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Abstract: - In this article is presented an approach for the comparison and establishment of patterns (motifs) from 

regular expressions that denote protein families, through the fusion of the sames. This task has a high 

computational cost, for this reason our approach uses a combinatorial optimization algorithm based on Ant 

Colonies to obtain the patterns that help the study and classification of families of protein chains. Particularly, 

we propose a system that can efficiently generate a pattern of the fusion of two regular expressions that describe 

protein chains, denoted in PROSITE language, in order to facilitate the analysis and classification of protein 

families from the structural point of view. 
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1   Introduction 
The discovery and the identification of patterns 

(motifs) in sequences of amino acids are part of one 

of the main objectives in biosequences analysis [1]. 

One of the tasks in this domain is the protein patterns 

fusion described by means of regular expressions 

denoted in PROSITE language [2], [3], which allows 

to know to how the proteins evolved and if exist 

relationship between them.  

   Currently, the algorithms that allow to find the 

optimal fusion of these motifs (patterns) have poor 

performances (at level of time and computational 

resources utilization) [4], [5], so it is necessary to 

develop new algorithms using emerging 

computational techniques. The solution proposed in 

this paper is based on a computational technique 

known as Ant Colony Optimization, which is based 
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on the behavior of ants to find the shortest path 

between a nest and a food source [6], [7]. 

 

 

2   Problem Formulation 
A Motif is a region or portion of a protein sequence 

that possesses a specific structure and describes a 

specific function. Different representations of motifs 

have been proposed; in this paper we use a 

deterministic representation. Deterministic motifs 

are described by a regular expression. On the other 

hand, PROSITE is a motifs database with biological 

relevance that describes the motifs using a set of 

rules for represented them like regular expressions 

[2], [3] 

   The identification and fusion of motifs in the 

amino acid sequences is one of the fundamental 

aims in the modern biology. It‟s implications in the 

study of proteins known will allow the discovery of 

new sequences of amino acids with structures and 

functions that might help to the treatment of 

diseases. For this reason, it‟s necessary the search of 

new approaches to find the motifs, denoted in 

PROSITE language, with biological sense, in a 

group of proteins. Particularly, is very important to 

find if there are similarities between them, by then to 

construct a general pattern of them. The patterns 

found may be explained by the existence of 

segments that have been preserved by the natural 

evolution of proteins, and suggests that the obtained 

regions play a functional and structural role in these 

mechanisms. 
 

 

3   Problem Solution 
We propose an algorithm for the fusion of protein 

motifs denoted as regular expressions. This 

algorithm can efficiently find the union between two 

regular expressions described by PROSITE [2], [3], 

and allows the generation of a new regular 

expression. 

   This algorithm is based on the Ant Colony 

Optimization [6], [7], [8] with some modifications 

with the purpose of to fit to the fusion of protein 

motifs. In each execution of our algorithm, two 

regular expressions are fused (see Fig. 1). In general, 

the macro-algorithm for the fusion process of protein 

motifs is as follows: 

1) Create the route graph. 

2) Walk of the ants on the route graph. 

3) Choose the best nodes 

4) Build the Resultant Regular Expression. 

 
Fig.1. Fusion of two regular expressions 

 

2.1 Create the route graph 
Because the problem of fusion of protein motifs 

emerges from the study of the primary structure of 

proteins, which is a linear structure consisting of the 

amino acids constituent of a protein, there are two 

basic conditions for the design of the graph where 

will walk the ants: 

   The first stems from an analysis in the construction 

of motifs, which shows that is essential for this task 

the position of different amino acids along the 

protein chains, which can be viewed as one-

dimensional arrays. So, a two-dimensional data 

structure will represent the two motifs. In the second 

one, we establish that the product of the fusion of 

motifs must generate a new pattern from which to 

build new amino acid chains that belong to regular 

expressions fused.  

   For the previous reasons, our graph will be 

represented in the plane, and each node will have 

arcs at the right and left sides, in this way the ants 

can only move them in horizontal direction. The 

nodes must store the pheromone level deposited by 

the ants that visit them and the biological information 

about the amino acid that represent (see Fig. 2). This 

information will be constituted by the type of amino 

acid that represents, and the family to which it 

belongs (see Table 1), or an identifier for special 

nodes (see Table 2) 

 
Fig 2. Data structure of a node 

 

Amino Acids Family Amino Acids Classification 

Aliphatic Amino Acids G A V I L M 1 

Aromatic Amino Acids F Y W 2 

Basic Amino Acids K R H 3 

Neutral Amino Acids  S T N Q 4 

Acid Amino Acids D E 5 

Sulfur Amino Acids C 6 

Imino Acid P 7 

Table 1. Classification and family of the amino acids 
Information Special identifier Classification 

Gap x 0 

Empty _ -1 

Start Start -2 

End End -2 

Table 2. Identifiers for special nodes 
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   For the graph construction we transform a regular 

expression to a stack data structure (for ex., see the 

regular expression S-A(1,3)-x-[KV] in Fig. 3) 

 

 
Fig. 3. Transformation of a regular expression to a 

stack 

   Additionally, two nodes are defined, that serve as 

guide for the construction of the graph, to indicate 

the beginning and end of the route (see fig. 4). Then, 

we proceed to extract the elements that are at the top 

of the stack iteratively, and built the nodes in the 

network (amino acids) which are in the same 

position in the graph. Also adds a node gap, which 

will serve as an auxiliary route for cases in which 

the ants must not continue for any of the available 

nodes. In this way, we avoid that an ant stops itself. 

On the other hand, when we extracts a gap from the 

stack it is not necessary any additional node. 

   For the special case when there are 2 values within 

the parentheses, we define a special node, called 

empty "_", to avoid the deadlock. It is necessary 

because the arcs that lead to these nodes must meet 

certain conditions: when an agent decides to go to an 

empty node, it would continue its route by nodes of 

this type until it does not find another node empty. 

For example, in the case of the Fig. 3 “A(1,3)” 

indicates that it is possible to have one to three 

Alanines, for this reason we need to include a given 

number of items as empty positions ((in this case 2). 

    Finally, when the stack is empty we stop the 

construction of the graph. In our approach, we build 

the route graph using the first regular expression to 

fuse.  

 
Fig 4. Route graph of the regular expression of the 

Fig. 3 

 

2.2 Walk of the ants on the route graph 
The artificial ants colony, like in natural ant colonies, 

evolves by the actions performed by its members. 

This way, the route graph is walked by the N-ants 

that constitute the colony. So, it is necessary to 

define the number of individuals of the colony, 

before they begin to walk on the route graph. On our 

case, each ant has a route map defined by the second 

regular expression to fuse. We define an ant type data 

structure composed of 9 elements, whose 

characteristics are described in Table 3. It contains 

the information necessary in order to that the ants can 

walk on the route graph. For example, this 

information determines whether an ant can visit a 

given node, and help to establish the amount of 

pheromone that it must deposite on each node 

visited. 
Element Characteristics 

Start Node 
Address of the node where start the ant 

to walk the route graph  

Route Map 

Stack that contains the regular 

expression that must follow the ant, 

and serves to know that nodes should 

be visited by the ant in the route graph 

Pheromone 

Increase 

Coefficient  

Real number (0,1), it is used to 

establish the pheromone concentration 

that deposits the ants in each visited 

node of the route graph. 

Equalities 

Similarity Index 

Integer number [0.10], it determines 

the pheromone level deposited by the 

ant, when the node found in the graph 

is identical to the expected to the route 

map. 

Families Similarity 

Index 

Integer number [0.10], it determines 

the pheromone level deposited by the 

ant, when the amino acid found in the 

route graph is not equal to the route 

map, but belongs to the same family of 

amino acid 

Differences 

Similarity Index 

Integer number [0.10], it determines 

the pheromone level deposited by the 

ant, when the amino acid found in the 

route graph is not equal to the route 

map, and does not belong to the amino 

acid family 

Gaps Similarity 

Index 

Integer number [0.10], it serves to 

mark the selected node, if node type is 

a Gap. 

Approving 

Similarity  

Integer number [0.10], that indicates 

the level of minimum similarity 

necessary to consider that the visited 

node is similar. If visited node has a 

similarity index superior to the 

approving similarity, the ant looks for 

the following amino acid in the route 

map, otherwise it continuous looking 

for the same amino acid in the route 

graph. 

Failures Maximum 

Number  

Integer number greater to -1. It is the 

number of no successful searches 

before to look for a new amino acid in 

the route map. It serves to avoid that 

the ant does not remain indefinitely 

looking for a given amino acid of the 

route map on the route graph. Thus, 

when this number of searches is 

reached, the ant decides with a 

probability of 0.5 if search in the route 

map a new amino acid or looking for 

the same amino acid in the route 

graph. 

Table 3. Elements of the ant data structure 
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   In the previous section we build the route graph 

using the first regular expression (ER1) “S-A(1.3)-x-

[KV]” to fuse. We will fuse it with the regular 

expression (ER2) “L (2) - A (2) - Q”. Using ER2 we 

build the route map of the ants. The stack of ER2 is 

shown in Fig. 5.  

 
Fig. 5. Transformation of ER2 to a stack 

 

   At the beginning, the ant is placed in the initial 

node of the route graph, and with the route map it 

observes the contiguous nodes at the right side (see 

Fig. 6). 

 
Fig. 6 Ant in the initial node of the route graph. 

 

   The ant executes the function of transition to each 

one of the nodes that can visit in the next position. 

This function consists of two phases; the first phase 

calculates the probability of visiting each one of the 

contiguous nodes ( ) based on its pheromone 

level „τr‟ and the index of similarity `φr' of each node 

(‘r’ indicates the neighboring node in the position `k', 

and `n' is the number of neighboring nodes at the 

right side for that position `k'  (see Equation 1) 

 (1) 

    

The second phase decides the node to visit using the 

simulation of Monte Carlo. For that, we adjust all the 

probabilities calculated for the position `k', and 

choose a random number between 0 and 1. With this 

number we determine the node to be visited by the 

ant.  

   When the ant moves to a node deposits pheromone, 

that increases the pheromone concentration in the 

node. The quantity of pheromone deposited depend 

on the similarity index with respect to the amino acid 

waited according to the route map (Equation 2)  

             (2) 

 

   The similarity index is defined as follows: if the 

amino acid of the route graph is equal to the amino 

acid of the route map of the ant, then we use the 

equalities similarity index; otherwise, if both belong 

to the same family, then we use the families 

similarity index, otherwise, if the visited node 

contains gap, then the gaps index is used; otherwise, 

is used the differences similarity Index. In our 

example, the final route of an ant using ER2 is 

observed in the figure 7. 

 
Fig. 7 The final route of the ant 

    

   For a colony, the previous process is repeated for 

each one of the ants of the colony. Additionally, the 

same process is executed recursively until the 

number of colony cycles desired. At the end of a 

cycle, there is an evaporate pheromone traces, 

decrementing the pheromone levels of all nodes in 

the graph, as shown in equation 3, where "ρ" is the 

pheromone evaporation coefficient. 

    (3) 

  

2.3 Choose the best nodes 
Once the colony has completed its work, we delete 

the arcs that lead to those nodes with a pheromone 

level below the pheromone threshold that the user 

has defined (for our example, we fixe the pheromone 

threshold to 1,0), which help to preselect to the 

amino acids that contribute to the best solutions.    

Figure 8 shows the nodes selected because they 

exceeded the threshold (in blue).  

 
Fig. 8. Route graph with the pheromone levels of 

each node 

 

2.4 Build the Resultant Regular Expression 
Finally, the route graph modified is filtered to delete 

irrelevant information and to define the resulting 

patterns. To carry out this task we analyze the 

marked nodes of the graph, position by position, and 

insert the amino acids selected in a list of chains that 

will contain the value of the amino acids 

corresponding to each pattern position. To achieve 

this goal the following criteria are used: 
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1. If in the position exists only one node (amino 

acid) that has passed the pheromone threshold, it 

will be inserted in the list. 

2. If exist more than one node in the same position, 

then we check if there is a gap or empty node. If 

there is not one on these nodes, we insert a string 

list with the amino acids for that position. 

Otherwise, If there is a gap or empty node, the 

following conditions apply:    

a) If the level of pheromone of the gap node is 

superior to the result of the multiplication of the 

threshold for the rest of the nodes on this position, 

then we establis a new threshold for the position 

studied, which has the same value of the 

pheromone level of the gap node, and compare 

the rest of the nodes in the same position with this 

new threshold. If at least one of them exceeds the 

new pheromone level, then we discard the gap 

insertion for this position and instead adding a 

string with the amino acids with a higher level of 

pheromone that it, otherwise we insert the gap in 

the list. 

b) If the pheromone level of the gap node is inferior, 

then we discard this node and a chain with the 

information of the remaining nodes on the same 

position is inserted to the list 

c) We apply the same conditions of the gap nodes 

for the empty nodes. 

   We take the list that contains the amino acids 

corresponding to each position, and we use the 

PROSITE language to build the fusion regular 

expression (see Fig. 9) 

 
Fig 9. Resultant fusion pattern. 

 

 

3   Experiments 
 

3.1 Test 
   The motif proteins were taken from the database 

AMYPdb [9], [10]. To run the system is necessary to 

adjust a set of parameters. Because the number of 

adjustable parameters in the developed system is 

quite extensive, some values for the tests were left fix 

(see Table 4). The only parameters that we have 

varied are the parameters that determine the 

collective behavior: the cycles number and the ants 

number. This way, the solution depends 

fundamentally on the behavior of the colony. 

 

System Parameters Value 

Pheromone Increase Coefficient 0,1 

Similarity indices for the amino 

acids that are the same 
10 

Similarity indices for the amino 

acids that belong to a family 
8 

Similarity indices for the amino 

acids that are different 
1 

Similarity indices for Gaps 3 

Approving Similarity Index 3 

Failures Maximum number 0 

Pheromone Initial level on the graph 

nodes  
1,0 

Pheromone evaporation coefficient 0,05 

Table 4. Parameter List 

 

a) Fusion of [ST]-x(2)-[ST] with [ST]-x-[RK]  

It‟s possible to observe that with the expression 

“[ST]-x(2)-[ST]” can be obtained a chain of 4 amino 

acids (for example, SAKT), whereas with the 

expression “[ST]-x-[RK]” is obtained a chain of 3 

amino acids (for example, TER). Our algorithm takes 

the regular expression "[ST]-x(2)-[ST]” as ER1 for 

the construction of the route graph (the longest), and 

the other regular expression is ER2 (with it the ants 

define the route map). In addition, the pheromone 

threshold  is equal to the pheromone initial level in 

the nodes (1,0).  

   For the tests, thirty fusions of the two regular 

expressions with the same group of parameters were 

studied. Also, we study the average time used by the 

algorithm for obtaining the respective solutions and 

thus determine when a set of parameters is better 

than another. 

   The first tests were carried out for the parameters 

set: ants numbers = 4, cycles number = 4. We 

observe that the algorithm converges in 90% of the 

times (see Table 5), with an average time of 0.76 

seconds. 
Pattern Pattern Pattern Pattern 

S-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) T-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) T-x(3) [ST]-x(3) [ST]-x(3) 

   Table 5. Results for the first tests 

 

   The second tests were carried out for the 

parameters set: ants number = 4, cycles number = 8. 

We observe that the algorithm converges in a 92.33% 

of the times (see Table 6). In addition, the algorithm 

had an average time of 1.10 seconds. 
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Pattern Pattern Pattern Pattern Pattern 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) S-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) T-x(3) [ST]-x(3) 

Table 6. Results for the second tests  

 

   The third tests are for the parameters set: ants 

number = 8, cycles number = 4. We see in the Table 

7 that the algorithm converges in 96.66% of the times 

and it presents a best runtime with respect to the 

previous tests, the average time is 0.89 seconds 
Pattern Pattern Pattern Pattern Pattern 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) S-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

Table 7. Results for the third tests  

 

   The last tests is for the next parameters: ants 

number = 8, cycles number = 8, obtaining with this 

set a better precision level, since it has a convergence 

of 100% compared to the expected pattern (see Table 

8). Additionally, the average time was 1.09 seconds. 
Pattern Pattern Pattern Pattern Pattern 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) 

Table 8. Results of the last tests  

 

    The best resultant fusion pattern of the two regular 

expressions is “[ST]-x(3)”. (see Fig. 10). We 

conclude that we can obtain the fusion of the 

expressions [ST]-x (2)-[ST] and [ST]-x-[RK] in a 

very short time, when the ants and cycles number are 

equal to the positions number of ER1; Nevertheless, 

the best performance is obtained when the ants and 

cycles number duplicates the positions number of 

ER1 (the selected pattern to construct the route 

graph) with a very similar runtime.  

 
Fig. 10. Graph of the fusion pattern [ST]-x(3) 

 

b) Biological Patterns Fusion  

Now perform the fusion of two patterns and analyze 

its biological sense, to see if the patterns generated 

by the system are useful for the study of protein 

chains. The first pattern is (see Fig. 10 and Table 9):  

K-x-G-S-L-[DGK]-N-[AIV]-T-H-V-[AP]-G-G-G-

[AHN]-[KV]-[KQ]-I-E-[NST]-[HR]-K-L-[DST]-F-

[RS]-x-[AN]-[AS]-[KP]-x-[KV]-[GT]-[DS]-[HK]-

[GT]-[AN]-[EY]-[IQ]-[PV]-x-K-S-[DP]-[GV]-[HKV] 

 

 
Fig 10. Graphic representation of the first pattern 

 

Family 
Protein 

Name  
Protein description Organism 

Tau  

O02592_C
AEEL 

(O02592) 

PTL-1A protein 

(Protein with tau-like 
repeats protein 1, 

isoform a) 

Caenorhabd
itis elegans 

Tau  

Q17364_C

AEEL 

(Q17364) 

TAU-1a (Fragment) 
Caenorhabd
itis elegans 

Tau  

Q17365_C

AEEL 
(Q17365) 

TAU-1b (Fragment) 
Caenorhabd

itis elegans 

Tau  

Q53YB1_H

UMAN 

(Q53YB1) 

Microtubule-
associated protein tau 

(Microtubule-

associated protein tau, 
isoform 4) 

Homo 

sapiens 

(Human) 

Tau  

Q547J4_M
OUSE 

(Q547J4) 

Microtubule binding 

protein tau 

Mus 
musculus 

(Mouse) 

Tau  

Q5CZI7_H

UMAN 

(Q5CZI7)  

Microtubule-
associated protein tau 

Homo 

sapiens 

(Human) 

Tau  

TAU_MOU

SE 
(P10637) 

Microtubule-

associated protein tau 
(Neurofibrillary tangle 

protein) (Paired helical 

filament-tau) (PHF-

tau) 

Mus 

musculus 
(Mouse) 

Tau  

TAU_PAN

TR 
(Q5YCW1) 

Microtubule-

associated protein tau 

Pan 
troglodytes 

(Chimpanze

e) 
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Tau  

TAU_PAP

HA 

(Q9MYX8) 

Microtubule-

associated protein tau 

(Neurofibrillary tangle 
protein) (Paired helical 

filament-tau) (PHF-

tau) 

Papio 

hamadryas 
(Hamadryas 

baboon) 

Tau  

TAU_PON

PY 
(Q5S6V2) 

Microtubule-

associated protein tau 

Pongo 

pygmaeus 
(Orangutan) 

Tau  

TAU_RAT 

(P19332) 

Microtubule-
associated protein tau 

(Neurofibrillary tangle 

protein) (Paired helical 
filament-tau) (PHF-

tau) 

Rattus 
norvegicus 

(Rat) 

Tau  

TAU_SPEC
I (Q6TS35) 

Microtubule-
associated protein tau 

Spermophil

us citellus 

(European 
suslik) 

(Citellus 

citellus) 

Table 9. Some proteins chains that contain the first 

pattern [9]. 
 

     The second pattern is (see Fig. 11 and Table 10): 

G-S-[KT]-D-N-[IM]-[KNR]-H-x-P-G-G-G-[KNS]-V-

Q-I-[FV]-[DHY]-[EK] 

 
Fig 11. Graphic representation of the second pattern 

 

Family 
Protein 

Name  
Protein Description Organism 

Tau  

O02592_CAE

EL (O02592) 

PTL-1A protein 
(Protein with tau-

like repeats protein 

1, isoform a) 

Caenorhabditi

s elegans 

Tau  

Q17364_CAE

EL (Q17364) 

TAU-1a (Fragment) 
Caenorhabditi

s elegans 

Tau  

Q8JIW8_XE

NLA 

(Q8JIW8) 

Tau-like protein-1 

Xenopus 

laevis 
(African 

clawed frog) 

Tau  

Q91WK4_M

OUSE 

Microtubule-

associated protein 

Mus musculus 

(Mouse) 

(Q91WK4)  tau 

Tau  

TAU_BOVIN 

(P29172) 

Microtubule-
associated protein 

tau (Neurofibrillary 

tangle protein) 
(Paired helical 

filament-tau) (PHF-

tau) 

Bos taurus 

(Bovine) 

Tau  

TAU_CAPHI 
(O02828) 

Microtubule-

associated protein 
tau (Neurofibrillary 

tangle protein) 

(Paired helical 
filament-tau) (PHF-

tau) 

Capra hircus 
(Goat) 

Tau  

TAU_GORG

O (Q5YCW0) 

Microtubule-
associated protein 

tau 

Gorilla gorilla 

gorilla 

(Lowland 
gorilla) 

Tau  

TAU_HUMA

N (P10636) 

Microtubule-
associated protein 

tau (Neurofibrillary 

tangle protein) 
(Paired helical 

filament-tau) (PHF-

tau) 

Homo sapiens 

(Human) 

Tau  

TAU_HYLL

A (Q5YCV9) 

Microtubule-

associated protein 

tau 

Hylobates lar 

(Common 

gibbon) 

Tau  

TAU_PONPY 

(Q5S6V2) 

Microtubule-
associated protein 

tau 

Pongo 
pygmaeus 

(Orangutan) 

Tau  

TAU_SPECI 
(Q6TS35) 

Microtubule-

associated protein 

tau 

Spermophilus 

citellus 

(European 
suslik) 

(Citellus 

citellus) 

Table 10. Some proteins chains that contain the 

second pattern [9]. 

 

    To realize the fusion the parameters are taken from 

the Table 4. In addition, 94 ants and equal number of 

colony cycles used. The system execution is realised 

3 times and the following results are obtained (see 

Table 11):  

 
Execution Pattern 

1 x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-[AP]-G(3)-

[HN]-[KV]-Q-I-x(2)-[HR]-K-(24) 

2 x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-P-G(3)-

[AHN]-V-Q-I-x(2)-[HR]-K-x(24) 

3 x(2)-G-S-x-[DK]-N-[AIV]-T-H-x-[AP]-G(3)-

[AHN]-V-Q-I-x(2)-H-K-x(24) 

Table 11. Fusion Resultant  

 

    The data base AMYPdb is consult for the results 

obtained and is observed that the second and third 
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pattern are not found. For the first pattern the result is 

the following (see Table 12): 

 

Amyloid Protein: x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-[AP]-

G(3)-[HN]-[KV]-Q-I-x(2)-[HR]-K-(24) 

 

Family 
Protein 

Name  
Protein Description Organism 

Tau  

O02592_CAE

EL (O02592) 

PTL-1A protein 
(Protein with tau-

like repeats protein 

1, isoform a) 

Caenorhabditi

s elegans 

Tau  

Q17364_CAE

EL (Q17364) 

TAU-1a (Fragment) 
Caenorhabditi

s elegans 

Tau  

Q17364_CAE
EL (Q17364) 

TAU-1b (Fragment) 
Caenorhabditi

s elegans 

Table 11. Protein that contain the Pattern Resultant  

 

4   Conclusion 
The algorithm based on Ant Colony Optimization is 

a good solution for the discovery of protein patterns.   

It‟s possible to find fusion patterns for groups of 

regular expressions with biological sense. The main 

parameters of our algorithm are that determine the 

collective behavior of the ants. 
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