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Abstract. The purpose of this paper is to describe an adaptive fuzzy
cognitive map based on the random neural network model. The adaptive
fuzzy cognitive map changes its fuzzy causal web as causal patterns
change and as experts update their causal knowledge. We show how the
adaptive random fuzzy cognitive map can reveal implications of models
composed of dynamic processes.

1   Introduction

Modeling a dynamic system can be hard in a computational sense. Many quantitative
techniques exist. What we seek is a simple method that domain experts can use with-
out assistance in a “ first guess” approach to a problem. A qualitative approach is suf-
ficient for this. Fuzzy Cognitive Maps (FCMs) are the qualitative approach we shall
take. FCMs are hybrid methods that lie in some sense between fuzzy systems and
neural networks[7, 9]. FCMs have gained considerable research interest and have
been applied to many areas [4, 9, 10]. However, certain problems restrict its applica-
tions. A FCM does not provide a robust and dynamic inference mechanism, a FCM
lacks the temporal concept that is crucial in many applications and a FCM lacks the
traditional statistical parameter estimates. The Random Neural Network (RNN) has
been proposed by Gelenbe in 1989 [5, 6]. This model does not use a dynamic equa-
tion, but uses a scheme of interaction among neurons. The RNN has been used to
solve optimization and pattern recognition problems [1, 2, 3]. Recently, we have pro-
posed a FCM based on the RNN. The problem addressed in this paper concerns the
proposition of an adaptive FCM using the RNN. We describe the Adaptive Random
Fuzzy Cognitive Map (ARFCM) and ill ustrate its application in the modeling of dy-
namic processes. Our adaptive FCM changes its fuzzy causal web as causal patterns
change and as experts update their causal knowledge. In our model, each concept
(neuron) is defined by a probabilit y of activation, the dynamic causal relationships
between the concepts (arcs) are defined by positive or negative interrelation prob-
abiliti es, and the procedure of how the cause takes effect is modeled by a dynamic
system.
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2.   Theoretical Aspects

2.1.   The Random Neural Network Model

The RNN model has been introduced by Gelenbe [5, 6] in 1989. The model con-
sists of a network of n neurons in which positive and negative signals circulate. Each
neuron accumulates signals as they arrive, and can fire if its total signal count at a
given instant of time is positive. Firing then occurs at random according to an expo-
nential distribution of constant rate r(i). Each neuron i of the network is represented at
any time t by its input signal potential ki(t). A negative signal reduces by 1 the poten-

tial of the neuron to which it arrives (inhibition) or has no effect on the signal potential
if it is already zero; while an arriving positive signal adds 1 to the neuron potential.
Signals can either arrive to a neuron from the outside of the network or from other

neurons. A signal which leaves neuron i heads for neuron j with probabilit y p+(i,j) as

a positive signal (excitation), or as negative signal with probabilit y p-(i,j) (inhibition),

or it departs from the network with probabilit y d(i). Positive signals arrive to the ith

neuron according to a Poisson process of rate Λ(i). Negative signals arrive to the ith

neuron according to a Poisson process of rate λ(i). The main property of this model is
the excitation probabilit y of a neuron i, q(i), which satisfy the non-linear equation:

q(i) = λ+(i)/(r(i)+λ-(i)) (1)

where, λ+(i) = ∑n
j=1 q(j)r(j)p+(j,i)+Λ(i), λ-(i) = ∑n

j=1 q(j)r(j)p-(j,i)+λ(i). The syn-

aptic weights for positive (w+(i,j)) and negative (w-(i,j)) signals are: w+(i,j) =

r(i)p+(i,j) and w-(i,j) = r(i)p-(i,j). Finally, r(i) = ∑n
j=1 [w+(i,j) + w-(i,j)].

2.2. Fuzzy Cognitive Maps

FCMs combine the robust properties of fuzzy logic and neural networks [7, 9]. A
FCM is a fuzzy signed oriented graph with feedback that model the worlds as a col-
lection of concepts and causal relations between concepts. Variable concepts are rep-
resented by nodes. The graph's edges are the casual influences between the concepts.
In general, a FCM functions like associative neural networks. A FCM describes a
system in a one-layer network which is used in unsupervised mode, whose neurons are
assigned concept meanings and the interconnection weights represent relationships
between these concepts. The fuzzy indicates that FCMs are often comprised of con-
cepts that can be represented as fuzzy sets and the causal relations between the con-
cepts can be fuzzy implications, conditional probabiliti es, etc. A directed edge Eij

from concept Ci to concept Cj measures how much Ci causes Cj. In general, the edges
Eij can take values in the fuzzy causal interval [-1, 1] allowing degrees of causality to
be represented: i) Ejk>0 indicates direct (positive) causality between concepts Cj and
Ck,. ii ) Ejk<0 indicates inverse (negative) causality between concepts Cj and Ck, iii )
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Ejk=0 indicates no relationship between Cj and Ck. In FCM nomenclature, model im-
plications are revealed by clamping variables and using an iterative vector-matrix
multiplication procedure to assess the effects of these perturbations on the state of a
model. A model implication converges to a global stability. During the inference pro-
cess, the sequence of patterns reveals the inference model.

3. The Dynamic Random Fuzzy Cognitive Maps

Our previous RFCM improves the conventional FCM by quantifying the probability
of activation of the concepts and introducing a nonlinear dynamic function to the
inference process [3]. The new aspect introduce by the ARFCM is the dynamic causal
relationships. That is, the values of the arcs are modified during the runtime of the
FCM to adapt them to the new environment conditions. The quantitative concepts
allow us develop a feedback mechanism that is included in the causal model to update
the arcs. In this way, with the ARFCM we can consider on-line adaptive procedures of
the model like real situations. Our ARFCM change their fuzzy causal web during the
runtime using neural learning laws. In this way, our model can learn new patterns and
reinforce old ones. To calculate the state of a neuron on the ARFCM (the probability
of activation of a given concept Cj), the following expression is used [3]:
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Such as, Λ(j)=λ(i)=0. That means, the external signal inputs are equal to 0. In ad-
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ARFCM is the following:
1. Define the number of neurons (the number of neurons is equal to the number of

concepts).
2. Call the Initialization phase
3. Call the Execution phase.

3.1 The Initialization Procedure

In this phase we must define the initial weights. The weights are defined and/or update
according to the next procedures: i) Based on expert’s opinion: each expert defines its
FCM and we determine a global FCM. We use two formulas to calculate the global

causal opinion: { }e
ji

e

G
ji EmaxE = , ∀ e=1, NE (number of experts); or
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caught from each expert from the interval [0, 1]. ii ) Based on measured data: In this
case we have a set of measures about the system. This information is the input pat-
tern: M={ D1, …, Dm} = { [d1
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of the concept Cj measured at time t. In this case, our learning algorithm follows the
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η is the learning rate.

3.2 The Execution phase

This phase consists on the iteration of the system until the system convergence. The
input is an initial state S0= { s1, …, sn} , such as q0(1)=s1, …, q0(n)=s1 and si∈[0, 1] (set
of initial values of the concepts). The output Qm={ qm(1), …, qm(n)} is the prediction of
the ARFCM such as m is the number of the iteration when the system converge. Dur-
ing this phase, the ARFCM is trained with the next reinforced learning law:

( )t
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t
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1t
ij

t
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where ∆qi
t is the change in the ith concept’s activation value among iterations t and

t-1. The algorithm of this phase is:
1. Read input state Q0

2. Until system convergence
2.1 Calculate q(i) according to the equation (3)
2.2 Update Wt according to the equation (4)

4. Experiment

Dickerson and Kosko proposed a novel use for FCMs [4, 8]. They employed a system
of three interacting FCMs to create a virtual reality environment populated by dol-



Lecture Notes in Computer Science      5

phins, fish, and sharks. [9] refines the Dickerson and Kosko’s approach to be used the
FCM to model the “soft” elements of an environment in concert with an expert system
capturing the procedural or doctrinal – “hard” elements of the environment. In their
paper, they present a FCM modeling a squad of soldiers in combat. This is a good
example where we can use a dynamic model to caught ideas like: an army needs sev-
eral battles to know the strength of its enemy before a decisive battle. We introduce
these aspects in this experiment. The concepts in this map are: i) Cluster (C1): the
tendency of individual soldiers to close with their peers for support, ii ) Proximity of
enemy (C2), iii ) Receive fire (C3), iv) Presence of authority (C4): command and con-
trol inputs from the squad leader, v) Fire weapons (C5), vi) Peer visibilit y (C6): the
abilit y of any given soldier to observe his peers, vii ) Spread out (C7): dispersion of the
squad, viii ) Take cover (C8): the squad seeking shelter from hostile fire, ix) Advance
(C9): the squad proceeding in the planned direction of travel with the intent of engag-
ing any encountered enemy forces, x) Fatigue (C10): physical weakness of the squad
members. In the hybrid system we suggest, the presence of authority concept would be
replaced by an input from an expert system programmed with the enemy’s small unit
infantry doctrine and prevaili ng conditions. Similarly, the proximity of the enemy
would be an input based on the battlefield map and programmed enemy locations.
Here, we give them initial inputs and allow them to vary during the runtime of the
FCM. The table 1 presents the results for the initial states 0 0 0 1 0 1 1 0 1 0.

Table 1. The edge connection initial matrix for the virtual word experiment.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0 0 0 0 0 1 -1 0 0 0

C2 1 0 1 0 1 0 0 1 0 0

C3 1 0 0 1 -0.1 0 0 1 0 1

C4 -1 0 0 0 0 0 1 -1 1 0

C5 0 -0.5 -0.12 0 0 0 0 0 0 0.2

C6 0 0 0 0 0 0 0 -0.7 1 0

C7 -1 0 -0.5 0 0 0 0 0 0 0

C8 1 0 0 1 -0.7 1 0 0 -1 -1

C9 0 1 0 0 0 0 0 0 0 1

C20 0 0 0 0 -0.5 0 0 0 0 0

Table 2. The results for the virtual word experiment.

Input Kosko FCM DFRCM Iteration
0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0

1 1 1 1 0 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 0 1 1
0 1 1 0 1 1 0 0 1 1
0 1 1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 1 1 1

0.2 0.4 0.7 0.6 0.5 0.6 0.6 0.4 0.6 0.4
0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.6 0.8
0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.8 0.8
0.8 0.8 0.6 0.6 0.8 0.1 0.2 0.8 1 0.8
1 1 0.8 1 0.8 0 0 0.8 1 0.8

1
2 *
3
4
5
6
7

We define the starting state S0=(0 0 0 1 0 1 1 0 1 0) i.e., presence of authority, peer
visibilit y, spread out and advance are present, but all other concepts are inactive. The
system stabili zes to the state S7 (Kozko model) or state S5 (ARFCM). The introduction
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of new information during the runtime doesn't affect the convergence of our system
(we obtain the same result of Kozko). This is reasonable system operation and sug-
gests the feasibilit y of FCMs as simple mechanisms for modeling inexact and dynamic
behavior that is diff icult to capture with formal methods.

4. Conclusions

In this paper, we have proposed an adaptive FCM based on the RNN, the ARFCM.
We show fusing the RFCM with a traditional reinforced learning algorithm can yield
excellent results. The ARFCM may be rapidly adapted to changes in the modeled
behavior. It is a useful method in complex dynamic system modeling. We do not ob-
serve any inconsistent behavior of our ARFCM with respect to the previous FCMs.
Our ARFCM exhibit a number of desirable properties that make it attractive: i) Pro-
vide qualitative information about the inferences in complex dynamic models, ii ) Can
represent an unlimited number of reciprocal relationships, iii ) Is based on a reinforced
learning procedure, iv) Facilit y the modeling of dynamic, time evolving phenomena
and process, v) Has a high adaptabilit y to any inference with feedback. Another im-
portant characteristic is its simplicity, the result of each ARFCM’s cycles is computed
from the equation (3). The ease of construction and low computational costs of the
ARFCM permits wide dissemination of low-cost training aids. In addition, the abilit y
to easily model uncertain systems at low cost and with adaptive behavior would be of
extraordinary value in a variety of domains.
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