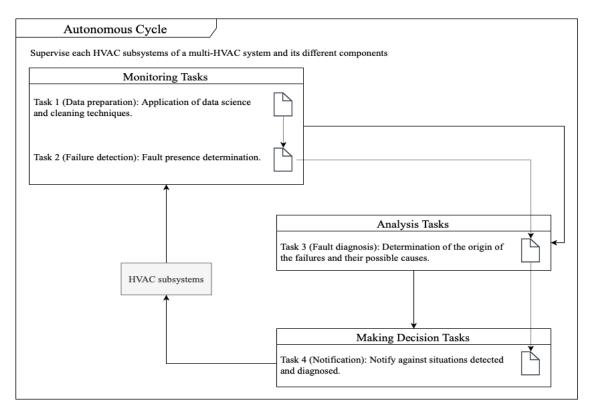
Planificación de Cargas Controlables

Control Emergente de Micro-redes

- Perfilamiento de consumo/producción energética
- Control y Supervisión de consumo energético
- Manejo de arranque de equipos
- Optimización Configuración de Sistemas de Climatización

Hogares Edificios

- Planificación del uso de la carga controlable
- Optimización de despliegue de sensores ambientales
- Estimación de ocupación de espacios/demanda energética


Redes de Energía

- Sistemas de Gestión de Micro-redes
- Sistemas de Control Distribuidos para entornos energéticos
- Estrategias de negociación para redes Peer to Peer de Trading energético

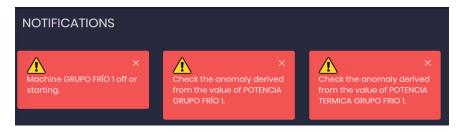
Entornos Computacionales

- Desarrollo de Componentes para Energy System Description Language (ESDL)
- Uso de ESDL para simular Micro-redes energéticas
- Modelos de optimización de flotas de vehículos eléctricos
- Gemelo digital de una planta de generación de Hidrógeno Verde

Supervisión de un sistema multi-HVAC

Task 2	Fault Detection		
Description:	Failure identification		
Data source:	HVAC system Environment		
Data analytics type:	Classification		
Data analytics technique:	K-neighbors, MLP,		
Knowledge model type:	Classification model		
Related data analytics task:	Failure diagnosis		
Autonomic cycle type:	Monitoring		

Task 3	Fault Diagnosis		
Description	Failure's origin identification		
Description:	Possible causes		
Data source:	Previous task		
Data analytics type:	Clustering		
Data analytics technique:	Kmeans, etc.		
Knowledge model type:	Diagnosis model		
Related data analytics task:	Failure detection		
Autonomic cycle type:	analysis		

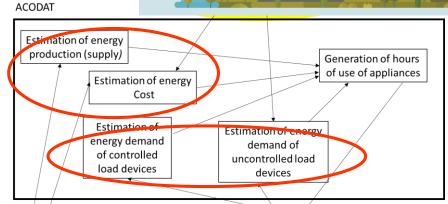

Supervisión de un sistema multi-HVAC

Detección

Variable Data Model Accuracy MSE	
MLP regressor 70.6% 0.254	
K-neighbors 0.138	
COP cold regressor	
group 1 gradient boosting regressor MLP regressor	ver
boosting boo	
regressor Potencia frio 2	
MLP regressor	
K-neighbors	
COP Charles regressor	
heat pump gradient Gr	
regressor gradient boosting to the state of	encia
regressor	

Diagnóstico

No. Clusters	Silhouette Coefficient		
2	0.48		
3	0.51		
4	0.49		
5	0.41		



Planificación del uso de la Energía

Gestión energética del consumo de energía para dispositivos de carga controlable datos

Uncontrolled load devices

HVAC systems (12000 kWh/yr)

DHW (3000 kWh/yr)

Refrigerator (1200 kWh/yr),

home lighting system (1200 kWh/yr).

Planificación del uso de la Energía

Tarea de estimación de oferta de energía

Predicción de la energía solar producida

Technique	Number of layers	Number of epoch	SME	MAPE	R ²
RF			0.07	0.07	0.90
BNN	3	50	0.09	0.10	0.74
	4	50	80.0	0.06	0.88
	5	100	80.0	0.04	0.89

Variables

- distance-to-solar-noon (in radians),
- temperature (daily average temperature, in degrees Celsius),
- wind-direction (daily average wind direction, in degrees, 0-360),
- wind-speed (daily average wind speed, in meters per second),
- sky-cover (in a five-step scale, from 0 to 4, being 0 totally clear and 4 completely covered, visibility (in kilometers),

• ...

Predicción de la energía eólica producida ...

Tarea de estimación de demanda de energía

Electrodomésticos asociados a cada actividad

Activity	Associated Appliances				
Cook	Dishwasher, electric				
	pressure cooker				
Eat	Dishwasher				
Party	Vacuum cleaner				
Enter home,	Washing machine, tumble				
Personal hygiene	dryer,				

Predicción de la demanda de energía del lavavajillas

Techniq ue	Number of layers	Number of epoch	SME	MAPE	R ²
RF			0.04	0.03	0.92
BNN	3	50	0.1	0.13	0.83
	4	50	0.1	0.06	0.90
	5	100	80.0	0.04	0.91

Predicción de la demanda de energía de la lavadora ...

Planificación del uso de la Energía

Tarea para programar el uso de dispositivos de carga controlable

 $min(R + \alpha F)$

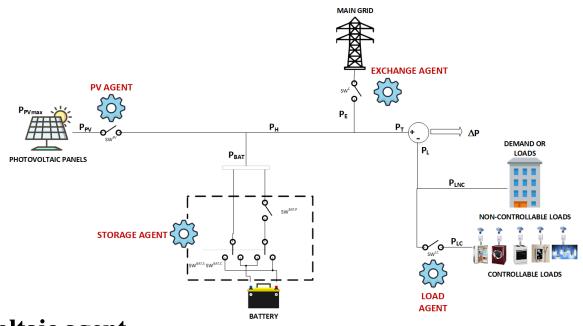
 A_{ij} es una variable de estado que electrodoméstico i, P_{rj} es la en controlable, Cj es el costo de la

Casos de carga conf

Planificación Inteligente para un hogar

Uso energía renovable

Asignación Carga requerida


da de energía estimada para el s la demanda de energía de la carga no gía renovable o disponible

Case	Appliances				
1	Washing machine, Dishwasher				
2	Washing machine, Dishwasher, Vacuum cleaner				
3	Washing machine, Dishwasher, Tumble dryer,				
	Electric pressure cooker, Vacuum cleaner,				

Days	3		7		15	
vs	Value	Gener.	value	Gener	Value	Gene
Case						r.
1	0	26	0	31	0.2	41
2	0	28	0.4	41	0.5	53
3	3.2	52	3.5	57	5.1	82

Control Emergente de una Microgrid

Control Emergente basado en el Modelo de Umbral de Respuesta para una Micro-red

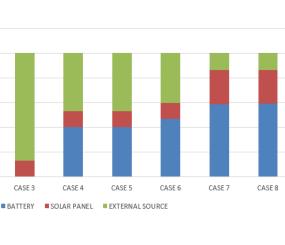
Instant stimulus function Response threshold model Instant threshold function Self Agent Organizational relationship Area of influence

Photovoltaic agent

$$q_{PV}(t) = \frac{s_{PV}(t)^2}{s_{PV}(t)^2 + \theta_{PV}(t)^2},$$

Modelo de Umbral de Respuesta

$$s_{PV}(t+1) = s_{PV}(t) + w_{PV}(P_{PVmax}(P_L + (1 - Soc)Q_{CAP}))$$


$$\theta_{PV}(t+1) = \theta_{PV}(t) - \beta_{PV} \frac{P_{PV}}{P_L} \Delta t + \gamma_{PV} \left(1 - \frac{P_{PV}}{P_L} \right) \Delta$$

 P_{PV} es la potencia de salida del agente fotovoltaico que varía según la radiación solar, w_{PV} es un factor de atenuación, P_{PVmax} es la potencia máxima de salida, P_L es la demanda y $((1 - Soc)Q_{CAP})$ es la capacidad de guardar energía.

Control Emergente basado en el Modelo de Umbral de Respuesta para una Micro-red

Normal operation of the microgrid with constant demand

Aspectos Éticos

Pendiente

Preocupaciones y Retos

Impacto en la Moral humana.

Ética de la IA en el sector energético

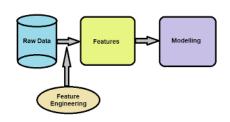
Un comportamiento ético de una red inteligente consideraría:

- Beneficios ambientales (mejorar la eficiencia energética y facilitar la integración de energías renovables
- **Beneficios sociales** (garantizar el bienestar de las personas, reducir las emisiones de carbono, minimizar el impacto ambiental y buscar el desarrollo sostenible).

Más específicos, un **EMS ético** debería:

- Tratar de equilibrar la oferta y la demanda en base a energías renovables
- Optimizar el uso energético minimizando la dependencia de fuentes energéticas contaminantes (reducir las emisiones de carbono)
- Gestionar eficientemente la red energética, identificando fallos o sobrecargas, entre otras cosas.
- Tener algoritmos de predicción, gestión energética, etc., transparentes y explicables
- Asegurar que todas las comunidades, incluidas las de bajos ingresos, tengan un acceso justo a los beneficios de una energía más eficiente y limpia.
- Sus algoritmos ser computacionalmente sostenibles

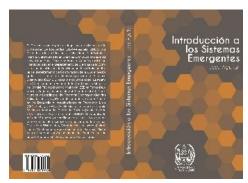
Eso implica que la **autoorganización de los dispositivos en la red inteligente** (fuentes de energía renovables, baterías, casas, etc.) debe abordar **retos globales** como el cambio climático, **respetando principios éticos** como la equidad, la transparencia y la sostenibilidad energética.



Conclusiones

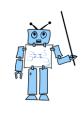
Meta-Aprendizaje

 Automatizar Ingeniería de **Descriptores**


Automatizar transferencia de

Aprendizaje

 Aprendizaje federado



Control Emergente

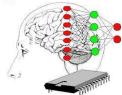
http://bit.do/fSivD

 Aprendiendo razonando

Aprendizaje Incremental

ML explicativo

Conclusiones


En todos los dispositivos habrá algo con IA

- Smartphone
- Vehículos
- Neveras

COUDADES INTELIGENTES SMART CITY SMART CITY Inteligence Econtinuca Inteligence pinck is movistad. Grant Spench en Mede Ambus ne Grant Spench en Mede Grant Spench en Me

Nuevos descubrimientos impactarán la IA

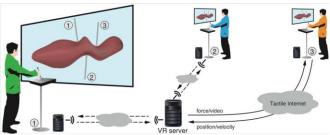
- Conocemos solo alrededor del 10% del cerebro
- Cerebro humano está cambiando

En todas las actividades humanas se usará la IA

- Economía
- Salud (Internet Táctil)
- Hogar
- Educación
- Transporte

Habrá cambios sociales significativos

- Vehículos Autónomos
- Costo y eficiencia energética
- Operaciones Remotas



1s

100ms

10ms

INTRODUCCIÓN A LA COMPUTACIÓN AFECTIVA

Jose Aguilar, Jhon Edgar Amaya & Ángel Gil

0-0

"Si buscas resultados distintos, entonces no hagas siempre lo mismo"

A. Einstein

TEPUY

www.ing.ula.ve/~aguilar

http://www.ing.ula.ve/~aguilar/distinciones/conferencias/

Algunos últimos artículos

- "A reinforcement learning based energy optimization approach for household fridges" Coautores: J. Giraldo, R. Mejia, Sustainable Energy, Grids and Networks, Vol. 36, 2023 (https://shorturl.at/cEHKV)
- "A Bio-inspired Emergent Control Approach for Distributed Processes", Coautor: M. García, Applied Soft Computing, vol. 141, 2023 (https://shorturl.at/vFY39).
- "Deep Reinforcement Learning Approaches for the Hydro-thermal Economic Dispatch Problem considering the uncertainties of the context", Coautores: A. Ramirez, M. R-Moreno, Sustainable Energy, Grids and Networks, vol. 35, 2023 (https://www.sciencedirect.com/science/article/pii/S2352467723001170).
- "A Bioinspired Emergent Control for Smart Grids," Coautores: M. Garcia, M. Rodríguez-Moreno, IEEE Access, vol. 11, pp. 7503-7520, 2023 (http://bit.do/fVXAU).
- "Deep Reinforcement Learning Approaches for the Hydro-thermal Economic Dispatch Problem considering the uncertainties of the context", Coautores: A. Ramirez, M. R-Moreno, Sustainable Energy, Grids and Networks, 2023 (https://shorturl.at/ejmzL).
- "Approaches based on LAMDA control applied to regulate HVAC systems for Buildings" Coautores: L Morales, D. Pozo, M. R-Moreno. Journal of Process Control, vol 1162022
- "Analysis of the Behavior Pattern of Energy Consumption through Online Clustering Techniques", Coautores: J. Viera, M. R-Moreno, C. Quintero, *Energies*, vol. 16, no. 4, 2023 (https://www.mdpi.com/1996-1073/16/4/1649)."
- M. Garcia, J. Aguilar, "Emergent Control in the context of Industry 4.0" *International Journal of Computer Integrated Manufacturing*, vol. 35, no. 3, pp. 247-262, 2022 (http://bit.do/fSx7H).
- G. Santiago, J. Aguilar, "Ontological Model for the Acoustic Management in a Smart Environment", Applied Computing and Informatics, 2022 (http://bit.do/fTqJ3).
- "Emergent Control in the context of Industry 4.0" Coautor: M. Garcia, *International Journal of Computer Integrated Manufacturing*, vol. 35, no. 3, pp. 247-262, 2022 (http://bit.do/fSx7H).
- L. Morales, J. Aguilar, O. Camacho, A. Rosales, "An Intelligent Sliding Mode Control based on LAMDA for a class of SISO uncertain systems" *Information Sciences*, Vol 567, pp 75-99, 2021 (http://bit.do/fPFai).
- J. Aguilar, A. Garces-Jimenez, N. Gallego-Salvador, J. Gutiérrez de Mesa, J. Gómez-Pulido, A. García-Tejedor, "A multi-HVAC system autonomic management architecture for smart buildings", IEEE Access, Vol. 7, pp. 123402 123415, 2019.