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Abstract: - We propose notions and measures for the formalization and quantification of emergent properties in 
computing agent networks. Self-organization, homeostasis, autopoiesis and patterns are studied as emergent 
properties. Formal mathematic models for these emergent properties are developed with aspects related to 
equilibrium, self-production, order and topological indicators. The formality of the proposed representation can 
help in the better understanding of emergent properties in complex systems 
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1 Introduction 
Properties such as emergence and self-organization 
have been used in order to explain complexity 
aspects in complex systems (CS) [1]. We understand 
by emergence, the properties of a higher scale that 
cannot be described based on properties in at low 
scale. We understand by self-organizing systems 
those that reach an “organized” state from the 
interaction of their element.. 
 In spite of the useful of self-organization and 
emergence notions for CS study, it is appropriated 
the inclusion other aspects related with the 
adaptability and autonomy. That is the aspects 
related with homeostasis and autopoiesis. 
Homeostasis is referred to the establishment of a 
dynamic equilibrium among elements. Autopoiesis, 
as  homeostasis extension, is related whit self-
production and/or self-maintenance [2].  
 In addition, CS can show some structures or 
specific behaviors that could be observed as spatial- 
temporal patterns  [3]. There is a particular case of 
topological patterns in a kind of network that 
represents a wide range of CS, the small-world 
networks (SW). These patterns are represented by 
the clustering coefficient (Ca) and the characteristic 
path length (l) [4]. 
 Due to self-organization, homeostasis, 
autopoiesis and patterns (SHAP) are produce by 

interactions and relationships among system 
elements, they can be seen emergences  [3]. 
 For SHAP modeling purposes, Computing Agent 
Networks (CAN) can be considered as a promising 
paradigm to be explored. CAN have the following 
structure C(N;K; a; F), where, nodes (N) can be 
described as agents and edges (K) can be described 
as interactions. An algorithm (a),  can regulate the 
interactions between agents to reach a global state 
(using F) [4].  
 This paper proposes the formal description of 
SHAP properties that can be used for CS modeling 
which are represented as CANs. Also, this approach 
enriches the approximations for emergent properties 
in CS systems defined as CAN. It is important to 
highlight that mathematical models presented here, 
for self-organization and emergence, expands the 
traditional way of quantification based on statistical 
entropy or information theory. This expansion 
permits a better analysis of a lot system founded in 
the universe. 
 

 
2 Formal Aspects of Emergent 
Properties in Computing Agent 
Networks 
 
2.1 Homeostasis 
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Homeostasis (Hm) can be defined as a general self-
regulation mechanism that promotes the stability 
and flexibility in complex systems (CS)  [4]. By 
means of Hm CAN facing up to changes, influences 
and/or perturbations from the endogenous or 
exogenous environment (Ev). Hm can considerer 
the following mechanisms and indicators. 
 
2.1.1 Homesotatic Mechanisms 
In CAN homoeostatic self-regulation processes can 
be occurs in both complementary ways, which can 
be active or passive as following is describe. 
 
Passive Mechanism: Passive self-regulation is 
defined by tolerance range to one o more 
environmental factors, according to the following 
features:  
 To face up to the influence of an environmental 

factor Ev, a computing network operates within 
a viability zone (Vz). 

 The limits of Vz are defined by the viability 
ranges (RX) of nodes (N) and edges (K), to 
influences of the environment Ev.  

 RX is calculated from the subtraction of the 
maximum  and minimum ( ) values 
of response of Ev to the factor i. This way, the 
CAN viability range for a specific 
environmental factor ( ) is obtained. Thus, for 
each i factor of Ev one node j has a viability 

range such that . Also, 
edges has a viability range for factor i of Ev, 

noted by  . Consequently, the global 
viability range will be calculated as the mean of 

and . 

   is associated with the network response to 
the factor i of Ev. This response is named 
Tolerance to the factor i of Ev, which is   It 
is assumed that  corresponds, in several 
cases, with a Gaussian function (Fig. 2). The 
choice of this function is based on the 
coincidence with the behavior of a great number 
of ecological and social systems. In case of 
different behaviors, the use of other kind of 
distributions is recommended. 

 Inside of the viability zone Vz, an optimal zone 
of operation OZO can be defined.  The OZO 
statistics limits are between  .   

 

Fig. 2. Viability Zone Vz and Optimal Zone of 
Operation of a computing network facing an Evi 

factor. Values in x axis is related with dominia of i 
factor and are expressed in standar deviations units. 
Values in y axis are expressed in probability inteval 

[0,1] 

 In order to the calculation of a tolerance value 
for a specific  of factor, the standard 
deviation  and the average  of  should be 
considered. Equation 1 is appropriated to do 
this.  Right there,   is equalt to 3.1416 and  is 
the Euler’s number. 

      (Eq. 1) 

 In self-organization terms, higher  levels 
coincide with higher satisfaction levels for a 
node or agent. This happens when an agent 
reach a particular functional objective (e.g. 
survive, minimum energy, minimum delay, 
money, etc). At the same time, the friction 
(negative interactions) among agents, are low. 
This is in accordance with the sigma profile 
proposes by [4], in which minimizing friction in 
low scales increases benefits in high scales.  

 An  factor can affects all nodes (global 
influence) or some nodes (partial influence). 
However the individual response of nodes or K 
for these influence, could be different due to the 
individual tolerances to   .  

 If the operation of nodes or edges is outside of 
its viability zone (Vz), they will operate in a 
zone distinguish as critical (Cz). Operation in 
Cz can lead to the failure or degradation of 
CAN or their elements. This fact, in 
autopoietical terms, is a limitation for self-
maintenance because of the structure and 
function will be affected. Nevertheless, the 
CAN could balance, in homeostatic (self-

Mathematical Models and Methods in Modern Science

ISBN: 978-1-61804-106-7 190



regulation) and autopoietic (self-maintenance) 
sense, this effect. 

Active Mechanisms: First active self-regulation is 
carried out by the combination of local functions fi 
of each node. Combination is made by means of an 
operator, “o” in this case, giving as result a global 
function F. For instance, . 
The operator o is part of the algorithm a, which 
means that active self-regulation is specified in the 
algorithm.  
   The second active homeostatic mechanism to face 
up to the influence of environmental factors 
influence can be founded in algorithm a of CAN. 
This mechanism consists in choosing a proper 
action   to confront the environmental factor 

. To do this, an objective function ( ) that 
restore CAN to Vz, will be executed.  That is 

.  
   For the  execution is require that: (i) the action 
y controls the influence or imbalance in an effective 
way, and (ii)   does not has a new imbalance in 
other components of the CAN. Thus,  should 
cause a minimal imbalance and should compensate 
the  influence.  
   Also, the above vision coincides with the 
maximization of satisfaction and friction reduction in 
the computing network expressed by [4].  
  The second way of active homeostatic mechanism 
can be extended to autopoiesis. This way, an 
autopoietic function  fab can be involved in the 
production (understood as balance of synthesis-
decay) of its elements.    
 
2.1.2 Homeostatic indicators 
So far the stability and flexibility of CAN have been 
supported by tolerance function T(Evi) that involves 
RXi and in the mechanism of active self-regulation. 
However, in a complementary way we propose 
additional indicators that can help to determine the 
flexibility and fragility of the CAN. Accordingly, 
notions for resilience, persistence and resistance 
expressed by [7] were taken into account. From 
these three notions, we established a set of new 
mathematical formalisms that will support an 
integrated homeostasis measure. The proposed 
indicators are:  
 Resilience ( ): rate (velocity) of returning to 

media point  at the viability zone Vz. It is 
defined by   

Rsi=||Di|/t  (Eq. 2) 

Where |Di| or distance is the absolute value of 
the difference between a value   and its 
average , such that   .  t is the time 

of returning to  The indicator , also can be 
expanded to calculate the returning  rate to 
specific value inside the optimal zone of 
operation OZO.  Higher values of  indicates 
higher homeostatic capacity. 

 Persistence ( ): measure of time that spends 
in , or closer to . 

Pei=trEq. 3 

Where  es the residence time in that value. 
Higher values of  indicates higher 
homeostatic capacity and stability.  

    and  indicators have different behavior 
with the increasing of time. That means that with 
higher returning time’s resilience and the 
homeostatic capacity drop. When residence time in 
media point is higher, the persistence and 
homeostatic capacity are higher. 

 Maximun Resistence ( ): measure of the 
degree of displacement from absolute value of 

, such that the maximum displacement degree 
is the absolute value of  That is represented 
by equation 4. 

 MaxRi=|RXi|/ |.  (Eq. 4) 

Higher values of  indicates higher 
homeostatic capacity and stability. According 
with the  taken in account, variants of this 
measure will be calculated as OZO-resistance or 
instantaneous-resistance. 

 Vulnerability ( ): susceptibility or fragility of 
computing network to , is defined by an 
inverse function of the viability range , such 
that: 

=1/(1+RXi) (Eq. 5) 

where . Higher  indicates low 
homeostatic capacity and stability. 
Consequently, fragility is higher. 

By reason of the self-regulation mechanism of 
homeostasis is a dynamical process; the calculation 
of the above indicators should be considered its time 
changing. 

In Synthesis, homeostasis as self-regulation 
capacity to facing up an environmental factor  , 
can be formalized as a  function of tolerance, 
resilience, persistence, maximum resistance and 
vulnerability such that , 

, ).  If  , ,  are normalized 
to [0,1] scale, the  function used to calculate the 
average of all homeostatic indicators. 
 
4.2 Autopoiesis 
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Autopoiesis (A) is a particular self-regulation 
process of synthesis and decay1 of nodes (N) and/or 
edges (K) that compose the CAN structure [3]. This 
way, A is supported in homeostatic mechanism 
focused in elements constitution and promotes the 
“production of the system” and “structure 
preservation” [20]. By means of A the capacity of 
development, maintenance, production and 
establishment of CAN identity and unity at specific 
level is achieved.  In particular, A is based on the 
hetero and self-referencing processes. This fact 
requires of a determined degree of cognition. 
Cognition, according with [4], is referred to the 
knowledge that the system has about how to act in 
its environment. 
   In formal terms, autopoiesis A corresponds with a 
function of self-maintenance (fa), which is part of 
active mechanism of homeostasis supported on the 
local combination of the (fi)  combination. This 
way, fa regulates the natural network wearing.  The 
wearing of the network, in homeostatic sense, is 
viewed as a variant of Evi.  
   On the basis of above notion and mechanism, it is 
assumed that autopoiesis can be measurable by 
mean of degree of self-maintenance of the CAN 
from production of nodes N and edges K. Thus, 
autopoietic self-maintenance can be expressed as 
mass balance [21] between synthesis (S)  and decay 
(Dc)  of the CAN elements. The change in number 
of nodes, expressed as mass balance is:  

    (Eq. 6) 

 

Synthesis ( ) of N is equal to , where is 
the average rate of N synthesis. Decay (Dc) is equal 

to , where corresponds with the 

average rate of decay of N. Exponential  , is the 
decay order  [9]. Now, equation 6 takes the 
following form: 

   (Eq. 7) 
   
   If order d=1, N can be factorized as follow: 

 (Eq. 8) 

Where rp is named reparability rate and is the result 
of subtraction of rates (synthesis and decay). If rpN 
>0 means that self-production capacity is increasing 
and network is growing. If rpN=0 self-production 
capacity is stable. If rpN<0 self-production capacity 
is decreasing and network is decaying. 
   Previous argumentation can be instantiated for 
edges production. This way, for an edge K(i,j), its 
balance of synthesis and decay is as follows: 

 (Eq. 9) 

Where  and  are the rates of synthesis and 
decay, and rpk  is the edges self-production rate. 

   For the overall computing network the average of 
rpN  y rpk is equal to self-production rate rpN  and it 
is an expression of the computing network self-
reparability and self-maintenance. 
   It is important to highlight that all autopoietic 
systems are homeostatic systems, but no all 
homeostatic systems are autopoeitc systems. For 
this reason, only CAN with both characteristics will 
include the rpN  rate in the homeostatic measure.  
 
2.3 Self-organization 
Self-organization (SO) is a dynamic process that 
generates the structure and maintains computing 
network functionality, in order to reach its design 
goal. SO is achieved in terms of essential attributes 
and occurs without mediation of a central control 
and under changing conditions of the surroundings  
[3]. Essential attributes corresponds to (i) autonomy 
or no dependence of computing agents network to 
reach its function and goal; (ii) stability or balance; 
(iii) persistence as functionality maintenance; (iv) 
robustness as tolerance to external pressures or 
internal failures; (v) flexibility related to the 
susceptibility to change structurally according to the 
needs; (vi) integrity, which defines the unit in terms 
of the whole, the parts and relations [3].   
   As can be seen in these essential attributes, Self-
organization SO is supported on the basis of 
homeostasis (Hm) and autopoiesis (A). For that 
reason and as explained in item II, there are a 
synergistic condition among SO, Hm and A. In 
consequence, a SO measure can consider a 
homeostatic component. If the system is 
homeostatic and autopoietic at the same time, Hm 
will include an autopoietic component represented 
in the reparability rate rp. 
   Including a homeostatic component (Hm) in Self-
organization (SO) measure results in a novel notion 
of SO. It is well-known that traditionally SO has 
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been related to the statistics measure of entropy, for 
no imposed order representation. An example of this 
is the measures proposed by [[8] supported on the 
information theory. This expression is indicative of 
more or less order in a computing agent network 
that has a specific configuration. The Mathematical 
expression is: 
 

 (Eq. 10) 

Where   is a measure equivalent to the 
information (in bits) containing in nodes and edges 
of a configuration c, in an instant of time t. 
Configuration c is the complete description of CAN 
in the time t.The order/information measure Hct 

including a normalize probability distribution P(ct) 
that is equivalent to the CAN probability for c 
configuration in t time [8].  
   We propose the addition of the homeostatic 
component Hm with the order measure Hct  for self-
organizing process characterization in time SOt. 
Thus, SOt is a g function of information changing  
Hct  , on the way through the different computing 
network configuration co -> c1-> …cn, and 
homeostatic capacity changing (Hm), such that 
SOt=g(Hct, Hm).  Giving the synergy between 
homeostasis and self-organization processes, it is 
presumed that g function could calculate the 
multiplication of Hct  values. 
 
2.4 Patterns in Computing Agent Network 
 In the field of networks theory is well-known the 
use of the clustering coefficient (C) and the 
characteristic length (l) as topological properties. C 
and l can use as patters especially in small world 
networks (SW), because it has been observed that 
large C are in correspondence with small l [5]. 
   SW networks are an intermediate kind of network 
between regular and random networks. Also, SW 
are a particular case of networks with high level of 
complexity due to its relevant interactions and the 
difficulty of its state prediction. At the same time 
SW corresponds with a lot of social and ecological 
phenomena of reference [6].  
   From the perspective of the use of clustering 
coefficient C and l as patterns in computing 
networks, complex and emergent system can be 
characterized. According with  [6] C is the media 
fraction of the neighbors of an i node which, in turn, 
are neighbors to each other. The local expression for 
C is: 

  (Eq. 11) 

 
Where K is the fraction of existing edges or 
connected neighbors and ki is the degree of the i 
node, understood as the number of edges of this 
node.  
   Global expression for C will be equal to the 
average of the local Ci. 
   Characteristic length l is referred to the average 
distance (number of edges), among all pairs of 
nodes. That is: 

l  

 Where dij is the distance between nodes i y j. This 
fact is indicative of computing network structure as 
result of the nodes interactions.  
   From [5], is possible to obtain C and l averages 
and standard deviation, for small world networks. 
From them, maximum and minimum statistical 
limits can be established. All of these statistical 
parameters can be catalogued as “expected” for 
complex networks, and can be taken as nominative 
values of patterns.   
   The procedure for pattern quantification in 
computing network, from C and l observed values is 
made on the basis of statistical normalization using 
chi-square x2 distribution. The sequence to do that 
is: (i) observed C and l values (Cobs, lobs are 
transformed in statistical value of  x2 , using the 
following equation: 

 (Eq. 12) 
Where Cexp and lexp, are the average listed in table I. 
(ii) Then, x2 values are transformed in probability 
values using statistical tables with n-1 degrees of 
freedom and a confidence value of 95%. Probability 
values obtained represent the measure of topological 
patterns expression P(Pe)..   
 
4.5 Emergence (E) as composed function 
The strong relation of self-organization (SO), 
homeostasis (Hm) and autopoiesis (A) could be 
useful to synthesize the emergent behavior of the 
CAN. It means, the emergent condition of the 
network is supported in self-regulation, self-
maintenance and no imposed order. However, C and 
l pattern expression (P(Pe)) has in the same way of 
SO, Hm and A, an emergent feature. For that 
reason, it is possible to develop an expression for 
the quantification of the emergence in CAN that 
considers all emergent properties studied here.  In 
consequence, the emergence (E) is proposed, in a 
dynamic sense, as g function such that E=g(SOt, 
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Ept) It means, the change of E is a function of the 
change in self-organization and patterns expression. 
It is estimated that function gcould calculate the 
multiplication between these two indicators. 
   On the basis of the complexity measure proposed 
by [2], it is estimated that the relation between self-
organization (SO) and patterns (P(Pe)) that defines 
the emergence measure (E), could generate the 
behavior depicted in figure 2. This is an intuitive 
behavior that considers the variation of SO, (P(Pe)) 
and E, for networks that goes from regular to 
irregular, where the randomness of interactions or 
wirings is progressively increasing. It is noticed that 
in regular networks the pattern expressions it would 
be higher (near to 1), while in irregular networks the 
expression would be low. Irregular networks show 
higher SO, because the amount of information 
required for its state description is higher as well. 
The E measure, as product of SO and P(P(e)), could 
be described similar to a Gaussian function. The 
higher values of E are located in an intermediate 
point, between regular and irregular networks. This 
is a zone, where the small world networks could be 
situated.   

 
Fig 2. Intuitive notion of SO, P(Pe) and E 

mangnitudes for networks from regular to irregular, 
where randomess is increassing. 

 

5 Final Remark and Future Work 
This document presents the conceptual and formal 
notions that suggest a wide approach for complex 
systems CS with emergence features. This was 
possible by considering the characterization and 
quantification of the components of no imposed 
order (self-organization), self-maintenance 
(autopoiesis) and pattern expression. These 
processes have as a common factor its emergent 
condition, due to the correspondance with an 
elemental way of complex behavior. This behavior 
comes from the local interactions, which is viewed 

as global and synthetic conduct of the whole 
computing network.  

Future work is directed towards planning 
instantiations of the formal models here explained, 
considering several study cases in order to clarify its 
usage. At the same time, a computational tool for 
easy calculus of all measures will be developed. 
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