
Reflective Middleware for Automatic Management of service-oriented applications

using the theory of Signatures of Failure

Juan Vizcarrondo

Centro Nacional de Desarrollo e Investigación en

Tecnologías Libres (CENDITEL)

Mérida, Venezuela

jvizcarrondo@cenditel.gob.ve

José Aguilar

Cemisid; La hechicera, Núcleo Pedro Rincon Gutierrez

Universidad de los Andes

Mérida, Venezuela

aguilar@ula.ve

Ernesto Exposito

CNRS ; LAAS

Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077

Toulouse, France

ernesto.exposito@laas.fr

Abstract—The composition of web services enables the cooperation going through organizational boundaries, allowing new and complex

scenarios for collaboration. Middleware, and particularly reflective middleware, have been used as a powerful tool to cope with inherent

heterogeneous nature of distributed systems and to give them greater adaptability capacities to face their environment. In this paper we

propose a distributed reflective middleware for service oriented applications aimed at proposing solutions to cope with fault tolerance

problems in the context of services composition and choreography based on the Autonomic Computing Architecture.

Keywords: Distributed reflective middleware, Web service composition, Web service fault tolerance, Autonomic Computing

Architecture.

1. INTRODUCTION

The development of SOA applications (Service Oriented
Architecture) is a software development model in which
an application is broken down into small units, logical or
functional, called services. SOA allows the deployment of
distributed applications very flexible, with loose coupling
between software components, which operate in
heterogeneous distributed environments. An example of
software components to be integrated are the web services.
In general, web services are computational entities which
are autonomous and platform-independent, that can be
composed with others in order to offer composite services.

The Services are inherently dynamic and cannot be
assumed to be always stable [4], because during the
natural evolution of a service (changes to their interfaces,
its internal calculation, misbehavior during its operation,
among others) can alter the resulting service. Thus, in the
case of service composition the failure of a single service
leads to error propagation in the others services involved,
and therefore the failure of the system. Such failures often
cannot be detected and corrected locally (single service),
so it is necessary to develop architectures to enable
diagnosis and correction of faults, both at individual
(service) and global (composition levels).

Previous works have addressed the problem of
propagation of faults in the composition of services,
implemented semi-centralized architectures composed of
local diagnosticians distributed within each service
composition, which are coordinated by a central diagnoser
get an overview of the problem and thus implement a

repair strategy is finally implemented this diagnostic
center. In this paper we propose an architecture for the
diagnosis of fully distributed service compositions, which
is not coordinated by any central body, in which the
diagnosis of faults is performed through the interaction of
the diagnosticians present in each service composition and
repair strategies are developed through consensus of each
repairer distributed equally in the composition.
Additionally, our architecture is based on Autonomic
Computing to facilitate construction, understanding and
dissemination to a robust architecture with Provides
methods, algorithms, and tools for self-healing systems.

2. RELATED WORKS
Web services are prone to failure, which can be classified
at the level of the service itself and/or the sequence of calls
in a composition of these. Thus, in [5] proposes a
taxonomy for the analysis of possible failures and
perceived effects at both local (service) and composition
levels, representing an excellent starting point for this
work. In addition, a first attempt is made to correlate the
failures and possible mechanisms that have been
implemented to solve them.

On the other hand, several architectures have been
proposed for fault management and recovery in the web
service composition. In [6] defines a reflective middleware
called SOAR for fault management in service
composition, which is conceived as a global structure
(centralized) to monitor and adapt the complete system.
The middleware is composed of two levels: The first (base
level) is responsible for describing the basic characteristics

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 183

of an SOA system, and the second level (meta level) is
responsible for monitoring and adapting the SOA system.
The reflection of the middleware is performed by making
use of dynamic binding of web services composition,
when connecting or disconnecting the services forming
part of the joint task.

A second proposal is a centralized architecture for web
services reparation [7], called self-healing architecture. It
carries out the SOA system reparation using quality
measures from Web Services. The architecture consists of
three modules: the Monitoring and Measurement module
(it is responsible for observing and keeping records of QoS
parameters that are relevant), the diagnosis and decision
strategies engine (it detects degradation of the system and
identifies reparation plans), and finally, the
Reconfiguration module (it implements the reparation
plan). Also in [14] proposed a centralized architecture like
average based QoS monitoring

In [8] proposes a decentralized architecture composed
by 2 levels. The first level uses a local diagnoser for each
service that is part of the composition, which
communicates with a global diagnoser (central) for the
diagnosis of the entire composition. The global diagnoser
is responsible for the coordination of the local diagnosers
making use of the exchange of messages to find the
service and the activity responsible for the failure; and
implements mechanisms for the composition recovery.
Each local diagnoser instances chronicles which describe
failure patterns defined previously (off-line), which is
propagated to the global diagnoser. It makes a calculation
about the sequence of events in the services to find the
occurrence of an error according to the chronicles
instanced by the local diagnosers. Furthermore, in [15]
proposed a structure composed of local diagnosticians are
coordinated by a global diagnoser implements work
repación

3. MIDDLEWARE ARCHITECTURE PROPOSAL

Reflection is the ability of a program to monitor and
change its own behavior, as well as aspects of its
implementation (syntax, semantic, etc.), allowing the
ability to be sensitive to its environment. In this way, we
can define programs with a dynamic behavior, with an
adaptive architecture; that is, we can design programs that
are able to dynamically change or evolve.

An interesting concept to introduce is the meta-
programming, the ability of a program to read, transform
and write other programs. Thus, the reflection can be seen
as a meta-programming which is not performed by an
external program but the program itself. In general,
reflective computing has two processes [13]:

• Introspection: The ability of a component to
observe and reason about its own execution state.

• Intersection: The ability of a component to
modify its own execution state, or alter its own
interpretation or meaning.

A reflective system is composed of 2 levels: base level
that represents the operation of the system and the meta
level that performs the reflection on the system by
constructing a representation of the base level
(introspection) and modifying the base-level entities
(intersection) to modify the system behavior.

In this proposal, the reflective middleware will be fully
distributed through all services of the system, in order to
have a closer view of the occurrence of events that happen
in the application. Our middleware is divided in the
classical two levels: the base and the Meta level (see
Figure 2), which are described below:

Base Level: A service composition can be seen as a set

of calculations and iterations of the services that compose
an SOA application and the set of rules and definitions that
govern those iterations (SOA System). The base level of
the middleware needs to know: the iterations that occur in
the choreography and the definitions and rules that govern
these iterations. Additionally, to achieve an adequate level
of introspection the base level must observe both the SOA
system and the SOA application. To achieve this, it uses
the next elements: WSDL, UDDI, OWL-S and SCA). In
addition, it uses FraSCAti platform for the intersection
process of the service choreography.

Meta Level: This is the part of the middleware that
provides the capacity for reflection. The base-level
introspection is done by analyzing the message exchange
between the services that are part of the composition and
the components of the SOA system. The meta level is
instantiated for each service of the choreography. The
meta level is decomposed into 4 components:

Fig. 1 Our Reflective middleware architecture.

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 184

• Monitor (components Monitoring): it inspects
the communication services, and therefore has the
ability to issue alerts to the diagnoser to begin the
analysis of possible failures. Monitoring is
conducted on the QoS parameters of services in
the composition response time, throughput,
availability and consistency of data exchanged.

• Diagnoser (components behavior Analysis):
Performs system diagnostic. Its action is invoked
by the Monitor module (an alarm) or another
diagnoser module distributed in other service, to
achieve the identification of a distributed chronicle
of choreography (fault pattern).

• Repairer (Reparation Plan and Execution): it
has mechanisms for the resolution of faults present
in the composition of services.

• Ontological Framework: It manages all the
knowledge used by the middleware to perform its
tasks. Its structure is composed by: Distributed
Chronicles of choreography, QoS and service
fault recoveries taxonomies, rules, etc, All these
functions are achieved using a common
knowledge base.

In our architecture, both the Monitor and Diagnoser are

responsible for performing introspection and repairer
performs the intersection of the service composition.

4. REFLECTIVE MIDDLEWARE ARCHITECTURE BASED

ON AUTONOMIC COMPUTING

Autonomic Computing [9] is a self-managing computing
model inspired by the autonomic nervous system of the
human body. It creates systems that are able to be self-
managed and are able of high-level functioning while
keeping the system's complexity invisible to the user. It
incorporates sensors and effectors to the systems to allow
collecting details about the system behavior and to act
accordingly. Autonomic Computing defines an
architecture composed of 6 levels (see Figure 2)[9]:

Fig. 2 Autonomic Computing Architecture.

• Managed Resources: can be any type of resource
(hardware or software) and may have embedded
self-managing attributes.

• Touchpoints: implements the sensor and/or
effector mechanisms for the managed resources.

• Autonomic Manager: implements the intelligent
control loops that automate the tasks of auto-
regulation of the applications. Autonomic
manages is composed by four parts called MAPE:
Monitoring, Analysis (diagnoser), Plan (to decide
how to repair) and Execution (to send the orders to
the components).

• Orchestrating autonomic managers: Provide
coordination between Autonomic Managers.

• Manual Manager: creates a consistent human-
computer interface for the autonomic managers.

• Knowledge Sources: Provides access to the
knowledge according to the interfaces prescribed
by the architecture.

Additionally, FraSCAti

1
 [10] is a platform for the

implementation of SCA
2
 and fractal components [11],

flexible and extensible, that allows [12]: run-time
adaptation, property management and reflective
capabilities. With Frascati we can implement a component
as a component fractal with a set of controllers called
membrane (these controllers allow introspection,
configuration and reconfiguration).

Our middleware is composed of a set of distributed
resources that work together to make a global goal, which
can be seen as a Autonomic computing system. For this,
we extrapolate the two levels of our middleware (meta and
base) into the 5 levels of an Autonomic Computing
Architecture (see figure 3).

Fig. 3 Middleware Architecture based on Autonomic

Computing.

1 FraSCAti project, http://frascati.ow2.org/

2 SCA provides a model for composing applications that follow

Service-Oriented Architecture principles

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 185

In our case, the Managed resources and the Touch
Point correspond to the base level; and the autonomic
Manager, the Ontology Framework and the Choreography
Autonomic Manager define the meta level. Additionally,
the Autonomic Manager is composed by the three modules
of our meta level: Monitor, Diagnoser and Repairer, which
correspond to the MAPE structure of the Autonomic
Computing Architecture. Each autonomic manager can
work locally (level of each service - Internal failures of the
service) and/or globally (with the interaction between the
Autonomic managers is possible to diagnose failures in the
services composition), so this component must
communicate with the rest of the Repairers of the other
services of the composition. Finally, the ontology
Framework (it manages all the knowledge used by the
middleware to perform its tasks), in our middleware is
composed of chronicles and specific web services
ontologies.

The touchpoint interface is implemented/required by
the services in order to retrieve monitoring data via the
sensors interface and to enforce the decisions for repairing
via the effectors interface.

5. CASE STUDY

In order to test our proposal, we are going to use a very
common example of e-commerce, where there are three
business processes involved in the choreography (see
figure 4):

• Shop: is the store where users buy products.

• Supplier: Provides products to the shop; needs to
check the warehouse before issuing a response to
the store.

• Warehouse: is where products are stored. This
process has a service agreement (SLA) which
consists in that at least one product from the list
must be returned. It be able to carry out searches
on external sites to buy products.

Now, we describe a classical behavior of this

application:

Fig. 6 Choreography example.

(1) SuppListOut: Shop provides the list of products
required to the supplier.

(2) SuppItemOut: Supplier checks its deposit invoking
the Warehouse process.

(3) SuppItemOut: Warehouse provides the answer
about the list of products in the deposit to the Supplier,
which must contain at least one product.

(4) SuppListIn: The Supplier notifies the Shop which
products can provide.

Remember that the middleware contains many

instances of the autonomic manager as services are in the
composition, the Ontology Framework is consulted by the
Autonomic Manager to perform its functions, and the
touch points are sensors and efectors provided service-
composition interface. To show the operation of our
autonomic manager we are going to consider the following
situations:

Warehouse SLA violation (Web service fault): The

iterations (1) and (2) are normally given, but (3) provides
an empty list of products to the Supplier. This is a
violation of the SLA for the Warehouse service. The
solution is to adjust the Warehouse service configuration
to perform a external search of products in order to
provide at least one product. The middleware must
perform the reparation (warehouse settings) to ensure the
proper functioning of the choreography (see figure 5):

i. Supplier's monitor emits an alarm to the Supplier's

diagnoser to begin the process of diagnosis.
ii. Supplier's diagnoser makes an inference in the

knowledge base and find that the problem is an external
error due to an incorrect result. It propagates the diagnostic
to the Warehouse's diagnose.

iii. Warehouse diagnoser finds that the error is internal
(Parameter incompatibility), therefore, the diagnoser calls
its repairer (Warehouse's Repairer)

iv. Warehouse's Repairer performs the reparation using
the knowledge base. It determines that the solution is to
change the properties of the service so that it can search
products in external storages.

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 186

Fig. 7. Middleware self-healing due to faults in SLA

violation on the service

Warehouse Service Delay (Choreography flow
fault): Again, the iterations (1) and (2) are normally given,
but (3) has a delay which generates an error in the
composition because the supplier cannot produce results
for the shops (Supplier is unable to give its response in
time). A possible solution would be warehouse service
reallocation (see figure 6):

i. Shop's monitor sees a violation in the QoS turning on

an alarm to the Shop's diagnoser.
ii. Shop's diagnoser finds an external error (Time Out)

and propagates the diagnostic to the Supplier's diagnoser.
iii. Supplier's diagnoser infers an external error

(Service Delay), and propagates the diagnostic to the
Warehouse's diagnoser.

iv. Warehouse's diagnoser finds an internal error
(Service Delay) and calls its repairer.

v. Warehouse's repairer executes a self-reparation
(reallocation of the warehouse service).

Fig. 8. Middleware self-healing due to faults in service Delay.

6. CONCLUSIONS

In this paper we propose a reflective middleware
Architecture for management of service-oriented
applications. Our middleware is designed to be fully
distributed through all services of the SOA Application,
counting for this with the base level that contains both the
SOA system and the SOA Application, and the meta level
with components to execute the reflection. The
architecture uses the model of Autonomic computing
which will allow an easy adaptation of our self-healing
system. Additionally, our base level will use Frascati to
facilitate the implementation of Introspection and
Intersection in our middleware.

We have tested the design of our middleware, shown
the distributed adaptive capabilities of our architecture for
failures covering both services and the composition of
services, thus our design is able to fix these failures, which
contrasts with other approaches that do not show a fully
distributed (See TABLE I)

Finally, the ontology framework represents the
knowledge needed to perform the operations of the
middleware, which being distributed completely it also
requires that this be distributed. So, in future works we
need to develop structures to represent this distributed
knowledge (chronicles, etc.) and mechanisms to use it.
This work is still in progress, but the initial results are
interesting and promising.In this paper we propose a
reflective middleware Architecture for management of
service-oriented applications. Our middleware is designed
to be fully distributed through all services of the SOA
Application, counting for this with the base level that
contains both the SOA system and the SOA Application,
and the meta level with components to execute the
reflection. The architecture uses the model of Autonomic
computing which will allow an easy adaptation of our self-

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 187

healing system. Additionally, our base level will use
Frascati to facilitate the implementation of Introspection
and Intersection in our middleware.

TABLE I. COMPARING OUR ARCHITECTURE

Architecture Monitoring

phase

Diagnosis phase Recovery phase

SOAR [6] Centralized Centralized Centralized

self-healing

Architecture [7]

Centralized Centralized Centralized

self-healing in
Dynamic Web

Service

Composition
[14]

Centralized Centralized Centralized

Chronicle
Architecture [8]

Distributed Semi-centralized Centralized

Web Services

with Diagnostic
Capabilities [15]

Distributed Semi-centralized Centralized

Our Reflective
Middleware

Distributed Distributed Distributed

REFERENCES

[1] J. Camara , C. Canal and J. Cubo, "Issues in the formalization of

Web Service Orchestrations". Second International Workshop on
Coordination and Adaptation Techniques Entities (WCAT05).

[2] O. Kopp, and F. Leymann, "Choreography Design Using WS-
BPEL" IEEE Data Eng. Bull., Vol. 31, Nr. 3 (2008) , p. 31-34.

[3] A, Barros, M. Dumas and P. Oaks, "A Critical Overview of the
Web Services Choreography Description Language (WS-CDL)".
BPTrends Newsletter.

[4] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, "Grid
Information Services for Distributed Resource Sharing". In: 10th
IEEE International Symposium on High Performance Distributed
Computing, pp. 181--184. IEEE Press, New York (2001)

[5] K. S. Chan, J. Bishop, J. Steyny, L. Baresi and S. Guinea, "A Fault
Taxonomy for Web Service Composition", Service-Oriented
Computing - ICSOC 2007 Workshops: ICSOC 2007, pp. 363-375,
2007.

[6] Gang Huang, Xuanzhe Liu and Hong Mei, "SOAR: Towards
Dependable Service-Oriented Architecture via Reflective
Middleware". International Journal of Simulation and Process
Modelling (IJSPM), Volume 3, Issue 1/2, pp. 55-65, 2007.

[7] R. B. Halima, E. Fki, K. Drira and M. Jmaiel, "Experiments results
and large scale measurement data for web services performance
assessment". Computers and Communications, 2009. ISCC 2009.
IEEE Symposium, pp. 83-88, 2009..

[8] WS-Diamond, "WS-Diamond, IST-516933, Deliverable D4.3,
Specification of diagnosis algorithms for Web Services – phase 2",
Version 0.5, 2008.

[9] IBM, "An architectural blueprint for autonomic computing. IBM
Autonomic Computing White Paper, 2005..

[10] OWS2 Consortium, "FraSCAti project, http://frascati.ow2.org/,
2011.

[11] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, P
and F. Plasil, "Component Reliability Extensions for Fractal
Component Model",
http://kraken.cs.cas.cz/ft/public/public_index.phtml, 2006.

[12] P. Hnetynka, L. Murphy and J. Murphy, John, "Comparing the
Service Component Architecture and Fractal Component Model",
The Computer Journal, Vol. 54 Issue 7, July 2011.

[13] P. Maes, “Concepts and Experiments in Computational
Reflection”, In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA' 87), Orlando, FL USA, October 1987, pp.147-155.

[14] S. Poonguzhali, R. Sunitha, G. Aghila, "Self-Healing in Dynamic
Web Service Composition". In International Journal on Computer
Science and Engineering, Vol. 3, No. 5. (2011), pp. 2054-2060.

[15] Liliana Ardissono, Luca Console, Anna Goy, Giovanna Petrone,
Claudia Picardi, Marino Segnan, "Enhancing Web Services with
Diagnostic Capabilities". In ECOWS '05 Proceedings of the Third
European Conference on Web Services.

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 188

