
Parallel Processing Letters, Vol. 12, No. 1 (2002) 113-125 
© World Scientific Publishing Company 

A GRAPH THEORETICAL MODEL FOR SCHEDULING 
SIMULTANEOUS I/O OPERATIONS ON PARALLEL AND 

DISTRIBUTED ENVIRONMENTS 

JOSE AGUILAR 

CEMISID, Departamento de Computation 
Universidad de los Andes, Facultad de Ingenieria Merida, 5101, Venezuela 

aguilar@ing. ula. ve 

Received May 2001 
Revised January 2002 

Accepted by S. Akl 

Abstract 
The motivation for the research presented here is to develop an approach for scheduling I/O operations in 
distributed/parallel computer systems. First, a general model for specifying the parallel I/O scheduling 
problem is developed. The model defines the I/O bandwidth for different parallel/distributed architectures. 
Then, the model is used to establish an algorithm for scheduling I/O operations on these architectures. 

1. Introduction 

The motivation for the research presented herein is to develop effective and generally 
applicable methods scheduling I/O operations [1, 2, 3]. In this paper we present a 
graph-theoretic model for formally specifying scheduling problems. We present a model 
for scheduling of batched parallel I/O requests to eliminate contention for I/O ports 
while maintaining an efficient use of bandwidth. We apply the model to several 
parallel/distributed environments [4, 5, 6, 7, 8, 9]. We will explore this tradeoff by 
considering one criterion for evaluating it: the length of the schedule produced. The 
goal is to process all requests as fast as possible without violating the "one 
communication at a time" constraint. To reach this goal, our approach is based on the 
next idea: data transfers are prescheduled to obtain schedules that are conflict free and 
make good use of the available bandwidth. 

Our approach consists of two phases: a scheduling phase where requests are assigned to 
time slots, and a data transfer phase where the data transfers are executed according to 
the schedule. We make the assumption that a request message is much shorter than the 
actual data transfer is, so that the cost of sending some pre-scheduling messages is 
amortized by the reduction in the time required to complete the data transfers. This 
assumption is appropriate for data intensive I/O bound applications. The algorithm for 
the scheduling phase is essentially a K-coloring of a bipartite graph, where the vertices 
represent processors and disks, the edges represent I/O transfers, and K is the maximum 
bandwidth on the system. Our model allows scheduling data transfer under various 
architectural and logical constraints in the context of a general framework. The rest of 
the paper proceeds as follows. In section 2 we present our model and algorithm in 
detail. In section 3 we discuss our results. Finally, in section 4 we present the 
conclusions. 

113 



114 J. Aguilar 

2. Our Model 

In this section we describe the scheduling problem in which we are primarily interested: 
the scheduling of batched parallel I/O operations in a parallel/distributed computer 
system. We shall assume the existence of primitive objects called resources; intuitively 
these correspond to disks (but can be extended to machines, communication links, etc.). 
We consider I/O intensive applications in an architecture based on clients and servers 
connected by a complete network where every client can communicate with every 
server. We also assume the existence of primitive objects called units of computation; 
intuitively these correspond to tasks, programs (but can be extended to industrial 
processes, etc.). We assume a discrete time to be a primitive notion, represented in the 
model as a set of natural numbers (colors in the bipartite graph). 

We assume that the task allocation problem for different parallel applications has been 
made before executing the scheduling algorithm. The objective function is to obtain a 
minimum-length schedule on a given parallel computer architecture. We consider a 
centralized batch-oriented scheduling. We make the following assumptions: 

1. The transfers require units of fixed-size slots and preemption is permitted at slot 
boundaries. 

2. Each transfer requires a specific pair of resources, one processor and one I/O 
device. 

3. Each processor can communicate via a link with each I/O device. 
4. There exists no partial order in which the transfers are to occur, but if there are a 

precedent relation between two tasks with data transfer, the precedent task must be 
executed first. 

5. Only a given number of I/O operations may take place at any given time. This 
number is limited by K, the maximum quantity of data transfers between processors 
and disks that may take place at any given time (K is called the data transfer 
bandwidth). 

6. Communication is synchronous, that is, all clients (servers) communicate at regular 
fixed intervals. 

7. The overhead incurred in making these choices is sufficiently small. 
8. Each processor and each disk may perform at most one transfer at any given time. 

2.1 General Model 

The formal specification of our I/O model consists of a bipartite graph where the edges 
represent data transfers from vertices of type processors to those of type disks or vice 
versa, representing the I/O operations to be scheduled. Each edge (ê ) has a weight that 
specifies the quantity of data to transfer (Wy). A fixed maximum quantity of data 
transfers between memory and disks may take place at any given time. This quantity of 
data transfers must be equal to or less than K. According to this approach, the I/O 
connections between the processors and the I/O devices are viewed as a single channel 
of higher bandwidth (K is the capacity of this bandwidth). According to the bipartite 
graph model, the scheduling data transfers can be viewed as an edge-coloring problem. 
Henceforth, we will use the term color and timeslot interchangeably. We first introduce 
some definition: 



Simultaneous I/O Operations on Parallel and Distributed Environments 115 

Definition L An edge coloring of a graph G=(V, E) is a function c: E->N which 
associates a color with each edge such that no two edges of the same color have a 
common vertex. 

Consider a collection of vertices representing processors and I/O devices, each of which 
can participate in at most one data transfer at any given time. Then an edge coloring for 
a graph G, where each edge of G represents a data transfer requiring one time unit, 
corresponds to a schedule for the data transfers. Note that all edges of G colored with 
the same color are independent in that they have no common vertex. Hence, the data 
transfer they represent can be performed simultaneously. An edge coloring of G 
represents a schedule where all edges ê  with c(ey)=m, for some m, represent data 
transfers that take place at time m (eyeYm, where Ym is the set of transfers that take 
place at the time m). The minimum number of colors (NC) required to edge-color G 
equals the length of the schedule. Consider an instance of the I/O system where K is the 
capacity of the data transfer bandwidth of the architecture. A schedule can be obtained 
as an edge-coloring of G, with the restriction that ZeijeYm W;J<=K, V m=l, NC (a color 
m may be used a given number of times according to this restriction). 

Definition 2. A K-coloring of a graph is an edge-coloring in which each color m may be 
used to color a given number of edges according to the restriction EeijeYm Wij<=K, V 
m=l, NC 

We present a parameterized algorithm to schedule data transfers based on edge coloring 
the transfer request graph. The parameterized algorithm can be tuned for a particular 
set of communication and computational cost, communication topology, etc. Our 
algorithm is based on an outer loop. We call one iteration of this outer loop a phase, and 
for each phase we use one new color m which generates T matchings at every iteration, 
such as T= number of elements of Ym, and ZeyeYm Wy<K, Vm=i, NC. We discuss the 
matching algorithm inside the loop for the case where m=l (first color). In its simplest 
form, each client selects one of its incident edges uniformly. Then, the server resolves 
conflicts by selecting one of them. Clients assign the current color to the winning edges 
and remove those edges from the graph. If the communication required when m=l uses 
more of the available bandwidth (K), deallocation of this color must be made. A fresh 
new color is obtained and the process is repeated in the next phase. The algorithm 
repeats until all edges are colored. Permutations can be made in the colors to define a 
new order of execution between the data transfer. This procedure will generate a 
matching, but not necessarily the best one. In the following, we present the details of 
our algorithm: 

While G(V,E) is not empty 
Get a new color (m=m+l) 
For all clients 

Assign m to untried edges {c(etj)=m) according to the edge-coloring 
problem restriction (no two edges with common vertex must 
have same color) 

I f Z ^ ^ y > £ t h e n 
Discolor several edges with the m color (e^eYm) until ZetjeYm Wy <K 

Delete colored edges and vertices of zero degree from G 



116 J. Aguilar 

On a given system, two types of I/O transfers may take place. Data transfers from one 
I/O device to a processor of the same place are called "local transfers", while those 
among a processor and an I/O device on separates places are called "remote transfers". 
A remote transfer requires simultaneous possession of an I/O device, a communication 
system, an I/O bus, and two processors. A local transfer requires a processor, an I/O 
device and an I/O bus. The bipartite graph that models the parallel I/O scheduling 
problem must be modify to take in account this situation (distance among the processors 
and the disks) and when one simple data transfer is bigger than K (Wij > K). In general, 
we have four cases: 

2.1.1 Case 1 (distancey < 1 and Wy < , Vi=T, proc and j=l, disks) 

In this case, we do not need to modify our bipartite graph. A distance equal to 0 means 
that it is a local transfer. A weight equal to K means that this transfer must be executed 
only in a slot time (not to share the slot time with another transfer). 

w M 

+o 
t>j 

distance ij 

distance ij <1 

W i j < K 

2.1.2 Case 2 (distancey < 1 and Wy > K, V i=l, proc and j=l , disks) 

In this case, we need to decompose ey into r edges (where r=fWy /K]), r-1 edges with 
weight equal to K and the last one < K. In this case, only the last one can possibly be 
executed in parallel with other transfers. 

Wij 
-K) &4 

distance i j 

distance ij< = 1 

Wi j >K 

r edges -< 

W i j l = K > 

Wij3 = K > 

W i j r <= jC, 

2.1.3 Case 3 (distancey >1 and Wy < k, V i=l, proc and j=l,disks) 

In this case, there are no direct communication links between disks and processors. That 
is, the data transfer between a disk and a processor must cross d nodes, d>l. Therefore, 
the data transfer needs rftime units for the data transfer. 



Simultaneous I/O Operations on Parallel and Distributed Environments 117 

W ij 

distance ij 
-o D i i 

distance ij > 1 

Wli * * 

_^ d edges 
with 
weight 
Wij 

W i|l 
• > 

-WJJ2 > 

W'j3 > 

W i j d ^ 

2.1.4 Case 4 (distance^ >1 and Wy > K, V i=l, proc and j=l, disks) 

In this case, we need to decompose ey into rf edges (according to the case 3), and each 
one into r edges (according to the case 2). To execute this transfer we need d*r slot 
times. 

W ij ^ Dj | distance ij > i 
—>0 A 

distance ij I W i ^ > K 

_p» d edges 
with 
weight 
Wij 

f _Wiji > 

Wij2 > 

W?j3 > 

W ijd > 

redges 

W ijll = K 

W ijl2 = K 

2.2 Calculate the Data Transfer Bandwidth (K) for different parallel/distributed 
architectures 

In this section, we present how to calculate K for different parallel/distributed platforms. 
In our model, we must consider system parameters to calculate K. These parameters are: 

Proc is the number of computational processors. 
nd is the number of disks per processor. 
n{/0 is the number of I/O nodes. 
ftnode is the number of nodes. 
n is the total number of disks. 
Bd is the average bandwidth from the disks to the network interface. 
Bc is the average bandwidth from the processors to the network interface. 
Bd is the average bandwidth from the disks to a local processor. 
Bi/o is the average bandwidth from the I/O nodes to the network interface. 
Bnode is the average bandwidth from nodes to the network interface between nodes. 
Bbn is the network interface bandwidth between nodes. 
Bn is the network interface bandwidth between processors. 



118 J. Aguilar 

We will use two node types: compute nodes (they are optimized to perform floating
point and numeric calculations, and normally have no local disk), and I/O nodes (they 
contain the system's secondary storage, and provide the parallel file system services). In 
some cases, an individual node can serve as more than one type. According to this, we 
can calculate K according to the next formulas: 

2.2.1 Shared-bus system with computer nodes with local I/O devices (tightly coupled 
secondary storage) 

The simplest architecture attaches disks to computer nodes, and the information 
exchange between disks of different processors must go through an interconnection 
network. In this architecture, K is calculated according to the following equation: 

proc 
K = min (Bn, proc*Bc, ^ ndi* Bd') 

B n Interconnection Network 

Be | 1 1 

PI P2 P3 

• SB, • 
Y nd3 
ndl 

Pi 

£i 
Fig. 1. Tightly coupled secondary storage architecture. 

2.2.2 Shared-bus system with I/O devices connected directly to the bus 

The parallel architecture is a shared-bus system, in which processors and disks are 
connected to a set of common busses (or a single high-speed system bus that is shared in 
a time-multiplexed fashion), which allow multiple I/O transfer to proceed in parallel. 
That is, the disks are attached to the network. All computer nodes can access each disk, 
so each node should be able to access any data with equal performance. In this 
architecture, K is calculated according to the next equation: 

K = min (proc*Bc, Bn Bd* nd) 

Pn 

Interconnection Network 

_D1 J LD2J LD3J LDn_ 

Fig. 2. Shared-bus system with I/O devices connected directly to the bus. 



Simultaneous I/O Operations on Parallel and Distributed Environments 119 

2.2.3 Shared-bus system with dedicated I/O nodes (loosely coupled secondary storage) 

These platforms encompass a collection of I/O nodes, each one managing and providing 
I/O access to a set of disks. The I/O nodes connect to other nodes in the system by the 
same switching network that connects the compute nodes. Each I/O node acts as part of 
a distributed file server and operates as an intermediary between a set of disks and the 
computational array. The organization between the disks and its I/O node can take on 
any of the numerous existing host-to-disk architectures. These range from the more 
conventional host/disk head-of-string type of format to any RAID-level architecture. In 
this architecture, K is calculated according to the next equation: 

nil o 

K = min (proc* Bc, Bn Bj/o* ni/o: X Bd'*ndi) 
/=i 

Pi 

Be 

P2 P3 Pn 

Bn 
Interconnection Network 

Bi/o 

ni/o I/O 
node 

I/O 
node 

55b 
I/O 
node 

V_ 

ndl 
Fig. 3. Loosely coupled secondary storage. 

2.2.4 Distributed-Shared Memory 

This model combines distributed and shared memory. That is, we distribute the disks 
among sets of processors, called nodes. Each node is a shared-bus system, in which 
processors and disks are connected to a set of common busses. In addition, another 
shared-bus system connects the nodes. When a node needs to communicate with disks 
in another node, it uses this second shared-bus system. In this architecture, K is 
calculated according to the following equation: 

nnodes 

K = min ( proCi*Bc, Bbn, 
i=l 

nnodes z 
i=l 

Bd* n^i, Bj node Anode/ 



120 J. Aguilar 

NodeO 

B, P0 
i 

PI 
{ 

a Interconn. 
Bjl - • 

t*D£*D 

Pn 
i 

Network 
f 

is 
Bnode 

Bbn interconn. Network between nodes 

PO PI 
Bc 1 \ 

JB„ Intercon 

S^F* 3 ! 
HCiJ 

Pn 
1 

i. Network 

fSh 
CD 

Bt 

k 

PO 
J 

PI 
i 

Pn 

1 
Bn Interconn. Network 

^ ^ l± 1 

Fig. 4. Distributed-Shared Memory Architecture 

For other architectures, see [4, 10] (Hypercube, etc.). 

3. Experiments 

We studied the impact of various parameters on the scheduling quality obtained by our 
approach. Scheduling quality is presented as the schedule length. We suppose an 
optimal data placement to guarantee the parallel I/O execution. Experiments were run 
on Proc*nd random bipartite graphs, where the data transfers among the processors and 
disks are generated randomly. For each figure, every point is an average of 30 
experiments. The experiments we have performed cover the interesting regimes of the 
algorithms1 behaviors, and provide insight about how their behavior changes as relevant 
system parameters varied. The values of the parameters that we have used are: 

Parameters 
Number of Transfers (tran) 
Proc 
Bn 

Bc 

Bd 

Bbn 
Bd' 
Bi/0 

"nodes 

!»d 

Bi/o 

I Anodes 

IWij 

Values 
20, 40, 60, 100,150, 200 
4, 8,16, 32 
5, 10, 20, 30, 50, 100 
2, 5, 10,50, 100 
2, 4, 20, 100 
20, 50,100 
1,2,5 1 
2, 5,10, 50,100 
5,10 
[1, 5], [1, proc/2], [1, proc], [1, 2*proc] 
[1, 5], [1, 101 
1, 2, 4, 8 
n,K/2Ul,Kl,n,2*KUl,5*K] 



Simultaneous I/O Operations on Parallel and Distributed Environments 121 

The standard case is: tran=60, Proc=8, Bn=TO, Bc=2, Bd=2, Bj/0=2, Bd'=l, Bbn
=20, 

B„odes=5, nd = [1, proc/2], ni/o = [1, 5], nnodes = 4, Wij= [1, K/2]. ni/o = [1, 5] means that 
the set of values for ni/o are chosen uniformly from this interval. We are going to show 
only a set of results, for the rest see [4] . 

3.1 Result analysis for different tran values 

Table 1 shows the schedule length for different architectures and tran. The first 
architecture, the second one and the third one have similar behavior (K has a similar 
value). Although K has the biggest value for the fourth architecture, this architecture 
has a very long schedule length because the communication times are large. 

trail 
20 
40 
60 
100 
150 
200 

Archil 1 
7 
16 
20 
32 
45 
59 

Archil 2 
8 
17 
20 
34 
49 
62 

Archil 3 
7 
15 
20 
35 
49 
62 

Archil 4 1 
18 i 
32 
47 
82 
115 
144 

Table 1. Schedule length for different tran versus different architectures. 

3.2 Result analysis for different W^ values 

Table 2 shows the schedule length per architecture. When the Wy average is high, the 
schedule length is large. That is logical because for a large Wy we can execute less I/O 
simultaneously. 

wy 
Archil 1 

Archil 2 

Archil 3 

Archil 4 

[l,K/2] 

20 

20 

20 

47 

[1,K] 

45 

46 

47 

57 

[1,2K] 

62 

64 

61 

69 

[1,5K] 

149 j 

145 

150 

176 

Table 2. Schedule length for different Wij intervals versus different architectures. 

3.3 Result analysis for different B# values 

According to table 3, for Bn=50 we obtain the shortest schedule lengths, and for Bn=5 
we obtained the largest schedule lengths. That is due to K9 which depends of this 
parameter. A large Bn implies that more Bc and Bd' might also be required. 

Bc\Bn 

5 

10 

50 

5 

25 

25 

24 

10 

20 

21 

21 

20 

17 

16 

17 

50 ] 

13 

10 

10 

Table 3. Schedule length for different B„ versus different BCi for the first architecture. 



122 J. Aguilar 

3.4 Result analysis for different Bj/o values 

For Bj/o=50, or B;/o=5 and nj/0=[l, 10] we have the best results. For this example, we 
suppose Bn=40 and Bc=5. In general, for a big value of nj/0 we obtain the best results 
because K is bigger due to the formula Bj/0*hi/0. Bi/0*ni/0 should therefore be such that 
their aggregate average bandwidth (rather than peak bandwidth) matches the Bc*proc 
and Bn values. 

Bj/o Wo 
2 
5 

50 

[1/5] 
22 
19 
12 

n, loi 
19 
12 
12 

Table 4. Schedule length for different Bi/o versus different ny0 for the third architecture 

3.5 Result analysis for different Bnode values 

For this experiment, we suppose Bn=40. If we increase Bnode, the schedule length is 
minimized because K increases. The minimal value is for Bno<ie<>10 and nnode =2, 4. For 
Bn0de=2 and nnode=2 or nnode>4 we obtain the largest schedule length. In general, for 
large nnode we cannot improve the results because the communication cost among the 
nodes is larger. 

Dnode^Dnode 

2 
4 
8 

2 
45 
42 
43 

5 
42 
29 
46 

10 
35 
25 
47 

20 
26 
25 
49 

Table 5. Schedule length for different Bnode versus different nn0de> for the fourth architecture 

3.6 Result analysis for different Proc values 

According to table 6, the schedule length has a large dependence on Proc, but 
sometimes for different values of Proc we obtain the same schedule length because K is 
similar. In our experiments, only when Proc<8 K has a small value. 

Wy\Proc 

[l,K/2] 

P,K] 

1 [1,2K] 

[1,5K] 

4 

37 

63 

81 

171 

8 

20 

45 

62 

149 

16 

20 

43 

63 

149 

32 i 

20 • 

44 

60 

149 

Table 6. Schedule length for different Proc versus different Wij, for the first architecture 

3,7 Comparison with other works 

We have tested our approach on the same architecture where Jain et al. have tested their 
heuristics [2]. They tested their approach on a computer similar to the system defined 



Simultaneous I/O Operations on Parallel and Distributed Environments 123 

on section 2.2.2 (Shared-bus system with I/O devices connected directly to the bus), and 
they suppose that K= proc*Bc = Bn = Bd* n = 8. We use the same input graphs for each 
value of iron. In their experiments they vary tran=[100, 800] and n=proc= [12, 32]. To 
evaluate our algorithm we use the same criterion as [2], the mean percentage increase, 
which is equal to Zi=i 10° (heuj - optj)/opti, where heut is the schedule length generated 
by our approach and optt denotes the optimal schedule length for graph i. In addition, 
the maximum increase in schedule length is equal to maxi{(heui - opti)/opti, for i=l, 
100}*100. These results show that our model can be used in this architecture. These 
results do not improve the results obtain into [2] because the search of the optimum is 
not the goal of this work. In general, our algorithm has the same performance than the 
FCFS algorithm proposed into [2] (the schedules produced by them can be over 40% 
longer than optimal). On the other hand, the schedules produced by HDF and HCDF 
algorithms proposed into [2] were found to be always of optimal length, for this 
experiment. The reason of the low quality of our results is because the algorithm 
proposed into the section 2.1 is not an optimal heuristic to solve the edge coloring graph 
problem. 

ProcYTran 

12 

32 

100 

42 

50 

300 

27 

35 

500 

19 

23 

800 

14 

20 

Table 7. Comparison of our approach with [2] (max. increase in schedule length ((%)) 

4. Conclusions 

The problem of scheduling I/O in parallel/distributed computer systems is of 
considerable practical interest but is only just beginning to receive attention. As a first 
step in this research, we have defined a general model for the scheduling of parallel 
computations that serves as a consistent framework for specifying scheduling. In 
general, our approach is a general, versatile and robust model to solve the I/O 
scheduling problem, which can be used in different parallel/distributed platforms. We 
have presented an algorithm for coordinating data transfers associated with a set of 
pending I/O requests over different parallel/distributed environments. In our approach 
all outstanding requests are scheduled before considering new arrivals. Modeling the 
outstanding I/O requests as a bipartite graph allows us to develop algorithms based on 
the graph theoretic notions of edge coloring and bipartite matching. An appropriate 
metric for our algorithm is the number of colors required to edge color the graph, or 
equivalently, the length of the schedule required to complete all requests. By pre-
scheduling data transfers, we eliminate contention for I/O ports while maintaining 
efficient use of interconnection bandwidth. 

This approach is natural for applications where requests arrive in spurts such as "out-of-
core" algorithms, where a program is manipulating a data set too large to fit in memory 
and must periodically perform a set of I/O operations to obtain the next chunk of data to 
work on. When these applications are run alone on a multiprocessor, no new requests 
should be scheduled until the current batch of request is completed. One advantage of 



124 J. Aguilar 

our algorithm is that starvation is not a problem since every request will be served 
within the current batch. We studied the performance and the behavior of our algorithm 
for different architectures experimentally and compared it to the work of others. 
According to our results, K has a large influence in the I/O operation performance. In 
addition, our approach gives scheduling solutions that are not the best one, but they are 
sufficient to allow I/O operations in a given system. Our approach produces longer 
schedules than previous works because our algorithm to solve the edge coloring graph 
problem is not optimal. Some open problems for future work are: 

1. We did not address the arrival of new I/O requests. New dynamic approaches must be 
developed, for example, to consider a new request as soon as the current time slot has 
been scheduled. One of the ways is dispatching each matching as soon as it is colored 
and then adding new arrivals as edges to the current graph before computing the next 
matching. 

2. Edge coloring graph is a NP-Complete Problem. New heuristic approaches must be 
developed to reduce the schedule length. 

3. We must continue to investigate the parallel I/O scheduling problem both 
theoretically and experimentally, particularly the use of precedence graphs of the 
applications corresponding to situations of practical interest (multimedia requirements 
that place different demands on the I/O system, database systems distributed file 
systems, etc.). 

Acknowledgment 

This work was partially supported by CONICIT grant AP-97003817, CDCHT-ULA 
grant I-620-98-02-AA and CeCalCULA (High Performance Computing Center of 
Venezuela). 

References 

[1] R. Jain, K. Somalwar, J. Werth and J. Browne, Scheduling Parallel I/O operations in Multiple 
Bus Systems, Journal of Parallel and Distributed Computing, 16 (1992) 352-362. 

[2] R. Jain, K. Somalwar, J. Werth and J. Browne, Heuristics for Scheduling I/O operations, 
IEEE Transaction on Parallel and Distributed Systems, 8 (1997) 310-321. 

[3] B. Narahari, S. Sherde, R. Simhu and S. Subramanya, Routing and Scheduling I/O Transfer 
on Wormhole-routed Mesh Network, Journal of Parallel and Distributed Computing, 57 
(1999) 1-13. 

[4] J. Aguilar, Ejecucion Paralela de Operaciones de Entrada/Salida. Proc. Simposio Espanol de 
Informdtica Distribuida, (2000) 409-417. 

[5] R. Barke, E. Shriver, P. Gibbons, B. Hillyer and Y. Matices, Modeling and Optimizing I/O 
throughput of Multiple disks on a bus, Performance Evaluation Review, 27 (1999) 83-92. 

[6] A. Choudhary, Parallel I/O Systems, Journal of Parallel and Distributed Computing, 17 
(1993) 1-3. 

[7] D. Feitelson, P. Corbett, S. Johnson and Y. Hsu, Parallel I/O Subsystems in Massively 
Parallel Supercomputers, IEEE Parallel and Distributed Technology, Fall (1995) 33-47. 

[8] J. Lee, I. Tsaur and S. Hwang, Parallel Array Object I/O Support on Distributed 
Environments, Journal of Parallel and Distributed Computing, 40 (1997) 227-241, 



Simultaneous I/O Operations on Parallel and Distributed Environments 125 

[9] Y. Patt, The 1/0 Subsystem: A candidate for improvement, IEEE Computer, March (1994) 
15-16. 

[10] J. Aguilar, File Decomposition and Assignment Problems on Distributed Systems, Proc. Int 
Conf. on Information Systems, Analysis and Synthesis, eds. M. Torres, B. Sanchez, J. Aguilar 
(Vol. 5,1999) 587-593. 


