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Abstract. The purpose of this paper is to describe an adaptive fuzzy
cogniti ve map based on the random neural network model. The adaptive
fuzzy cognitive map changes its fuzzy causal web as causal patterns
change and as experts update their causal knowledge. We show how the
adaptive random fuzzy cognitive map can reved implications of models
composed of dynamic processes.

1 Introduction

Modeling a dynamic system can be hard in a computational sense. Many quantitative
techniques exist. What we seek is a simple method that domain experts can use with-
out asdstance in a “first guess’ approacd to a problem. A qualitative gpproad is uf-
ficient for this. Fuzzy Cognitive Maps (FCMs) are the qualitative gproach we shall
take. FCMs are hybrid methods that lie in some sense between fuzzy systems and
neural networks 7, 9]. FCMs have gained considerable reseach interest and have
been applied to many areas [4, 9, 10]. However, certain problems restrict its applica-
tions. A FCM does not provide arobust and dynamic inference medcianism, a FCM
lacks the temporal concept that is crucial in many applications and a FCM ladks the
traditional statisticd parameter estimates. The Random Neural Network (RNN) has
been proposed by Gelenbe in 1989(5, 6]. This model does not use adynamic equa-
tion, but uses a scheme of interadion among reurons. The RNN has been used to
solve optimization and pettern recognition problems [1, 2, 3]. Recently, we have pro-
posed a FCM based on the RNN. The problem addressd in this paper concerns the
propasition of an adaptive FCM using the RNN. We describe the Adaptive Random
Fuzzy Cognitive Map (ARFCM) and ill ustrate its applicétion in the modeling of dy-
namic processes. Our adaptive FCM changes its fuzzy causal web as causal patterns
change and as experts update their causal knowledge. In our model, eat concept
(neuron) is defined by a probability of adivation, the dynamic causal relationships
between the mncepts (arcs) are defined by positive or negative interrelation prob-
abiliti es, and the procedure of how the caise takes effed is modeled by a dynamic
system.
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2. Theoretical Aspects

2.1. The Random Neural Network Model

The RNN model has been introduced by Gelenbe [5, 6] in 1989 The model con-
sists of a network of n neurons in which positive and negative signals circulate. Each
neuron acamulates sgnals as they arrive, and can fire if its total signa count at a
given instant of time is positive. Firing then occurs at random acarding to an expo-
nential distribution of constant rate r(i). Each neuron i of the network is represented at
any time t by itsinput signal potential k;(t). A negative signal reduces by 1 the poten-

tial of the neuron to which it arrives (inhibition) or has no effea on the signal potential
if it is already zero; while an arriving positive signal adds 1 to the neuron potential.
Signals can either arrive to a neuron from the outside of the network or from other

neurons. A signal which leaves neuron i heads for neuron j with probability p+(i J) as
apositive signal (excitation), or as negative signal with probability p~(i,j) (inhibition),
or it departs from the network with probability d(i). Positive signals arrive to the ith

neuron aca@rding to a Poison processof rate A(i). Negative signals arrive to the ith
neuron acarding to a Poisson processof rate A(i). The main property of this model is
the excitation probability of aneuron i, g(i), which satisfy the non-linea equation:

al) = A0+ () &)
where, A7 () = 3"_; dOrOP(D+AG, A1) = X"y d@)rG)p G)+AG)- The syn-
aptic weights for postive (w*(i,j)) and regative (w(i,j)) signals are: w*(i,j) =
r(i)p* (i) andw(i j) = r@i)p(i.). Finally, r(i) = 3" [WF(i.j) + w(i,)]-

2.2. Fuzzy Cognitive Maps

FCMs combine the robust properties of fuzzy logic and neural networks [7, 9]. A
FCM is afuzzy signed oriented graph with feedbad< that model the worlds as a @l-
ledion of concepts and causal relations between concepts. Variable amncepts are rep-
resented by nodes. The graph's edges are the caual influences between the concepts.
In general, a FCM functions like asciative neural networks. A FCM describes a
system in a one-layer network which is used in ursupervised mode, whose neurons are
asdgned concept meanings and the interconnedion weights represent relationships
between these wncepts. The fuzzy indicates that FCMs are often comprised of con-
cepts that can be represented as fuzzy sets and the causal relations between the @mn-
cepts can be fuzzy implications, conditional probabiliti es, etc. A direded edge E;
from concept C; to concept C; measures how much C; causes C;. In generd, the edges
E; can take valuesin the fuzzy causal interval [-1, 1] alowing degrees of causality to
be represented: i) E;>0 indicaes dired (positive) ceusdity between concepts Cj and
Cy,. ii) Ex<0 indicates inverse (negative) causality between concepts C; and C,, iii)
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E;=0 indicates no relationship between C; and C,. In FCM nomenclature, mode! im-
plications are revealed by clamping variables and using an iterative vector-matrix
multiplication procedure to assess the effects of these perturbations on the state of a
model. A model implication converges to a global stability. During the inference pro-
cess, the sequence of patterns reveals the inference model.

3. The Dynamic Random Fuzzy Cognitive M aps

Our previous RFCM improves the conventional FCM by quantifying the probability
of activation of the concepts and introducing a nonlinear dynamic function to the
inference process [3]. The new aspect introduce by the ARFCM is the dynamic causal
relationships. That is, the values of the arcs are modified during the runtime of the
FCM to adapt them to the new environment conditions. The quantitative concepts
alow us develop a feedback mechanism that is included in the causal model to update
the arcs. In this way, with the ARFCM we can consider on-line adaptive procedures of
the model like real situations. Our ARFCM change their fuzzy causal web during the
runtime using neural learning laws. In this way, our model can learn new patterns and
reinforce old ones. To calculate the state of a neuron on the ARFCM (the probability
of activation of a given concept C;), the following expression is used [3]:

a(i) = minfr* (i), madr (),4~ () f )
where  A*())= madminla® WG, )
A (5) = madminia).w G, il

Such as, A(j)=A(i)=0. That means, the external signal inputs are equal to 0. In ad-
dition, the fire rate is r(j) = _m%M+ G, W, j)}. The general procedure of the
| =

ARFCM isthe following:

1. Define the number of neurons (the number of neurons is equal to the number of
concepts).

2. Call theInitialization phase

3. Cdl the Execution phase.

3.1 Thelnitialization Procedure

In this phase we must define the initial weights. The weights are defined and/or update
according to the next procedures: i) Based onexpert’sopinion: each expert definesits
FCM and we determine a global FCM. We use two formulas to calculate the global

causal opinion: Eﬁ =max{Eﬁ}, O e1, NE (number of experts); or
e
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zb Ee / NE, where Ee is the opinion of the expert e about the caisa rela

tionship among C; and C;, and b, is the expert’s opinion credibility weight. Then, a) If
i and if E%>0, W;" =E{ and W; =0, b) If i#j and if E%<0, Wy =Ef and
W =0, o) If i5j or if E%=0, Wy =W; =0. The caisa relationship (Ej) is
caught from ead expert from the interval [0, 1]. ii) Based on measured data: In this
case we have aset of measures abou the system. This information is the inpu pat-

tern: M={D,, ..., D} ={[d", d? ..., d,], ..., [d,},d’, ..., d T}, where d' is the value
of the cncept C, measured at time t. In this case, our leaning agorithm follows the

next mechanism:
Wt 4, a’ Ad
d At d

where  Ad; =d -dj* Ad' =df -d'™
A'd} =df +di™ A'df =d +d™

n istheleaning rate.

3.2 The Execution phase

This phase @mnsists on the iteration of the system urtil the system convergence The
input is an initial state S;={s; ., s}, such as q°(1)=sy, ..., g°(n)=s; and O[O, 1] (set
of initial values of the cncepts). The output Q™={q™(1), ..., q"(n)}is the prediction of
the ARFCM such as mis the number of the iteration when the system converge. Dur-
ing this phase, the ARFCM is trained with the next reinforced leaning law:

- 4
w! =W +nagiagt) @)

where Ag;' is the change in the i concept’s adivation value anong iterations t and
t-1. The dgorithm of this phaseis:
1. Rea input state Q°
2. Until system convergence
2.1 Calculate (i) acmrding to the equation (3)
2.2 Update W' acording to the equation (4)

4. Experiment

Dickerson and Kosko proposed a novel use for FCMs [4, 8]. They employed a system
of three interacing FCMs to creae avirtua redity environment populated by dol-
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phins, fish, and sharks. [9] refines the Dickerson and Kosko's approacd to be used the
FCM to model the “soft” elements of an environment in concert with an expert system
cgpturing the procedural or doctrinal — “hard” elements of the environment. In their
paper, they present a FCM modeling a squad of soldiers in combat. This is a good
example where we can use adynamic model to cauglht idess like: an army neals sv-
eral battles to know the strength of its enemy before adedsive battle. We introduce
these aspeds in this experiment. The cncepts in this map are: i) Cluster (C,): the
tendency of individual soldiers to close with their peas for suppart, ii) Proximity of
enemy (C,), iii) Recave fire (Cs), iv) Presence of authority (C,): command and con-
trol inputs from the squad leader, v) Fire wegoons (Cs), vi) Pee vishility (Cg): the
ability of any given soldier to observe his pees, vii) Spread out (C): dispersion of the
squad, viii) Take cover (Cg): the squad seeking shelter from hostil e fire, ix) Advance
(Co): the squad procealing in the planned diredion of travel with the intent of engag-
ing any encountered enemy forces, x) Fatigue (Cyg): physicd weakness of the squad
members. In the hybrid system we suggest, the presence of authority concept would be
replaced by an input from an expert system programmed with the enemy’s gnall unit
infantry doctrine and prevailing conditions. Similarly, the proximity of the enemy
would be an input based on the battlefield map and programmed enemy locations.
Here, we give them initial inputs and allow them to vary during the runtime of the
FCM. Thetable 1 presents the results for the initial states0001011010

Table 1. The edge cnredioninitial matrix for the virtual word experiment.

C, G Cs Cy G G G Cs C

CQ 10
C, 0 0 0 0 1 -1 0 0 0
G, 1 0 1 0 1 0 0 1 0 0
Cs 1 0 0 1 0.1 0 0 1 0 1
Cs -1 0 0 0 0 0 1 1 1 0
Cs 0 05 -012 0 0 0 0 0 0 02
Cs 0 0 0 0 0 0 0 -07 1 0
C, -1 0 -0.5 0 0 0 0 0 0 0
Cs 1 0 0 1 07 1 0 0 -1 -1
Co 0 1 0 0 0 0 0 0 0 1
Coo 0 0 0 0 -0.5 0 0 0 0 0
Table 2. Theresults for the virtual word experiment.
Input Kosko FCM DFRCM Iteration
0001011010 0001011010 0.204 0706050606 0406 04 1
1111010101 060606060501 04060608 2%
1011010110 0.60.60.60.6050104 060808 3

110101m11 0.80.8060.608010208108 4
0110110011 110810800081Q8 5
0111000011 6
1111100111 7

We define the starting state S=(000 1 0 11 0 1 Q i.e., presence of authority, pee
visibility, spread out and advance ae present, but all other concepts are inadive. The
system stabili zes to the state S; (Kozko model) or state S; (ARFCM). The introduction
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of new information during the runtime doesn't affed the convergence of our system
(we obtain the same result of Kozko). This is reasonable system operation and sug-
gests the feasibility of FCMs as smple medhanisms for modeling inexad and dynamic
behavior that is difficult to cgpture with formal methods.

4. Conclusions

In this paper, we have proposed an adaptive FCM based on the RNN, the ARFCM.
We show fusing the RFCM with a traditional reinforced learning algorithm can yield
excdlent results. The ARFCM may be rapidly adapted to changes in the modeled
behavior. It is a useful method in complex dynamic system modeling. We do not ob-
serve ay inconsistent behavior of our ARFCM with resped to the previous FCMs.
Our ARFCM exhibit a number of desirable properties that make it attradive: i) Pro-
vide qualitative information about the inferences in complex dynamic models, ii) Can
represent an urlimited number of redprocd relationships, iii) Is based on areinforced
leaning procedure, iv) Fadlity the modeling of dynamic, time evolving phenomena
and process v) Has a high adaptability to any inference with feedbadk. Another im-
portant charaderistic isits smplicity, the result of eac ARFCM’s cycles is computed
from the eguation (3). The eae of construction and low computational costs of the
ARFCM permits wide diseemination d low-cost training aids. In addition, the ility
to easily model uncertain systems at low cost and with adaptive behavior would be of
extraordinary valuein avariety of domains.
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