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Abstract:
For autonomous systems, it is essential to be able to identify the current state i.e to perform
situation assessment, in order to determine the action to execute to ensure correct functionalities.
Specifically, an autonomous system requires a supervision component with the goal to detect
and to diagnose the current situation, and then to determine the self-adaptive operations.
We propose a self-adaptive architecture for autonomous communicating systems in which the
situation assessment process feeds the reconfiguration system with an estimation of the traffic
situation so that it can decide about the reactions appropriate to cope with the dynamic changes.
The estimation of the traffic situation is implemented at the transport protocol level from
the time-stamped quality of service (QoS) parameters by using a learning approach. A fuzzy
clustering method is used to classify the system states in classes called primitive patterns and
the transitions between classes are expressed in term of events. A set of simulated network traffic
scenarios are used to illustrate the main principles of the approach.

Keywords:

1. INTRODUCTION

Autonomic Computing is a concept that links many
fields of computing in order to create computing sys-
tems with self-management properties, e.g. self-protection,
self-optimization, self-reconfiguration, etc. (Huebscher and
McCann (2008)). This paradigm is necessary for the new
generation of emergent applications with self-organizing
properties, which require to solve several problems at the
level of semantic characterization of the environment (con-
text modeling), optimal discovery and selection of ubiqui-
tous objects, adaptive mechanisms (learning and reasoning
capabilities), etc. in order to generate an autonomic and
context aware behavior.

In this paper we propose an approach for autonomic
computing and more precisely a situation assessment ap-
proach for autonomous communicating systems at the
transport level Situation assessment is a relevant chal-
lenge in autonomous communicating systems as it is an
essential way to provide self-adaptive capabilities. Our ap-
proach put the situation assessment component at the core
of the proposed autonomy architecture (Aguilar-Martin
et al. (2011)). This architecture relies on a component-
based approach such as the one proposed by MPTCP
(Multi- Path Transport Control Protocol) and generalized
by ETP (Enhanced Transport Protocol) Van Wambeke
et al. (2008) Guennoun et al. (2008) to widely facilitate
the design and development of new composed transport
services. Indeed, new transport services are expected to
result of the combination of pluggable components offering

specific basic functionalities in terms of reliability, order-
ing, delay control, and congestion control. The problem
considered in this paper is to characterize from the network
available data the situations that call for specific basic
functionalities and specific compositions.

The problem of having an explicit assessment of the com-
munication situation is similar to a monitoring problem as
considered in the data driven diagnosis community. Our
claim is that we can track the evolution of the traffic from
well-identified Quality of Service (QoS) properties. We
propose to use learning techniques to identify the oper-
ation states describing the dynamically changing context
situations arising from the distributed and collaborative
mobile applications associated to communicating systems.

The feasability of our approach is demonstrated using
simulated network traffic obtained from NS - 2 (Network
Simulator V2). Although it has not been experimented
on real Internet network traffic yet, the results are quite
convincing given that the traffic provided by NS - 2 is
rather realistic.

The paper is organized as follows. Section 2 presents a
self-adaptive architecture for autonomous communicating
system. Section 3 is dedicated to the method for situation
assessment. A set of simulated network traffic scenarios are
used to illustrate the main principles of the approach in
section 3. Finally, concluding remarks are drawn in section
4 and the prospects for future work are discussed.
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2. A SELF-ADAPTIVE ARCHITECTURE FOR
AUTONOMOUS COMMUNICATING SYSTEMS

Coping with context changes in networked systems re-
quires to provide adaptability to the traffic control and
management system. This can be achieved through self-
adaptive communication protocols that dynamically re-
configure the communication system according to the
user’s requirements and to the load of the communication
resources.

In the well-known Open System Interconnection (OSI)
referential model (Zimmerman (1980)), composed of seven
layers, the transport layer is the lowest layer operating on
an end-to-end basis between two or more communicating
hosts. This layer is located between the applications and
the network layer. Transport services enable applications
to abstract the communication services and protocols pro-
vided by the lower network and MAC (Media Access
Control) layers. Transport protocols specify the mecha-
nisms to be implemented in order to offer the required
transport services. Because the communication Quality of
Service (QoS) is highly impacted by the specific transport
protocol in use, our self-adaptation architecture targets
the transport level and proposes to adapt the transport
protocol as the communication context evolves.

Dealing with this problem not only requires a proper
characterization of the alternative protocol properties but
also the capability of monitoring the QoS to assess the
communication context. These are at the basis of the
decision to dynamically modifying the behavior of the
communication protocol for each new context situation
and executing the appropriate reconfiguration actions.

Figure 1 illustrates the architecture that has been pro-
posed in (Aguilar-Martin et al. (2011)), and that is fore-
seen to provide a solution to this problem.

Fig. 1. Architecture for self-adaptation

The Reconfiguration/Decision System outputs the proto-
col to be deployed. This decision is taken upon several
inputs:

• the properties Po of the different available protocols
gathered through an ontology
• the communication context at time t0 Cx(t0)
• the properties Pa required by the application and the

application context Ca
• the current context Cx(t) recognized by the Context

Recognition System, i.e. Ĉx(t).

Our approach focuses on the Context Recognition System,
which monitors and assesses the communication context
and related QoS, receiving information from monitors
observing, on one hand, the application context Ca and,
on the other hand, the network properties Pr(t).

3. SITUATION ASSESSMENT FOR AUTONOMOUS
SYSTEMS

3.1 Principles

In the proposed strategy, situation assessment aims at
alerting the Reconfiguration/Decision System every time
a new situation arises in the network and at identifying
the new situation. A situation is related to an evolution of
the QoS parameters of the studied communicating system.
Therefore, situation assessment induces the capability
to detect different relevant traffic situations taking the
discriminating features in terms of QoS indicators of such
situations into account.

The entire situation assessment strategy is based on the
analysis of time-stamped QoS parameters issued from the
communicating system that can be logged in the form of
time series. Two different but non-independent steps can
be pointed out:

• an off-line step in which historical time series are
analyzed and processed along an unsupervised classi-
fication approach to characterize the behavior of the
system according to different clusters. This charac-
terization is performed by determining primitive pat-
terns corresponding to the clusters, and successions
corresponding to sets of chronologically neighboring
system states as illustrated in Figure 3. This step al-
lows us to characterize the system evolution in terms
of high level states, also called operation states. An
event identification phase allows us to characterize
the transitions between operation states and to give
semantics in terms of QoS parameters to the transi-
tions.

• an on-line step, during which the cluster model iden-
tified at the previous step is used as a classifier to
determine the actual state of the process from on-line
acquired data. The classifier model hence constitutes
the situation assessment mechanism of the Context
Recognition System in the architecture given in Fig-
ure 1.

This paper focuses on the off-line step decomposed in the
following tasks :

(1) Generation of a training data base for collaborative
communicating systems,

(2) Specification of primitive patterns and successions :
this is the clustering phase in which each data sample
is assigned to a class according to its feature values.
A class can be seen as the operation state of the
communication system during a time epoch. There-
fore the behavior of the system is represented by a
chronologically ordered sequence of classes. In this
sequence each class constitutes a primitive pattern.
Each primitive pattern is associated to a succession
of samples (belonging to the corresponding primi-
tive pattern) and the time interval during which all
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samples belong to the same class. During this time
interval, the system operation state is assumed to be
the same.

(3) Determination of events: an event is defined for each
transition between primitive patterns i.e. when the
communication system evolves from one operation
state to another. Transition zones are defined and
characterized by specific durations, initial class, des-
tination class etc., by using the information referring
to the concerned samples.

3.2 Generation of a training data base for collaborative
communication systems

In the context of networked communicating systems, the
data is obtained from a simulator of communication sys-
tems that can be parameterized by a given protocol within
a set : TCP (Transmission Control Protocol), TCP and
UDP (User Datagram Protocol), etc.

The selected features must be relevant for characterizing
the different situations to be detected. In our case, we use
standard QoS parameters, namely delay, bit rate, jitter
and percentage of lost packets. Every data sample has
hence a time stamp and four dimensions.

Several scenarios inducing representative behavior, have
been defined and simulated, e.g. router congestion, connec-
tion loss, etc. These scenarios are described by the com-
munication protocols used (TCP, UDP, etc.), the sources
of packet emission, etc. They are given to the simulator,
whose simulation traces provide all kind of information,
i.e. ID packet, packet size, emission time, emission address,
reception address, etc. for the different sites of the network.

These data is filtered from the point of view of the
source and the destination of the packets for which one
wishes to analyze the faulty situations (emission and
reception addresses), and from the point of view of the
information that is required to calculate the feature values.
For example, to calculate the delay, the emission and
reception time of a packet are required. This information is
determined/searched for from the trace file. A script must
be elaborated for each feature.

Fig. 2. Classification results for the UDP / TCP scenario

3.3 Specification of primitive patterns and successions

The process characterization step, which leads to the clas-
sifier to be used for on-line situation assessment, corre-
sponds to a learning stage based on the clustering method-
ology LAMDA (Learning Algorithm for Multivariate Data
Analysis) known in the Data Mining research community
(Kempowsky et al. (2003)). LAMDA is a fuzzy method-
ology for conceptual clustering and classification. It is
based on finding the global membership degree of a sam-
ple to an existing class, considering all the contributions
of each of its features. This contribution is called the
marginal adequacy degree (MAD). MADs are combined
using ”fuzzy mixed connectives” as aggregation operators
in order to obtain the global adequacy degree (GAD) of
an sample to a class (Aguilar-Martin and de Mantaras
(1982)). The LAMDA methodology enables classifying
samples represented with quantitative and/or qualitative,
features. When the feature is of numerical type, the MAD
is calculated by selecting one out of different distribution
function possibilities. When the feature is qualitative, the
observed frequency is used to evaluate the MAD. To avoid
the assignment of a poor representative sample to a class,
i.e a sample with low GAD, a minimum GAD threshold
is used. This threshold corresponds to the GAD given
by the Non-Informative Class (NIC). Therefore, if the
maximum value of all the GADs of a sample is less than
the NIC threshold, it is not classified in any of the existing
classes. The LAMDA method allows one working simul-
taneously with multiple features of differnet types, i.e.
corresponding to numerical information and qualitative in-
formation (Carrete and Aguilar-Martin (1991)). Moreover,
the characteristics of the resulting classes after a learning
stage are easily interpretable. This method allows one
mixing different learning strategies as well as combining
recognition. LAMDA accepts the creation of new classes
given a number of observations that have been rejected
(unrecognized), keeping the previously created classes. It
also accepts the evolution of the existing classes as well as
the creation of new classes. For these reasons, the strat-
egy described in this paper has been implemented using
the LAMDA method via a software tool called SALSA
(Situation Assesment using the LAMDA claSsification
Algorithm) which implements the method and provides
an easy to use user interface (Kempowsky et al. (2003))
(see figure 2). SALSA has been designed to enhance the
knowledge of the expert. If supervised learning is used
(i.e. the learning can be done with a priori knowledge of
the different possible categories of samples), the expert,
according to some criteria, pre-defines a number of signif-
icant groups or classes to a set of measured data from the
process.

Four our case study an unsupervised learning strategy has
been used since no prior knowledge about the possible sit-
uations is given i.e. there are no pre-defined classes. After
several tests with different parameter tunings (selection
of different membership functions, exigency index, etc.), a
suitable partition is obtained such as the one presented in
fig 3. In this case 57 samples have been classified and the
resulting classification is composed by five classes.

Each class is a primitive pattern (in the example 5 prim-
itive patterns are defined). A successionis a continuous
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sequence of samples assigned to the same class. That is,
successions correspond to time intervals in which all indi-
viduals belong to the same class (they have the same prim-
itive pattern label) i.e. time intervals where the system
operation state is similar (in the example, 8 successions
are defined).

Fig. 3. Primitive Patterns and Successions

3.4 Determination of events

The change of primitive pattern, or transition, indicates an
evolution of the system behavior, which can be associated
to an event. By using the classification previously estab-
lished, all the transitions are easily identified in terms of
source and destination primitive patterns. The problem is
then to characterize the transitions in order to get more
insight into their semantics. For a given transition between
a source primitive pattern and a destination primitive pat-
tern, one simple solution is to characterize the transition
by the concerned individuals (i.e. the last individual of
the source and the first individual of the destination). In
this case the events are derived from only two individuals,
which may be questionable.

Another solution that we have adopted is to define a
transition zone. The idea is to consider more than these
two individuals to characterize an event (for that, we
consider the associated successions respectively to the
source and destination patterns). To determine the set
of samples that define a transition zone, we make use of
the classification method LAMDA is fuzzy. Indeed, the
classification method LAMDA assigns to each individual
a membership degree for each existing class, the GAD,
and a sample is assigned to the class for which its GAD is
maximum.

 

Fig. 4. Determination of a transition zone

So, to determine the transition zones a threshold is first
assigned to each class. Then for each individual its GADs
to the different classes are compared to the corresponding
thresholds. For a given transition, the transition zone is
defined through all the samples of the source or destination
primitive patterns (i.e. their associated successions), such

that their GADs are superiors to the threshold of the
destination or source primitive patterns, respectively. By
defining the transitions zones in this way, more information
is used to derive the events. However, determining the
threshold definition is an open problem. A first proposal
is to define the threshold of a class (Thresholdα) from
the characteristics of this class in terms of the number of
samples assigned to the class (Nα), the minimal value of
GAD for the assigned samples of the class (GADmin

α ) and
the maximal value of GAD for the assigned samples of the
class (GADmax

α ).

Thresholdα = GADmax
α − GADmaxα −GADminα

Nα

This threshold allows one to establish the transition zone
by taking samples of a class only if this class includes a
significant number of individuals.

The individuals considered to define a transition zone are
no longer assigned to a class. Therefore, the successions of
the different primitive patterns must be updated.

Each transition zone is then characterized by a starting
date (ts), an ending date (te), a source primitive pattern
(PPi) and a destination primitive pattern (PPj). ts and te
are, respectively, the minimal and maximum time instant
of the samples of the transition zone.

An event eij is associated to each transition zone, where
PPi is the source primitive pattern and PPj is the desti-
nation primitive pattern of the transition. The occurence
date tk of eij is given by the mean of ts and te.

3.5 Event interpretation

In our approach, we only consider the information pro-
vided by data to estimate the events which caused a
transition from an operation state of the communication
system during a time epoch to another. Then, we detect
significant differences between the qualitative values of the
features of the two classes concerned in a transition by
using the class profiles provided by the classification tool
SALSA. Moreover, we use a simple semantics introduced
by Kempowsky et al. (2005) characterizing the detected
variations between the features of the classes, whether
they have increased, decreased or remained practically un-
changed. For each event associated to a transition between
a class Ck and Cl the values of each feature i.e percentage
of losses, throughput, end to end delay and jitter, in
the two class profiles are analyzed and a marginal event
about the feature di takes values ↔, ↑ or ↓, depending on
the definition of a user threshold δ previously chosen as
follows:

• if |di(Ck)− di(Cl)| < δ the marginal event is ↔
• if di(Ck) > di(Cl) + δ the marginal event is ↓
• if di(Ck) < di(Cl)− δ the marginal event is ↑

At the end of this step, a sequence of dated events is ob-
tained which models the communicating system QoS evo-
lution qualitatively and each event is interpreted through
the marginal event associated to each of its features. This
information is useful because during the recognition step
it can guide the analysis towards the feature(s) whose
variations best characterize the observed change of the
communicating situation. This aims to provide a better
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understanding of the communicating situation in order
to guide the reconfiguration system in its choice of the
new composed transport services suitable to the recognized
situation.

4. APPLICATION TO THE TRANSPORT LAYER OF
A COMMUNICATION NETWORK

In this section we present our off-line learning algorithm
is tested against several scenarios using simulated traffic.

4.1 Scenario description

As a first step, we have considered the particular situ-
ation of a communication system that is the situation of
packet loss by congestion. In order to test our approach we
used NS− 2 (Network Simulator V2) and OTCL (Object
Tools Command Language) to describe and simulate two
identical scenarios of packets loss by congestion unlike the
flows generated by the simulated network nodes causing
congestion as mentioned in the figure 5. In the first simu-
lation, the congestion is caused by two UDP flows; in the
second congestion, it is caused by a TCP flow and one
UDP flow. Each simulation contains three times the con-
gestion operation state and the length of each simulation
is 20 seconds. The simulated network congestion is caused

Fig. 5. Physical architecture of the simulated network

by UDP/TCP or UDP/UDP respectively issued by the
node 0 and node 1, so the above scenario shows three
successive situations of congestion. Ping packets from the
”Node 0” are the sensors of our system. We will follow
the traces of Ping packets only then we will release the
descriptors of our system in a state of congestion through
these traces. The results of these simulations are very
different. Indeed, TCP provides congestion control, i.e.,
trial to resolve the situation when network congestion
occurs, and decrease the frequency of emission. By against,
a UDP node continues broadcast regardless of the losses
caused.

4.2 Training data set

The features that we have chosen are conventional param-
eters in terms of network QoS. This is the percentage of
losses, throughput, end to end delay and jitter. To calculate
these features, the following assumptions are considered:

• The ICMP traffic (PING packets) is assumed regular
(64 bytes every 0.1 seconds)

• The clocks of different nodes are synchronized 1

• Each package contains a unique sequence number in
its flow

• Each acknowledgment carries the sequence number of
the acquitted package

• Each package contains a temporary stamp field (11)
which indicates the time of its issue

• Each acquittal includes information about the time
of sent (temporary stamp) and time of receipt of
acquitted package

The tool NS − 2 provides simulation results as a log
file collected from four nodes. This file has the following
structure (figure 6):

Fig. 6. Structure of the log file generated by NS-2

Our goal is to extract from this file information about each
PING packet sent from node 0 and received by node 3. To
do this we have developed two calculation scripts using
the Perl language. The first script makes the calculation
of the features at the transmitter side and the second at
the receiver side.
The resulting file has the following structure (figure 7):

Fig. 7. File structure resulting from the calculation script

Each line provides a sample computed at a given time
and contains values of the four features. A feature is
calculated at time of receipt of the tenth ping packet. The
file resulting from the simulation UDP/UDP contains
57 samples and the one resulting from the simulation
TCP/UDP contains 173 individuals.

4.3 Primitive patterns and successions

The file resulting from each calculation script developed in
the preprocessing phase is the entry of SALSA. As already
said, the file contains lines of the four values of the features
(% loss, throughput, delay and jitter), i.e. each line is
a sample. The Figure 2 shows the classification results
obtained for the UDP / TCP simulation. The profile of
each class (lower part of figure 2) is given with normalized
values of the four features. The top of figure 2 shows the
results of the classification and primitive pattens are easily
identifiable (the first primitive pattern includes 17 first
samples.

4.4 Events determination

According to section 3.4, after the classification we need
to define the transition zones to determine the events.
For that we use the threshold defined in section 3.4 to
determine the samples belonging to the different transition
1 The NS−2 simulator used a unique clock shared by all the nodes.
In a real network, solutions exist such as the Network Time Protocol
(NTP) so that all the nodes operate in the same temporal space.
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zones. Then, with the previous data we determine the
event for each transition zone. Each event(eij , tk) is char-
acterized as described in section 3.4. Table 1 is an extract
of the results obtained for the TCP/UDP simulation.

Table 1. Events for TCP/UDP simulation

event tk

e13 0.0049
e31 0.0112
e32 0.0123
e21 0.0203
... ...

Moreover an interpretation is associated to the different
events. For instance, the first event e12, characterized
as indicated by table 2, traduces the evolution from the
normal situation of the communicating system to the start
of the congestion.

Table 2. Event e12 characterization

feature marginal event

jitter ↔
delay ↑

throughput ↓
loss ↑

5. CONCLUSION

In this paper, an approach for self-adaptive autonomous
systems based on situation assessment has been proposed.
We have investigated the idea of applying a data-driven
diagnosis technique for networked systems supervision and
management. We elaborated a learning based approach to
capture the different traffic context situations that need to
be detected for run-time adaptation of the communication
protocols. The approach is illustrated with protocols at
the transport level.

Our claim is that we can elaborate a model-based diagnosis
approach for the correct design of adaptive communication
protocol without much expert knowledge but using data
mining techniques. The experiments presented in this pa-
per are the first step of our study. They are based on a
situation assessment method that uses a simple ”static”
classifier to recognize the situation, from the analysis of
the feature values at some time instant. We believe that
more sophisticated structures that include the temporal
aspect can add significant power to the recognition system.
Indeed, standard transport protocols implement strategies
that act upon hard-coded event patterns representing spe-
cific traffic situations. These are detected at the source or
destination nodes. The events arise from feedback provided
by standard parameters stamping the packets and the
event patterns generally express temporal relations. Our
future work will be oriented towards formalizing the tem-
poral patterns in use in standard protocols using chroni-
cles with the aim to express more sophisticated patterns
and hence to generalize traffic situation assessment Subias
et al. (2010). Currently we are working on the problem of
learning chronicles, which is formulated as an extension of
the work presented in this paper. The first phase indeed
uses the classification method as presented here and the
second is based on temporal data mining techniques.
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