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Abstract

Many approaches have been described for the parallel loop scheduling problem for shared-memory systems, but little work has

been done on the data-dependent loop scheduling problem (nested loops with loop carried dependencies). In this paper, we propose

a general model for the data-dependent loop scheduling problem on distributed as well as shared memory systems. In order to

achieve load balancing and low runtime scheduling and communication overhead, our model is based on a loop task graph and the

notion of critical path. In addition, we develop a heuristic algorithm based on our model and on genetic algorithms to test the

reliability of the model. We test our approach on different scenarios and benchmarks. The results are very encouraging and suggest a

future parallel compiler implementation based on our model.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Generally, loops are the richest source of parallelism
in parallel applications. One way to exploit this
parallelism is to execute loop iterations in parallel on
different processors, thereby reducing the running time.
Consider the case in which a loop of m iterations is
executed in a multiprocessor system with P processors.
The goal of scheduling is to distribute these m iterations
to P processors in the most equitable manner and with
the least amount of overhead. In the case where there
are no data dependencies between tasks in different
iterations (i.e., parallel loops) there is no need for
synchronization. If there are data dependencies between
tasks in different iterations, the communication delay
may slow down the execution. Previous approaches have
attempted to achieve the minimum completion time for
the parallel loop scheduling problem only by distribut-
ing the workload as evenly as possible while minimizing
the number of synchronization operations required and
the communication overhead caused by access to non
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local data on shared-memory systems [2,3,5,6,11,18].
Other authors have studied the parallelism across
iterations to consider loop carried dependencies, pro-
posing different techniques to improve this parallelism
[4,8,12–14,16,17]: cyclo-compaction scheduling, loop
pipelining, etc.
In this paper, we study the problem of scheduling a set

of n nested loops, with data dependencies among the
loops/iterations (that is, with loop carried dependen-
cies), on distributed or shared memory machines. Our
technique falls in the static scheduling and software
pipelining category. In the presence of data dependen-
cies between tasks in different iterations, we need a
better representation than the traditional task graph
model to be able to represent the data dependencies. We
represent the data dependencies among tasks in loops
using a more specific type of task graph, the loop task

graph, whose nodes represent the tasks on different
iterations and whose arcs represent the dependence
relationship between tasks. We also need a scheduling
approach that can exploit parallelism within each
iteration and among different loop iterations. We solve
this problem using the loop unrolling technique and the
critical path concept [1,5]. The basic idea is to unroll the
loop to allow several iterations and tasks in the same
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iteration to overlap in execution in a way that minimizes
the loop execution time. Then, we introduce a model
based on the notion of critical path to schedule this loop
task graph. The critical path is the minimum execution
time of the program modeled by the loop task graph.
The execution time will always be at least as large as the
critical path when the number of processors is finite
rather than unlimited. Our general approach for the
data dependent loop scheduling problem, on distributed
as well as shared memory systems, achieves load
balancing, low runtime scheduling and communication
overhead, based on the loop task graph, the unrolling
technique and the notion of critical path. Finally,
because data dependent loop scheduling is NP-hard,
we propose a heuristic algorithm based on our model
and on genetic algorithms to test the reliability of our
approach. We define a set of specific genetic operators in
order to implement an efficient search on the solution
space for this problem.
The organization of this paper is as follows: Section 2

presents the data-dependent loop-scheduling problem.
Section 3 presents the main ideas of our model. Section
4 presents our heuristic algorithm based on genetic
algorithms. Section 5 reports our experiments. Then, we
present our conclusions and further work.
2. The data-dependent loop scheduling problem

The term ‘‘scheduling’’ has sometimes been used
loosely in the literature, with different interpretations in
different application domains. Loop scheduling can be
viewed as part of the general problem of scheduling
tasks on multiprocessor systems so as to minimize the
completion time of parallel applications [5,9]. In this
context, loop scheduling is analogous to process
scheduling, which also has been studied extensively.
Process scheduling is concerned with many of the same
issues involved in loop scheduling, including concerns
about load imbalance, synchronization overhead, and
communication overhead. But, completion time is not
always the only target when making a schedule. For
example, power can also be a factor to consider; so can
be memory access constraints. We do not consider these
aspects in this work.
In general, an efficient loop scheduling algorithm

should optimize its performance by trading off adap-
tively scheduling overhead (synchronization overhead,
loop allocation overhead, scheduler execution time
overhead, etc.), load imbalance overhead, and data
communication overhead. Many approaches have been
proposed for the parallel loop scheduling problem for
shared-memory systems [2,3,5,6,11,18]. All of these
parallel loop scheduling algorithms attempt to achieved
the minimum completion time by distributing the
workload as evenly as possible, by minimizing the
number of synchronization operations required, or by
minimizing communication overhead caused by access
to non-local data. Each of the algorithms assumes that
we work on a shared-memory system. Many other
works have studied the parallelism across iterations to
consider the loop carried dependencies [4,8,12–
14,16,17]. Refs. [12,14] present a technique, which is
applied to a communication sensitive data flow graph
that represents a nested loop. This technique takes into
account the data transmission time, the loop carried
dependencies, and the target architecture to schedule the
set of nodes of the graph. It implicitly uses the loop
pipelining technique and a task remapping procedure to
allocate nodes. In [4] a method is proposed combining
the loop pipelining technique with data prefetching,
called partition scheduling with prefetching. In this
algorithm, the iteration space is first divided into regular
partitions. Then a two-part scheduler is used to do load
balancing and to produce high throughput. Another
interesting approach was proposed by Passos and Sha
[8], namely a retiming technique applied to get optimal
execution rates in parallel and/or pipeline systems. It is a
common transformation tool in one dimensional pro-
blems, when loops are modeled as multidimensional
data flow graphs (MDFGs). They prove that they can
obtain full-parallelism for MDFGs with more than one
dimension. They extend their work to schedule data flow
graphs with conditional branches. In general, these
techniques do not consider the communication costs or
the memory latencies, or cannot exploit pipelining
across loop boundaries.
There are two basic loop scheduling methods used to

assign iterations of a loop to processors [2,5]:

* Static scheduling: Static policies depend on the
average behavior of the system and not on its current
state; they are usually applied to uniformly distrib-
uted loops. They assign iterations to processors
statically, minimizing run-time synchronization over-
head but do not always balance the load. The
simplest static scheduling algorithm assigns a given
number of loop iterations among the available
processors as evenly as possible, in the hope that
each processor receives about the same amount of
work. If all tasks do not take the same amount of
time, load imbalances may arise, which will cause
some processors to be idle while other processors
continue to execute loop iterations. Thus, workload
imbalance is its major disadvantage.

* Dynamic scheduling: Whenever a processor becomes
available, one or more iterations will be assigned to
that processor. In these algorithms, the processors
maybe exchange load information (only in distrib-
uted queues) and iterations periodically. These
methods can achieve better load balancing in the
presence of unpredictable transient loads and
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non-uniformly distributed loops. Clearly, some sche-
duling overhead will be involved at run time.

2.1. Optimization criteria

The classic optimization criteria are [2,5,18]:

* Minimize loop imbalance: In this case, the idea is to
distribute the workload as evenly as possible. We can
minimize it by favoring fine grained allocation of
loop iterations in order to minimize the effects of
uneven assignment.

* Minimize communication cost: The communication
cost is a main factor. In the case of shared memory
some memory may be not equidistant from all
processors (such as cache memory). In the case of
distributed memory the existence of local memory
implies that some processors are closer to the data
required by an iteration than others. We can
minimize this cost by exploiting the processor affinity
that favors the allocation of loop iterations close to
their data.

* Minimize synchronization problems: In this case, we
must minimize the waiting time of the processors due
to dependent iterations assigned to different proces-
sors.

* Minimize scheduling overhead: This is the time to
allocate the remaining iterations. Normally, we
include the synchronization overhead in this cost.

2.2. Loop task graph

In general, data dependence is a consequence of the
flow of data in a program. A task that uses a variable in
an expression is data dependent upon the task that
computes the value of the variable. Data dependence in
loops can be classified as [2,5]:

* Loop carried dependence: when data are passed
between different iterations.

* Loop independent dependence: when data are passed
from one task to another within the same iteration.

Clearly, loop-independent dependencies can be easily
represented using task graphs, but loop carried data
dependencies are more difficult to represent in task
graphs since they express dependencies among tasks in
different loop iterations. We first give the following
definition [5]:

* Iteration vector: When some tasks are contained in n

nested loops, we refer to separate instances of their
execution using an iteration vector. A vector I ¼
fi1; i2;y; ing is called an iteration vector if the loop
body is executed in the period when the jth level loop
is in the ijth iteration, 1pjpn: Elements of iterations
vectors are numbered from outermost to innermost,
as are the loops.
* Distance vector ðDwvÞ: Using iteration vectors, we can
define a distance vector for each dependence between
tasks. Suppose that v and w are two tasks enclosed in
n nested loops. If w during the iteration identified by
iteration vector Iw is dependent on v during the
iteration identified by iteration vector Iv; the distance
vector for this dependence is Dwv ¼ Iw � Iv: Task w is
loop carried data dependent on task v iff IwaIv:
Otherwise, the dependence is called loop-independent
ðDwv ¼ 0Þ:

* Dependence pair: We define a dependence pair
between two tasks w during the iteration Iw and v

during the iteration Iw; as ðDwv;WwvÞ; where Dwv ¼
Iw � Iv is the distance vector and Wwv is the size of the
message that w receives from v: Task w can have more
than one data dependence pair from task v:

* Dependence set ðDDSwvÞ: The set of all dependence
pairs between two tasks.

* Upper bound vector: For n nested loops, it is
fb1; b2;y; bng; where bi is the upper bound of the
loop at the ith level.

* Unrolling vector: If it is equal to fu1;y; ung; this
means that the ith loop is unrolled ui times.

We assume that loops are normalized to iterate from 1
to some upper bound in steps of 1. We also assume
perfect (tightly) nested loops, which means all the tasks
are enclosed in the innermost loop. Methods of
transforming non-normalized loop into normalized
loop are presented in [5]. Some of the methods of
transforming imperfectly nested loop into perfect ones
are [5]: loop distribution and non-basic-to basic loop
transformation. The last assumption implies that all
distance vectors have only non-negative values which
guarantees an acyclic loop-carried data dependence
graph.
2.2.1. Definition of a loop task graph

Loop carried and loop-independent data dependen-
cies among a set of tasks that is enclosed in a nested loop
can be represented using a loop task graph [5]. The graph
is a weighted directed graph G ¼ ðV ;AÞ where V is a set
of nodes and A is a set of arcs. A node in the loop task

graph represents a task, and an arc between two nodes u

and v represents the dependence between u and v: There
are weights on the nodes and the arcs. The weight on a
node represents the amount of computation of the task
represented by this node. The weight on an arc ðu; vÞ is
the dependence set between tasks u and v: The loop task
graph may contain cycles. To illustrate these concepts,
consider the following toy example which will be used
throughout this section since its small size allows us to
work out the details explicitly:
For i ¼ 1 to 2

For j ¼ 1 to 2
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T1ði; jÞ

T2ði; jÞ
where
Task T1ði; jÞ:

X ½i; j� ¼ F1ðV ½i � 1; j�;X ½i � 1; j � 1�Þ

Z½i; j� ¼ constant1

V ½i; j� ¼ constant2
Task T2ði; jÞ:

Y ½i; j� ¼ F2ðZ½i; j�;Y ½i � 1; j�Þ
T1/7

T2/9

{(<1,0>,5), <1,1>,10)}

{(<1,0>,12)}

{(<0,0>,20)}

Fig. 1. A loop task graph.

0j
Clearly, the data dependence in the above code segment
can be represented using a loop task graph with only
two nodes ðT1;T2Þ: The weights on the nodes can be
computed as follows: assume the amount of computa-
tion of the functions F1 and F2 are 4 and 8, respectively,
and that an assignment statement takes 1 unit of
computation. In this way, the amount of computation
of task T1 is 7, and of task T2 is 9 (the weight of tasks
T1 and T2). In order to obtain the weights on the arcs
of the loop task graph, we assume that the arrays
X ;Y ;Z; and V take 10, 12, 20 and 5 units of storage,
respectively. Task T1 uses during iteration /i; jSV ½i �
1; j� which is computed by task T1 during iteration /i �
1; jS; and X ½i � 1; j � 1� which is computed by task T1
during iteration /i � 1; j � 1S: The distance vectors of
these two dependences from task T1 to itself are
/1; 0Sð/i; jS�/i � 1; jSÞ and /1; 1Sð/i; jS�/i �
1; j � 1SÞ; respectively. According to the size of an
element in V and X ; the dependence set from T1 to itself
is equal to fð/1; 0S; 5Þ; ð/1; 1S; 10Þg: In the same way,
we can calculate the arcs for task T2; in one case,
because during iteration /i; jST2 uses Z½i; j� (the
dependence set from T1 to T2 is equal to
fð/0; 0S; 20ÞgÞ; and in the other case because it uses
Y ½i � 1; j� (the dependence set from T2 to itself is equal
to fð/1; 0S; 12ÞgÞ:

2.2.2. Loop unrolling

This is a process of replacing the iterations of a loop
with non-iterated straight-line code [5]. The basic idea is
to unroll the loop in order to uncover loop-carried
dependencies that allow several iterations to overlap in
execution. For example, the loop:
 T1 /720
For i ¼ 1 to 4

5

X ½i þ 2� ¼ X ½i þ 1� þ X ½i�
 T11j/7
 T20j/9
is unrolled once to
For i ¼ 1 to 4 step 2

12 20
X ½i þ 2� ¼ X ½i þ 1� þ X ½i�

 T21j/9
X ½i þ 3� ¼ X ½i þ 2� þ X ½i þ 1�
Fig. 2. Replicated task graph of the loop task graph of Fig. 1 with

u ¼ f1; 0g and j ¼ 0; 1:
Unrolling reveals independent iterations that we can
group together in a manner that allows some paralle-
lism. The resulting groups can be scheduled to take
advantage of the available parallelism. When a single
loop with upper bound b is unrolled u times, u þ 1
copies of the body are replicated, the loop control
variable is adjusted for each copy, and the step value
of the loop is multiplied by u þ 1: Similarly, when
a set of n nested loops with upper bound vector
fb1;y; bng is unrolled using unrolling vector u ¼
fu1;y; ung;

Qn
i¼1ðui þ 1Þ copies of the body are repli-

cated, the loop variables are adjusted for each copy, and
the step value of the ith loop is multiplied by ui þ 1:

2.2.3. Replicated task graphs

Given a loop task graph G ¼ ðV ;AÞ; we define a
replicated task graph Gu ¼ ðVu;AuÞ as follows [4]: the
graph Gu is an acyclic task graph that represents the
body of the loop after being unrolled using unrolling
vector u ¼ fu1;y; ung: The set of nodes Vu is the set of
replicated tasks according to the unrolling process
ðjVuj ¼ jV j �

Qn
i¼1ðui þ 1ÞÞ: The set of arcs is the set

that represents the original loop-independent dependen-
cies (these are the arcs whose weights (dependence sets)
have distance vectors with zero elements in G; for
example, the arc between node T1 and node T2 in
Fig. 1) and loop-carried dependencies that have become
loop independent as a result of the unrolling. The weight
of a replicated node remains the same as its original
node. The weight on an arc in Gu is the size of the
message portion of the dependence pair of the depen-
dence set on the original arc. Fig. 2 shows the replicated
task graph Gu for our example of Fig. 1, where u ¼
f1; 0g; i.e., the outer loop is unrolled once.
Now, if we suppose that u ¼ f1; 1g (the completely

unrolled loop), the new graph is (see Fig. 3)
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T100/7

T210/9

20

T110/7
T200/9

12

5

20

T101/7

T211/9
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T201/9T111/7

20

20

12

10

Fig. 3. Replicated task graph of the loop task graph of Fig. 1 with

u ¼ f1; 1g:
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2.2.4. Critical path of a task graph

A critical path of a graph is the longest path in the
task graph [1]. The critical path is the minimum
execution time of a program modeled by a task graph.
The execution time will always be at least as large as the
critical path when the number of processors is finite
rather than unlimited.

3. Our scheduling loop task graph approach

Because revealing loop-carried dependencies may
allow several iterations of a set of loops to overlap in
execution, loop unrolling can help to exploit the
parallelism that may exist among different iterations.
Because unrolling entails unpleasant space/time com-
plexities, this is a decision that should be made at
compile time. One simple but usually impractical way to
schedule a loop task graph is as follows:
1.
 Calculate the complete loop unrolling u ¼
fb1 � 1;y; bn � 1g for the loop task graph G in
order to determine the set of M tasks on the loop
ðTS ¼
fT0y0

1 ;y;T0y0
N ;y;Tb1�1ybn�1

1 ;y;Tb1�1ybn�1
N gÞ;

where N is the set of tasks on the n nested loops
ðN ¼ jV jÞ and M is the set of tasks to be allocated
ðM ¼ jV j�

Qn
i¼1 biÞ:
2.
 Each task on the loop is assigned to a ready queue: a
ready queue is initialized for ready tasks by inserting
every task that has no immediate predecessor.
3.
 As long as the ready queue is not empty do the
following (M times):

(3.1)
 Obtain a task from the front of the queue.

(3.2)
 Select an idle processor to run the task.

(3.3)
 When all the immediate predecessors of a

particular task are executed, their successor is
ready to be inserted into the ready queue.
The time complexity of this algorithm is OðMÞ and the
maximum size of the ready queue is M (for the case of a
parallel loop). This scheduler does not give a good
scheduling because it does not consider the communica-
tion cost between different tasks. Clearly, the loop
execution time will depend on the scheduling, since all
tasks which have been assigned to the same processor
will execute sequentially, and some tasks on different
processors will also have to execute sequentially due to
the precedence relations. The exact computation of this
execution time is not trivial. However an optimistic
estimate can be obtained. We redefine step (3.1) of our
scheduler according to the following ideas based on the
critical path notion: In general, to obtain a good
scheduling we need to minimize the execution time of
each task of the loop. The sequential execution time of a
nest of n loops is

Ts ¼
Xb1�1
I1¼0

?
Xbn�1

In¼0

XN

j¼1
TI1yIn

j

assuming that all M tasks reside on the same processor
and exchange information through common memory
(which is assumed to incur no additional communica-
tion cost). The parallel execution time ðTpÞ of the loop
on K processors, according to a given assignment

Q
ðgÞ

of the tasks of the loop, where g is one of the possible
assignments of the tasks ðg ¼ 1;y;KM ; where K is the
number of processors), is the earliest time at which a
given task TI1yIn

j ATS will terminate.

Tp

Y
ðgÞ

� �
¼ max

TI1yIn

j
ATS

TI1yIn

j

Y
ðgÞ

� �n o
8j ¼ 1;y;N;

8I1 ¼ 1;y; b1;y; 8In ¼ 1;y; bn:

This is the best possible execution time of the loop
with the assignment

Q
ðgÞ: The specific assignmentQ

ðgÞ of the tasks of the loop ð
Q
ðgÞ ¼

f
Q0y0

1 ðgÞ;y;
Qb1�1ybn�1

N ðgÞgÞ is defined as

YI1yIn

j

ðgÞ ¼ l if task TI1yIn

j is allocated to processor l:

The instant at which TI1yIn

j will terminate, according to
the current assignment

Q
ðgÞ; can be defined as follows:

TI1yIn

j

Y
ðgÞ

� �
¼TI1yIn

j þmax X I 01yI 0n

i

Y
ðgÞ

� �n o
þ max

TiAR
TI 01yI 0n

i

Y
ðgÞ

� �n����
þ lI1yIn;I 01yI 0n

ij

Y
ðgÞ

� �o
�max X I 01yI 0n

i

Y
ðgÞ

� �n o����
ifðCOND¼trueÞ

:

ð1Þ
The first expression of the previous equation is the
execution time of the task Tj: The second one is the
completion time of the last task that has been executed
on processor where Tj will start its execution (it is the
maximum completion time between the tasks already
executed on this processor). The last expression repre-
sents the relationship among Tj and its predecessors. Tj

can not start before its predecessors. COND determines
the overhead due to the communication time of the
predecessor task of Tj that has finished last when this
time plus its completion time is bigger than the
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completion time of the last task executed on the same
processor where Tj will start its execution. Specifically,
X I 01yI 0n

i ð
Q
ðgÞÞ is a vector that gives the completion time

of the tasks already executed on the processor where Tj

has been allocated.

X I 01yI 0n

i

Y
ðgÞ

� �

¼ TI 01yI 0n

i

Q
ðgÞð Þ if

QI 01yI 0n

i

ðgÞ ¼
QI1yIn

j

ðgÞ;

0 otherwise;

8><
>:

R defines the data dependence between the tasks TI1yIn

j

and TI 01yI 0n

i :

R ¼fBI1yIn;I 01yI 0nADDSijg and BI1yIn;I 01yI 0n

¼/I1 � I 01;y; In � I 0nS

BI1yIn;I 01yI 0n is the distance vector between TI1yIn

j and
TI 01yI 0n

i : We search for this vector in the dependence set
of these tasks ðDDSijÞ: If we find this vector, that means
TI1yIn

i must be executed before TI1yIn

j : In this case, we
need to consider the communication time between them
if they are allocated on different processors. lI1yIn;I 01yI 0n

ij

is the communication time when two tasks are allocated
on different processors, assuming that tasks residing on
the same processor incur no communication cost,

lI1yIn;I 01yI 0n

ij

Y
ðgÞ

� �

¼

P
BI1 ;y;In ;I 01 ;y;I 0nADDSij

Wij if
QI1yIn

j

ðgÞa
QI 01yI 0n

i

ðgÞ;

0 if
QI1yIn

j

ðgÞ ¼
QI 01yI 0n

i

ðgÞ:

8>>>><
>>>>:
TS ¼ fT0y0
1 ;y;T0y0

N ;y;Tb1�1ybn�1
1 ;y;Tb1�1ybn�1

N g

Ts ¼
Pb1�1

I1¼0?
Pbn�1

In¼0
PN

j¼1 TI1yIn

jQ
ðgÞ ¼ f

Q0y0
1 ðgÞ;y;

Qb1�1ybn�1
N ðgÞg

QI1yIn

j ðgÞ
Tpð

Q
ðgÞÞ ¼ max

TI1yIn

j
ATS

fTI1yIn

j ð
Q
ðgÞÞg

TI1yIn

j ð
Q
ðgÞÞ ¼ TI1yIn

j þmaxfX I 01yI 0n

i ð
Q
ðgÞÞg

þ max
TiAR

fTI 01yI 0n
i ð

Q
ðgÞÞ þ lI1yIn;I 01yI 0n

ij ð
Q
ð

����
�maxfX I 01yI 0n

i ð
Q
ðgÞÞg

����
ifðCOND¼true

Þ

X I 01yI 0n
i ð

Q
ðgÞÞ ¼ TI 01yI 0n

i ð
Q
ðgÞÞ if

QI 01yI 0n

i ðgÞ ¼
QI1yIn

j ð
0 otherwise

(

BI1yIn;I 01yI 0n ¼ /I1 � I 01;y; In � I 0nS

R ¼ fBI1yIn;I 01yI 0nADDSijg
In this case, we need to sum the size of the messages
ðWijÞ of the different dependence pairs with the
distance vector BI1yIn;I 01yI 0n that belong to the
dependence set of these tasks ðDDSijÞ: Finally, we
need to calculate the overhead due to the communica-
tion time between these tasks when the next condition is
true

COND ¼ max
TI1yIn

i
AR

TI1yIn

i

Y
ðgÞ

� �n

þ lI1yIn;I 01yI 0n

ij

Y
ðgÞ

� �o
4max X I 01yI 0n

i

Y
ðgÞ

� �n o
:

Ideally, we want to choose an assignment
Q
ðgÞ which

minimizes Tp: For our problem, we define the objective
function as follows:

Cost Function ¼ min
g

Tp

Y
ðgÞ

� �n o

¼ min
g

max
TI1yIn

j
AST

TI1yIn

j

Y
ðgÞ

� �n o( )

8g ¼ 1;y;L: ð2Þ

We have redefined the data dependent loop schedu-
ling problem as a min–max problem where L is the
number of the possible different assignments of the
tasks ðL ¼ KMÞ: The complexity of this expression
is OðM4Þ: The next table summarizes the set of
formulae:
The set of M tasks on the loop after calculating
the complete loop unrolling
The sequential execution time of a nest of n loop

A given assignment of the tasks of the loop, where
g is one of the possible assignments of the tasks

Variable for assigning TI1yIn

j

The parallel execution time of the loop on K

processors

gÞÞg

The instant at which TI1yIn

j will terminate

gÞ Completion time of the tasks already executed on

the processor where TI1yIn

j has been allocated.

Distance vector between TI1yIn

j and TI1yIn

i

Data dependence between the tasks TI1yIn

j and

TI 01yI 0n
i
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1 … M

Processor … …

Execution Order

Fig. 4. Data structure of an individual.

Wij Size of the messages of the different dependence

pairs with the distance vector BI1yIn;I 01yI 0n that
belong to the dependence set DDSij

lI1yIn;I 01yI 0n
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Wij if
QI1yIn
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QI 01yI 0n

i ðgÞ
0 if

QI1yIn

j ðgÞ ¼
QI 01yI 0n

i ðgÞ

(
Communication time when two task are allocated
on different processors

COND ¼ max
TI1yIn

i
AR

fTI1yIn

i ð
Q
ðgÞÞ þ

lI1yIn;I 01yI 0n

ij ð
Q
ðgÞÞgSmaxfX I 01yI 0n

i ð
Q
ðgÞÞg

Overhead due to the communication time between
dependent tasks

J.L. Aguilar, E.L. Leiss / J. Parallel Distrib. Comput. 64 (2004) 578–590584
3.1. Our heuristic scheduling algorithm

We define a heuristic approach based on genetic
algorithms (GA) to solve the data-dependent loop
scheduling problem. In our heuristic, we study the
different assignments of the loop tasks, such as to
optimize the cost function (2). The input of our heuristic
is the loop task graph, and the output is the scheduling of
the loop. The main phases of our algorithm are:

1. Calculate the complete loop unrolling graph ðGuÞ for
the loop task graph G in order to determine the set of
M tasks on the loop.

2. Call our scheduling algorithm based on GAs.

A GA is an optimization algorithm based on the
principles of evolution in biology. A GA follows an
‘‘intelligent evolution’’ process for individuals based on
the utilization of evolution operators such as mutation,
inversion, selection and crossover [1]. The idea is to find
the best local optimum, starting from a set of initial
solutions, by applying the evolution operators to
successive solutions so as to generate a new and better
local minimum. The procedure continues until it
converges to a minimum (which may be local or global).
Previous work that uses GAs in loop optimization
problems has been studied in [7]. Nisbet proposed a
genetic algorithm parallelisation system (GAPS) com-
piler framework. The GA is used to determine the
restructuring transformation applied to each statement
and its associated iteration space. The hypothesis is that
GAs can be used to determine the sequence of
restructuring transformations which are better, or as
good as those produced by more conventional compiler
search techniques.
The GA applied in our problem follows the next

procedure: we define a search space of M�n vectors, each
representing an individual, and every individual repre-
senting a possible solution. An individual represents the
assignment of the different nodes of the replicated task
graph Gu that represents the complete loop unrolling of
the original loop task graph G: We number the set of
tasks of the replicated task graph Gu from 1 to M (the
number of tasks in the n nested loops). In this way, each
individual is composed of M elements. The ith element
has two values: a value between 1 and K ; indicating the
processor where task i will be allocated, and another
value indicating its execution order on this specific
processor (see Fig. 4).
For example, assume the individual of the Fig. 5:
This means that task 1 will be the first task executed

on processor 1, then task 3; task 2 will be the first task
executed on processor 3, and so forth. That is, if we do
not consider data dependence among the tasks the
schedule table is:
Processors \ time
 1
 2

1
 T1
 T3

2
 T4
 T5

3
 T2

Furthermore, we use the objective function (2) to

calculate the cost of each individual. According to the
execution order, we may encounter deadlock (a task is
scheduled before its predecessor). The cost for the
individuals that represent this situation will be infinite
(wrong individuals). We begin with an initial population
of individuals randomly selected and we choose the
individuals with minimal cost for generating new
individuals using our specific genetic operators. Since
the population size is constant, we replace the worst
individuals of the initial solution by the best individuals
generated. The procedure stops if we exceed a given
number of generations without finding a better solution
or for a given number of iterations. The general genetic
algorithm is defined as:
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Generation of individuals which represent potential solu-

tions

Repeat until system convergence or termination
Evaluation of every individual
Selection of the best individual for reproduction
Reproduction of the individual using evolutive

operators
Replacement of the worst old individuals by the best

new individuals
Each iteration of our algorithm is of time complexity
OðMÞ: If there are t iterations, the time complexity of
the entire algorithm is OðtMÞ: We use the following
specific genetic operators:

* Mutation of the processor allocation (MA): With this
operator we can redefine a new allocation k for a
given task i; where 1pkpK and 1pipM are chosen
randomly. Its order of execution ðoÞ will be the same
as the current. For the tasks already assigned to
processor k which have an execution order bigger
than or equal to o; we must increase their execution
order by 1. In addition, for the tasks assigned in the
1 3 1 2 2
1 1 2 1 2

Fig. 5. An individual.

1 2 1 2 2
1 1 2 2 3

Fig. 6. Mutation of the processor allocation.

1 3 1 2 2
1 1 2 2 1

Fig. 7. Permutation of the execution order.

1 3 2 2 1

1 1 2 1 2

Fig. 8. Permutation of the allocation.

1 3 1 2 2 and
1 1 2 1 2

Fig. 9. Parent in

2 1 1 3 2 and
1 1 2 1 2

Fig. 10. New individ
initial allocation of the task i that have been
reallocated, we must decrease their execution order
by 1 if these are bigger than or equal to o: The
complexity of this operation is OðMÞ: Assume the
individual of if the second element is chosen to
mutate to 2, the new individual is shown in Fig. 6:

* Permutation of the execution order (PEO): For a
given value of the processor field (for example, tasks
assigned to processor k), we permute the execution
order of the tasks assigned to it. The complexity of
this operation is Oð1Þ: Assume the individual of Fig.
5 and k ¼ 2; when we apply this operator, the next
individual is shown in Fig. 7:

* Permutation of the allocation (PA): For a given value
of the execution order field (for example, task to be
executed in the position o), we permute the processor
where they will be assigned. The complexity of this
operation is Oð1Þ: Assume the individual of Fig. 5
and o ¼ 2; the next individual is shown in Fig. 8:

* Partial crossover (PC): This operator takes the part
of two individuals that correspond to a given
execution order (for example, o ¼ 1) or processor
(for example, k ¼ 1); it compares if they are similar (if
each individual has the same number of elements with
this execution order or processor assignment). Then,
it exchanges these specific parts of information
between them. That is, we are going to exchange
the columns from each individual with the same given
value of o or k: The complexity of this operation is
OðMÞ: For example, assume the two individuals of
Fig. 9: and o ¼ 1: PC yields these two new individuals
(Fig. 10):

Similarly, for k ¼ 2; PC yields the individuals of
Fig. 11:
This operator is extended for a set of execution orders

(for example, o ¼ f2; 3g) or set of processors (for
example, k ¼ f1; 3g) and for this partial information
we execute the same exchange. In this way, we can
exchange partial good solution between individuals. For
example, assume the parent individuals of Fig. 12:
For k ¼ f1; 3g; the new individuals as shown in

Fig. 13:
With our operators we can combine good partial

results and guarantee that each individual represents a
possible solution to our problem (maybe some repre-
2 2 1 3
2 1 1 1

1
2

dividuals.

2 1 3 2 1
2 1 1 1 2

uals for o ¼ 1:
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1 3 1 2 2 and 2 2 1 3 1
1 1 2 2 1 1 2 1 1 2

Fig. 11. New individuals for k ¼ 2:

2 1 1 3 2 and 2 1 3 2 1

1 1 2 1 2 2 1 1 1 2

Fig. 12. Parent individuals.

2 1 3 1 2 and 2 1 1 2 3
1 1 1 2 2 2 1 2 1 1

Fig. 13. New individuals for k ¼ f1; 3g:
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senting a deadlock). Initially, we start with solutions
without deadlock to guarantee that the GA works in a
space with valid solutions.
4. Results analysis

In this section, we discuss experiments for both
applications where we know the optimal scheduling
and well known benchmarks. Then, we perform some
experiments for parallel loops. The performance of our
approach is evaluated by comparing the resulting
schedule length. For the set of experiments we test the
percentage of individuals of the final population that
represent the optimal scheduling, the execution time to
obtain it, the schedule length of the best individuals of
our model (we compare that with previous results
[4,12,18]) or the number of iterations to obtain optimal
results. In our experiments, we assume a fully connected
homogeneous distributed-memory system composed of
8 processors ðK ¼ 8Þ and each operation (task) takes 1
time unit. We have used in our experiments a Pentium
III, 250 MHz; 128M RAM Dell machine.

4.1. Test of the optimal scheduling

For this test, the kernel application programs used for
the performance evaluation were carefully selected from
different classes of loops (kinds of workload). The set of
experiments was defined using the next algorithms:
Program 1: The algorithm proposed in Section 2.2.1,

where the loops are iterated n times (we replace 2 by n)
Program 2
For i ¼ 1 to n do

For j ¼ 1 to n do
T : X ½i; j� ¼ F1ðX ½i þ 2; j � 3�Þ

Program 3
For i ¼ 1 to n do
For j ¼ 1 to n do

T1 : A½i� ¼ B½i� þ C½i�

T2 : D½i� ¼ A½i�=E½i�

T3 : E½i þ 1� ¼ SQRTðD½i� þ D½i þ 1�Þ

T4 : F ½i� ¼ F ½i � 1�=D½i�
We assume five sets of parameters for our heuristic
(see Table 1), where the value of each element represents
the probability to use that operator. The initial results
are presented in Table 2, where ET is the execution time
(in seconds) for the GA convergence and P the
percentage of the individuals of the final population
that represent an optimal scheduling.
Our results show that in order to obtain the optimal

scheduling for this problem, the execution time of the
heuristic depends on the values of the parameters of it.
The main genetic operator is the PC operator because it
allows the exchange of partial good solutions (Set 2).
The overhead due to our operators is very important
(see Set 4). A good combination of the operators can
give a good execution time of the heuristic and a large
number of optimal individuals in the last population
(Set 5). In general, for Set 4 the percentage of optimal
solutions in the final solution is smaller than for Sets 1
and 5 when the number of tasks in the nested loop is
important (programs 2 and 3). In this part, the reason to
study the percentage of optimal individual in the last
population (when the GA converges) is because some of
the optimal individuals can be different. That can be
interesting for the operating system in order to choose a
schedule that improves the overall performance on the
system taking into account the current workload.
Remember that it is a static scheduling; in this way we
minimize the degradation of the performance on the
system in the future. We must find a compromise
between the execution time of the heuristic scheduler (it
is executed during compile time) and the number of
optimal solutions at the end of the procedure (that can
help to optimize the performance in our system).
Another important criterion is the number of iterations
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Table 1

Sets of parameters

Parameter Set 1 Set 2 Set 3 Set 4 Set 5

MA 0.9 0.1 0.9 0.9 0.5

PEO 0.1 0.1 0.1 0.9 0.5

PA 0.1 0.1 0.1 0.9 0.5

PC 0.9 0.9 0.1 0.9 0.5

Table 2

Results for different numbers of iterations

Program Iterations Set 1 Set 2 Set 3 Set 4 Set 5

ðnÞ ET P ET P ET P ET P ET P

1 1000 130 40 100 65 70 42 340 48 150 63

500 — — 82 73 — — 278 51 102 65

100 — — 62 75 — — 198 52 58 73

2 1000 260 23 220 49 180 21 610 26 270 51

500 — — 165 54 — — 443 31 211 54

100 — — 112 62 — — 321 38 146 63

3 1000 260 22 230 43 180 28 640 31 250 55

500 — — 189 47 — — 467 36 179 66

100 — — 123 59 — — 312 46 124 71

Table 3

Number of iterations of the GA to obtain the optimal scheduling for n ¼ 100

Program Set 1 Set 2 Set 3 Set 4 Set 5

1 21 19 32 11 25

2 29 27 43 15 32

3 25 26 51 16 37
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of the GA to obtain an optimal scheduling. Table 3
shows these results.
With a small number of iterations (11, 15, 16) we can

obtain an optimal scheduling. Of course, these results
dependent on the quality of the initial individuals (in our
case, we have guaranteed not to have an optimal
solution in the initial population). In general, with Set
4 we need fewer iterations because the genetic operators
allow to explore all the solution space, but its execution
time is very large (see Table 2) because we use very
frequently the different genetic operators. Set 3 carries
out a random search at the beginning; this is the reason
of its large number of iterations to find an initial optimal
individual. If we determine the optimal combination of
the operators, we will reduce the number of iterations to
find an optimal solution. In addition, if we need a fast
optimal solution, we must minimize the number of
iterations of the heuristic scheduler.
In Table 4 we see that the convergence time of the GA

increases when then number of iterations of the
programs increases. We can reduce this execution time
supposing a given number of iterations for the GA, but
the main criteria of the system convergence (when the
GA can not obtain a best solution) guarantee a good
solution (maybe the global optimal). If we reduce the
number of iterations of the GA we can no longer
guarantee that. Remember that the optimal scheduling
is calculated only once, that is, for a new execution of
the programs 1, 2 or 3, we are going to use the same
scheduling.
Table 5 shows the execution time for the GA

convergence for different n and K : The convergence
time depends of them because the size of the solution
space is determined by them. The number of processors
to use depends of the degree of parallelism of the
applications. If with more processors we can improve
the execution time of the applications, the cost for the
execution time of our approach is low (we introduce this
cost only one time because we execute our scheduler
only at compile time).

4.2. Tests with benchmarks

In this section, we evaluate the effectiveness of our
approach by running a set of simulations on digital
signal processing (DSP) benchmarks, in order to
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Table 4

Execution time (in seconds) for Set 2 and different numbers of iterations ðnÞ

Program n ¼ 10:000 n ¼ 100:000 n ¼ 1:000:000 n ¼ 10:000:000

1 342 614 1821 4542

2 621 1024 4041 8432

3 619 931 3857 7841

Table 5

Execution Time for Set 2, program 1 and different numbers of iterations ðnÞ and processors ðKÞ

K n ¼ 500 n ¼ 1:000 n ¼ 10:000 n ¼ 100:000 n ¼ 1:000:000

4 58 79 221 478 722

8 82 100 342 614 1821

16 102 138 567 1378 3081

32 121 188 703 2012 4971

Table 6

Results of the second set of experiments for K ¼ 12:

Benchmark n Set 2 Set 4 List PSP

Len Ratio(%) Len Ratio(%) Len Ratio(%) Len Ratio(%)

WDF 4 2 100 2 100 3 66 2 100

12 4 100 4 100 6 66 5 80

64 24 91 22 100 27 81 24 91

128 45 95 43 100 — — — —

IIR 16 6 100 6 100 8 75 6 100

64 16 81 13 100 20 65 16 81

128 42 85 38 94 — — — —

DPCM 16 6 100 6 100 7 85 7 85

64 19 100 19 100 23 82 21 91

128 45 80 39 92 — — — —

Floyd 16 6 100 6 100 11 54 6 100

64 14 100 14 100 18 77 16 87.5

128 44 81 42 85 — — — —
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compare the performance of our approach with previous
works [4,12]. Table 6 shows our scheduling results. The
first column gives the benchmarks’ names. The abbre-
viations WDF, IIR, DPCM and Floyd stand for Wave
Digital Filter, Impulse Response filter, Differential
Pulse-Code Modulation device and Floyd-Steinberg
algorithm, respectively. They are typical algorithms with
data dependence loops. For example the WDF kernel is:
For i ¼ 1 to n do

For j ¼ 1 to n do
D½i; j� ¼ B½i � 1; j þ 3��C½i � 1; j � 1�

A½i; j� ¼ D½i; j� þ 0:5

B½i; j� ¼ A½i; j� þ 1

C½i; j� ¼ A½i; j� þ 2
In Table 6, the second column is the number of nodes
ðnÞ in each benchmark. The final best schedule of our
heuristic is shown in the next two columns for Sets 2 and
4 of parameters. Specifically, we also show the results
using list scheduling and partition scheduling with
prefetching (PSP) [4,12]. PSP is one of the best
scheduling algorithms for DSP problems. The results
are shown in the columns list and PSP, respectively,
where the sub-column len is the schedule length and the
sub-column ratio is the ratio comparing the optimal
schedule length with that of the different scheduling
algorithms. Here, a value equal to 100% indicates that
the scheduler obtains the optimal solution and one
smaller than 100% that the result is worse.
As we can see, list scheduling (list) rarely achieves the

best schedule length because list scheduling is not well
balanced. Our approach obtains similar results as PSP.
Our approach consistently produces good results (the
average ratios of the schedule length for list scheduling,
PSP, our approach-set 2 and our approach-set 4 are
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Table 7

Results of the second set of experiments for WDF, n ¼ 64

K Set 2 Set 4

Len Ratio(%) Len Ratio(%)

4 30 80 30 80

12 24 91 22 100

32 24 91 22 100

Table 8

Results for the last set of experiments (for 100 iterations of the GA)

Benchmark Parameters Set 2 Set 4 AA

Type 1 n ¼ 1024 52 52 52

L ¼ 500

Type 2 n ¼ 1024 55 55 55

L ¼ 500

Type 3 n ¼ 512 47 47 47
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72.3%, 90.6%, 93.3% and 97.7%, respectively. But,
there are four cases for which list scheduling and PSP do
not have results. These values are not considered in the
average, which by the way makes our results look worse
than they are. If we restricted the average for Set 2 and
Set 4 to only those results for which list scheduling and
PSP have values, then our averages are much better).
The GA is executed a fixed number of iterations (the
number of iterations is equal to 20), for this reason we
do not obtain the optimal scheduling for certain cases.
Table 7 shows that the solution depends of the

number of processors, but for a given number of
processors we can not improve the scheduling. That is,
increasing the number of processors beyond a certain
point will not improve the schedule. Like the previous
one, the GA is executed a fixed number of iterations (the
number of iterations is equal to 20).

4.3. Parallel loop test

In this section, we compare the performance of our
approach to scheduling parallel loops. A parallel loop is
a particular case of a data dependent loop, since there
are no precedence relationships between the tasks. Thus,
Eq. (1) is simplified because COND will be always false.
We have tested the effect on our model, characterizing
the parallel loops according to the distribution of loop
execution time:

Type 1: Loops with potential affinity and balanced

workload. We have chosen the successive over-relaxation
(SOR) algorithm. In this case, all iterations take about
the same time to execute and each iteration always
accesses the same data. Here is the kernel:
do i ¼ 1; L
do parallel j ¼ 1; n
do k ¼ 1; n
a½j; k� ¼ updateða; j; kÞ

Type 2: Loops with unpredictable workload. In this case,
we have used the Jacobi Iteration algorithm. The
iterations have a different workload. Here is the kernel:
for i ¼ 1; L
for parallel j ¼ 1; n
for k ¼ 1; n
if a½j; k�a0 and jak then
x1½j� ¼ x1½j� þ a½j; k��xo½k�

x1½j� ¼ ðb½j� � x1½j�Þ=a½j; j�
for l ¼ 1; n
xo½l� ¼ x1½l�

Type 3: Loops with non-affinity and balanced workload.

In this case, we have used a matrix multiplication
algorithm. This algorithm does not have affinity to
exploit (in this case, iterations do not always access the
same data). Here is the kernel:
for parallel i ¼ 1; n
for parallel j ¼ 1; n
for k ¼ 1; n
c½i; j� ¼ c1½i; j� þ a½i; k��b½k; j�

The performance metric we use to compare our model is
the execution time of the applications (see Table 8).
Execution time measures how differently the scheduling
algorithms work. For this case, we assume a shared
memory system with 8 processors. We compare our
algorithm with the adaptive affinity algorithm (AA) [18],
the best approach of that paper.
This result show that our approach can be used like a

static parallel loop scheduling algorithm. Of course,
with this approach we have the same disadvantage as the
static approach in the presence of unpredictable
transient loads (load imbalance during runtime). But
the main advantages are that our approach can take into
account the current workload to distribute the itera-
tions, it minimizes the run-time synchronization over-
head, and, if not all iterations take the same amount of
time (especially when loops are non-uniformly distrib-
uted), our approach can achieve good load balancing.
5. Conclusions

We have proposed a data dependent loop scheduling
model. Our model is suitable for a wide range of
applications and for different situations (parallel loops,
data dependent loops, distributed and shared memory
systems, etc.); thus, our approach is very versatile and
provides a generalized model of the loop scheduling
problem. In general, the heuristic scheduler based on
our model is affected by the loop size (number of
tasks, number of nested loops, etc.), its parameters
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(probability to use each genetic operator, number of
iterations, etc.) and the parallel/distributed platform
(number of processors). We have defined specific genetic
operators for our problem. We have compared our
model with some of the best parallel loops scheduling
algorithms and data dependent loops algorithms and we
have obtained similar or better results. The results are
very encouraging and suggest a parallel compiler
implementation based on our model. Moreover, the
execution time of our GA can be improved by
developing a parallel version of it. For example, we
can develop a parallel version of our algorithm that
improves the search at the level of the solution space. At
the same time, we can execute a parallel version of our
algorithm for different nested loops of a given applica-
tion. As we have stated previously, our approach is
executed at compile time. Then, the system can reuse the
results for a new execution of the same application with
different input. A dynamic compile framework could
improve the quality of results but at the cost of a large
execution time. Finally, we plan to test the performance
of our approach using other optimization techniques.
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