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A B S T R A C T  

Typically, the neural networks are used to provide heuristic solutions to very difficult optimization problems. This 
is usually achieved by deqigning neural networks whose energy function mimics a cost function which embodies the 
optimization problem to be solved. In this paper. we propose to use a general energy function of the random neural 
network, defined in previous work, to solve the graph partitioning problem. We show as this energy function 
permits to define a general method to use the random neural network in the resolution of combinatorial optimization 
problems. 

1. I 11 t rod ucliori 

Since the seminal papers of the early eighties 19, 10, 111. the study of emergent collective properties of artificial 
neural networks has created an exciting area for research. For instance. it is well known that for the Hopfield Network 
with symmetric weights, as well as for other models, each individual state change of the networks has the effect of 
reducing an appropriately defined cost function or energy function [l I]. This elementary but subtle observation has 
spawned a large body of work on using neural networks to provide heuristic solutions to computationally intractable 
or very difficult optimization problems. This is usually achieved by designing a Hopfield (or other appropriate 
neural) network whose energy function mimics a cost function which embodies the optimization problem to be 
solved. 

The basic concept is the encoding of the optimization problem in term of states that are discrete variables in an 
euclidean space. A real valued global energy is then defined over the set of all possible states. This energy depends on 
very complex interactions between the variables and has generall], some physical meaning in the context of 
optimization. In fact, the optimal solution is the absolute minimum of this energy and one or more local minimal 
can be consitlered as acceptable solutions to the problem. 

In 1989. Gelenbe has modeled the neural network using an analogy with queuing theory. This model not uses a 
dynamic equation. but use a scheme of interaction among neurons. It calculates the probability of activation of the 
neurons in the network. Signals in chis model take the form of impulses which mimic what is presently known of 
inter-neural signals in biophysical neural networks. 

'Ihe Ilantlom Neural Network ( R N N )  has been used in solution optimization 12. 31 and recognition problems [ 3 ] .  
In 181 is proposed a supervised learning procedure for the recurrent RNN model which is mainly based on the 
minimkation of a quadratic error function. In [2. 31. we have explored the relationship between the RNN model 
applied to optimization and the network learning. Recently, we liave applied the evolutionary learning on the RNN 
model 141. In [SI, we have proposed a general energy function for the RNN to solve combinatorial optimization 
problems. 

In this paper, we propose to use the energy function defined in [SI to solve the graph partitioning problem. This 
work is orpani7ed as follows: in section 2. the theoretical basis of the random neural networks is reviewed. Then, we  
prewnt our general energy function. In section 4 we present the energy function for the Graph Partitionning 
Problem. Remarks concerning future work and concluding are provided in section 5. 

2. 'The Rantlorn Neiiral hlodel 

7'he Random Network model has lxen introduced by Gclcnbc [6,7] in 1989. The model consists of a network of n 
neurons in which positive and negative signals circulate. Each neuron accumulates signals as they arrive, and can fire 
if its total signal count at a given instant of time is positive. Firing then occurs at random according to an 
exponential distribution of conqtant rate. and signal., arc sent out to otIw neurons or to the outside of the network. 
Each neuron i of the network is represented a l  any time I by i t?  input %ignal potential k;(t). Positive and negative 
signals have different roles in the network. A negative signal Ieduces by I the potential of the neuron to which it 
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arrives (inhibition) or has no effect on the signal potential if it is already zero; while an arriving positive signal adds 
1 to die neuroio potential. 

Signals can either arrive to a ueuron from the oukide of the network or from olher neurons. Each time a neuron 
fires, a signal leaves it depleting, die total input potential of the neuron. A signal which leaves neuron i heads for 
neuron , j  with probability p+(i,j) as a positive signal (excitation), or as negative signal with probability p'(ij) 
(inhibition), or it departs from the network with probability d(i). Clearly we shall have: 

Positive signals arrive to the ith neuron according to a Poisson process of rate A(i) (external excitation signals). 
Negative signals arrive to the ith neuron according to a Poisson proces!; of rate h(i) (external inhibition signals). The 
rate at which neuron i fires is r(i). The main property of this model is the excitation probability of a neu~on i ,  q(i), 
which satisfy a non-linear equation: 

3. A Geneiral Energy Function for tlie Raridaiii Neural Model 

In the Random Neural Model, q(i) depends on A(i), h(i). p+(i,i). p-(j,i), r(i) and the other q(j)s. In the optimization. 
p'"(i.i). p-(i,i) and r(i) are fixed and depend on the nature of combinatorial problem. Besides, in the optimization 
problem thc relationship between two neurons is coni~xtitive or cooperative, that is either p+Q,ii) or pYj.i) is null. 
Of course, if Uiere arc not interaction between them. both p+(i.i) and p-(j.i) are null. On the other haid. emi~ssion of 
external signals is not interesting to optimization. it is better to employ the signals to inhibit or to excite the 
neighbor neurons. that is d(i) is null. The fire rate r(i) is obtained by the reciprocity of effect between neurons. Wien 
two nciirons i and j are excited and i emits signals to j ,  ffie excitation or inhibition that i exerts over j must be the 
same as excitation or inhibition that i receives. 

If p+(j,i). p-(j,i) and r(i) are fixed. the only way to lead the network from one stationary state to another one is to 
act over the inputs. This state of the RNN model is defined by (q(i), .... q(n)). The use of two externals flows to 
every neuron permits a complex scaling of an external positive flow to an external negative flow [2. 31. In 
optimization, the use of two flows is not interesting. We consider A(i) as null so tliat the neurons only receive 
external positive signals. representing die prefewice that the neuron txlonps to tlie solution. By this way, Iq(i) and 
A(i) k o m e  the variables of the RNN model. The general form of the energy function that we have proposed in [SI 
is: 

E = aijq(i)q(i) + aii q(Q2 + biq(i) + c with i j  E [ I  ... n] (2) 
i*<j 1 1 

Where (I, , .  I),.  c are parameters of optimization prohlcm. It is inteiesting to ~ e e  how this energy function clefinition 
differs from the clas+.xl approach of Hopfield. Note the additional terms which are squared in one state variable and 
linear in the otllier. Therefcte. die above energy function can correcpontl to a qnadratic cost function. Bur reference to a 
qiimlratic energy function is motivated hy the "iirrinl" formillation c d  optirni7ation prohlcnic widi neural networks. In 
12, 51 we have defined a tlvnunic of cxternal pcirtive srpnal~ in KNN model. in order to find die state that ,gives the 
minimal energy in the network: 

The general procedure that we have proposed with the RNN is r3.51: 
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- Initialire A(i) in some appropriate manner 
- licpcat 

- Solve the equation ( I )  
- IJsinp ( 3 )  and the previous results, update Nil. 
- If A(;) i \  outside of [O, r(i)], replace for the nearest bounds 

(inti1 the change in the new value of q(i) is smaller than some predeternlined valued. 

Now, we must explain dq(i)/dA(u) using stationary solution of the network. 

4. Our Energy Function 011 the Graph I’artitionir~g Problerii 

The problem consists in dividing a graph in several subgraphs. so as to minimize a given cost function. In a very 
general way, to place the problem on a mathematical formulation. the following definition is necessary: 

n=(N.A) where, is a directed graph. 
N is a set of n nodes on which we can associate a weight function Q : N -> R. In 

A = ad.., are node pairs that define the arcs. It is known as adjacency matrix. 
ours studies Q(i)=I for i=l ..., n, 

‘J 

The problem consists in dividing the graph in K diffctent subgraphs [I=[ fll,.... nK}, according to certain 
constraints. The classic constraintr are: a) The subgraphs must have a specify size N nl. .... N n k ,  b) The arcs with 
extremities in different suhpi aphs must be minimal. The cost function associates a real value to every subgraph 
configuration. We propow the cost function: 

The first term minimizes the edges which belong to the cut. The second summation term will have a minimum 
value only when the number of nodes in the partitions are the same. The balance factor (b) defines the importance of 
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the interconnection cost with respect to imbalance cost. and N n  is tliie number of nodes in f lk  V k=l, ..., K. The 
graph partitioning problem is reduced to find a subgraph configurationi with minimum value for the cost function. 
This problem is NP-complete [121. 

k 

Q w  RNN for this problem; 

In this approach. we will construct a RNN of the type discussed above composed of nK + K neurons, where n is 
the number of nodes and K is the number of subgraphs. For each (node. subgraph) pair (;,U) we will have a neuron 
p(i.u) whose role is to "decide" whether node i should be assigned to subgraph U. We will denote by q(p(i.u)) the 
probability that p(i.u) is excited: thus if it is close to I we will be encouraged to assign i to U .  ID. order to reduce 
connections between subgraphs in the selected partition, p(i.u) will tend to excite any neuron p(i.u) if j is connected 
to i. and will tend to irihihif p(i,v) if j is connected to i and U+. Similarly. p(i.u) will irrhihif p(i.v). Vv=l,  ..., K. 
if j is not connected to i. On the other hand, neurons p(i,u) and p(i,v). u:fv, will inhibit each other so as to indicate 
that thc same node should not be assigned to different subgraphs. 

For each subgraph U we will have a neuron n(u) whose role is to let us know whether U is heavily loaded with 
node or not. If u is very heavily loaded, it will attempt to reduce the load on subgraph U by irrhihifing neurons :p(i,u), 
and it will attempt to increase the load on subgraphs vfu by escifinR itieurons n(v). In the same way. p(i,u) will 
c . v h  neuron n(u) to increase tlie load on subgraph U .  The parameters of tlie random network model expressing, these 
intuitive criteria are chosen as follows: 

- A(p(i.iu)) = random, 
- A(n(u)) = n/K. to express the desirable equal load sharing property, , 
- 3L(n(u)) = 0, 
- r(n(u)) = n+K-1 
- r(p(i,ui))p+(p(i,u),p(j,v)) = 

- r(p(i,u)) p-(p(i,u),p(j.v)) = 

- r(p(i.u))p+(p(i.u), ~ ( v ) )  = I if u=v. 

- r(X(u))p-(n(u).~(i.ii)) = 1 if q(n(u)) - 1 ,  

- r(n(u))p+(x(ii).n(v)) = I if q(n(u)) - 1 .  

- h(p(i.u)) = 0. 

- r(p(i.u)) =I% 

1 if (ad.. = I or ad- = I )  and u=v. 
0 otherwise. 
1 if ((u#v and (adij= I or ad- = 1 or i = j)) or (adij=O and ad 
0 otherwise. 

0 otherwise. 

0 otherwke 

0 otherwi5e 

?I J' 

0)). J I  ji= 

The equation (1) for I h i q  caw ic: 
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I f  n'e tlevclolxd this !'unction, we ohtain the following value to 11,;. h, and c: 

Performance Evaluation; 

\Ve compare the R N N  with the approximate heuristics proposed in [ 1. 31: genetic algoritliins (GA). simulated 
annc:iliiip (SA) <and kcrnighiin's heuristic (Kern). The random graphs used arc defined for the average number of nodes 
( 1 1 )  :mtl the average degree of the successor nodes of a node (to. For each graph. the successors of a node are chosen 
randoinlp from a uniform distribution in the interval [l. d]. The execution time is in seconds. 

'Ihc parameters of the simulations are the following: the total tlumbcr of suhgraphs (K). the mean number of ndcs  
1xr graph (11). the memi nrinihcr of successors per node (tl) and the balance factor (h). We generate SO random graphs for 
the set o f  parameters where 11 = { 10.20. SO}, K=2 and d=2. 

We obtain the optimum solutions using an enumerative search algorithm. We study the foll~w~iiip performance 
criteria: the execution time ,f the heuristics (Ti), the maximilin performance (Sop]). the percentage of optimum 
soliitions (61) and tlic relative error (El) of each heuristic. where I is the numhcr of tinies h a t  we execute the heuristic 
to nhtnin these valiies. These criteria are calculated as follows: 

- '1'1 i.; the mean value of tlic computation time on a workstation for each heuristic, for l=l .  .... 10. 
- Sop, is the meaii value of the solutions for a given set of parameters. for I = l  .,.... 10. 
- Kl i\ tlic percentage of cases where a heuristic obtains the optimum solution. for l=I.  .... 10. 
- I $  i \  the mean relative error of die solutions of a heuristic comparcd to the optimum solution. 

Ivhere S;oI't is the optimum solution of the graph i arid Si1 is the solution of the heuristic for the graph i .  Doe to 
y c e  limitations. the, results presented i n  this section were cliosen hecause they are representative of the phenomena 
\ t r i ( l i c ( l .  

I O  20 'io IO0 500 
Niirnhrr nf Node\ 

Simulated Annealing and Genetic Algorithms. for g r a p h  of 50 or more nodes. need a very large time to leach the 
whoptima1 ~ o l ~ t i o n r  (Figures 4.2). For graph of little s i x  (of 20 or fewer tiwles). the difference between the exact 
d u t i o n  and the rewlts of the hcuiictics i\ little (figtire 4.1). Othcrwiw, Simulated Annealing give5 the h e q t  rewlt5. 
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Method E 6 T Sop 

SA 0.06 0.9 28 2.6 

GA 0.12 0.8 19 2.8 

R" 0.12 0.8 9 2.8 

Kefi@an 1.06 0.15 3 4.1 
heuristic 

Table 4.1 I Performance criteria for 1=10. n=20, d=2. b=l and K=2 

Sop and b are approximatcly the same for every heuristic. but Kemighan's heuristic gives the worst results (Table 
4.1). SA is the hicuristic with the least mean relative error. but we obtaiin interesting results with R" with short 
execution time. 

5. CO n cl 11 si o 11s 

The purpose of this paper has been to consider the formulation of a general energy function to solve combinatorial 
optimization problems using the random neural networks. The major advantage of this model is that it has a purely 
numerical and computationally fast solution. which removes the need for complex search techniques and (other 
Montecarlo simulations based optimization methods. The definition of a general energy function for the RNN 
permits to describe a dynamic to search an optimum solution of a combinatorial optimization problem. 

Then, we have illustrated the utilization of our general energy function on the Graph Partitioning Problem. Further 
work will examine the results proved for th is  model using this energy function in other optimization problems. 
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