
1ER CONGRESO IBEROAMERICANO DE ESTUDIANTES DE INGENIERÍA ELÉCTRICA (I CIBELEC 2004) 
 

L-1 

  
Abstract—In this paper is presented a distributed algorithm based 
on Ant System concepts, called Combinatorial Ant System, to 
solve dynamic combinatorial optimization problems. Our 
approach consists of mapping the solution space of the dynamic 
combinatorial optimization problem in the space where the ants 
will walk, and defining the transition probability and the 
pheromone update formula of the Ant System according to the 
objective function of the optimization problem. We test our 
approach on a telecommunication problem. 
 

Keywords—Communicational Systems, Swarm Intelligence, 
Intelligent Heuristic Search, Routing Algorithms.   
 

I. INTRODUCTION 

Real Ants are capable of finding the shortest path from a 
food source to their nest without using visual cues by 
exploiting pheromone information [1]. While walking, ants 
deposit pheromone trails on the ground and follow pheromone 
previously deposited by other ants. The above behavior of real 
ants has inspired the Ants System (AS), an algorithm in which 
a set of artificial ants cooperate to the solution of a problem by 
exchanging information via pheromone deposited on a graph. 
Dorigo [2] proposed the first AS in his Ph.D. thesis. AS has 
been applied to the traveling salesman problem and quadratic 
assignment problem, among others combinatorial optimization 
problems [1-9]. On the other hand, different groups have been 
working on various extended versions of the AS paradigm 
(Ant-Q, etc.) [1, 5, 6]. 

In the AS applied to the Traveling Salesman Problem 
(TSP), a set of cooperating agents, called ants, cooperate to 
find good solutions to TSP’s using an indirect form of 
communication through pheromone trails that they deposit on 
the edges of the TSP graph while building solutions. 
Informally, each ant constructs a TSP solution in an 
constructive way: it adds new cities to a partial solution by 
exploiting information gained from both past experience and a 
greedy heuristic. Memory takes the form of pheromone trails 
deposited by ants on TSP edges, while heuristic information is 
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simply given by the edge’s weights. There are two reasons to 
use the AS on the TSP: a) The TSP graph represents the 
solution space of this problem; b) The AS transition function 
has goals similar to the TSP objective function.  

That is not the case for other combinatorial optimization 
problems. We have proposed a distributed algorithm based on 
AS concepts, called the Combinatorial Ant System (CAS), to 
solve static discrete-state combinatorial optimization problems 
[8, 9]. The main novel idea introduced by our model is the 
definition of a general procedure to solve Combinatorial 
Optimization Problems using AS. In our approach, the graph 
that describes the solution space of the Combinatorial 
Optimization Problem is mapped on the AS graph, and the 
transition function and the pheromone update formula of the 
AS are built according to the objective function of the 
Combinatorial Optimization Problem. In this paper we test the 
CAS on dynamic combinatorial optimization problems, that is, 
problems changing over time. Particularly, we study a 
telecommunication problem. This paper is organized as 
follows: Section 2 presents the AS and the CAS. Section 3 
summarizes the experiments. Finally, conclusions of this work 
are presented in Section 4. 

II. THEORETICAL ASPECTS 

A. The Routing Problem like a Dynamic Combinatorial 
Optimization Problem 

A dynamic combinatorial optimization problem is a 
problem changing over time. That is, it is a distributed time-
varying problem which is a current challenger in the 
combinatorial optimization domain. The dynamic problem that 
we are going to study is the routing in telecommunication 
networks. Routing is a mechanism that allows information 
transmitted over a network to be routed from a source to a 
destination through a sequence of intermediate 
switching/buffering stations or nodes. Routing is necessary 
because in real system not all nodes are directly connected. 
The problem to be solved by any routing system is to direct 
traffic from sources to destinations maximizing network 
performances (e.g., rate of call rejection, throughput, etc.). In 
real networks traffic, the conditions and the structure of the 
network are constantly changing, for this reason are necessary 
dynamic routing algorithms. 

B. Ant Systems 
In general, the behavior of Ant Colonies is impressing to 
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perform their objective of survival. It is derived from a process 
of Collective Behavior. This process is based on the ant 
communication capacities, which define the inter-relations 
between them. These inter-relations permit the transmission of 
information that each ant is processing. The communication 
among agents (ants) is made through a trace, called 
pheromone. Thus, an ant leaves a certain quantity of 
pheromone trail when it moves. In addition, the probability 
that an ant follows a path depends on the number of ants 
having taken the path (a large quantity of pheromone in a path 
means a large probability that it will be visited).  

AS is the progenitor of all research efforts with ant 
algorithms and it was first applied to the TSP problem [2, 4]. 
Algorithms inspired by AS have manifested as heuristic 
methods that permit resolving combinatorial optimization 
problems. These algorithms mainly rely on their versatility, 
robustness and operations based on populations. The 
procedure is based on the search of agents called "ants", that 
is, agents with very simple capabilities that try to simulate the 
behavior of the ants. 

AS utilizes a graph representation (AS graph) where each 
edge (r, s) has a desirability measure γrs, called pheromone, 
which is updated at run time by artificial ants. Informally, the 
AS works as follows. Each ant generates a complete tour by 
choosing the nodes according to a probabilistic state transition 
rule; ants prefer to move to nodes that are connected by short 
edges, which have a high pheromone presence. Once all ants 
have completed their tours, a global pheromone updating rule 
is applied: a fraction of the pheromone evaporates on all 
edges, and then each ant deposits an amount of pheromone on 
edges which belong to its tour in proportion to how short this 
tour was. Then, we continue with a new iteration of the 
process. 

The state transition rule used by ant system is given by the 
equation (1), which gives the probability with which ant k in 
city r chooses to move to the city s while building its tth tour 
(transition probability from node r to node s for the kth ant) [1-
5]: 
 

( )
[ ] [ ]

[ ] [ ]







∈

= ∑ ∈

Otherwise                                                               0

 s If   
)(

)( k
r

Ju ruru

rsrs
k

rs

J
t

t
tP k

r

βα

βα

ηγ
ηγ

  

 

Where γrs(t) is the pheromone at iteration t, ηrs is the 
inverse of the distance between city r and city s (d(r,s)), Jk(r) 
is the set of nodes that remain to be visited by ant k positioned 
on node r and, β and α are two adjustable parameters which 
determine the relative importance of trail intensity (γrs) versus 
visibility (η rs). In AS, the global updating rule is implemented 
as follows. Once all ants have built their tours, pheromone 
(that is, the trail intensity) is updated on all edges according to 
the equation [1-5]: 
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Where ρ is a coefficient such that (1 – ρ) represents the 
trail evaporation in one iteration (tour), m is the number of 
ants, and ∆γrs

k(t) is the quantity per unit of length of trail 
substance laid on edge (r, s) by the kth ant in that iteration: 
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Where Lk(t) is the length of the tour performed by ant k at 
iteration t. Pheromone updating is intended to allocate a 
greater amount of pheromone to shorter tours. The general 
algorithm is summarized as follows: 

1. Place the m ants randomly on the nodes of the AS 
graph 

2. Repeat until system convergence 
           2.1. For i=1, n 

           2.1.1. For j= 1, m 
                    2.1.1.1. Choose the node s to move to, according  

to the transition probability (equation 1) 
                     2.1.1.2. Move the ant m to the node s 
            2.2 Update the pheromone using the pheromone update  

formula (equation 2) 

C. The Combinatorial Ant System 
There are two reasons for using AS on the TSP. First, the 

TSP graph can be directly mapped on the AS graph. Secondly, 
the transition function has similar goals to the TSP. This is not 
the case for other combinatorial optimization problems. In [8, 
9], we have proposed a distributed algorithm based on AS 
concepts, called the CAS, to solve Combinatorial Optimization 
Problems. In our approach, we need to define: 

• The graph that describes the solution space of the 
Combinatorial Optimization Problem (COP graph). 
The solution space is defined by a graph where the 
nodes represent partial possible solutions to the 
problem, and the edges the relationship between the 
partial solutions. This graph will be used to define the 
AS graph (this is the graph where the ants will walk).  

• The transition function and the pheromone update 
formula of the CAS, which are built according to the 
objective function of the Combinatorial Optimization 
Problem.  

In this way, we can solve any Combinatorial Optimization 
Problem. Each ant builds a solution walking through the AS 
graph using a transition rule and a pheromone update formula 
defined according to the objective function of the 
Combinatorial Optimization Problem. The main steps of CAS 
are: 

• Build the AS graph. 
• Define the transition function and pheromone update 

formula of the CAS. 
• Execute the classical AS procedure (or one of the 

improved versions). 
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C.1. Building the AS graph 
The first step is to build the COP graph, then we define 

the AS graph with the same structure of the COP graph. The 
AS graph has two weight matrices: the first one is defined 
according to the COP graph and registers the relationship 
between the elements of the solution space (COP matrix). The 
second one registers the pheromone trail accumulated on each 
edge (pheromone matrix). This weight matrix is 
calculated/updated according to the pheromone update 
formula. When the incoming edge weights of the pheromone 
matrix for a given node become high, this node has a high 
probability to be visited. On the other hand, if an edge between 
two nodes of the COP matrix is low then it means that ideally 
if one of these nodes belongs to the final solution then the 
other one must belong too. If the edge is equal to infinite then 
it means that the nodes are incompatible (they can't be at the 
same time in a final solution). 

We define a data structure to store the solution that every 
ant k is building. This data structure is a vector (Ak) with a 
length equal to the length of the solution (number of nodes that 
an ant must visit). For a given ant, the vector keeps each node 
of the AS graph that it visits. 

C.2. Defining the transition function and the pheromone 
update formula 

The state transition rule and the pheromone update 
formula are built using the objective function of the 
combinatorial optimization problem. The transition function 
between nodes is given by: 
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Where )(zCf k
sr >− is the cost of the partial solution that is 

being built by the ant k when it crosses the edge (r, s) if it is in 
the position r, z-1 is the current length of the partial solution 
(current length of Ak), and, α and β are two adjustable 
parameters that control the relative weight of trail intensity 
(γrs(t)) and the cost function. In the CAS, the transition 
probability is as follows: an ant positioned on node r choose 
the node s to move according to a probability ( )tP k

rs , which is 
calculated according to the equation given by: 
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When β=0 we exploit previous solutions (only trail 

intensity is used) and when α=0 we explore the solution space 
(a stochastic greedy algorithm is obtained). A tradeoff between 
quality of partial solutions and trail intensity is necessary. The 
pheromone updating rule is defined by the equation (2), where 
the quantity per unit of length of trail substance laid on edge (r, 
s) by the kth ant in that iteration (∆γrs

k(t)) is calculated 
according to the following formula: 
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Where )(tC k
f is the value of the cost function (objective 

function) of the solution proposed by ant k at iteration t. The 
general procedure of our approach is summarized as follows: 

1. Generation of the AS graph.  
2. Definition of the state transition rule and the 

pheromone update formula, according to the 
Combinatorial Optimization Problem. 

3. Repeat until system convergence 
3.1. Place the m ants on different nodes of the AS 

graph. 

3.2. For i=1, n 

  3.2.1 For j= 1, m 

3.2.1.1. Choose the node s to move to, according to the  
transition probability (equation 3). 

3.2.1.2. Move the ant m to the node s. 
3.3 Update the pheromone using the pheromone update  

formula (equations 2 and 4). 

III. EXPERIMENTS 

A. Routing Problem Resolution using the CAS 
We can use our approach for point to point or point to 

multipoint requests. In the case of N nodes, N ants are 
launched to look for the best path to the destination. For a 
multipoint request with m destinations, N.m ants are launched. 
The source node keeps in memory all paths that have been 
found by ants. Then, it chooses the best one. Finally, the path 
is reserved and a connection is eventually set up (in the case of 
a multipoint request, it is spanning trees found by ants to the 
multiple destination nodes which are compared). 

A.1. Building the AS graph 
For this case we use the pheromone matrix of our AS 

graph like the routing table of each node of the network. 
Remember that this matrix is where the pheromone trail is 
deposited. Particularly, each node i has ki neighbors, is 
characterized by a capacity Ci, a spare Si, and by a routing 
table Ri=[ri

n,d(t)]ki,N-1. Each row of the routing table 
corresponds to a neighbor node and each column to a 
destination node. The information of each row of the node i is 
stored in the respective place of the pheromone matrix (p.e., in 
the position i, j if ki neighbor = j). The value ri

n,d(t) is used as a 
probability. That is, the probability that a given ant, where the 
destination is node d, be routed from node i to neighbor node 
n. We use the COP matrix of our AS graph to describe the 
network structure. If there are link or node failures, then the 
COP graph is modified to show that. In addition, in each arc of 
the COP graph is stored the estimation of the trip times from 
the current node i to its neighbor node j, denoted Γi={µi->j, σ

2
i-

>j}, where µi->j is the average estimated trip times from node i 



1ER CONGRESO IBEROAMERICANO DE ESTUDIANTES DE INGENIERÍA ELÉCTRICA (I CIBELEC 2004) 
 

L-4 

to node j, and σ2
i->j is its associated variance. Γi allows 

maintenance a local idea of the global network's status at node 
i. Finally, we define a cost function for every node, called 
Cij(t), that is the cost associated with this link. It is a dynamic 
variable that depends on the link's load, and is calculated at 
time t using Γi. 

A.2. Defining the transition function and the pheromone 
update formula 

In our model (equation 3), )(tC k
f is the cost of kth ant's 

route, ∆γis
k(t) is the amount of pheromone deposited by ant k if 

edge (i, s) belongs to the kth ant's route (it is used to update the 
routing table Ri in each node), and ( )tP k

ij  is the probability 

that ant k chooses to hop from node i to node j. Ant k updates 
its route cost each time it traverses a link )(tC k

f = )(tC k
f + 

Cij(t). An ant collects the experience queues and traffic load, 
which allows it to define information about the state of the 
network. Once it has reached its destination node d, ant k goes 
all the way back to its source node through all the nodes 
visited during the forward path, and updates the routing tables 
(pheromone concentration) and the set of estimations of trip 
times of the nodes that belong to its path (COP graph) as 
follows: 
• The times elapsed of the path i->d (Ti->d) in the current kth 

ant's route is used to update the means and variance values 
of Γi. Ti->d gives an idea about the goodness of the 
followed route because it is proportional to its length from 
a point of view and from a traffic congestion point of 
view. 

• The routing table Ri is changed by incrementing the 
probability ri

i-1,d(t) associated with the neighbor node i-1 
that belongs to the kth ant's route and the destination node 
d, and decreasing the probabilities ri

n,d(t) associated with 
other neighbor nodes n, where n ≠ i-1, for the same 
destination (like a pheromone trail). The values stored in 
Γi are used to score the trip times so that they can be 
transformed in a reinforcement signal r= f1(Γi), r∈[0,1]. r 
is used by the current node i as a positive reinforcement 
for the node i-1: 

 
ri

i-1,d(t+1) = ri
i-1,d(t) (1-r)+r 

 
And the probabilities ri

n,d(t) for destination d of other 
neighboring nodes n receive a negative reinforcement 
 
ri

n,d(t+1) = ri
n,d(t) (1-r)   for n ≠i-1 

 
Finally, Cij(t) is updated using Γi too  
 
Cij(t+1)= µi->j/σ

2
i->j 

 

B. Result Analysis 
We have tested our algorithm on a set of model networks 

among which is US NSFNET-T1 (composed by 14 nodes and 
21 bidirectional links, with a bandwidth of 1.5 Mbits and 
propagation delay with range from 4 to 20 ms). A number of 
different traffic patterns, both in term of spatial and temporal 
characteristics, have been considered. The network 
performance is expressed in throughput (delivered bits/s) and 
delivered time from source to destination. We compare our 
algorithm with the AntNET approach and the Shortest Path 
First algorithm (SPF) [1, 7]. Due to the space, we present part 
of the result, see [9] for the rest of experiments. Figures 1 and 
2 show some results regarding throughput and packet delay for 
a Poisson temporal and random spatial distribution of traffic 
(this is the traffic pattern used) on NSFNET. These results are 
exemplar of the behavior of our algorithms, results obtained on 
other traffic pattern ant network topology combinations are 
qualitatively equivalent (see [9] for more details).  

   CASThroughput (106bit/sec)
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Time (sec)200            400            600           800         1000
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FIG 1. Throughput comparison between the algorithms 

Packet Delay (sec)
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0.03
 

FIG 2. Packet delay comparison between the algorithms 

The throughput of our approach is at least as good as that 
AntNET and the packet delays are much better than that of the 
others. Particularly, at the beginning our approach has not the 
best performance because it has learnt the current network 
situation, etc. After, it can optimize the route to be chose in an 
impressing way. 

IV. CONCLUSIONS 

In this work we have presented the versatile of the CAS to 
solve dynamic combinatorial optimization problems. Our 
system is suited for both static discrete-state and dynamic 
combinatorial optimization problems. This versatility has been 
exemplified by the possibility of using the same model to solve 
different combinatorial optimization problems (static and 
dynamic) of various sizes. Our approach can be applied to any 
combinatorial optimization problems by defining an 
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appropriate graph representation of the solution space of the 
problem considered, the dynamic procedure to update that 
representation, and an objective function that guides our 
heuristic to build feasible solutions. In our approach, the 
dynamic environment of the combinatorial optimization 
problem is defined through the COP matrix (it form part of the 
space where the ants will walk (AS graph)). Ants walk through 
this space according to a set of probabilities updated by a state 
transition and a pheromone update rule defined according to 
the objective function of the combinatorial optimization 
problem considered. 

We have tested our approach on a dynamic optimization 
problem (the routing problem). The results show that our 
approach obtains good performances, but we must improve the 
execution time of a given iteration and reduce the number of 
iterations. In general, CAS allows making an exhaustive 
searched, in this way it can obtain better performances than 
previous heuristic routing algorithms. Furthermore, we will 
develop a parallel version of our approach, we will test our 
approach over other dynamic combinatorial optimization 
problems. In addition, for the routing problem, we will test 
with a general packet-switching network avoiding the 
"symmetric path costs", and we will develop a network failure 
management system based on this approach. 
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