
Recognition Algorithm using Evolutionary Learning on the
Random Neural Networks

Jose Aguilar & Adriana Colmenares
CEMISID. Dpto. de Computaci6n. Facultad de Ingenieria

Universidad de 10s And2S. AV. Tulio Febres. 5101 MLrida-Venezuela
aguilar@ ing.ula.ve

Abstract

Gelenbe has modeled the neural network using an
analogy with queuing theory. This model (called Random
Neural Network) calculates the probability of activation of
the neurons in the network. Recently, we have.ppposed a
recognition algorithm based on the Random Neural
Network. In this paper, we propose to solve the patterns
recognition problem using an Evolutionary Learning on the
Random Neural Network, The Evolutionary Learning is
based in a hybrid algorithm that trains the Random Neural
Network by integrating a Genetic Algorithm with the
gradient descend rule based learning algorithm of the
Random Neural Network. This hybrid learning algorithm
optimizes the Random Neural Network on the basis of its
topology and its weights distribution.

1. Introduction

How to improve the learning performance of ANN is
currently an important research problem. One approach, is
the development of learning algorithms on general-purpose
parallel computers with the objective of reducing the
overall computing time [6]. Another approach, is the
development of more effective neural network' learning
algorithms with the objective of reducing the learning time
[4]. A third approach, is the development of hybrid learning
algorithms by integrating Genetic Algorithm (GA) with
neural network learning algorithms [5, 6, 7, 81.

In this paper, a new algorithm is present for training
Random Neural Network (RNN) by integrating a GA with
the gradient descend rule based learning algorithm of the
RNN. The R" has been proposed by Gelenbe in 1989
[l]. This model not uses a dynamic equation, b,ut uses a
scheme of interaction among neurons. We intfdduce two
elements in the standard GA to help the
exploratiodexploitation abilities provided by the search
space evolution: a cooperative local optimizing genetic
operator and a coding granularity parameter to use different
length individuals. This hybrid learning algorithm
optimizes the RNN on the basis of its topology and its
weights distribution. This work is organized as follows, in

section 2 the theoretical bases of the RNN are reviewed.
Then, we present an introduction to evolutionary learning
and our hybrid algorithm. In section 4, we present an
application. Conclusions are provided in section 5.

2. Random Neural Networks

2.1. Model

The Random Neural Model consists of a network of n
neurons in which positive and negative signals circulate.
Each neuron accumulates signals as they arrive, and can fire
if its total signal count at a given instant of time is
positive. Firing then occurs at random according to an
exponential distribution of constant rate r(i), and signals are
sent out to other neurons or to the outside of the network.
Each neuron i of the network is represented at any time t by
its input signal potential ki(t). A negative signal reduces by
1 the potential of the neuron to which it arrives (inhibition)
or has no effect on the signal potential if it is already zero;
while an arriving positive signal adds 1 to the neuron
potential (excitation).

A signal which leaves neuron i heads for neuron j with
probability p+(i,j) as a positive signal, or as negative
signal with probability p-(i,j), or it departs from the
network with probability d(i). External positive signals
arrive to the ith neuron according to a Poisson process of
rate A(i). External negative signals arrive to the ith neuron
according to a Poisson process of rate h(i). The main
property of this model is the excitation probability of a
neuron i, q(i):

The synaptic weights for positive (w+(iJ)) and negative
(w-(ij)) signals are defined as:

0-7803-4122-8/97 $10.000 1997 IEEE 1023

w+(ij) = r(i)p+(i,j)
w-(ij) = r(i)p-(ij)
r(i) = Znjz1 [w+(i,j) + w-(i,j)I and,

2.2. Recognition Procedure

The recognition procedure is based on a
heteroassociative memory technique [4, 12'1. This technique
involves the use of supervised learning. To design such a
memory, we have used a single-layer Random Neural
Network of n fully interconnected neurons. For ewery
neuron i the probability that emitting signals depart from
the network is d(i)=O.

2.2.1 Learning phase. Weights and firing rater; are
determined during the learning phase. Geleribe has proposed
an algorithm for choosing the set of network parameters w-
(i j) and w+(i,j) in order to learn a given set of M input-
output pairs (X, Y) [4]: 7.:'

The successive desired outputs are the vector Y = { Y 1,

..., Ym}, where y k = (Ylk, ..., Ynk) and yfg E I;o,l]
correspond to the desired output vectors. The learning
algorithm is a gradient descend rule basedl neural network
algorithm. The network approximates the set of Y in a
manner which minimizes a cost function Ek:

E k = % 1 " C (qk(i) - yik) i?

i = l

The algorithm lets the network learn b@h n by n
weight matrices wk+"{ wk+(i,j)} and WE;-={ wk-(i,j)} by
computing for each input-output pair (Xk, Yk), a new
value Wk+ and Wk-. The rule to update the weights is:

where, p > 0 is the learning rate (some constwi),
qk(i) is calculated using x k and

[dq(i) I' dW(U,V)]k is evaluated of the values
q(i) = qk(i) and w(u,v) = wk-l(U,v) in (2)

wk(bv) = Wk-l(&V) in (1)

In our problem, we can translate each input vector xk
in terms of arrival rates of exogenous signads as follows:

Where the values A and h provide the network stability
for every case. Thus, the network stability condition is:

if yik=Z-> A < ro(i) + cn j= l wo-(i,j) - Enj=l wo+(i,j)

ifyik=O-> h > EnjZ1 wo+(i,j) - ro(i) - Enj=l wo-(i,j)

[ro(i)+Cn.- 1-1 Wo-(i,J)-CnjJ=l wo+(i,j)]

hk = maxi, yik=O [Cn,,l wo+(i,j)-ro(i)-Cnj=l w o ~ i j) ~

The choice of initial weights may influence the
convergence of the learning process.Wo- is initialized with
small positive random variables, uniformly distributed
between [0, 0.21. Simulations have lead us to initialize
WO' referring to the Hebbian law:

Let Ak = mini,

2.2.2 Recognition phase. Once the learning phase is
completed, the network must perform as well as possible
the completion of noisy versions of the training vectors.
Let X=(x'l, ...) x'n) be any binary input vector. In order to
determine the corresponding output vector Y= (y1, ..., yn),
we first compute the vector of probabilities Q=(q(l), ...,
q(n)). We consider that the q(i) values such that Z-b<q(i)<b
with for instance b=0.6, belong to the uncertainty interval
Z. When the network stabilizes to an attractor state the
number N B Z of neurons whose q(i) E Z, is equal to 0.
Hence, we first treat the neurons whose state is considered
certain to obtain the output vector Y(l)= (y(l)l, ..., y(')n),
with:

1 if q(i) 2 b

X'i otherwise
y(')i=FZ(q(i)>={ 0 if q(i) I 1-b

Where Fz is the thresholding function by intervals. If
N B Z = 0, this phase is terminated and the output vector is
Y=Y(l). Otherwise, Y is obtained after applying the
thresholding function fa as follows:

Where a is the selected threshold. Each value q(i) E Z
and also the lower bound 1-b are considered as potential
thresholds. Eventually, Z can be reduced by decreasing b

1024

(for b>0.5). For each potential value of a, we present to
the network the vector X'(l)(a)= fa(Q). Then, we compute
the new vector of probabilities Q(l)(a) and the output
vector Y(2)(a) = Fz(Q(l)(a)). We keep the cases where
NB-Z=O and X(l)(a) = Y(2)(a). If these two conditions are
never satisfied, the initial X' is considered too much
different of any training vector and a is set to 0.5. If several
thresholds are candidate, we choose the one which, provides
the minimal error (diference between q(i) and f(i) for i=l,
n>.

3. Evolutionary Learning

3.1. Introduction

The use of evolutionary learning based on GA for ANN
is recent [2, 5, 6, 7, 81. Most of the applications regard the
use of evolutionary algorithms as a mean&,to learn
connection weights, some applications also regard learning
of network topology; and only few uses evolutionary
algorithms to define the parameters of a learning algorithm
that will be used in the training phase. Some studies
attempt to coevolve both the topology and weight values
within the GA framework. In this paper, we propose to use
GA to design both networks topology and the associated
weighted connections of the RNN.

3.2. Our Approach

We propose a hybrid learning algorithm by integrating
GA with the gradient descend rule based neural network
learning algorithm proposed by Gelenbe. This hybrid
algorithm consists of two learning stages using M R " ' s .
The backpropagation algorithm performs the first learning
process until the terminal condition (error minimization) is
satisfied on each R". Then, the second learning stage is
used to optimize the topology (connections, weights) of the

'74'

networks by using a GA. In this stage, each individual is
used to encode the topology of one of the M RNNs use in
the first stage. The fitness (objective) function for the GA
is defined as the average squared system error of the
corresponding neural network. After performing several
iterations and meeting one of the stopping criteria (a
predefined number of consecutive iterations, homogeneous
individuals), the second learning stage is terminated and the
individuals are considered as the new initial topologies of
the M RNN's in the next iteration. The hybrid algorithm is
terminated (system convergence), if one of the next
stopping criteria is met: the new initial topologies of the
M RNNs are the same than the initial topologies of the
previous iteration, or a given number of consecutive
iterations, or if the initial individuals used for the GA do
not change in consecutive iterations.

Granularity has an impact in the design phase, too
coarse may prevent the existence of a suitable solution,
while too fine may lead to huge search spaces, retarding the
speed of learning [7]. In our work, coding granularity is a
parameter that evolves concurrently to the net structure. An
extended direct encoding scheme is used, where each
connection is represented directly by its binary definition.
The representation chosen use networks nodes as basic
functional units and encodes all the information relevant for
a node in nearby positions, including its input connectivity
patterns and the relative weight distribution. Connectivity
is coded by presence/absence bits (connectivity bits). When
connection is present, inmediately after each connectivity
bit there is the binary encoding of the relative weight
(defined using scientific notation). The first byte of the
string specifies the number of bits (the granularity)
according to which the weights of the present connections
have been codified. Thus, coding granularity is a control
parameter whose value is coded within the string where it is
used. It gives the possibility of having strings of different
length. New links are initialized randomly. Figure 1
presents a simple network and its coding.

aranularitv bits -
connectivity bits Weight encoding bits

0010 0 0 1 01 000 0 1 10 000 1 01 001 1 11 0 00 0 I 1-71 s 0 0 1 01 1 10
w (3,l) w+(1,2) v r (1,2) w+(3,2) w+(1,3) w- (2,3)

Figure 1. Network encoding of a complete topology graph

1025

i

We use the commonly used genetic operators (crossover
and mutation) and a cooperative local optimizing genetic
operator. These operators make two types of learning:
Parametric modifications alter the value of parameters (link
weights) currently in the network, whereas structural
modifications alter the presence of links in the network.
The crossover used is standard, a single cutting point
chosen with uniform probability over the string length and
a swap of the genetic material following it. A simple

implementational trick allows mating of network with
different connectivity and/or different granularity, with no
modification of the operator (Figure 2). Coded networks are
implemented using fixed-length arrays, defined with the
maximum possible length (all connection present and
maximal granularity). Crossover is applied to those strings
and therefore it has no problems in application.

Parents

10 0 1 0 1 0 0 0 0 1 1 0 0 0 0
11 0 0 1 0 1 1 0 0 0 1 I001 1011

Data Structure cutting point
10 0 *** * *** 1 *010 *0() 0 *** * :*** 1 *IO 0 *oo
11 o******* O h * * * * * * I 10110001 1001 1011

Offspring
10 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1
11 0 0 0 1 *100*00

Where * can be randomly initialized, or they can be zero or one

Figure 2. Two individuals with different length undergo crossover.

The mutation operator is the standard, which negates
each bit with probability Pm. The cooperative local
optimizing genetic operator is a classical o3timization
method for local optimization of the GA individuals. In our
case, local search is performed in two ways: by applying
our gradient descend rule based learning algorithm and by
using the cooperative local optimizing operator. The: latter
is a ternary operator (3 parents) that tries to exploit the
fitness landscape identified by the extant solution,s. The
algorithm for this operator is:

- Rank the three parents by fitness value (suppos,e,,

- fo r each ith bit of the strings
fitness(a)>fitness(b) >fitness(c))

- i fa l i = b1i then
- offspringli = C l i

- oflspringri =negate (Cli)
else

To solve the recognition problem for N images using
this approach, we use M RNN‘s compose by n neurones.
The complete evolution learning algorithrfi” for this
problem is:

- Initiate the parameters for the M RNN‘s (WO+, WO- , A,

- For each successive image:
4.

- Repeat
- for i = I to M concurrently

- Perform the gradient descend rule based neural
network learning algorithm.

- Generate individuals using every RNN,
- Optimize the individuals (network‘s topology:

connections, weights) using GA,
Until system convergence

4. Performance Evaluation

4.1. Problem Definition

The problem that is presented in this section is to
recognize or categorize alphabetic characters (A, B, C, D,
E). We will input various alphabetic characters to a RNN
and train the network to recognize these as separate
categories. Each character is represented by a 5*7 grid of
pixels. For example, to represent the letter A we must use
the pattern show in figure 3. Here the blackened boxes
represent value 1, while empty boxes represent a zero. We
can represent all characters this way, with a binary map (Y)
of 35 pixel values. Thus, we used a single-layer network of
35 neurons.

1026

0 1 1 1 0
1 0 0 0 1

1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1

1 0 0 q,'1 =3

Figure 3. Representation of the letter A with
a 5*7 pattern.

4.2. Results Analysis

To evaluate the exact recognition rates, we have
generated 10 noisy patterns for each training image and for

Recognition
Rate (%)

NoOf
Characters

a given distortion rate. We have corrupted them by
reasonable noise rates equal to 10% and 5%. A pattern is
recognized if the residual error rate is less than 3%. We
compare the performance of our approach (re-ev) with the
results obtained with the recognition algorithm based on
R" (re-rnn) proposed in [12]. The results we have
obtained are presented on figure 4.

The progressive retrieval process with adaptive
threshold value that we proposed, provides satisfactory
recognition rates. The performance results obtained are
lower when the noise rate is important (memories are then
more discriminant). Recognition rates remain greater than
90%. In general, rec-ev appears to give the best results, but
with a substantially large execution time. That is because
the evolutionary algorithm is very slow to converge.

Execution
Time (min)

10000
I

1 2 3 4 5 NoOf
Characters

Figure 4. Recognition rate of noisy versions of characters and execution time of the learning
algorithms

5. Conclusions

This paper presents an evolution learning algorithm that
optimizes a neural network on the basis of its topology and
its weights distribution. This algorithm is based on the
gradient descend rule based learning algorithm of the RNN
and on GA. Different length individuals are used in
connection with codifying a control parameter, the coding
granularity. A cooperative locally optimizing operator was
also used. With this approach, the following observations
are made: a) the results of neural network learning are
sensitive to the initial topology (connections aybweights).
A GA is employed to perform global search and to seek a
good starting topology for the subsequent neural network
learning algorithm. b) The simultaneous structural and
parametric modifications based on fitness allows the

algorithm to discover appropriate networks quickly and
investigate several differing architectures in parallel. c)
Complete network induction is approached with respect to
the complex interaction between network topology,
parametric values and task performance. d) This hybrid
algorithm is easy to implement in parallel machine which
will reduce the execution time and will improve the results.

References

[l] E. Gelenbe, "Random neural networks with positive and
negative signals and product form solution", Neural
Computation, Vol. 1, No. 4, 1989, pp. 502-511.

[2] D. Golberg, "Genetic Algorithms in Search, Optimization
and Machine Learning", Addison Wesley, 1989.

1027

[3] E. Gelenbe, A. Stafylopatis, and A. Likas, "Associative
Memory Operation of the Random Network Model",
Proceedings International Conference on Artificial Neural
Networks, ICANN 91, 1991.
[4] E. Gelenbe, "Learning in the recurrent Ranlom Neural
Network", Neural Computation, Vol. 5, No. 5, 1993, pp. 584-
596.
[5] P. Angeline, G. Saunders, and J. Pollack, "An evolutionary
algorithm that constructs recurrent neural network", IEEE
Trans. on Neural Network, Vol. 5, No 1, 19514, pp. 54-641.
[6] S. Hungs, H. Adeli, "A parallel geneticheural network
learning algorithm for MIMD shared meimory machines",
IEEE Trans. on Neural Networks, Vol. 5, No 6, 1994, pp. 900-
909.

[7] V. Maniezzo, "Genetic Evolution of the Topology and
Weight Distribution of Neural Networks", IEEE Trans. on
Neural Networks, Vol. 5, No. 1, 1994, pp. 39-53.
[8] J. Aguilar, "Evolutionary Learning on Recurrent Random
Neural Network", Proceedings of the World Congress on
Neural Networks, 1995.

[9] J. Aguilar, "An Energy Function for the Random Neural
Networks". Neural Processing Letters, Kluwer Academic
Publishers, Vol. 4, 1996, pp. 17-27.
[IO] J. Aguilar, "A Recognition Algorithm using the Random
Neural Network", Proceeding of the 3rd. International
Congress on Computer Science Research, 1996.

1028

