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Abstract 

Gelenbe has modeled the neural network using an 
analogy with queuing theory. This model (called Random 
Neural Network) calculates the probability of activation of 
the neurons in the network. Recently, we have.ppposed a 
recognition algorithm based on the Random Neural 
Network. In this paper, we propose to solve the patterns 
recognition problem using an Evolutionary Learning on the 
Random Neural Network, The Evolutionary Learning is 
based in a hybrid algorithm that trains the Random Neural 
Network by integrating a Genetic Algorithm with the 
gradient descend rule based learning algorithm of the 
Random Neural Network. This hybrid learning algorithm 
optimizes the Random Neural Network on the basis of its 
topology and its weights distribution. 

1. Introduction 

How to improve the learning performance of ANN is 
currently an important research problem. One approach, is 
the development of learning algorithms on general-purpose 
parallel computers with the objective of reducing the 
overall computing time [6]. Another approach, is the 
development of more effective neural network' learning 
algorithms with the objective of reducing the learning time 
[4]. A third approach, is the development of hybrid learning 
algorithms by integrating Genetic Algorithm (GA) with 
neural network learning algorithms [5,  6, 7, 81. 

In this paper, a new algorithm is present for training 
Random Neural Network (RNN) by integrating a GA with 
the gradient descend rule based learning algorithm of the 
RNN. The R" has been proposed by Gelenbe in 1989 
[l]. This model not uses a dynamic equation, b,ut uses a 
scheme of interaction among neurons. We intfdduce two 
elements in the standard GA to help the 
exploratiodexploitation abilities provided by the search 
space evolution: a cooperative local optimizing genetic 
operator and a coding granularity parameter to use different 
length individuals. This hybrid learning algorithm 
optimizes the RNN on the basis of its topology and its 
weights distribution. This work is organized as follows, in 

section 2 the theoretical bases of the RNN are reviewed. 
Then, we present an introduction to evolutionary learning 
and our hybrid algorithm. In section 4, we present an 
application. Conclusions are provided in section 5. 

2. Random Neural Networks 

2.1. Model 

The Random Neural Model consists of a network of n 
neurons in which positive and negative signals circulate. 
Each neuron accumulates signals as they arrive, and can fire 
if its total signal count at a given instant of time is 
positive. Firing then occurs at random according to an 
exponential distribution of constant rate r(i), and signals are 
sent out to other neurons or to the outside of the network. 
Each neuron i of the network is represented at any time t by 
its input signal potential ki(t). A negative signal reduces by 
1 the potential of the neuron to which it arrives (inhibition) 
or has no effect on the signal potential if it is already zero; 
while an arriving positive signal adds 1 to the neuron 
potential (excitation). 

A signal which leaves neuron i heads for neuron j with 
probability p+(i,j) as a positive signal, or as negative 
signal with probability p-(i,j), or it departs from the 
network with probability d(i). External positive signals 
arrive to the ith neuron according to a Poisson process of 
rate A(i). External negative signals arrive to the ith neuron 
according to a Poisson process of rate h(i). The main 
property of this model is the excitation probability of a 
neuron i, q(i): 

The synaptic weights for positive (w+(iJ)) and negative 
(w-(ij))  signals are defined as: 
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w+(ij) = r(i)p+(i,j) 
w-(ij) = r(i)p-(ij) 
r(i) = Znjz1 [w+(i,j) + w-(i,j)I and, 

2.2. Recognition Procedure 

The recognition procedure is based on a 
heteroassociative memory technique [4, 12'1. This technique 
involves the use of supervised learning. To design such a 
memory, we have used a single-layer Random Neural 
Network of n fully interconnected neurons. For ewery 
neuron i the probability that emitting signals depart from 
the network is d(i)=O. 

2.2.1 Learning phase. Weights and firing rater; are 
determined during the learning phase. Geleribe has proposed 
an algorithm for choosing the set of network parameters w- 
( i j )  and w+(i,j) in order to learn a given set of M input- 
output pairs (X, Y) [4]: 7.:' 

The successive desired outputs are the vector Y = { Y 1, 

..., Ym}, where y k  = (Ylk, ..., Ynk) and yfg E I;o,l] 
correspond to the desired output vectors. The learning 
algorithm is a gradient descend rule basedl neural network 
algorithm. The network approximates the set of Y in a 
manner which minimizes a cost function Ek: 

E k = %  1 "  C (qk(i) - yik) i? 

i = l  

The algorithm lets the network learn b@h n by n 
weight matrices wk+"{ wk+(i,j)} and WE;-={ wk-(i,j)} by 
computing for each input-output pair (Xk, Yk), a new 
value Wk+ and Wk-. The rule to update the weights is: 

where, p > 0 is the learning rate (some constwi), 
qk(i) is calculated using x k  and 

[dq(i) I' dW(U,V)]k is evaluated of the values 
q(i) = qk(i) and w(u,v) = wk-l(U,v) in (2) 

wk(bv) = Wk-l(&V) in (1) 

In our problem, we can translate each input vector xk 
in terms of arrival rates of exogenous signads as follows: 

Where the values A and h provide the network stability 
for every case. Thus, the network stability condition is: 

if yik=Z-> A < ro(i) + cn j= l  wo-(i,j) - Enj=l wo+(i,j) 

ifyik=O-> h > EnjZ1 wo+(i,j) - ro(i) - Enj=l wo-(i,j) 

[ro(i)+Cn.- 1-1 Wo-(i,J)-CnjJ=l wo+(i,j)] 

hk = maxi, yik=O [Cn,,l wo+(i,j)-ro(i)-Cnj=l w o ~ i j ) ~  

The choice of initial weights may influence the 
convergence of the learning process.Wo- is initialized with 
small positive random variables, uniformly distributed 
between [0, 0.21. Simulations have lead us to initialize 
WO' referring to the Hebbian law: 

Let Ak = mini, 

2.2.2 Recognition phase. Once the learning phase is 
completed, the network must perform as well as possible 
the completion of noisy versions of the training vectors. 
Let X=(x'l, ...) x'n) be any binary input vector. In order to 
determine the corresponding output vector Y= (y1, ..., yn), 
we first compute the vector of probabilities Q=(q(l), ..., 
q(n)). We consider that the q(i) values such that Z-b<q(i)<b 
with for instance b=0.6, belong to the uncertainty interval 
Z. When the network stabilizes to an attractor state the 
number N B Z  of neurons whose q(i) E Z, is equal to 0. 
Hence, we first treat the neurons whose state is considered 
certain to obtain the output vector Y(l)= (y(l)l, ..., y(')n), 
with: 

1 if q(i) 2 b 

X'i otherwise 
y(')i=FZ(q(i)>={ 0 if q(i) I 1-b 

Where Fz is the thresholding function by intervals. If 
N B Z  = 0, this phase is terminated and the output vector is 
Y=Y(l).  Otherwise, Y is obtained after applying the 
thresholding function fa as follows: 

Where a is the selected threshold. Each value q(i) E Z 
and also the lower bound 1-b are considered as potential 
thresholds. Eventually, Z can be reduced by decreasing b 
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(for b>0.5). For each potential value of a, we present to 
the network the vector X'(l)(a)= fa(Q). Then, we compute 
the new vector of probabilities Q(l)(a)  and the output 
vector Y(2)(a) = Fz(Q(l)(a)). We keep the cases where 
NB-Z=O and X(l)(a) = Y(2)(a). If these two conditions are 
never satisfied, the initial X' is considered too much 
different of any training vector and a is set to 0.5. If several 
thresholds are candidate, we choose the one which, provides 
the minimal error (diference between q(i) and f(i) for i=l, 
n>. 

3. Evolutionary Learning 

3.1. Introduction 

The use of evolutionary learning based on GA for ANN 
is recent [2, 5, 6,  7, 81. Most of the applications regard the 
use of evolutionary algorithms as a mean&,to learn 
connection weights, some applications also regard learning 
of network topology; and only few uses evolutionary 
algorithms to define the parameters of a learning algorithm 
that will be used in the training phase. Some studies 
attempt to coevolve both the topology and weight values 
within the GA framework. In this paper, we propose to use 
GA to design both networks topology and the associated 
weighted connections of the RNN. 

3.2. Our Approach 

We propose a hybrid learning algorithm by integrating 
GA with the gradient descend rule based neural network 
learning algorithm proposed by Gelenbe. This hybrid 
algorithm consists of two learning stages using M R " ' s .  
The backpropagation algorithm performs the first learning 
process until the terminal condition (error minimization) is 
satisfied on each R". Then, the second learning stage is 
used to optimize the topology (connections, weights) of the 
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networks by using a GA. In this stage, each individual is 
used to encode the topology of one of the M RNNs use in 
the first stage. The fitness (objective) function for the GA 
is defined as the average squared system error of the 
corresponding neural network. After performing several 
iterations and meeting one of the stopping criteria (a 
predefined number of consecutive iterations, homogeneous 
individuals), the second learning stage is terminated and the 
individuals are considered as the new initial topologies of 
the M RNN's in the next iteration. The hybrid algorithm is 
terminated (system convergence), if one of the next 
stopping criteria is met: the new initial topologies of the 
M RNNs are the same than the initial topologies of the 
previous iteration, or a given number of consecutive 
iterations, or if the initial individuals used for the GA do 
not change in consecutive iterations. 

Granularity has an impact in the design phase, too 
coarse may prevent the existence of a suitable solution, 
while too fine may lead to huge search spaces, retarding the 
speed of learning [7]. In our work, coding granularity is a 
parameter that evolves concurrently to the net structure. An 
extended direct encoding scheme is used, where each 
connection is represented directly by its binary definition. 
The representation chosen use networks nodes as basic 
functional units and encodes all the information relevant for 
a node in nearby positions, including its input connectivity 
patterns and the relative weight distribution. Connectivity 
is coded by presence/absence bits (connectivity bits). When 
connection is present, inmediately after each connectivity 
bit there is the binary encoding of the relative weight 
(defined using scientific notation). The first byte of the 
string specifies the number of bits (the granularity) 
according to which the weights of the present connections 
have been codified. Thus, coding granularity is a control 
parameter whose value is coded within the string where it is 
used. It gives the possibility of having strings of different 
length. New links are initialized randomly. Figure 1 
presents a simple network and its coding. 

aranularitv bits - 
connectivity bits Weight encoding bits 

0010 0 0 1 01 000 0 1 10 000 1 01 001 1 11 0 00 0 I 1-71 s 0 0 1 01 1 10 
w (3,l) w+(1,2) v r  (1,2) w+(3,2) w+(1,3) w- (2,3) 

Figure 1. Network encoding of a complete topology graph 
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We use the commonly used genetic operators (crossover 
and mutation) and a cooperative local optimizing genetic 
operator. These operators make two types of learning: 
Parametric modifications alter the value of parameters (link 
weights) currently in the network, whereas structural 
modifications alter the presence of links in the network. 
The crossover used is standard, a single cutting point 
chosen with uniform probability over the string length and 
a swap of the genetic material following it. A simple 

implementational trick allows mating of network with 
different connectivity and/or different granularity, with no 
modification of the operator (Figure 2). Coded networks are 
implemented using fixed-length arrays, defined with the 
maximum possible length (all connection present and 
maximal granularity). Crossover is applied to those strings 
and therefore it has no problems in application. 

Parents 

10 0 1 0 1 0 0 0  0 1 1 0 0 0 0  
11 0 0 1 0 1 1 0 0 0 1  I001 1011 

Data Structure cutting point 
10 0 *** * *** 1 *010 *0() 0 *** * :*** 1 *IO 0 *oo 
11 o******* O h * * * * * *  I 10110001  1001 1011 

Offspring 
10 0 1 0 1 0 0 0  1 1 1 0 0 1  1 0 1  1 1 1  
11 0 0 0 1 *100*00 

Where * can be randomly initialized, or they can be zero or one 

Figure 2. Two individuals with different length undergo crossover. 

The mutation operator is the standard, which negates 
each bit with probability Pm. The cooperative local 
optimizing genetic operator is a classical o3timization 
method for local optimization of the GA individuals. In our 
case, local search is performed in two ways: by applying 
our gradient descend rule based learning algorithm and by 
using the cooperative local optimizing operator. The: latter 
is a ternary operator (3 parents) that tries to exploit the 
fitness landscape identified by the extant solution,s. The 
algorithm for this operator is: 

- Rank the three parents by fitness value (suppos,e,, 

- fo r  each ith bit of the strings 
fitness(a)>fitness(b) >fitness( c))  

- i fa l i  = b1i then 
- offspringli = C l i  

- oflspringri =negate (Cli) 
else 

To solve the recognition problem for N images using 
this approach, we use M RNN‘s compose by n neurones. 
The complete evolution learning algorithrfi” for this 
problem is: 

- Initiate the parameters for  the M RNN‘s (WO+, WO- , A, 

- For each successive image: 
4. 

- Repeat 
- for  i = I to M concurrently 

- Perform the gradient descend rule based neural 
network learning algorithm. 

- Generate individuals using every RNN, 
- Optimize the individuals (network‘s topology: 

connections, weights) using GA, 
Until system convergence 

4. Performance Evaluation 

4.1. Problem Definition 

The problem that is presented in this section is to 
recognize or categorize alphabetic characters (A, B, C, D, 
E). We will input various alphabetic characters to a RNN 
and train the network to recognize these as separate 
categories. Each character is represented by a 5*7 grid of 
pixels. For example, to represent the letter A we must use 
the pattern show in figure 3. Here the blackened boxes 
represent value 1, while empty boxes represent a zero. We 
can represent all characters this way, with a binary map (Y)  
of 35 pixel values. Thus, we used a single-layer network of 
35 neurons. 
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0 1 1 1 0  
1 0 0 0 1  

1 0 0 0 1  
1 1 1 1 1  
1 0 0 0 1  
1 0 0 0 1  

1 0 0 q,'1 =3 

Figure 3. Representation of the letter A with 
a 5*7 pattern. 

4.2. Results Analysis 

To evaluate the exact recognition rates, we have 
generated 10 noisy patterns for each training image and for 

Recognition 
Rate (%) 

NoOf 
Characters 

a given distortion rate. We have corrupted them by 
reasonable noise rates equal to 10% and 5%. A pattern is 
recognized if the residual error rate is less than 3%. We 
compare the performance of our approach (re-ev) with the 
results obtained with the recognition algorithm based on 
R" (re-rnn) proposed in [12]. The results we have 
obtained are presented on figure 4. 

The progressive retrieval process with adaptive 
threshold value that we proposed, provides satisfactory 
recognition rates. The performance results obtained are 
lower when the noise rate is important (memories are then 
more discriminant). Recognition rates remain greater than 
90%. In general, rec-ev appears to give the best results, but 
with a substantially large execution time. That is because 
the evolutionary algorithm is very slow to converge. 

Execution 
Time (min) 

10000 
I 

1 2 3 4 5 NoOf 
Characters 

Figure 4. Recognition rate of noisy versions of characters and execution time of the learning 
algorithms 

5. Conclusions 

This paper presents an evolution learning algorithm that 
optimizes a neural network on the basis of its topology and 
its weights distribution. This algorithm is based on the 
gradient descend rule based learning algorithm of the RNN 
and on GA. Different length individuals are used in 
connection with codifying a control parameter, the coding 
granularity. A cooperative locally optimizing operator was 
also used. With this approach, the following observations 
are made: a) the results of neural network learning are 
sensitive to the initial topology (connections aybweights). 
A GA is employed to perform global search and to seek a 
good starting topology for the subsequent neural network 
learning algorithm. b) The simultaneous structural and 
parametric modifications based on fitness allows the 

algorithm to discover appropriate networks quickly and 
investigate several differing architectures in parallel. c) 
Complete network induction is approached with respect to 
the complex interaction between network topology, 
parametric values and task performance. d) This hybrid 
algorithm is easy to implement in parallel machine which 
will reduce the execution time and will improve the results. 
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