Toward a Parallel Genetic Algorithm Approach Based on Collective
Intelligence for Combinatorial Optimizacion Problems

F. Hidrobo, Facultad de Ciencias, Univ. de Los Andes, Mérida, Venezuela
J. Aguilar, Facultad de Ingenierfa, Univ. de los Andes, Mérida, Venezuela

Abstract

This paper addresses Collective Intelligence routes used
in Artificial Life. Preliminary results are used to opti-
mize the performance of Genetic Algorithms. Due to
interested in the behaviour oriented Artificial Intelli-
gence, specific attention is placed on the biological phe-
nomena that reveals something about Collective Intel-
ligence. Then, we propose a parallel reinforced search
algorithm for the GA that use a collective memory of
the better structural changes in the individuals through
the generations, in order to use that information like
trace of search.

1. Introduction

Artificial Life (AL) will have a tremendous impact
on the future [2, 7, 9, 10]. Evolution of Artificial
Systems is an important component of AL, providing
an important modeling tool and an automated design
method. Genetic Algorithms (GAs) are currently the
most prominent and widely used models of evolution in
Artificial Life Systems. GA is a method of search and
optimization based on the theories of evolution of both
Darwin and Mendell [3, 11]. GA proportions a group
of important characteristics, as search based on popu-
lation, combination of information and random mech-
anisms of decision. The efficiency of the GA is limiting
when is applied to ”big” problems or when we require
good solutions, it is due because they don’t secure get
the better solution or because they consume consider-
able times in order to carry out the search of the better
solutions.

In this article, we propose a scheme of reinforcement
of the search that carries out the GA, as a manner
of avoiding the previously mentioned problems. The
proposal of reinforcement is based on the follow up
of the structural evolution of individuals. In order to
carry out the follow up, concepts and case studies of
the domain of AL are used, particularly, the concept
of Collective Intelligence [2, 10] and the case study of
the Colonies of Ants [4, 5, 6]. This reinforcement ap-
proach is implicitly parallel, and is exploited in our

0-7803-4869-9/98 $10.0001998 IEEE 715

implementation. Collective Intelligence studies such
as those concerning the actions and inter-relations of
a set of simple agents (for example, ants) can carry
out the global objectives of the systems where these
agents are immersed, with a high degree of efficiency.
Fach agent cooperates in carrying out tasks to com-
plete those objectives, without central coordination or
control, but with existing mechanisms of inter-relation
and communication between them. Examples of these
systems are the Systems of Insects (for example, the
Colonies of Bees and of Ants [4, 5, 6]). In these sys-
tems, their agents are not individually intelligent, but
their actions as a whole, in order to complete certain
objectives of the systems, have demonstrate intelligent
behavior (for example, search of soutces of foods).

We use these ideas to propose a paralle] reinforced
search algorithm for the GA. This algorithm creates
a collective memory of the better structural changes
in the individuals through generations, in order to use
such information as trace of search.

This work is organized as follows. The next sec-
tion introduces the GA. Then, the theory on Collective
Intelligence and Artificial Life are introduced. Sub-
sequently, our approach of reinforcement is detailed,
based on the model of Colonies of Ants. In section 5 the
graph partitioning problem , the application of the re-
inforced GA to this problem, results analysis, and com-
parisons to other results obtained for previous work {8
are introduced. Section 6 presents the Traveling Sales-
man problem. Finally, the conclusions are presented.

2. Genetic Algorithms

This is an optimization algorithm based on the prin-
ciples of evolution in biclogy. A GA follows an "intel-
ligent evolution” process for individuals based on the
utilization of evolution operators such as mutation, in-
version, selection and crossover [1, 3, 11]. The idea is
to find the best local optimum, starting from a set of
initial solutions, by applying the evolution operators to
successive solutions so as to generate new and better
local minima. The procedure evolves until it remains

trapped in a local minimum.

The use of the GA in the resolution of NP-Complete
problems has been limited due to their prolonged exe-
cution time in searchs and due to the quality of their
solutions (normally, they find optimalocal, not global).
In order to solve these deficiencies directly, one can use
parallel approaches [1, 8] and/or incorporate techniques
which help in the search process of the GA [1].

2.1. Parallel Approaches for GA

The structure of the GA facilitates the application of
different parallel approaches which can help decrease
execution times of and improve the quality of the solu-
tions. Two possible parallel approaches are [8]:
e Divide the solutions space and apply simultaneously
the GA in each sub-space. In this approach, there are N
instances of the same problem, where N is the number
of space divisions. The objective here is to carry out
a parallel search in the solutions space, to obtain sev-
eral local optima of this manner. This approach should
meet the following conditions:

-5 CcSVi=1,., K.

-5NS; =0V, i=1,.,Kelsei=j

-S= U{‘ S;
e Divide the internal structure of the GA in order to
stmultaneously executeall the possible operations. The
natural decomposition of the internal structure of a GA
is in the basic phases: generation of the initial popu-
lation, evaluation, reproduction, selection and replace-
ment. This approach studies each phase individually.
Accordingly, the implicitly parallel phases are the fol-
lowing:

- The generation of the individuals of the initial pop-
ulation.

- The evaluation of each individual.

- The reproduction of the individuals in order to cre-
ate new individuals.

3. Artificial Life and Collective
Intelligence.

AL undertakes those human-made systems that pos-
sess some of the key properties of natural life. A ma-
jor motivation for the field of AL, besides the desire
for a firmer theoretical developpment in biology, is the
promise it holds for the synthesis of biological phenom-
ena in forms that will be of great practical use in in-
dustrial and engineering endeavors (2, 7, 9, 10].

There are a number of open problems that seem es-
pecially good candidates which can benefit from the
tools that AL is beginning to offer. We are specifically
interested in artificial systems that serve as models of

716

living systems for researching open questions in paral-
lel systems. Particularly, we are interested in Collective
Intelligence.

Collective Intelligence studies, such as collective cog-
nitive capabilities in Systems of Insects, knowingly that
the cognitive capability individual’s is limited {2]. This
cognitive of capability of a System of Insects allows it to
complete objectives that insure its survival/vitality in a
hostile environment, with a great efficiency. Examples
of these systems are the ant, bee and wasp colonies.

4. Reinforcement of the search
in the GA

We propose a reinforced search algorithm based on
collective intelligence. The idea is the following: the
solutions space is divided and a set of rules is used
to define the information transmited between solution
sub-spaces. The information to be transmited is com-
posed of structural details of the best individuals found
during the search in each one of the sub-spaces. So,
the reinforcement approach we propose is based on the
follow-up behavior of individuals, to register structural
changes which occurred in each one of the solutions
sub-space. To carry out these rules we were inspired
by the Collective Intelligence, particularly, in the case
of Ant Colonies.

Algorithms inspired by Ant Systems are heuristic
methods that permit solving combinatorial optimiza-
tion problems. The procedure is based on the distri-
bution of the search on agents called ”ants”. That is,
agents with very simple capabilities which trying to
simulate the behavior of the ants.

Communication between agents (ants) is made
through a trace, called pheromone. Such that a mov-
ing ant leaves a certain quantity of pheromone. Later,
the probability that an ant follows a path increases ac-
cording to the number of ants which have taken that
path (a large quantity of pheromone in a path means
a large probability it will be visited).

Using these ideas, we will distribute the search in
sub-spaces, called agents or ants. In our case, each sub-
space executes a GA as described in the section I1. Also,
we follow the structural behavior of better individuals
of every sub-population during their evolutions (that
is, in_each sub-space), through an individual which we
call the trace individual. So, trace individuals carry
the registration of good changes as if they were the
collective memory of the system. In order to carry
out reinforcement tasks, we define special individuals,
called reference individuals, and use a new type of
genetic operator (trace operator). We detail those
aspects in the next sections.

4.1. TFollow-up of the structural behav-
ior of individuals
We propose to define a trace individual in each sub-

solutions space, to keep the past information, with the
following characteristics:

Ty |Tig {Twa |[Tia | . | .| -] Tin
Toy | Too {Toa | Tog } . | .| .| Ton
Tp1 | Tpa | Tpa pa |l -1-1 | Tpn

The columns of the trace individuals represent the
elements of each individual, while the rows are the dif-
ferent values that these elements can take. Bach Tj;
element will have a value defined by the following pro-
cedure:

e An individual ¢ in time & has a function objective
value equal to F;(k), and in time k+1 equal to F;(k+1).
e We define a improvement value expressed in the fol-
lowing manner:

Iy = (Fi(k+1) - Fi(k))/c
where ¢ is the total number of elements which have
changed in the individual 7. As we are interested in the
quantity in which individual 1 has improved, depend-
ing on whether or not the objective is to minimize or
maximize, the changes are considered interesting if F}
is positive and the objective is maximize, or vice versa
if the objective is minimize.
e The value of T}, is incremented in F; if the element [
of individual i has changed to the value j.

Using the mathematical function (F;) the trace in-
dividuals register the contribution of well reproduced
individuals (and of each one of their elements) in ref-
erence to individuals that they replaced in the original
population.

The fundamental concept that is used in the defi-
nition of the mathematical function mentioned previ-
ously is the same as the main idea that exists in the
systems of ants, that is, pheromone. This function
represents the solutions improvement value through the
generations.

4.2, Information Transmission Rules
(partial results)

One of the main aspects is how to use the informa-
tion kept in the trace individuals in order to guide the
search process for the paths that each sub-space has
determined as interesting. The objective is try to use
the information of the trace individuals as an element
that guides the search procedure towards better regions
than the previous. As such, we propose two mecha-
nisms or rules:

717

e Generation of reference individuals using the in-
formation of trace individuals. The reference individ-
uals are composed of the better values identified in
trace individuals; this identification uses a probability
scheme based on values recorded in the trace individu-
als. Then, these reference individuals are used to apply
genetic operators on them. Then, every GA selects in-
dividuals for the reproduction phase from the reference
individuals and the best individuals of its sup-space.

e Definition of a new genetic operator, called trace
operator. This is 2 modification of some of the op-
erators we are using. To choose the operator to mod-
ify, we select one that permits a jump in the solutions
space (for example, mutation or inversion). This oper-
ator will allow to the values of the individuals elements
change toward the better values identified in the trace
individuals. The best values are these that had better
behavior (larger Tj; values).

4.3. Migration of the new individuals

We can define one migration form of the new generated
individuals, which depend on the way we have divided
the solutions space (see section II): migration of the
individual to the partition of the solutions space that
it belongs to.

4.4. Reinforced Macro-Algorithm

Incorporating the reinforcement scheme, we propose
the following macro-algorithm:

1. Code the individuals which represent the solutions

2. Divide the solutions space using approaches defined
in section 2.1

3. Apply the GA in each sub-space. This GA will have
memory capabilities (through trace individuals) in or-
der to determine the best characteristics (patterns of
common code) that through the generations the indi-
viduals have.

4. using the trace individuals, evaluate and reproduce
new individuals. In this case, the reproduction phase
also establishes what information to transmit between
different sub-spaces, using new elements such as the
trace operator and reference individuals.

5. Return to step 3 until the system converges.

5. The Graph
Problem

The problem consists in dividing a graph in several
subgraphs {1], so as to minimize the connection costs
between them. In a very general way, in order to math-
ematically formulate the problem, the following defini-
tion 1s necessary: the graphs are sets of nodes joined
by arcs. It can be defined as follows:

Partitioning

G=(N, A,),

- G is a directed graph,

- N = {1,...,n} is a set of n nodes on which we can
associate a weight function @ : N— > R. In our studies
Q()=1 for i=1,.., n,

- A = {ai;}, are node pairs that define the arcs. It is
known as the adjacency matrix.

According to certain constraints, the problem con-
sists dividing the graph in K different subgraphs. The
classic constraints are:

o The subgraphs must have a specific size or must have
a weight sum of nodes less than a given value.

¢ The arcs with extremities in different subgraphs must
be minimal, or the weight sum of arcs which join nodes
in different subgraphs must be minimized.

The cost function associates a real value to every
subgraph configuration. We propose the next cost func-
tion:

K 2

1 (Ng, —n/K

FC — E a't'j + bZz-.l (i;’ n/) (1)
ijeD

D={i€eGr&jeCG &l+tm&ay;=1}

Ng,= number of nodes in subgraph z

b = balance factor [0, 2].

The graph partitioning problem is reduced to find a
subgraph configuration with minimum value for the

cost function:
F = MIN(F¢)

5.1. Solution of this problem by means
of GA

The GA applied in our problem follows the next pro-
cedure: we define a research space of n vectors where
everyone represents an individual, and every individ-
ual represents a possible solution. Each vector has n
elements {every element is a node in the graph) and
according to the group (sub-graph) to which it belongs
(it is assigned) every element has a value between 1...K,
. For example, if we assume N = 5 and K= 2 and we
could have an individual with the next values: 2, 1, 1,
2, 1. That means for this solution node 1 is in sub-
graph 2, node 2 is in subgraph 1, node 3 is in subgraph
1 and so on. Furthermore, we use the cost function
defined on the first part to determine the cost of every
individual. We begin with an initial population of indi-
viduals randomly defined and we choose the individuals
with minimal cost for generating new individuals using
genetic operators. Since the population is constant, we
substitute the worst individuals of the initial solution
with the best individuals generated. The procedure
stops if we exceed a given number of generations with-
out finding a better solution. We use the crossover and

718

mutation operators as genetic operators. The more im-
portant implementation details used to solve this prob-
lem with our approach are the following:

e The partitioning approach that we use randomly
chooses a vector position that defines an individual
(for example, the third element) and assigns a different
value for this element in each sub-space (between 1y
K).

e For the reinforced Genetic Algorithm:

- The trace individual saves the best values or par-
titions (between 1 and K) where we must assign every
node.

- The reference individuals are used in order
to match them with better individuals from each
sub-population (that is, of each sub-space) using the
crossover operations. So, in each crossover operation
a reference individual is chosen for crossing with some
individual in any GA sub-populations.

- The trace individual is a modification of the mu-
tation operator. This operator will allow the perfor-
mance of a mutation which changes the element values
of the individuals towards better values identified in
trace individuals. The best values are those that had
better behavior (larger value of Tj;).

5.2. Results Analysis

The implementation is carried out using C and the
PVM (Parallel Virtual Machine) library. The platform
used is a eight processors IBM-SP2 of the National
Computing Center of the Universidad de los Andes.
The results were compared with previous results ob-
tained in [8], where two parallel GA and a serial GA
were presented. One of the parallel GA exploits the
implicit parallelism of this technique and the other di-
vides the solutions space in order to perform a search
in each one using a GA. Next, we present the results
tables for different values of N and K.
o AGS= Serial Implementation.
e AGP= Parallel program using the partitions ap-
proach.
e AGPR= Parallel Implementation using the reinforced
GA approach.

1. N=30 K=5
ALG | MIN | MAX | PROM | (sec)
AGS 129 136 | 131 0.400

AGP 124 126 124.6 1.294
AGPR | 124 127 125.8 9.830

2. N=50 K=7

ALG | MIN | MAX | PROM | t (scc)
AGS 271 278 272.2 3.840
AGP | 263 | 268 266 | 11.760
AGPR 262 266 264.4 50.910

3. N=70 K=9
ALG | MIN | MAX | PROM | t (sec)
AGS 756 765 760.8 14.300
AGP 731 741 737 37.680
AGPR | 726 745 740.5 160.750
4. K=5
ALG | N=20 | N=50 | N=100 | N=200
AGS 59 250 1540 1787
AGP 51 246 1520 1772
AGPR 51 244 1517 1772
5. N=100

ALG K=3 | K=4 | K=5 | K=6 | k=7
AGS 1268 | 1430 | 1535 | 1601 | 1638
AGP 1267 | 1426 | 1525 | 1586 | 1624
AGPR | 1265 | 1416 | 1520 | 1580 | 1616

We can observe that the execution time of the paral-
lel programs (AGP and AGPR) is incremented due to
the tool used (PVM), based on the approach of mes-
sages passing. This introduces a new time, well-known
as communication time that could be caused for: the
number of communications of the processes, the prob-
lems of latency of PVM. Besides, the AGRP program
always has more execution time than AGP, this ad-
ditional time is produced for the manipulation that
should make AGPR of the trace individuals (Rules of
transmission of the information). The main point is the
quality of the results, so, as much AGP as AGPR find
better solutions that AGS. Table 5 shows that AGPR
finds a better solution than AGP. In the other tables
these improvements are smaller. The contribution of
the parallel implementations in the quality of the so-
lutions is because they can perform a more exhaustive
and rigorous search.

6. The Traveling Salesman prob-
lem

"T'he Traveling Salesman problem is a classical optimiza-
tion problem that could be described as: given N cities,
the salesman should visit each city one time and the
total cost of the journey should be minimal. We can
define the cost of the journey as the sum of the dis-
tances between the visited cities. This problem can be
expressed in the following manner:

G=(N, 4),

- N ={1,...,n} is the graph with n nodes,

~ A = {a;j} is the adjacency matrix.
We can define D, matrix of distances as:

oo Sia; =0
{dij} = {l” Si a;j- =1

- l;; = distance between the cities i and j

719

If we suppose that the cities are numbered from 1
to N, a solution to the problem could be expressed
through a state matrix (E) that indicates the order
cities are visited. This matrix will contains rows with
the order cities visited, and in the columns the cities.

(e} = 1 ifcity) was visited in the position i

0 Otherwise

That 1s, matrix £ defines array V with n elements
which contains the city that was visited in each posi-
tion.

v; =1 (If city j was visited in the position i)

Finally, we propose a function that calculates the
distance between the cities. This function is:

FC = Zzzlikeijekj+l (2)

i=1 k=1j=1

The problem consists of finding the journey for the
cities that minimize the value of the cost function FC.

6.1. Solution of this problem using GA

In this section, we present what we need to considered
to solve this problem using GA. With the previous cost
function we use only the inversion and translocation
operators as genetic operators,this way all the solutions
generated using valid solutions are valid The validity of
the initial solutions should be verified in the generation
process.

For this problem a sclution is a journey that fulfills
the restrictions of the problem. Therefore, the repre-
sentation of the individuals (solutions) is carried out
by means of a vector of N elements. This vector con-
tains the orderly journey, that ‘is, position 1 contains
the first city visited, the position 2 the second, and so
forth. In order to use this representation, we suppose
that the cities numbered from 1 to N. The genetic op-
erators for this problem carry out two functions: the
genetic evolution and the generation of valid solutions.
The operators used are:

e [nverston. In this case, we chosen randomly a posi-
tion (j) (with a value of city c1) and generate randomly
a new value for the city (c2) that will be visited in this
position. Before, we search the current position of c2
in the vector (position i) and we assign the value cl at
this position.

e Translocation. With this operator, we move the ele-
ments of the vector. We use a circulate vector to repre-
sent the solutions and we move the values of the cities
which are visited.

The implementation of the parallel approaches to
solve this problem is the same as in the previous sec-
tion. The main differences are the following:

e The partition scheme for this problem takes a position

of the vector randomly (for example, fourth position)
and assigns to each sub-space a different value from the
city that will be visited in that position.
e For the reinforced Genetic Algorithm:

- The trace individuals contain the best cities for ev-
ery position.

- The trace operator is a modification of the inversion
operator. This operator selects randomly a position
(1) and changes the value of the position to the best
value identified in the trace individuals for this position
(larger values of T}, for this position). Then, we search
the current position of Tj; in the vector (position i)
and we assign the current value of the position at this
position.

- The reference individuals are selected in order to
apply the inversion and translocation operators. Then,
these new individuals are sent at the different S;.

6.2. Results Analysis

The experimental procedure for this problem is the
same as that we have used for the graph partitioning
problem.

1. Results for 20 cities

ALG | MIN | MAX AVE
AGS 135 217
AGP 130 180
AGPR | 123 164

t (sec)
174.867 | 0.120
152.500 | 0.903
147.567 | 4.382

2. Results for 100 cities

ALG | MIN | MAX AVE t (sec)
AGS 603 688 645.200 92.239
AGP 586 640 613.150 | 108.971
AGPR 583 655 614.400 | 435.139
3. Results for 200 cities
ALG | MIN | MAX | AVE t (sec)
AGS 1627 1992 1892.500 469.545
AGP 1539 1931 1654.600 322.120
AGPR | 1528 1662 1611.400 | 1702.155
4. Results for 500 cities
ALG | MIN | MAX AVE t (sec)
AGS | 5184 | 5184 | 5184 1408.570
AGP 4818 4962 | 4912.700 1108.549
AGPR | 4781 5184 | 4872.909 | 61093.642

The results obtained for this problem are very sim-
ilar to those obtained for the previous problem. In
this case, the results of parallel approaches (AGP and
AGPR), are better than for the serial approach (AGS).
For all cases, with the exception of these introduced in
the Table 2, the reinforced parallel approach (AGPR)
finds better solutions than the parallel version (AGP).
On the other hand, with respect to the execution time,
we observe that AGPR is always slower than AGP.

720

However, the execution time of AGP is not always
slower than AGS (Tables 3 and 4). The improvement
time in the parallel approach could be attributed to the
size of the problem, which is due to the increase in the
granularity of the processes (Tasks).

7. Conclusions

The utilization of a library of message passing (PVM)
for the implementation of the parallel approaches of the
GA to solve combinatorial problems does not improve
the time of execution. It is probable that the reduction
in the time of execution can be reached in parallel sys-
tems with shared memory or using a library of message
passing more efficiently. The contribution of the paral-
lel implementations lies in the quality of the solutions,
due to their more rigorous and exhaustive search in the
global space.

The approach of reinforced GA indeed allows record-
ing of the history of the evolution of the individuals in
the GA. Also, it exploits this information in the phase
of reproduction using several mechanisms (generation
of reference individuals and trace operators), this per-
mits improvement of the quality of the solution. The
deficiency that is observed in the AGPR is in its execu-
tion time. The cost of communication is very important
in this parallel approach.

References

[1] J. Aguilar, L’Allocation de Téches, UEquilibrage de Charge
et ’Optimisation Combinatoire., PhD thesis. Université
René Descartes - Paris V, 1995.

[2] J. Bonabeau and G. Thereulez, (Editors) Intelligence Col-
lective, Hermes, Paris, France, 1994,

[3] L. Davis Handbook of genctic Algorithms Van. No strand
Reinhold, New York, 1991.

[4] M. Dorigo and L. M. Gambardella ANT-Q: A Cooperative
Learning Approach to Combinatorial Optimization, Tech-
nical Report 95-01. Université Libre Bruxelles, Bruxelles,
Belgium, 1995.

[5] M. Dorigo, V. Maniezzo, and A. Colorni The Ant Systemn:
Optimization by colony of cooperating agents IEEE Trans-
actions on Systems, Man, and Cybernetics-Part B, Vol 26,
No 1, 1996, pp. 1-13.

[6] M. Dorigo, V. Maniezzo, and A. Colorni The Ant System:
Optimization by colony of cooperating agents IEEE Trans-
actions on Systems, Man, and Cybernetics-Part B, Vol 26 ,
No 1, 1996, pp. 1-13.

[7] J. Fernandezand A. Moreno La Vie Artificielle Seuil, Paris,
France, 1995.

[8] F. Hidrobo and J. Aguilar Esquemas de Paralelizacidn de
Algoritmos Genéticos en la Resolucidn de Problemas de
Optimizacion Combinatoria, Computacién Paralela y Dis-
tribuida: Hardware y Software (C. Paéz, J. Aguilar, G. Paéz
eds.), CEMISID, Mérida, Venezuela, 1997, pp 39-46.

[9] C. Langton Artificial Life, MIT Press, London, England,
1995.

{10] S. Russell and P. Norvig Artificial Intelligence: A modern
approach, Prentice Hall, New York, USA, 1995.

[11] M. Srinivas and M. Patnaik Genetic 4lgorithms: A Survey,
IEEE Computer, June 1994 pp. 17-26.

