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ABSTRACT

Typically, the neural networks are used to provide heuristic solutions to very difficult optimization problems. This
is usually achieved by designing neural networks whose energy function mimics a cost function which embodies the
optimization problem to be solved. In this paper, we propose to use a general energy function of the random neural
network, defined in previous work, to solve the graph partitioning problem. We show as this energy function
permits to define a general method to use the random neural network in the resolution of combinatorial optimization
problems.

I. Introduction

Since the seminal papers of the early eighties [9, 10, 11]. the study of emergent collective properties of artificial
neural networks has created an exciting area for research. For instance, it is well known that for the Hopfield Network
with symmetric weights, as well as for other models, each individual state change of the networks has the effect of
reducing an appropriately defined cost function or energy function [11]. This elementary but subtle observation has
spawned a large body of work on using neural networks to provide heuristic sclutions to computationally intractable
or very difficult optimization problems. This is usually achieved by designing a Hopfield (or other appropriate
neural) network whose energy function mimics a cost function which embodies the optimization problem to be
solved.

The basic concept is the encoding of the optimization problem in term of states that are discrete variables in an
euclidean space. A real valued global energy is then defined over the set of all possible states. This energy depends on
very complex interactions between the variables and has generally some physical meaning in the context of
optimization. In fact, the optimal solution is the absolute minimum of this energy and one or more local minimal
can he considered as acceptable solutions to the problem.

In 1989, Gelenbe has modeled the neural network using an analogy with queuing theory. This model not uses a
dynamic equation, but use a scheme of interaction among neurons. It calculates the probability of activation of the
neurons in the network. Signals in this model take the form of impulscs which mimic what is presently known of
inter-neural signals in biophysical neural networks.

The Random Neural Network (RNN) has been used in solution optimization {2, 3] and recognition problems [3].
In {8] is proposed a supervised learning procedure for the recurrent RNN model which is mainly based on the
minimization of a quadratic error function. In [2, 3]. we have explored the relationship between the RNN model
applied to optimization and the network learning. Recently, we have applied the evolutionary learning on the RNN
model (4]. In (5], we have proposed a general energy function for the RNN to solve combinatorial optimization
problems.

In this paper. we propose to use the energy function defined in [5] to solve the graph partitioning problem. This
work is organized as follows: in section 2. the theoretical basis of the random neural networks is reviewed. Then, we
present our general energy function. In section 4 we present the energy function for the Graph Partitionning
Problem. Remarks concerning future work and concluding are provided in section 5.

2. The Random Neural Model

The Random Network model has been introduced by Gelenbe {6. 7] in 1989. The model consists of a network of n
neurons in which positive and negative signals circulate. Each neuron accumulates signals as they arrive, and can fire
if its total signal count at a given instant of time is positive. Firing then occurs at random according to an
exponential distribution of constant rate. and signals are sent out to other neurons or to the outside of the network.
Each neuron 7 of the network is represented at any time ¢ by its input signal potential k;(1). Positive and negative

signals have different roles in the nctwork. A negative signal reduces by | the potential of the neuron to which it
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arrives (inhibition) or has no effect on the signal potential if it is already zero; while an arriving positive signal adds
1 to the neuron potential.

Signals can either arrive to a neuron from the outside of the network or from other neurons. Each time a neuron
fires, a signal leaves it depleting the total input potential of the neuron. A signal which leaves neuron i heads for
neuron j with probability p*(i,j) as a positive signal (excitation), or as negative signal with probability p~(i.j)
(inhibition), or it departs from the network with probability d(i). Clearly we shail have:

Lz DA+ Pl +d@ = 1 for I<i<n.

Positive signals arrive to the i'h neuron according to a Poisson process of rate A(i) (external excitation signals).

Negative signals arrive to the it neuron according to a Poisson process of rate A(i) (external inhibition signals). The
rate at which neuron i fires is r(i). The main property of this model is the excitation probability of a neuron i, q(i).
which satisfy a non-linear equation:

q) = A+ E) ¢))

where,  A*(D) = ¥ q(r()ptGi+AG)
AW = L qrp G+

3. A General Energy Function for the Random Neural Model

In the Random Neural Model, q(i) depends on A(1), A1), p*(.i). p~(j.i), r(i) and the other q(j)s. In the optimization,
p*(.i). p"(j.i) and r(i) are fixed and depend on the nature of combinatorial problem. Besides, in the optimization
problem the relationship between two neurons is competitive or cooperative, that is either p*(j.i) or p~(j.i) is null.
Of course, if there are not interaction between them, both p+(j.i) and p=(j.i) are null. On the other hand, emission of
external signals is not interesting to optimization, it is better to employ the signals to inhibit or to excite the
neighbor neurons, that is d(i) is null. The fire rate r(i) is obtained by the reciprocity of effect between neurons. When

two neurons i and j are excited and i emits signals to j. the excitation or inhibition that i exerts over j must be the
same as excitation or inhibition that i receives.

If p*(j.i). p"(j.0) and r(i) are fixed. the only way to lead the network from one stationary state to another one is to
act over the inputs. This state of the RNN model is defined by (q(i). .... g(n)). The use of two externals flows to
every neuron permits a complex scaling of an external positive flow to an external negative flow [2, 3]. In
optimization, the use of two flows is not interesting. We consider A(i) as null so that the neurons only receive
external positive signals, representing the preference that the neuron belongs to the solution. By this way, q(i) and
A(i) become the variables of the RNN model. The general form of the energy function that we have proposed in [5]
is:

E=7 aq(Dq() + L aji q(i)2 + ) bijg(i) +¢ with i,j € [l...n] 2)
i<j i i

Where ajj. bj. ¢ are parameters of optimization problem. It is interesting to see how this energy function definition
differs from the classical approach of Hopfield. Note the additional terms which are squared in one state variable and
linear in the other. Therefcre, the above energy function can correspond to a quadratic cost function. Our reference to a
quadratic energy function is motivated by the "usual” formulation of optimization problems with neural networks. In
[2. 51 we have defined a dvnamic of external positive signals in RNN model. in order to find the state that gives the
minimal energy in the network:

Al) M+l = Ay m . W [D1/0A(u) M in the m-th iteration 3)

The general procedure that we have proposed with the RNN is [3.5]:
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- Initialize A(i) in some appropriate manner
- Repeat
- Solve the equation (1)
- Using (3) and the previous results, update A(i).
-If A() is outside of [0, r(i)], replace for the nearest bounds
Until the change in the new value of (i) is smaller than some predetermined valued.

Thus, JE/QA(u) =Y Xijaq(i)/aA(u)
i#]

where, Xij = (2a;;q(1) + b Hi=j] + (aijl[j>i] + ajil[j<i]) q(j)
Now, we must explain dq(i)/dA(u) using stationary solution of the network.

given, Wii+ = r(PpTG.D.
Wji- = r(})p (.0).
(1) = X (Wij+ + Wij')
J

then Aq/IA) =T Yijaq(i)lal\(u) + I[i=ul/D(u)
i
where | Y= Wji+/ X wiima@) +r@D] - wii™ [X Wj1+q(i) + /\(i)]/[ZWji"Q(j) +1(D)]2
J J J
That is, 0q/OA(u) = Iq/0A() . C + eypx1/D(u) with  ey; = Ifi=u] et C=(T; Yij)
finally, Iq/OA(u) = 1/D(u)xey.[1-C]1

4. Our Energy Function on the Graph Partitioning Problem

The problem consists in dividing a graph in several subgraphs. so as to minimize a given cost function. In a very
general way, to place the problem on a mathematical formulation. the following definition is necessary:

[1=(N.A)  where, [ is a directed graph,
N is a set of n nodes on which we can associate a weight function Q : N ->R. In
ours studies Q(i)=1 for i=1..., n,
A = ad;;, are node pairs that define the arcs. It is known as adjacency matrix.

J

The problem consists in dividing the graph in K different subgraphs [1={[1..... [1g . according to certain
constraints. The classic constraints are; a) The subgraphs must have a specify size Nﬂl' Nﬂk‘ b) The arcs with

extremities in different subgraphs must be minimal. The cost function associates a real value to every subgraph
configuration. We propose the cost function:

F= ¥y aiij+b(§(Nn -r/)z)/K
ijeED = KK (4)

where D={i € []| & j€ J]j & 1#k}

The first term minimizes the edges which belong to the cut. The second summation term will have a minimum
value only when the number of nodes in the partitions are the same. The balance factor (b) defines the importance of
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the interconnection cost with respect to imbalance cost. and Nﬂk is the number of nodes in []j V k=1, .... K. The

graph partitioning problem is reduced to find a subgraph configuration with minimum value for the cost function.
This problem is NP-complete [12].

Qur RNN for this problem;

In this approach, we will construct a RNN of the type discussed above composed of nK + K neurons, where n is
the number of nodes and K is the number of subgraphs. For each (node, subgraph) pair (i,u) we will have a neuron

u(i.u) whose role is to "decide” whether node i should be assigned to subgraph u. We will denote by q(u(i,u)) the
probability that p(i.u) is excited: thus if it is close to 1 we will be encouraged to assign i to u. In order to reduce
connections between subgraphs in the selected partition, p(i,u) will tend to excite any neuron u(j.v) if j is connected
to i, and will tend to inhibit n(j,v) if j is connected to i and u#v. Similarly, pu(i.u) will inhibit uG.v), Vy=1, ... K.
if j is not connected to i. On the other hand, neurons j(i,u) and p(i.v), v#v, will inhibit each other so as to indicate
that the same node should not be assigned to different subgraphs.

For each subgraph u we will have a neuron nt(u) whose role is to let us know whether u is heavily loaded with

node or not. If u is very heavily loaded. it will attempt to reduce the load on subgraph u by inhibiting neurons u(i.u),
and it will attempt to increase the load on subgraphs v#u by exciting neurons n(v). In the same way, p(i,u) will
excite neuron ri(u) to increase the load on subgraph u. The parameters of the random network model expressing these
intuitive criteria are chosen as follows:

- A(u(i.w)) = random, - M) =0,

- A(r(n)) = n/K. to express the desirable equal load sharing property,

- Mn(w) =0, - r(u(iu)) =nK

- r(n(u)) = n+K-1

- r(uGu)ptuGu).uGy)) = Lif (adjj= L or adj; = 1) and u=v.
0 otherwise.

- rf(uGw) p"UGauwugy) = 1if ((u#v and (adij= lor adji =lori=]))or (adij=0 and adji=0))'
0 otherwise.

- r(uGu)ptuGu). nv) = L if u=v,
0 otherwise.

- r(rt(u))p~(r(u).p(in))

Lif qlm(u)) ~ 1.
0 otherwise

Lif q(n(u)) ~ 1.
0 otherwise

1]

- r(m)pH(a(u).a(v))

The equation (1) for this case is:

q(uin)) ={ Z(adij = | or adjj =) uGaeuGanpHuGao).uGa) 1/
{1 (W) + Loy Ladij= 1 or adji = L or i = j) ARGYIIRGVIP (RGV)RGE) +
szadii:ﬂ& adji=0 a(GyNeuG NP (G + qOre)e(r)p (r(w) JG)) |}

&)
Q) ={ A(m(u) + Xﬂj:] QU Ganp TG + L'k\-:[ QU NP ) §/ 1 (u))

For this problem. using the general energy function (2) and the cost function (4), we propose the following energy
function:

2

- . o K n . nf K
E= vy ajjqil) qei) +b(y (¥ apik) - ‘}'K 2) /K + Y| ¥ amik) -1
ijeD k=1 i=1 i=1\ k=1
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If we developed this function, we obtain the following value to ajj. biand ¢

ajj= ad; ifi<j

j
0 otherwise

ajj = blk + 1

hi = -2(nb/K2+1)

¢ =bn2/K3 + 1

Performance Evaluation:

We compare the RNN with the approximate heuristics proposed in [1. 3]: genetic algorithms (GA). simulated
anncaling (SA) and kernighan's heuristic (Kern). The random graphs used are defined for the average number of nodes
(n) and the average degree of the successor nodes of a node (). Yor each graph, the successors of a node are chosen
randomly from a uniform distribution in the interval [1. d]. The execution time is in seconds.

The parameters of the simulations are the following: the total number of subgraphs (K). the mean number of nodes
per graph (n), the mean number of successors per node (d) and the balance factor (b). We generate 50 random graphs for
the sct of parameters where n = {10, 20, 50}, K=2 and d=2.

We obtain the optimum solutions using an enumerative scarch algorithm. We study the following performance
criteria: the execution time df the heuristics (T}, the maximum performance (Sop)). the percentage of optimum

solutions (8]) and the relative error (I]) of each heuristic, where / is the number of times that we execute the heuristic
to obtain these values. These criteria are calculated as follows:

- T is the mean value of the computation time on a workstation for each heuristic, for I=1, ..., 10.

- Sopy is the mean value of the solutions for a given set of parameters. for I=1,..... 10.
- B] is the percentage of cases where a heuristic obtains the optimum solution. for I=1. .... 10.

- I is the mean relative error of the solutions of a heuristic compared to the optimum solution,
Ej=Z; | (Sj} - S;OPY / S;OPt for =1, ....10 and i=1.....50
where S;P!is the optimum solution of the graph 7 and Sj| is the solution of the heuristic for the graph i. Due to

space limitations, the results presented in this section were chosen hecause they are representative of the phenomena
studied.
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Fiigure 4.1, Simulation Results for Figure 4.2 Fxecution "Times of the heuristics
K=2,b=1landd=2 forK=2b=landd=2

Simulated Annealing and Genetic Algorithms. for graphs of 50 or more nodes, need a very large time to reach the
suboptimal solutions (Figures 4.2). For graph of little size (of 20 or fewer nodes). the difference between the exact
solution and the results of the hewistics is little (figure 4.1). Otherwise, Simulated Annealing gives the best results.
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Method E 5 T Sop

SA 006 09 28 26
GA 012 08 19 2.8
RNN 012 08 9 2.8
Remighan 1 o6 015 3 41
heuristic

Table 4.1. Performance criteria for 1=10, n=20, d=2, b=1 and K=2

Sop and & are approximately the same for every heuristic, but Kernighan's heuristic gives the worst results (Table
4.1). SA is the heuristic with the least mean relative error, but we obtain interesting results with RNN with short
execution time.

5. Conclusions

The purpose of this paper has been to consider the formulation of a general energy function to solve combinatorial
optimization problems using the random neural networks. The major advantage of this model is that it has a purely
numerical and computationally fast solution, which removes the need for complex search techniques and other
Montecarlo simulations based optimization methods. The definition of a general energy function for the RNN
permits to describe a dynamic to search an optimum solution of a combinatorial optimization problem.

Then, we have illustrated the utilization of our general energy function on the Graph Partitioning Problem. Further
work will examine the results proved for this model using this energy function in other optimization problems.
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