
Heuristics to Optimize the Speed-Up of Parallel
Programs

AGUILAR Jose

Departamento de Computaci6n. Facultad de Ingenierfa
Universidad de los Andes. Av. Tulio Febres Cordero

M6rida- Estado M6rida. 5101. Venezuela
email: aguilar@ing.ula.ve jose @ math-info.univ-paris5.fr

Telf : (58.74) 440002 Fax: (58.74) 402979

Abstract. In this paper we propose methods to optimize the speed-up which can be
obtained for a parallel program in a distributed system by modelling the assignment of the
tasks of a parallel program as a graph partitioning problem. The tasks (set of instructions
that must be executed sequentially) which compose the program are represented by weighted
nodes, and the arcs of the graph represent the precedence order between tasks. Because this
problem is in general NP-hard we propose and investigate several heuristic algorithms, and
compare their performance. The approaches we present are: a neural network based
algorithm (based on the random neural model of Gelenbe), an algorithm based on simulated
annealing and a genetic algorithm based heuristic.

1. Introduction

In the context of parallel systems, the task assignment problem is an important
issue. It is closely related to which is the manner of implementing task assignment so
that the program's parallel execution is speeded up. Both directed and non-directed
graphs may be used to represent parallel programs. A non-directed graph will only
represent information exchange and concurrent execution between tasks, while a
directed graph will deal with precedence relations concerning execution sequences of
tasks, which may also be accompanied by information exchange. Both nodes and arcs
of the graph model will in general be weighted, the former representing task execution
times while the latter represent communication times or amounts of data being
exchanged.

In this work we will retain a parallel program execution model based on an acyclic
directed graph whose nodes represent the tasks and whose arcs represent the relations
between tasks. The optimization of the parallel execution speed-up can be formulated
in terms of a partitioning problem of the task graph, where each partition represents
the tasks which have been assigned to a particular processor. The cost function used
for partitioning characterizes the speed-up of the parallel program's execution on a set
of identical parallel processors having local memory. An appropriate measure of speed-
up should consider both computing times and communication times. Thus the
problem we address is that of establishing a partition of the task graph representation
of a parallel program, with certain objective functions to be optimized.

Many graphs partitioning problems are NP-hard, and in the present research we will
consider a variety of heuristics which yield effective and nearly optimal solutions in
for the cases of interest to this study. Clearly, we study approximate solution methods
because exact solutions have excessive execution times when the program size is
large. The approximate methods we discuss give suboptimal solutions in a reasonable

175

(polynomial) execution time. In this research we consider several such heuristics: one
of the heuristic will be based on the random neural model of Gelenbe [3, 4], one will
use genetic algorithms [1, 5] and finally one will be based on the simulated annealing
optimization heuristic [6, 9].

2. Problem Definition

In order to fix the framework of the work to be undertaken let us recall some of the
basic considerations. We consider a distributed system architecture which consisting of
a collection of K homogeneous processors with distributed memory, i.e., with
sufficient memory at each processor. The processors are fully interconnected connected
with a reliable high-speed network.

A task graph is denoted by: I'I = (N, A, ~, c) , where N = { 1 n} is the set of
n tasks that compose the program, and fL c denote the times related to task execution
and to communication between tasks. Thus each task i that has a weight ~(i) which
defines its execution time, i=l n. cij will denote the communication time needed

to inform task j that task i has terminated its execution. A = {aij } is the adjacency

matrix representing the precedence order between the tasks. Since the graph is acyclic,
we may number the tasks in a manner such that aij=0 if i > j [7, 8].

The problem is that of assigning the n tasks to K processors. This means that we
have to create a partition (I-I 1 I-I K) of the set of n tasks in a way which optimizes

performance. The problem is then characterized by the following objective: the total
effective execution time of the parallel program must be minimized.

2.1. The Formal Problem

The sequential execution time of the program is T s =]~ni= 1 f~(i), assuming that all

tasks reside on the same processor and exchange information through common
memory. The parallel execution time Tp, assuming an unlimited number of
processors, is the largest sum of task execution times and communication times on a
path in the graph. This can be written using the instant at which task i will terminate,
which is

ti = f~(i) if task i has no predecessors in the graph,

t i = f~(i) + max j<i { tj + cji } if i has predecessors in the graph.

Then it can be seen that Tp = max l<i<n { ti }. Indeed, this is the time it will take
if each task is executed on a different processor. Now, we assume that the tasks have
been assigned to processors by the partition I-[= (1"[1 1-IK). Clearly, once the

program is partitioned and placed on K processors, the actual execution time will
depend in a complex manner on the schedule that is used, since all tasks which have
been assigned to the same processor will execute sequentially, and some tasks on
different processors will also have to execute sequentially due to the precedence
relations. The exact computation of this execution time is not trivial. However an

176

optimistic estimate can be obtained. It is useful to notice that if the execution
schedule is not organized correctly, the task assignment can lead to deadlocks.
However, a deadlock-free schedule can be obtained for an acyclie task graph if the
processor is always allocated to a task which has no non-executed predecessors. Thus
in a distributed system, such decisions have to be taken with global information and
not locally, since a task's predecessors will not necessarily reside on the same
processor.

Assuming that tasks residing on the same processor communicate in zero time, the
new communication times can be readily computed. It suffices to remove from
communication times which deal with two tasks which are in the same block I-I u of

the partition. More specifically, the new intertask communication times will become

c(I-I)ij = cij

C(I-I)ij = o

if i ~ 1-I u , j ~ 1-I v and u,v,

if i ~ I] u , j E I-[v and u= v.

To estimate the best possible execution time of the program with the partition I'I
we first notice that the time t(l"I)i when task i terminates now satisfies the following
inequalities:

f~(i) < t(I-l)i < Xj~ 1-Iu f~(J)' if i ~ FIu and has no predecessors outside Fl u,

I2(i) + max j<i { t(II)j + C(I-Dji, j not in I'I u l

< t(I'I)i < Zj~ I-[uf2(j) + max j<i { t(I-i)j + C(I-I)ji , j not in f lu },

if i ~]"I u and has predecessors outside I-[u .

Clearly, when it is assigned to the K processors according to the partition 1-I, the
program as a whole will terminate at some instant

Tp(I'l) = max l<i<n { t(I-I)i }

Ideally, we would like choose the assignment I I which will minimize Tp(I-I).
However this appears to be a very hard problem except under very simple
assumptions. Notice also that though the assignment issue is very important,
performance is also influenced by the order in which tasks are executed, since it is
important to always choose to execute those tasks which will then enable the
execution tasks at other processors [2].

3. The Solution Methods

From the above discussion, it appears reasonable to formulate some related
optimization problems which are easier to address and whose solution would
contribute to the optimum task assignment problem.

177

3.1 The R a n d o m Neural Mode l

The neural networks have been used over the last several years to obtain heuristic
solutions to hard optimization problems. We will propose an approach using the
random neural network model which has the property of being mathematically
tractable and computationally efficient.

The random neural network model has been developed by Gelenbe [3, 4] to represent
a dynamic behavior inspired by natural neural systems. This model has a remarkable
property called "product form" which allows the computation of joint probability
distributions of the neurons of the network. The basic descriptor of a neuron random
network [3, 4] is the i-th neuron's probability of being excited q(i), i=l n, which
satisfy a set of non-linear equations:

q(i) = { xnj=lq(j)r(j)p+(j,i) + L(i) } / { xnj=lq(j)r(j)p'(j,i) + l(i) } (1)

Where:
- L(i) is the rate at which external excitation signals arrive to the i-th neuron,
- l(i) is the rate at which external inhibition signals arrive to the i-th neuron,
- r(i) is the rate at which neuron i fires when it is excited,

- p+(i,j) and p-(i,j), respectively, are the probabilities that neuron i (when is
excited) will send an excitation or an inhibition signal to neuron j.

We have ~n j= 1 p+(i,j) + p-(i,j) < 1, for l<i<n. Notice that the model is based on

rates, much as natural neural systems operate. Thus, this is a "frequency modulated"
model, which translates rates of signal emission into excitation probabilities via

equation (1). For instance q(j)r(j)p+(j,i) denotes the rate at which neuron j excites
neuron i. Equation (1) can also be translated into a special form of sigmoid which
treats excitation (in the numerator) asymetrically with respect to inhibition (in the
denominator).

The R a n d o m Neural Model for our Problem.

In this approach we will construct a random neural network of the type discussed
above composed of nK + K neurons [9], where n is the number of tasks and K is the
number of processors.

For each (task, processor) pair (i,u) we will have a neuron m(i,u) whose role is to
"decide" whether task i should be assigned to processor u. We will denote by q(m(i,u))
the probability that m(i,u) is excited: thus if it is close to 1 we will be encouraged to
assign i to u. In order to reduce communication times in the selected partition, will
tend to excite any neuron m(j,u) i f j is a successor or predecessor of i, and will tend to
inhibit mfj,v) if j is successor or predecessor of i and ucv. Similarly, m(i,u) will
inhibit mfj,u), ~/v=l K, i f j is not a predecessor or successor of i. On the other
hand, neurons m(i,u) and m(i,v), ucv, will inhibit each other so as to indicate that the
same task should not be assigned to different processors.

For each processor u we will have a neuron n(u) whose role is to let us know
whether u is heavily loaded with work or not. If u is very heavily loaded, it will
attempt to reduce the load on processor u by inhibiting neurons m(i,u), and it will

178

attempt to increase the load on processors vCu by exciting neurons rffv). In the same

way, m(i,u) will excite neuron re(u) to increase the load on processor u. The
parameters of the random network model expressing these intuitive criteria are chosen
as follows:

- L(m(i,u)) = 0

- L(Tr(u)) = n/K, to express the desirable equal load sharing property,
- l(m(i,u)) = 0,

- l (= (u)) = 0 ,

- r(m(i,u)) =nK

- r(/r(u)) = n+K-1

- r(m(i,u))p+(m(i,u),m(j,v))

- r(m(i,u)) p-(m(i,u),mfj,v))

- r(m(i,u))p+(m(i,u), rc(v))

- r(n(u))p-(rr(u),m(i,u))

- r(rr(u))p+(~(u),~(v))

= 1 if (aij = 1 or aji = 1) and u=v,

0 otherwise.

= 1 if u;ev and (aij= 1 or aji = 1 or i = j),

or if aij=0 and aji=0,

0 otherwise.

-- 1 i f u = v ,

0 otherwise.

= 1 if q(u(u)) - 1,
0 otherwise

= 1 if q(rc(u)) ~ 1,
0 otherwise

The equation (1) for this case is:

q(m(i,u)) ={ X(aij = 1 or aji =)1 q(m(j,u))r(m(j,u))p+(m(j,u),m(i,u)) } /

{r(m(i,u)) + E v r or aj i=l or i = j) q (m (j , v)) r (m (j , v)) p -
(m(j,v),m(i,u))

+ EvEaij=O & aji=O q(m(j,v)r(m(j,v))p'(m(j,v),m(i,u))

+ q(rc(u))r(u(u))p'(rc(u),m(i,u))}

q(~(u)) ={ L(u(u))+ z n j = l q(m(j,u))r(m(j,u))p+(m(j,u),rc(u))+

Z K v = I q(u(v))r(n(v))p+(rt(v),rc(u)) } / r (r:(u))

3 . 2 . S i m u l a t e d A n n e a l i n g

Simulated Annealing (SA) is a well known method [6] which uses the physical
concepts of "temperature and energy" to represent and solve optimization problems
using a Montecarlo simulation. The objective function of the optimization problem is
treated as the "energy" of a dynamical system, while temperature is introduced to
randomize the search for a solution. The state of the dynamical system being
simulated is related to the state of the system being optimized. The idea of this

179

method is to start with an initial solution, and then try to improve the solution
through local changes. It is based on static mechanics, inspired in the analogy of a
physical system behavior in the presence of a hot bath. The procedure is the following
[6]: the system is submitted to high temperature and it is slowly cooled through a
temperature level series. For each temperature level, we search for the system
equilibrium state through an elementary transformation series, which will be accepted
if they reduce the system energy Enew<Eol d. As the temperature decreases, smaller

energy increments are accepted, and the system eventually settles on a low energy
configuration that is very close, if not identical, to the global minimum.

For this method, we have studied several parameters in [6, 9]: the initial
temperature, the cooling rate and the threshold (Fac accep) which define the
probability that an uphill move of size A will be accepted. For the initial
temperature, if it is very hot we have CPU time useless; or it is very cold we obtain
bad results. In [6, 9] we have made a complete study and we have arrived to follow
conclusions: The initial temperature value influences the execution time, which is
larger for small initial temperature value. For graph of large size (_> 35 nodes), it is
necessary to take a temperature - 90 ~ C to obtain good results.

The cooling rate defines the procedure to reduce the temperature: a reduction very
rapid implies a bad local optimum. A reduction very slow is spendthrift in CPU time.
Normally, we use a lineal reduction. Good results have been obtained when the
reduction factor of the temperature is 0.93 between two steps. For low temperature
values we consider that the system has reached a state near the minimum energy
(ground state) which corresponds to an optimal solution, consequently we decrease
slowly the temperature (0.965).

There are several functions to determine the probability of acceptance, normally
named "heat bath" functions. We use exp(-A/T), because there are mathematical
motivations for using the exponential [9]. Other appealing possibility is the function
1-AT, which involves just one division and at least approximates the exponential. We
study the value of probability (Fac_accep) to accept a movement. For this parameter,
if the graph is large we obtain the best results for 0.9. For small graph is not
important this parameter. This factor has a relation with the execution time. For small
values the execution times are generally better because the system arrives more
quickly to the equilibrium on each temperature level, but the results are bad.

3.3 Genetic Algorithm

This is an optimization algorithm based on the principles of evolution in biology.
A genetic algorithm (GA) follows an "intelligent evolution" process for individuals
based on the utilization of evolution operators such as mutation, inversion, selection
and crossover [1, 5]. The idea is to find the best local optimum, starting from a set of
initial solutions, by applying the evolution operators to successive solutions so as to
generate a new and better local minimum. The procedure evolves until it remains
trapped in a local minimum.

The GA applied in our problem follows the following next procedure [6, 9]: we
define a space of research of n vectors where everyone represents an individual, and
every individual represents a possible solution. Each vector has n elements and every
element has a value among 1...K, according to the group to which it belongs.
Furthermore, we use the cost function defined on the first part to determine the cost of
every individual. We begin with an initial population of individuals randomly defined

180

and we choose the individuals with minimal cost for generating new individuals using
the genetic operators. Since the population is constant, we substitute the worst
individuals of initial solution by the best individuals generated. The procedure stops if
we exceed a given number of generations without finding a better solution.

In this method two parameters are studied: the maximum number of generations
(NUMGEN) and the probability (PM) of use the mutation operator after the crossover
operator. The first parameter allows to optimize the speed-up of the algorithm to reach
an optimal solution. We remark than the quality of the solutions improves more
rapidly in the first generations that in the following. Thus, a satisfactory quality can
be obtained rapidly without to wait that the algorithm converges. We define the
maximum number of generations (NUMGEN) necessary to arrive to good results. If
the graph is large, there is a relation between the generation number and the problem
size. In this case, a large generation number will be necessary to have good results,
which implies more execution time.

In this work, we used the crossover operator and then the mutation operator
according to the PM probability. For the PM parameter, if the probability is large we
obtain good results, specially for large graph. In this case, the crossover operator is
inefficient because it is going to reproduce almost all time the same individual. A
large PM implies an execution time large. In [11], Talbi and others define the
probability to use each operator, which allow a dynamic variation of use of them in
the population. Next works will study this approach.

4. Performance Evaluation

We have used the parameters that give the better performance in every method,
according to the results of the work [6, 9]. We have used a SUN SPARCstation IPC
with 16M of memory and a matrix as data structure. The random graphs used are
defined for the average number of nodes (n) and the average degree of the successor
nodes of a node (d). For each graph, the successors of a node are chosen randomly from
a uniform distribution in the interval [1, d]. The execution time is in seconds. The
parameters of the simulations are the following: the total number of subgraphs (K),
the mean number of nodes per graph (n), the mean number of successors per node (d)
and the balance factor (b). We generate 50 random graphs for the set of parameters
where n = { 10, 20, 50}, K={2, 5} and d=2.

We study the following performance criteria: the execution time of the heuristics
and the mean value of the solutions. Due to space limitations, the results presented in
this section were chosen because they are representative of the phenomena studied.

70

6O
F
u 50

C n
o c 40

s t 30
t i

o 20
n

10

0

181

10 20 50

Number of Nodes

41)- Exact

-I- SA

-!~- GA

"&" RNM

Fig. 1. Resu l t s o f the s i m u l a t i o n for b = 1, K = 2 and d = 2

100

90

F 80

u 70

C n 60 ~" SA

o ~ 50
s m- GA
t i 40

o O- RNM
30

20

10

0

10 20 50

Number of Nodes

Fig . 2. Resu l t s o f the s i m u l a t i o n for b = 1, K = 5 and d = 2

The execution times are very large (Figures 1, 2, 3). The genetic algorithm and the
simulated annealing, for graphs of 50 or more nodes, need a very large time to reach
the suboptimal solutions. For graph of little size (of 20 or less nodes), the difference
between the exact solution and the results of the other methods is not important, but
the execution times are similar, what makes more interesting the exact solutions.

~" SA

Otherwise, the approximate methods are more interesting, because they have a
reasonable execution time.

E
x

e

c

u

t
i
O

n

35000

30000

25000

T 20000
i

m 15000
e

10000

50O0

0

182

10 20 50
Number of Nodes

~" Exact

I - G A

Fig. 3. E x e c u t i o n t ime o f the s i m u l a t i o n for b = 1, K = 2 and d = 2

5. Conclusions

The experiments we have run show that the results obtained by each approximate
method vary widely depending on the size of the graphs considered. In our study, the
Genetic Algorithm appears to give the best results, but with a substantially larger
execution time. The Random Neural Model gives good results with short execution
time.

The execution time for the Genetic Algorithm and Simulated Annealing are very
large. For Genetic Algorithm, the reason is that generation calculations take relatively
much more time. It is necessary to determine the better combination of genetics
operators, to decrease the number of necessary generations to reach the suboptimal
solution. For Simulated Annealing, since it is not possible determine coherent
movements of nodes in every temperature level that decrease the energy, the solution
is evaluated in a relatively longer time. The Genetic Algorithm and the Random
Neural Model are easy to implement on a parallel machine, and this can considerably
improve the speed obtained with these methods.

Future work will examine other combinatorial optimization methods for the
solution of design problems in distributed systems (tasks migration, files allocation,
...), and will consider a combination of the Random Neural Model and Genetic
Algorithms.

183

References

1. GOLDBERG, D. "Genetic algorithms in search, optimization and machine
learning", Addison-Wesley, 1989.

2. GELENBE, E. "Multiprocessor Performance". J. Wiley & Sons. 1989.
3. GELENBE, E, "Random neural networks with positive and negative signals and

product form solution", Neural Comt~utation Vol. 1, No. 4, pp 502-511, 1989.
4. GELENBE, E, "Stable random neural networks", Neural Computation, Vol. 2,

No. 2 pp 239-247, 1990.
5. TALBI, E. and BESSIERE, P. "Un algorithme g6n6tique massivement parall~le

pour le probl~me de partitionement de graphes". Technical Report. Laboratoire de
G6nie Informatique. Grenoble-France. 1991.

6. AGUILAR, J. "Combinatorial Optimization Methods. A study of graph
partitioning problem". Proceedings of the Panamerican Workshop on Applied and
Computational Mathematics, PWACM, Caracas, Venezuela, 1993.

7. AGUILAR, J. "Modelling the explicit and implicit parallelism of a parallel
program", Proc. XIV Intl Conf. of the Chilean Computer Science Society, 1994.

8. AGUILAR, J. "Heuristic algorithms for task assignment of parallel programs",
Proc. Intl. Conf. Massively Parallel Processing Applications and Development,
Delft, Holland, 1994.

9. AGUILAR, J. "L'allocation de t~ches, l'6quilibrage de la charge et l'optimisation
combinatoire", PhD thesis. Rene Descartes University, Paris, France, 1995.

