
Regular Expressions Fusion using Emergent Computing

RAFAEL TORRES
1
, JUNIOR ALTAMIRANDA

2
, JOSE AGUILAR

3

1
Centro de Estudios en Microelectrónica y Sistemas Distribuidos (CEMISID)

University of Los Andes

Faculty of Engineering. Campus La Hechicera. Mérida

VENEZUELA

torresrafael@ula.ve

2
Centro de Estudios en Microelectrónica y Sistemas Distribuidos (CEMISID)

University of Los Andes

Faculty of Engineering. Campus La Hechicera. Mérida

VENEZUELA

altamira@ula.ve

3
Department of Computer Science, Centro de Estudios en Microelectrónica y Sistemas Distribuidos

(CEMISID)

University of Los Andes

Faculty of Engineering. Campus La Hechicera. Mérida

VENEZUELA

aguilar@ula.ve

CHRISTIAN DELAMARCHE

Structure et Dynamique des Macromolecules

University of Rennes I

Campus de Beaulieu, Nb 13, Rennes

FRANCE

Christian.delamarche@univ-rennes1.fr

Abstract: - In this article is presented an approach for the comparison and establishment of patterns (motifs) from

regular expressions that denote protein families, through the fusion of the sames. This task has a high

computational cost, for this reason our approach uses a combinatorial optimization algorithm based on Ant

Colonies to obtain the patterns that help the study and classification of families of protein chains. Particularly,

we propose a system that can efficiently generate a pattern of the fusion of two regular expressions that describe

protein chains, denoted in PROSITE language, in order to facilitate the analysis and classification of protein

families from the structural point of view.

Key-Words: - Bioinformatics, Artificial Ant Colony, Combinatorial Optimization, Regulars Expressions, Motifs,

Amyloid Protein.

1 Introduction
The discovery and the identification of patterns

(motifs) in sequences of amino acids are part of one

of the main objectives in biosequences analysis [1].

One of the tasks in this domain is the protein patterns

fusion described by means of regular expressions

denoted in PROSITE language [2], [3], which allows

to know to how the proteins evolved and if exist

relationship between them.

 Currently, the algorithms that allow to find the

optimal fusion of these motifs (patterns) have poor

performances (at level of time and computational

resources utilization) [4], [5], so it is necessary to

develop new algorithms using emerging

computational techniques. The solution proposed in

this paper is based on a computational technique

known as Ant Colony Optimization, which is based

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 64

on the behavior of ants to find the shortest path

between a nest and a food source [6], [7].

2 Problem Formulation
A Motif is a region or portion of a protein sequence

that possesses a specific structure and describes a

specific function. Different representations of motifs

have been proposed; in this paper we use a

deterministic representation. Deterministic motifs

are described by a regular expression. On the other

hand, PROSITE is a motifs database with biological

relevance that describes the motifs using a set of

rules for represented them like regular expressions

[2], [3]

 The identification and fusion of motifs in the

amino acid sequences is one of the fundamental

aims in the modern biology. It‟s implications in the

study of proteins known will allow the discovery of

new sequences of amino acids with structures and

functions that might help to the treatment of

diseases. For this reason, it‟s necessary the search of

new approaches to find the motifs, denoted in

PROSITE language, with biological sense, in a

group of proteins. Particularly, is very important to

find if there are similarities between them, by then to

construct a general pattern of them. The patterns

found may be explained by the existence of

segments that have been preserved by the natural

evolution of proteins, and suggests that the obtained

regions play a functional and structural role in these

mechanisms.

3 Problem Solution
We propose an algorithm for the fusion of protein

motifs denoted as regular expressions. This

algorithm can efficiently find the union between two

regular expressions described by PROSITE [2], [3],

and allows the generation of a new regular

expression.

 This algorithm is based on the Ant Colony

Optimization [6], [7], [8] with some modifications

with the purpose of to fit to the fusion of protein

motifs. In each execution of our algorithm, two

regular expressions are fused (see Fig. 1). In general,

the macro-algorithm for the fusion process of protein

motifs is as follows:

1) Create the route graph.

2) Walk of the ants on the route graph.

3) Choose the best nodes

4) Build the Resultant Regular Expression.

Fig.1. Fusion of two regular expressions

2.1 Create the route graph
Because the problem of fusion of protein motifs

emerges from the study of the primary structure of

proteins, which is a linear structure consisting of the

amino acids constituent of a protein, there are two

basic conditions for the design of the graph where

will walk the ants:

 The first stems from an analysis in the construction

of motifs, which shows that is essential for this task

the position of different amino acids along the

protein chains, which can be viewed as one-

dimensional arrays. So, a two-dimensional data

structure will represent the two motifs. In the second

one, we establish that the product of the fusion of

motifs must generate a new pattern from which to

build new amino acid chains that belong to regular

expressions fused.

 For the previous reasons, our graph will be

represented in the plane, and each node will have

arcs at the right and left sides, in this way the ants

can only move them in horizontal direction. The

nodes must store the pheromone level deposited by

the ants that visit them and the biological information

about the amino acid that represent (see Fig. 2). This

information will be constituted by the type of amino

acid that represents, and the family to which it

belongs (see Table 1), or an identifier for special

nodes (see Table 2)

Fig 2. Data structure of a node

Amino Acids Family Amino Acids Classification

Aliphatic Amino Acids G A V I L M 1

Aromatic Amino Acids F Y W 2

Basic Amino Acids K R H 3

Neutral Amino Acids S T N Q 4

Acid Amino Acids D E 5

Sulfur Amino Acids C 6

Imino Acid P 7

Table 1. Classification and family of the amino acids
Information Special identifier Classification

Gap x 0

Empty _ -1

Start Start -2

End End -2

Table 2. Identifiers for special nodes

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 65

 For the graph construction we transform a regular

expression to a stack data structure (for ex., see the

regular expression S-A(1,3)-x-[KV] in Fig. 3)

Fig. 3. Transformation of a regular expression to a

stack

 Additionally, two nodes are defined, that serve as

guide for the construction of the graph, to indicate

the beginning and end of the route (see fig. 4). Then,

we proceed to extract the elements that are at the top

of the stack iteratively, and built the nodes in the

network (amino acids) which are in the same

position in the graph. Also adds a node gap, which

will serve as an auxiliary route for cases in which

the ants must not continue for any of the available

nodes. In this way, we avoid that an ant stops itself.

On the other hand, when we extracts a gap from the

stack it is not necessary any additional node.

 For the special case when there are 2 values within

the parentheses, we define a special node, called

empty "_", to avoid the deadlock. It is necessary

because the arcs that lead to these nodes must meet

certain conditions: when an agent decides to go to an

empty node, it would continue its route by nodes of

this type until it does not find another node empty.

For example, in the case of the Fig. 3 “A(1,3)”

indicates that it is possible to have one to three

Alanines, for this reason we need to include a given

number of items as empty positions ((in this case 2).

 Finally, when the stack is empty we stop the

construction of the graph. In our approach, we build

the route graph using the first regular expression to

fuse.

Fig 4. Route graph of the regular expression of the

Fig. 3

2.2 Walk of the ants on the route graph
The artificial ants colony, like in natural ant colonies,

evolves by the actions performed by its members.

This way, the route graph is walked by the N-ants

that constitute the colony. So, it is necessary to

define the number of individuals of the colony,

before they begin to walk on the route graph. On our

case, each ant has a route map defined by the second

regular expression to fuse. We define an ant type data

structure composed of 9 elements, whose

characteristics are described in Table 3. It contains

the information necessary in order to that the ants can

walk on the route graph. For example, this

information determines whether an ant can visit a

given node, and help to establish the amount of

pheromone that it must deposite on each node

visited.
Element Characteristics

Start Node
Address of the node where start the ant

to walk the route graph

Route Map

Stack that contains the regular

expression that must follow the ant,

and serves to know that nodes should

be visited by the ant in the route graph

Pheromone

Increase

Coefficient

Real number (0,1), it is used to

establish the pheromone concentration

that deposits the ants in each visited

node of the route graph.

Equalities

Similarity Index

Integer number [0.10], it determines

the pheromone level deposited by the

ant, when the node found in the graph

is identical to the expected to the route

map.

Families Similarity

Index

Integer number [0.10], it determines

the pheromone level deposited by the

ant, when the amino acid found in the

route graph is not equal to the route

map, but belongs to the same family of

amino acid

Differences

Similarity Index

Integer number [0.10], it determines

the pheromone level deposited by the

ant, when the amino acid found in the

route graph is not equal to the route

map, and does not belong to the amino

acid family

Gaps Similarity

Index

Integer number [0.10], it serves to

mark the selected node, if node type is

a Gap.

Approving

Similarity

Integer number [0.10], that indicates

the level of minimum similarity

necessary to consider that the visited

node is similar. If visited node has a

similarity index superior to the

approving similarity, the ant looks for

the following amino acid in the route

map, otherwise it continuous looking

for the same amino acid in the route

graph.

Failures Maximum

Number

Integer number greater to -1. It is the

number of no successful searches

before to look for a new amino acid in

the route map. It serves to avoid that

the ant does not remain indefinitely

looking for a given amino acid of the

route map on the route graph. Thus,

when this number of searches is

reached, the ant decides with a

probability of 0.5 if search in the route

map a new amino acid or looking for

the same amino acid in the route

graph.

Table 3. Elements of the ant data structure

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 66

 In the previous section we build the route graph

using the first regular expression (ER1) “S-A(1.3)-x-

[KV]” to fuse. We will fuse it with the regular

expression (ER2) “L (2) - A (2) - Q”. Using ER2 we

build the route map of the ants. The stack of ER2 is

shown in Fig. 5.

Fig. 5. Transformation of ER2 to a stack

 At the beginning, the ant is placed in the initial

node of the route graph, and with the route map it

observes the contiguous nodes at the right side (see

Fig. 6).

Fig. 6 Ant in the initial node of the route graph.

 The ant executes the function of transition to each

one of the nodes that can visit in the next position.

This function consists of two phases; the first phase

calculates the probability of visiting each one of the

contiguous nodes () based on its pheromone

level „τr‟ and the index of similarity `φr' of each node

(‘r’ indicates the neighboring node in the position `k',

and `n' is the number of neighboring nodes at the

right side for that position `k' (see Equation 1)

 (1)

The second phase decides the node to visit using the

simulation of Monte Carlo. For that, we adjust all the

probabilities calculated for the position `k', and

choose a random number between 0 and 1. With this

number we determine the node to be visited by the

ant.

 When the ant moves to a node deposits pheromone,

that increases the pheromone concentration in the

node. The quantity of pheromone deposited depend

on the similarity index with respect to the amino acid

waited according to the route map (Equation 2)

 (2)

 The similarity index is defined as follows: if the

amino acid of the route graph is equal to the amino

acid of the route map of the ant, then we use the

equalities similarity index; otherwise, if both belong

to the same family, then we use the families

similarity index, otherwise, if the visited node

contains gap, then the gaps index is used; otherwise,

is used the differences similarity Index. In our

example, the final route of an ant using ER2 is

observed in the figure 7.

Fig. 7 The final route of the ant

 For a colony, the previous process is repeated for

each one of the ants of the colony. Additionally, the

same process is executed recursively until the

number of colony cycles desired. At the end of a

cycle, there is an evaporate pheromone traces,

decrementing the pheromone levels of all nodes in

the graph, as shown in equation 3, where "ρ" is the

pheromone evaporation coefficient.

 (3)

2.3 Choose the best nodes
Once the colony has completed its work, we delete

the arcs that lead to those nodes with a pheromone

level below the pheromone threshold that the user

has defined (for our example, we fixe the pheromone

threshold to 1,0), which help to preselect to the

amino acids that contribute to the best solutions.

Figure 8 shows the nodes selected because they

exceeded the threshold (in blue).

Fig. 8. Route graph with the pheromone levels of

each node

2.4 Build the Resultant Regular Expression
Finally, the route graph modified is filtered to delete

irrelevant information and to define the resulting

patterns. To carry out this task we analyze the

marked nodes of the graph, position by position, and

insert the amino acids selected in a list of chains that

will contain the value of the amino acids

corresponding to each pattern position. To achieve

this goal the following criteria are used:

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 67

1. If in the position exists only one node (amino

acid) that has passed the pheromone threshold, it

will be inserted in the list.

2. If exist more than one node in the same position,

then we check if there is a gap or empty node. If

there is not one on these nodes, we insert a string

list with the amino acids for that position.

Otherwise, If there is a gap or empty node, the

following conditions apply:

a) If the level of pheromone of the gap node is

superior to the result of the multiplication of the

threshold for the rest of the nodes on this position,

then we establis a new threshold for the position

studied, which has the same value of the

pheromone level of the gap node, and compare

the rest of the nodes in the same position with this

new threshold. If at least one of them exceeds the

new pheromone level, then we discard the gap

insertion for this position and instead adding a

string with the amino acids with a higher level of

pheromone that it, otherwise we insert the gap in

the list.

b) If the pheromone level of the gap node is inferior,

then we discard this node and a chain with the

information of the remaining nodes on the same

position is inserted to the list

c) We apply the same conditions of the gap nodes

for the empty nodes.

 We take the list that contains the amino acids

corresponding to each position, and we use the

PROSITE language to build the fusion regular

expression (see Fig. 9)

Fig 9. Resultant fusion pattern.

3 Experiments

3.1 Test
 The motif proteins were taken from the database

AMYPdb [9], [10]. To run the system is necessary to

adjust a set of parameters. Because the number of

adjustable parameters in the developed system is

quite extensive, some values for the tests were left fix

(see Table 4). The only parameters that we have

varied are the parameters that determine the

collective behavior: the cycles number and the ants

number. This way, the solution depends

fundamentally on the behavior of the colony.

System Parameters Value

Pheromone Increase Coefficient 0,1

Similarity indices for the amino

acids that are the same
10

Similarity indices for the amino

acids that belong to a family
8

Similarity indices for the amino

acids that are different
1

Similarity indices for Gaps 3

Approving Similarity Index 3

Failures Maximum number 0

Pheromone Initial level on the graph

nodes
1,0

Pheromone evaporation coefficient 0,05

Table 4. Parameter List

a) Fusion of [ST]-x(2)-[ST] with [ST]-x-[RK]

It‟s possible to observe that with the expression

“[ST]-x(2)-[ST]” can be obtained a chain of 4 amino

acids (for example, SAKT), whereas with the

expression “[ST]-x-[RK]” is obtained a chain of 3

amino acids (for example, TER). Our algorithm takes

the regular expression "[ST]-x(2)-[ST]” as ER1 for

the construction of the route graph (the longest), and

the other regular expression is ER2 (with it the ants

define the route map). In addition, the pheromone

threshold is equal to the pheromone initial level in

the nodes (1,0).

 For the tests, thirty fusions of the two regular

expressions with the same group of parameters were

studied. Also, we study the average time used by the

algorithm for obtaining the respective solutions and

thus determine when a set of parameters is better

than another.

 The first tests were carried out for the parameters

set: ants numbers = 4, cycles number = 4. We

observe that the algorithm converges in 90% of the

times (see Table 5), with an average time of 0.76

seconds.
Pattern Pattern Pattern Pattern

S-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) T-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) T-x(3) [ST]-x(3) [ST]-x(3)

 Table 5. Results for the first tests

 The second tests were carried out for the

parameters set: ants number = 4, cycles number = 8.

We observe that the algorithm converges in a 92.33%

of the times (see Table 6). In addition, the algorithm

had an average time of 1.10 seconds.

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 68

Pattern Pattern Pattern Pattern Pattern

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) S-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) T-x(3) [ST]-x(3)

Table 6. Results for the second tests

 The third tests are for the parameters set: ants

number = 8, cycles number = 4. We see in the Table

7 that the algorithm converges in 96.66% of the times

and it presents a best runtime with respect to the

previous tests, the average time is 0.89 seconds
Pattern Pattern Pattern Pattern Pattern

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) S-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

Table 7. Results for the third tests

 The last tests is for the next parameters: ants

number = 8, cycles number = 8, obtaining with this

set a better precision level, since it has a convergence

of 100% compared to the expected pattern (see Table

8). Additionally, the average time was 1.09 seconds.
Pattern Pattern Pattern Pattern Pattern

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

[ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3) [ST]-x(3)

Table 8. Results of the last tests

 The best resultant fusion pattern of the two regular

expressions is “[ST]-x(3)”. (see Fig. 10). We

conclude that we can obtain the fusion of the

expressions [ST]-x (2)-[ST] and [ST]-x-[RK] in a

very short time, when the ants and cycles number are

equal to the positions number of ER1; Nevertheless,

the best performance is obtained when the ants and

cycles number duplicates the positions number of

ER1 (the selected pattern to construct the route

graph) with a very similar runtime.

Fig. 10. Graph of the fusion pattern [ST]-x(3)

b) Biological Patterns Fusion

Now perform the fusion of two patterns and analyze

its biological sense, to see if the patterns generated

by the system are useful for the study of protein

chains. The first pattern is (see Fig. 10 and Table 9):

K-x-G-S-L-[DGK]-N-[AIV]-T-H-V-[AP]-G-G-G-

[AHN]-[KV]-[KQ]-I-E-[NST]-[HR]-K-L-[DST]-F-

[RS]-x-[AN]-[AS]-[KP]-x-[KV]-[GT]-[DS]-[HK]-

[GT]-[AN]-[EY]-[IQ]-[PV]-x-K-S-[DP]-[GV]-[HKV]

Fig 10. Graphic representation of the first pattern

Family
Protein

Name
Protein description Organism

Tau

O02592_C
AEEL

(O02592)

PTL-1A protein

(Protein with tau-like
repeats protein 1,

isoform a)

Caenorhabd
itis elegans

Tau

Q17364_C

AEEL

(Q17364)

TAU-1a (Fragment)
Caenorhabd
itis elegans

Tau

Q17365_C

AEEL
(Q17365)

TAU-1b (Fragment)
Caenorhabd

itis elegans

Tau

Q53YB1_H

UMAN

(Q53YB1)

Microtubule-
associated protein tau

(Microtubule-

associated protein tau,
isoform 4)

Homo

sapiens

(Human)

Tau

Q547J4_M
OUSE

(Q547J4)

Microtubule binding

protein tau

Mus
musculus

(Mouse)

Tau

Q5CZI7_H

UMAN

(Q5CZI7)

Microtubule-
associated protein tau

Homo

sapiens

(Human)

Tau

TAU_MOU

SE
(P10637)

Microtubule-

associated protein tau
(Neurofibrillary tangle

protein) (Paired helical

filament-tau) (PHF-

tau)

Mus

musculus
(Mouse)

Tau

TAU_PAN

TR
(Q5YCW1)

Microtubule-

associated protein tau

Pan
troglodytes

(Chimpanze

e)

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 69

http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17365_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17365_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17365_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q53YB1_HUMAN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q53YB1_HUMAN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q53YB1_HUMAN
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q547J4_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q547J4_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q547J4_MOUSE
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q5CZI7_HUMAN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q5CZI7_HUMAN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q5CZI7_HUMAN
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_MOUSE
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PANTR
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PANTR
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PANTR

Tau

TAU_PAP

HA

(Q9MYX8)

Microtubule-

associated protein tau

(Neurofibrillary tangle
protein) (Paired helical

filament-tau) (PHF-

tau)

Papio

hamadryas
(Hamadryas

baboon)

Tau

TAU_PON

PY
(Q5S6V2)

Microtubule-

associated protein tau

Pongo

pygmaeus
(Orangutan)

Tau

TAU_RAT

(P19332)

Microtubule-
associated protein tau

(Neurofibrillary tangle

protein) (Paired helical
filament-tau) (PHF-

tau)

Rattus
norvegicus

(Rat)

Tau

TAU_SPEC
I (Q6TS35)

Microtubule-
associated protein tau

Spermophil

us citellus

(European
suslik)

(Citellus

citellus)

Table 9. Some proteins chains that contain the first

pattern [9].

 The second pattern is (see Fig. 11 and Table 10):

G-S-[KT]-D-N-[IM]-[KNR]-H-x-P-G-G-G-[KNS]-V-

Q-I-[FV]-[DHY]-[EK]

Fig 11. Graphic representation of the second pattern

Family
Protein

Name
Protein Description Organism

Tau

O02592_CAE

EL (O02592)

PTL-1A protein
(Protein with tau-

like repeats protein

1, isoform a)

Caenorhabditi

s elegans

Tau

Q17364_CAE

EL (Q17364)

TAU-1a (Fragment)
Caenorhabditi

s elegans

Tau

Q8JIW8_XE

NLA

(Q8JIW8)

Tau-like protein-1

Xenopus

laevis
(African

clawed frog)

Tau

Q91WK4_M

OUSE

Microtubule-

associated protein

Mus musculus

(Mouse)

(Q91WK4) tau

Tau

TAU_BOVIN

(P29172)

Microtubule-
associated protein

tau (Neurofibrillary

tangle protein)
(Paired helical

filament-tau) (PHF-

tau)

Bos taurus

(Bovine)

Tau

TAU_CAPHI
(O02828)

Microtubule-

associated protein
tau (Neurofibrillary

tangle protein)

(Paired helical
filament-tau) (PHF-

tau)

Capra hircus
(Goat)

Tau

TAU_GORG

O (Q5YCW0)

Microtubule-
associated protein

tau

Gorilla gorilla

gorilla

(Lowland
gorilla)

Tau

TAU_HUMA

N (P10636)

Microtubule-
associated protein

tau (Neurofibrillary

tangle protein)
(Paired helical

filament-tau) (PHF-

tau)

Homo sapiens

(Human)

Tau

TAU_HYLL

A (Q5YCV9)

Microtubule-

associated protein

tau

Hylobates lar

(Common

gibbon)

Tau

TAU_PONPY

(Q5S6V2)

Microtubule-
associated protein

tau

Pongo
pygmaeus

(Orangutan)

Tau

TAU_SPECI
(Q6TS35)

Microtubule-

associated protein

tau

Spermophilus

citellus

(European
suslik)

(Citellus

citellus)

Table 10. Some proteins chains that contain the

second pattern [9].

 To realize the fusion the parameters are taken from

the Table 4. In addition, 94 ants and equal number of

colony cycles used. The system execution is realised

3 times and the following results are obtained (see

Table 11):

Execution Pattern

1 x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-[AP]-G(3)-

[HN]-[KV]-Q-I-x(2)-[HR]-K-(24)

2 x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-P-G(3)-

[AHN]-V-Q-I-x(2)-[HR]-K-x(24)

3 x(2)-G-S-x-[DK]-N-[AIV]-T-H-x-[AP]-G(3)-

[AHN]-V-Q-I-x(2)-H-K-x(24)

Table 11. Fusion Resultant

 The data base AMYPdb is consult for the results

obtained and is observed that the second and third

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 70

http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PAPHA
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PAPHA
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PAPHA
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PONPY
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PONPY
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PONPY
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_RAT
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_RAT
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_SPECI
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_SPECI
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q8JIW8_XENLA
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q8JIW8_XENLA
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q8JIW8_XENLA
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q91WK4_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q91WK4_MOUSE
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q91WK4_MOUSE
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_BOVIN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_BOVIN
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_CAPHI
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_CAPHI
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_GORGO
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_GORGO
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_HUMAN
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_HUMAN
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_HYLLA
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_HYLLA
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PONPY
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_PONPY
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_SPECI
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=TAU_SPECI

pattern are not found. For the first pattern the result is

the following (see Table 12):

Amyloid Protein: x(2)-G-S-x-[DGK]-N-[AIV]-T-H-x-[AP]-

G(3)-[HN]-[KV]-Q-I-x(2)-[HR]-K-(24)

Family
Protein

Name
Protein Description Organism

Tau

O02592_CAE

EL (O02592)

PTL-1A protein
(Protein with tau-

like repeats protein

1, isoform a)

Caenorhabditi

s elegans

Tau

Q17364_CAE

EL (Q17364)

TAU-1a (Fragment)
Caenorhabditi

s elegans

Tau

Q17364_CAE
EL (Q17364)

TAU-1b (Fragment)
Caenorhabditi

s elegans

Table 11. Protein that contain the Pattern Resultant

4 Conclusion
The algorithm based on Ant Colony Optimization is

a good solution for the discovery of protein patterns.

It‟s possible to find fusion patterns for groups of

regular expressions with biological sense. The main

parameters of our algorithm are that determine the

collective behavior of the ants.

References:

[1] Srinivas V., Bioinformatics A modern Approach,

Eastern Economy Edition, 2005

[2] Database PROSITE. Available in:

[http://www.expasy.ch/prosite/]

[3] Bairoch A., Bucher P., Hofmann K., The

PROSITE database, its status in 1997 Nucleic

Acids Research, Vol. 25, No. 1, pp. 217-221,

1997

[4] Pevsner J., Bioinformatics and Functional

Genomics, Second Edition, Wiley – Backwell,

2009

 [5] Mathura V., Kangueane P. Bioinformatic A

Concept-Based Introduction, Springer, 2009

[6] Dorigo M., Di Caro G., Sampels, M. Ant

Algorithms. Bruselas, Springer, 2002

[7] Dorigo M., Thomas, S. Ant Colony

Optimization. Massachusetts Institute of

Technology (MIT), Boston, 2004.

[8] Aguilar J., Rivas F. (Ed.), Introducción a la

Computación Inteligente, MERITEC,

Venezuela. 2001.

 [9] AMYPdb. Available in: [http://amypdb.univ-

rennes1.fr]

[10] Pawlicki S., Le Béchec A., Delamarche C.,

AMYPdb: A database dedicated to amyloid

precursor proteins, BMC Bioinformatics, Vol.

9, pp. 273-28, 2008

Advances in E-Activities, Information Security and Privacy

ISBN: 978-960-474-258-5 71

http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=O02592_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://amypdb.univ-rennes1.fr/e107_plugins/amypdb_db/db_fam.php?famac=23
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL
http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinId=Q17364_CAEEL

