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ABSTRACT 

In this paper, we present and discuss the task assignment problem for distributed 
systems. We also show how this problem is very similar to that of clustering transactions 
for load balancing purposes and for their efficient execution in a distributed environ- 
ment. The formalization of these problems in terms of a graph-theoretic representation 
of a distributed program, or of a set of related transactions, is given. The cost function 
which needs to be minimized by an assignment of tasks to processors or of transactions 
to clusters is detailed, and we survey related work, as well as work on the dynamic load 
balancing problem. Since the task assignment problem is NP-hard, we present three 
novel heuristic algorithms that we have tested for solving it and compare them to the 
well-known greedy heuristic. These novel heuristics use neural networks, genetic algo- 
rithms, and simulated annealing. Both the resulting performance and the computational 
cost for these algorithms are evaluated on a large number of randomly generated 
program graphs of different sizes. ©Elsevier Science Inc. 1997 

1. I N T R O D U C T I O N  

The  p rob lem of assigning each task in a parallel  p rogram to some 
processing uni t  of  the system has major  impact  on  the resul t ing perfor- 
mance .  The  p rob lem arises in all areas of parallel  and  dis t r ibuted compu-  
tat ion,  where  programs are decomposed  into tasks or processes, which 
must  then  be assigned to processing uni ts  for execution.  
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In certain systems, this assignment is carried out dynamically at run-time; 
this gives rise to the load balancing problem [26]. However, in many cases, 
the user or the system will wish to exert explicit control over the assign- 
ment of each task. This paper addresses the latter, which is known as the 
task assignment problem. 

This problem is very similar to that of clustering transactions for 
load balancing purposes and for their efficient execution in a distrib- 
uted environment. These problems can be formalized in terms of a graph- 
theoretic representation of a distributed program, or of a set of  related 
transactions. The issue is then to minimize an adequate and meaningful 
cost function by an assignment of tasks to processors or of transactions to 
clusters. 

The task assignment problem is usually addressed using a graph- 
theoretic representation of the program. Typically, a distributed program is 
represented as a collection of tasks, which correspond to nodes in a graph. 
The arcs of the graph may represent communication between tasks, or 
precedence relations, or both. Task assignment is then formulated as a 
problem of partitioning the graph so as to minimize some cost function. 
Typically, each element (or block) in the partition will represent a set of 
tasks which will be assigned to the same processor. The cost function may 
represent a combination of communication costs (which will increase as 
tasks are dispersed among a larger number of processing units) and 
computation times (which will typically decrease as the number of tasks 
included in any block becomes smaller). The assignment is then chosen to 
minimize this combined cost. 

In the general case, since this problem is NP-hard, approximate heuris- 
tics are needed because exact solutions would require excessive execution 
times when the number of tasks in the program and the number of  
processing units are large. 

In the following sections, we first introduce task assignment and briefly 
discuss the related issue of task scheduling. We also discuss load balancing 
in order  to differentiate it with the work presented here. Then, we 
formalize the task assignment problem and its related cost functions in a 
graph-theoretic framework. Finally, we survey other work, and present our 
own approaches and heuristic algorithms to solve the task assignment 
problem. 

Thc approaches we propose and evaluate in this paper are a heuristic 
based on the random neural model of Gelenbe [24, 25], a heuristic based 
on genetic algorithms [5, 27, 53], and the well-known simulated annealing 
heuristic [2, 5]. 
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2. P R O B L E M  DEFINITION 

Task assignment is simply the choice of a mapping of a set of tasks to a 
set of processors so as to achieve a predefined goal. This goal is usually 
represented as some cost function which may consider a combination of 
several criteria: equitable load sharing between the processors, maximiza- 
tion of the degree of parallelism, minimization of the amount (and delay) 
of communication between the processors, minimization of the execution 
time of the program, etc. In order  to be of use in achieving a satisfactory 
solution, the cost function must obviously include the constraints and 
characteristics of the programs involved (such as task execution times, 
amount  of intertask communication, precedence between tasks), and of 
the system architecture, including the nature and topology of interconnects 
between processing units, the speed of the processors, memory system 
properties (shared or private to processors, limits in memory size, etc.). 

Usually, the task assignment problem will not consider the actual 
schedule or order  in which the tasks are executed. On the other hand, task 
scheduling has been actively researched over the years and precisely 
addresses this specific issue [16, 29, 44, 50]. Thus in the present paper, we 
will not discuss scheduling issues. 

The related dynamic load balancing, or dynamic task assignment, prob- 
lem will allocate tasks during program execution [8, 34, 36, 38, 56] and use 
task migration to shift the workload in the system among processing units 
[7, 10, 19, 45, 52]. Dynamic load balancing algorithms use system-state 
information, and the workload may migrate from one processor to another 
during run-time. Task migration is a mechanism where a process on one 
machine is moved to another  machine, that is, it consists in interrupting 
the task executions and in transferring a sufficient amount of information 
so that the task can be executed in another  place. 

Policies for dynamic load balancing, or dynamic task assignment, will 
often use the following types of rules [10, 19, 45]: 

• the information rule, which describes how to collect and where to 
store the information used in making decisions; 

• the transfer rule, which is used to determine when to initiate an 
attempt to transfer a task and whether or not to transfer a task; 

• the location rule, which chooses the machine to or from which tasks 
will be transferred; 

• the selection rule, which is used to select a task for transfer. 
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Dynamic task assignment is obviously better suited to a processing 
environment which changes frequently due to variations in workload, or 
due to unexpected events such as processor slowdowns which may occur 
when a local load has higher priority, processor or network failures, 
processor withdrawal when a processor is preempted by a higher-priority 
job, etc. Dynamic load balancing is itself quite complex and the redistribu- 
tion process creates additional overhead that can adversely impact system 
performance. Krueger and Livny [35] show that while initial task assign- 
ment is capable of improving performance, the addition of task realloca- 
tion mechanisms, in many cases, can provide considerable additional 
improvement. 

In the sequel, we will only deal with the task assignment problem. 

2.1. GRAPH-THEORETIC A P P R O A C H  TO TASK A S S I G N M E N T  

The graph-theoretic approach to task assignment models a program as a 
graph, and then uses graph-theoretic techniques to solve the problem. 
Each task in the parallel program is modeled as a node in the graph, and 
communicating tasks are connected by an edge. Both nodes and arcs will, 
in general, be weighted, the first representing task execution times, while 
the latter represent communication times or amounts of data being ex- 
changed. Both directed and nondirected graphs may be used to represent 
programs. A nondirected graph will only represent information exchange 
and concurrent execution between tasks, while a directed graph will deal 
also with precedence relations between tasks. 

There is a very substantial literature about the graph-theoretic ap- 
proach to task assignment. Stone et al. [51] use the "max flow-minimal 
cut" theorem of Ford and Fulkerson [21] to search for an optimal assign- 
ment which will minimize the communication cost of a system with two 
processors. In [40], an extension of this approach to a system with n 
processors is proposed, by recursively using the same theorem combined 
with a greedy algorithm to find suboptimal assignments. The approach is 
augmented to include the interference cost, which reflects the degree of 
incompatibility between tasks. In [41], the same author describes two 
heuristic algorithms to find suboptimal assignments of tasks to processors. 
Both algorithms model the task assignment problem as a graph-partition- 
ing problem and show that an appropriate goal is the minimization of the 
total interprocessor communication cost while meeting a constraint on the 
number of tasks assigned to each processor. Shen et al. [49] present a 
graph-matching approach using the minimax criterion, based on both 
minimization of interprocessor communication and balance of processor 
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loading. Task assignment is transformed into a type of graph matching, 
called weak homomorphism. The search of the optimal weak homomor- 
phism corresponds to the optimal task assignment. Both [12] and [54] 
propose to use the critical-path notion to assign tasks to processors so as to 
minimize program execution time based on task graph precedence. Ercal 
et al. [20] present a recursive algorithm based on the Kernighan-Lin 
bisection heuristic for the effective mapping of the tasks of a parallel 
program onto a hypercube parallel architecture. Heuristic algorithms are 
potentially fast, though some (such as those which are based on simulated 
annealing) can be rather slow. However, they are not guaranteed to yield 
an optimal solution. 

2.2. HEURISTIC A L G O R I T H M S  FOR TASK A S S I G N M E N T  

Much work on approximate algorithms has been devoted to the mini- 
mization of the communication time resulting from task assignment [18, 
22], while other work has also included the minimization of execution time 
[49, 14]. Other research also considers the effect of precedence constraints 
[15]. Task assignment in real-time systems [47] requires that deadlines be 
taken into consideration; in [28], the execution time and the degree of 
parallelism are also optimized while also considering finite memory capac- 
ity and task delay. In [13], both load balancing and processor capacity 
constraints are discussed in the context of real-time and have as a goal the 
minimization of the communication cost. 

Ere [18] presents an algorithm called "2 module clustering" that finds 
task pairs to be assigned to the same processor. This procedure is run until 
all the candidate task pairs are grouped together. The goal is to minimize 
intergroup communication. An improvement of this approach is proposed 
in [48]. Chu [14] has proposed a similar approach where the minimization 
of communication cost and load balancing is accomplished in two phases. 
Tasks are first fused among a set of processors with a clustering algorithm 
until the number of processors is equal to the number of groups. Task 
fusion is realized in such a way that two tasks which communicate with 
each other are assigned either to the same processor or to neighbor 
processors. Then, one checks to see whether or not the system satisfies the 
load balancing constraint; if it does not, then some tasks are assigned from 
processors exceeding the tolerated level of load, to processors that are 
below this level, while minimizing the cost of communication. More 
recently, Chu et al. [15] present a method for optimal task allocation that 
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considers the effects of precedence, intertask communication, and cumula- 
tive execution time of each task to search for a minimum-bottleneck 
assignment. 

Bowen et al. [13] propose and evaluate a hierarchical clustering and 
allocation algorithm, called A divisible, that drastically reduces the inter- 
process communication cost while respecting lower and upper bounds of 
utilization of the processors. This algorithm is also well suited to dynamic 
task assignment. Baxter et al. [9] present an algorithm for static task 
allocation called LAST (Localized Allocation of Static Tasks), which suc- 
cessively allocates sets of tasks to processors, until a completed mapping is 
constructed. The next task to be allocated is chosen on the basis of 
connectivity with the previously allocated tasks, and then assigned to 
processors based on the speed with which the assignment can be com- 
puted. The overall cost of the mapping is the time required for the system 
to execute all the tasks. In [43], several algorithms are given to relocate 
processes when the system configuration changes. These algorithms modify 
the process and processor cluster trees generated during the original 
allocation, to reflect these changes. Generally, only a small subtree of the 
process cluster tree will have to be remapped to another small processor 
cluster subtree. Wells et al. [55] have developed a parallel task allocation 
methodology for nonbuffered message-passing environments. The algo- 
rithm incorporates a set of list-based heuristics (priority list, etc.) and 
graph-theoretical procedures (graph precedence layering, graph width, 
minimum cut graph traversal for partitioning, etc.) designed to balance 
computational load with communication requirements. In [54], Tantawi 
and Towsley study a distributed system composed of a set of heteroge- 
neous processors and develop a technique for static optimal probabilistic 
assignment. Other work on the static task assignment problem includes 
[32, 33, 37]. 

There has also been substantial work on dynamic load balancing and 
process migration. For example, [38, 39, 42] propose algorithms which 
migrate tasks from overloaded to less loaded processors, while in [38], a 
gradient procedure for moving tasks is examined. In [42], a drafting 
algorithm is proposed, based on the idea that a task only has to communi- 
cate with a subset of the other tasks. In [11], a model for dynamic task 
assignment based on "phases" is suggested, where a phase is a complete 
period of execution of a task, and the idea is to reconsider assignment for 
every distinct phase of a task. Krueger and Livny [35] study a variety of 
algorithms combining a local scheduling policy, such as processor sharing, 
with a global scheduling policy, such as load balancing, to achieve dynamic 
task allocation. In [26], an adaptive load balancing algorithm is proposed 
for both tasks and files. The gradient descent paradigm is used to make 
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on-line load balancing decisions for tasks, and balancing is based on 
redistribution of files so as to maintain an equal file load at all nodes. 
Other  work on dynamic task assignment using process migration includes 
[7, 8, 10, 19, 30, 36, 52, 56]. 

3. F R A M E W O R K  F O R  T H E  T W O  P R O B L E M S  OF TASK 
A S S I G N M E N T  A N D  T R A N S A C T I O N  C L U S T E R I N G  

The task assignment problem addresses the clustering of a set of  tasks 
on a set of  processors so as to optimize system performance.  Therefore,  we 
first describe the formal environment within which this problem is consid- 
ered. 

However,  this problem is very similar to another  important  question in 
distributed systems: how to cluster a set of transactions so that they will be 
executed on a set of  processors. In fact, one may consider that transactions 
are simply tasks of  a special kind. Thus, we will address here the frame- 
work for that problem as well. 

3.1. TASK GRAPHS AND TASK ASSIGNMENT 

In our study, we consider a distributed system architecture which 
consists of  a collection of K processors with distributed memory,  i.e., with 
sufficient memory  at each processor so that any one task can be executed. 
The processors are fully interconnected via a reliable high-speed network. 

A parallel program which will be executed in this environment  is 
represented by a task graph [23], which is denoted by 

I-I=( N , A , e , C ) ,  

where N = { 1  . . . . .  n} is the set of n tasks that compose the program, 
A = {aij} is the incidence matrix which describes the graph, and e, C are 
the amounts  of work related to task execution and to communication 
between tasks. Thus, e i defines the amount  of  w o r k - - o r  code to be 
execu ted - - in  task i =  1...n. Cii will denote  the amount  of  information 
transferred during communicat ion from task i to task j, if a i j  = 1. Clearly, 
ai/= 0 implies that Cij = O. 

Note that this model may describe precedence between tasks if the 
graph is directed and acyclic, or it may be used to represent a set of  tasks 
which interact via passage of information when the graph is not directed 
(in which case we will have aij =a/ i  for all i , j).  
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The task assignment problem at hand is that of  assigning the n tasks to 
K processors. This means that we have to fred a partition ( I I  1 . . . . .  I1 K) of  
the set of  n tasks in a way which optimizes performance,  as expressed by 
criteria such as: 

• The communicat ion between different processors of  the system must 
be kept to a minimum. 

• The load of the different processors must be balanced. 
• The total effective execution time of the parallel program must be 

minimized. 

3.2. CLUSTERING OF TRANSACTIONS 

Now consider once again the task graph model described above with the 
following differences in the manner  in which it is interpreted. We will 
consider a transaction graph: 

r = ( T , P , e , C ) ,  

where T={1 . . . . .  n} is a set of  n transactions, P={Pij} is the n-by-n 
precedence matrix which describes the transaction graph, i.e., the prece- 
dence dependencies between transactions, and the n-vector e and the 
n-by-n matrix C represent,  respectively, the amount  of  work related to 
transaction execution and the amount  of information or data granules 
shared between transactions. Thus, e i denotes the amount  of  w o r k - - o r  
code to be executed--assoc ia ted  with transaction i = 1...n. Cii will denote 
the number  of  information granules which are shared by transactions i 
and j. 

Clearly, we will seek an assignment of transactions to processing units 
so that related transactions are executed on the same processor. Related 
transactions would be those which share common information or data 
granules, as well as those which have precedence relations between them. 
Similarly, we would be seeking to cluster transactions so that those which 
have such affinities are placed in the same cluster. 

In the sequel, we shall follow the terminology of task assignment, but 
will keep in mind that a similar approach can be adopted for transaction 
clustering and that the same algorithms will apply to both problems. 
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4. TASK ASSIGNMENT AND T H E  R E L A T E D  
COST FUNC-q'IONS 

Contrary to load balancing, task assignment usually refers to decisions 
which are made before program execution, and which are not changed 
during program execution [6, 9, 17, 41]. Thus, this approach to distributing 
processes or tasks to processing units can be applied effectively to pro- 
grams whose run-time behavior is relatively predictable, since the decision 
must rely on a priori knowledge of the system and of the programs. There 
are numerous examples of  applications where this approach is useful, 
including major numerical algorithms such as matrix multiplication or 
inversion, solution methods for differential systems, as well as large nonnu- 
merical problems such as searching and sorting. 

As mentioned previously, task assignment is usually carried out so as to 
optimize a criterion which describes the "costs" or "benefits." 

The assignment itself can be characterized by a set of binary variables 
{X~p}, where i ranges over the set of tasks and p ranges over the set of 
processors. Thus, Xip is the binary variable whose value is 1 if task i is 
assigned to processor p, and is 0 otherwise. For an assignment to be valid, 
we must have that each task is assigned to exactly one processor: 

Xip.Xiq=O, foralli, p~q,  and ~,Xip=l f o r a l l i .  (1) 
p 

Since there are a variety of  considerations involved, there are different 
elements which enter into the cost function. We present the main compo- 
nents of the cost function below [4-6, 9, 11, 40]. 

The total program execution time. This cost depends on the "size" of 
the tasks, expressed in size of executed code, or in execution time on some 
normalized processor, and on the speed of the processors. It can be 
expressed as 

Ce= E Ee,UpX~p, 
p i 

where e i is the size of task i in number of  instructions executed, and Up is 
the (average) time of execution for one instruction on processor p. 
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The communication cost. This is often considered to be one of the 
most important factors which need to be minimized by the task assign- 
ment. It depends on the quantity of information to be exchanged between 
tasks, on the interconnection system topology, and on the speed of the 
communication links: 

C c =  E E E E ( f f e p i q j k - C f P q j p i k - f i j O p q k - f j i O q p ) g i p X j q ,  
p q4~p i j~ i  

where Cfepiqj is the time necessary for processor p to set up the 
communication between tasks i and j, if i is on p and j on q; note that 
bilatcral communication is assumed; C~/ is the total quantity of informa- 
tion transferred between tasks i and j; and Dpq is the average time needed 
to transfer a unit of information from processor p to processor q, after 
set-up is complete. 

The cost of  access to the files. Depending on where a task is situated, 
the time it will take to access files also varies. Specifically, we assume that 
some file f will be resident on (or accessible through) processor i, if the 
binary variable Yrp takes the value 1; otherwise it will be O. The corre- 
sponding cost term becomes 

= E E E E (CCF, qs+CCFqr i + V  D,,)XJrq. 
p q~p i f 

where V~f is the average quantity of information that task i needs from file 
f ,  and CCFpiqf (CCFqfpi) is the average time necessary for processor p to 
set up communication bctwcen task i on processor q and file f on q. 

The interference cost. This is meant to represent the fact that when 
several tasks are assigned to the same processor, specific overhead may be 
incurred due to competition both for the processor's attention and for the 
processor's communication subsystem's attention. This overhead is com- 
posed of: (i) the competition for the use of the processor's computation 
(Ie); (ii) the competition to use the communication services of the proces- 
sor ( I t ) :  

p i j~ i  
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where Ipiy is the interference cost between the tasks i and j for the 
processor p: 

= 1;ij + 1;,j., 

and 

I;ij = ( ei -t- ej ) Up , 

[;ij = E E (Cfepiqt-t-fitOpqd-ffepjqt~-fitOpq)gtq • 
q~p t~ist~j 

The cost o f  load imbalance. An optimal assignment must assure an 
equitable distribution of the workload between the processors. A possible 
form for this cost term is 

C B = l ( ~ p  (~i eiUpXip--~)2), 

where C E is the total (sequential) execution time of the task graph (or the 
total work it contains), and K is the number of processors in the system. 

5. THE HEURISTIC ALGORITHMS USED IN THIS STUDY 

Let us now turn to the three heuristic methods we have applied and 
compared for solving the task assignment problem, namely, a neural 
network approach, a genetic algorithm approach, and simulated annealing. 
All of these methods are compared below with the standard greedy 
algorithm heuristic for the task assignment problem. 

In the sequel, we describe each of the methods, including the basic 
principles involved, as well as the specific technique used for the problem 
at hand. Then we summarize the experimental results which have been 
obtained. 

5.1. THE RANDOM NEURAL NETWORK MODEL 

Neural networks have been used over the last several years to obtain 
heuristic solutions to hard optimization problems [46]. 

The random neural network model has been developed by Gelenbe [24, 
25] to represent a dynamic behavior inspired by natural neural systems. 
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This model has a remarkable  property called "product  form" which allows 
the direct computat ion of joint probability distributions of the neurons of  
the network. 

The  basic descriptor of a neuron in the random network [24, 25] is the 
probability of  excitation of the M neurons, q(i), i = 1 . . . . .  M, which satisfy 
a set of  nonlinear equations: 

~ = 1  q ( j ) r ( J )  P-  ( j ,  i) + A(i )  
q( i )  En l q ( j ) r ( j ) P - ( j , i ) + A ( i ) '  (2) 

j =  

where A(i) is the rate at which external excitation signals arrive to the ith 
neuron, A(i) is the rate at which external inhibition signals arrive to the 
ith neuron, r(i) is the rate at which neuron i fires when it is excited, 
and P+(i , j )  and P - ( i , j ) ,  respectively, are the probabilities that neuron 
i (when it is excited) will send an excitation or an inhibition signal to 
neuron j. 

Notice that this is a "frequency modulated"  model, which translates 
rates of  signal emission into excitation probabilities via (2). For instance, 
q( j ) r ( j )P+( j , i )  denotes the rate at which neuron j excites neuron i. Eq. 
(2) can also be viewed as a sigmoidal form which treats excitation (in the 
numerator)  asymmetrically with respect to inhibition (in the denominator).  

In order  to construct a heuristic for the solution of the task assignment 
problem, we construct a random neural network composed of M =  n K + K  
neurons, where n is the number  of  tasks and K is the number  of 
processors. 

For each (task, processor) pair (i,u), we will have a neuron Ix(i,u) 
whose role is to decide whether  task i should be assigned to processor u. 
We denote by q( Ix(i, u)) the probability that Ix(i, u) is excited, and if this 
probability is close to 1, we will be encouraged to assign i to u. 

In order to reduce communicat ion times in the assignment, and encour- 
age the placement  on the same processor of tasks which communicate  with 
each other, Ix(i, u) will excite any neuron IX(j, u) if aii= 1 or aji = 1, and 
will tend to inhibit Ix(j, v) if u 4= v. Similarly, p.(i, u) will inhibit Ix(j, u) if 
aii = O, a j i  = O. 

Neurons Ix(i, u) and Ix(i, v), u 4: v, will strongly inhibit each other so as 
to indicate that the same task should not be assigned to different proces- 
sors. 

For each processor u, we will have a neuron 7r(u) whose role is to let us 
know whether u is heavily loaded with work or not. If  u is very heavily 
loaded, it will a t tempt  to reduce the load on processor u by inhibiting 
neurons /z(i,u), and it will a t tempt  to increase the load on processors 
v ~ u by exciting neurons 7r(u). In the same way, Ix(i, u) will excite neuron 
7r(u) to provide information about processor u 's  load. 
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T h e  p a r a m e t e r s  o f  the  r a n d o m  ne twork  m o d e l  express ing  these  intui t ive 
cr i te r ia  a re  chosen  as follows: 

A( /~( i ,  u))  = random, 
A 0 r ( u ) )  =n/K, to express  the  des i rab le  equa l  load  shar ing  p rope r ty ,  
A(/z(i ,  u))  = 0, 
X(~r(u)) = 0, 
r( Iz(i, u)) = nK, 
r(~r(u)) =n + K -  1, 
r( ix(i, u))P÷( ~( i ,  u ) , / z ( j ,  v)) = 1 if (aij = 1 o r  aii= 1) and  u = v, 

0 o therwise .  
r( lz(i, u))P-(/z(i, u), tz( j ,  v))  = 1 if u 4: v and  (air = 1 o r  aji = 1 o r  i = j ) ,  

o r  if aij = 0 and aji = 0, 
0 o therwise .  

r( ix(i, u))P+(/z(i, u), ~r(v)) = 1 if u = v, 
0 o therwise .  

r(rr(u))e-(Tr(u),/z(i, u))  = 1 if q(Tr(u)) ~ 1, 
0 o therwise .  

r(1r(u))P+(Tr(u), 7r(v)) = 1 if q(~r(u)) .~ 1, 
0 o therwise .  

T h e  equa t ions  for  this  case  are  

q( t z ( i ,u ) )=(  Y'~ q( iz(j ,u))r( iz(j,u))P+( tx(j ,u) , lz( i ,u)))  
ai j  = 1 o r  a i t = 1 

(r(Ix(i,u))+ E E q(r( iz(j,v)) 
v ~ u  a ~ j =  1 o r  aft = 1 o r  i = j  

×P-( lx( j ,v) ,g( i ,u)) )  

+ E E q(r( t z ( j ,v ) )P-(  tz(j ,v), tz(i ,u)) 
U ai j  = 0 

6a  ji = 0 

+q( rr( u) )r( Tr( u) ) P- ( Tr( u),lz( i,u) ) ) }, 

h (  7r ( u ) )  "t- ~ , 7 =  1 q( ix(j, u))r( tx(j, u)) Pp( iz(j, u), rr(u)) 
K +Ev=l  q( ~r( v) )r( ~r( v) )P+ ( Tr( v), ~r( u) ) 

q( Tr( u) ) = r( Tr( u) ) 
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The results obtained with this approach and other methods are pre- 
sented and compared in Section 6. 

5.2. S IMULATED A N N E A L I N G  

Simulated annealing (SA) is a well-known method which uses the 
physical concepts of "temperature and energy" to represent and solve 
optimization problems using a Monte Carlo simulation. The objective 
function of the optimization problem is treated as the "energy" of a 
dynamical system, while temperature is introduced to randomize the 
search for a solution. The state of the dynamical system being simulated is 
related to the state of the system being optimized. 

This approach has been applied to numerous examples and is known to 
provide very good approximations to the optimal solution of combinatorial 
optimization problems. The simulation runs can be very lengthy, however, 
and the results are sensitive to the "cooling" procedure that is used, i.e., to 
the manner in which the temperature parameter is progressively reduced. 
The idea is to start with an initial solution, and then try to improve it 
through local changes. It is inspired by the analogy of a physical system 
behavior in the presence of a hot temperature bath. 

The procedure is the following: the system is submitted to high temper- 
ature and is then slowly cooled through a series of temperature levels. For 
each level, we search for the system's equilibrium state through elementary 
transformations which will be accepted if they reduce the system energy 

Enew <Eold" 
As the temperature decreases, smaller energy increments are accepted, 

and the system eventually settles into a low energy configuration that is 
very close, if not identical, to the global minimum. 

One has to consider the effect of the initial temperature, the cooling 
rate, and the threshold (Fac-accep) which define the probability that an 
uphill move of size A will be accepted. 

As there are many parameters which need to be set in order to obtain 
the best results, we have studied their influence one at a time, in hope of 
isolating their effect. In general, we select values that yield the quickest 
running time without sacrificing the quality of the solutions found. The 
best values of these parameters differ from application to application, and 
possibly, from instance to instance. 

If the initial temperature is very high, then the execution time of the 
heuristic becomes very long, and if it is low, then poor results are obtained 
[2, 5]. 
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The cooling rate def'mes the procedure to reduce the temperature: a 
rapid reduction yields a bad local optimum. Slow cooling is also expensive 
in CPU time. Good results have been obtained when the reduction factor 
of the temperature is 0.93 between two steps. For low temperature values, 
we consider that the system has reached a state near the minimum energy 
(ground state) which corresponds to an optimal solution; consequently, we 
decrease the temperature slowly (0.965) when the temperature is already 
low. Several functions have been proposed to determine the probability of 
acceptance, normally named "heat bath" functions. We use e x p ( - A / T ) ,  
where T is the temperature, because of its simplicity. 

There are other parameters which need to be fixed, including the 
number of iterations to be performed (L), and the number of identical 
iterations before it is considered that steady-state has been reached for a 
given temperature level. We have taken the total number of possible 
elementary transformations to be n ( K - 1 ) .  Practically, when an elemen- 
tary transformation has been proposed about 100 times at a given temper- 
ature, the equilibrium is considered to be reached, when the number of 
steps that are tested is lOOn(K- 1). 

5.3. GENETIC ALGORITHM 

This is an optimization method based on the principles of evolution in 
biology [27]. 

A genetic algorithm (GA) follows an "intelligent evolution" process for 
individuals based on the utilization of evolution operators such as muta- 
tion, inversion, selection, and crossover [27, 53, 2]. The idea is to find the 
best local optimum, starting from a set of initial solutions, by applying the 
evolution operators to successive solutions so as to generate new and 
better local minima. The procedure evolves until it remains trapped in a 
local minimum. 

The GA applied in our problem follows the following structure. We 
create a search space of n-vectors, where every vector v corresponds to a 
possible assignment of the n tasks. Each element v(i) of the vector takes a 
value from 1 to K, representing the assignment of task i to one of the K 
processing units. 

We use the cost function of the task assignment problem to determine 
the cost of every individual. We begin with an initial random population of 
individuals, and choose those individuals with minimal cost for generating 
new individuals using the genetic operators. We replace the worst individu- 
als of the current solution by the best individuals which are generated, and 
keep the population constant. The procedure stops if we exceed a given 
number of generations without finding a better solution. 
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In this method, several parameters play an important role, including the 
maximum number of generations (NUMGEN) tried before the procedure 
is stopped, the probability (PM) of use of the mutation operator after the 
crossover operator, and the size of the population. 

The first parameter determines the speed-up of the algorithm to reach 
an optimal solution. If the graph is large, a larger NUMGEN may be 
needed. We have found that a larger PM parameter will provide better 
results, especially for large graphs when the crossover operator is ineffec- 
tive, because it will tend to reproduce very similar individuals. A large PM 
implies a larger execution time. Talbi et al. [53] consider varying PM 
dynamically in the population. If the size of the population is large, we 
generally obtain better results, but the execution time is obviously corre- 
spondingly large. For small populations, rapid convergence is possible but 
an optimal or very good solution will seldom be found. 

6. PERFORMANCE COMPARISONS 

In this section, we summarize the results we have obtained for the three 
heuristics described above, which we compare with each other and with the 
well-known Kernighan-Lin graph-partitioning heuristic [31]. Comparisons 
are carried out for a large number of randomly generated task graphs 
having a number of nodes which varies widely. 

The evaluations are carried out on a large number of randomly gener- 
ated task graphs having different numbers of nodes n. The task graphs are 
randomly generated as follows. For a fixed n, and for each node of the 
graph, we draw at random the number d of neighbors of the node, from a 
uniform distribution running from 1 to some maximum value D. Each task 
in the node is assumed to have an execution time of 1, and the time for 
communicating between tasks is also taken to have unit value. 

Each simulation run then corresponds to the execution of one job (i.e., 
a single task graph) using only one method for the task assignment (RNA, 
GA, SA) and one set of parameters. 

The cost function which the Kernighan-Lin greedy heuristic, the genetic 
algorithm, and simulated annealing attempt to minimize is a composite 
function including the load balancing effect C B and the communication 
cost Co. It is given by 

C=~(~p (~i eiUpSip--~-) 2) 

+ E E E E (cce;  j + + + p qCp i j~=i 
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Fig. 1. Resulting cost function C for acyclic graphs. 

where we have taken e i = 1, and Cij = 1 when aij = 1. Also Opq = 1 and the 
set-up times for communications CCPpiqi are zero. 

The results we have obtained are summarized in Figures 1 to 4 .  These 
results are obtained for task graphs with D = 5, and for both directed 
acyclic task graphs and for undirected task graphs. 

We clearly see that of all the heuristics we have tested, simulated 
annealing provides the best results with respect to minimizing the cost 
function. The next best results are obtained using the genetic algorithm. 

800. 

,00 J ..... 
F~nc'io~30 o J . . . . . . . . . . . . . . .  -- 

20o ~ ................... 

20 50 100 500 
Number of Tasks 

Fig. 2. Resulting cost function C for series-parallel graphs. 
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Fig. 3. Execution time of the four heuristics for acyclic graphs. 

However, it is also quite clear that these two methods are very time- 
consuming in program execution time. On the other hand, the Kernighan- 
Lin heuristic yields the worst results, though it does run very fast. Interest- 
ingly enough, the random network model generally provides results which 
are substantially better than the Kernighan-Lin heuristic, yet substantially 
worse than either the genetic algorithm or simulated annealing. However, 
its run-time is comparable to that of the Kernighan-Lin heuristic even for 
very large task graphs. 
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Fig. 4. Execution time of the four heuristics for series-parallel graphs. 
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The experiments we have run show that the results obtained by each 
approximate method vary significantly as a function of the size of the 
graphs considered. However, the relative performance of each of the 
heuristics tested is consistent over different graph sizes. 

Simulated annealing consistently gives the best results, but with a 
substantially larger execution time than the other approaches. The execu- 
tion time for the genetic algorithm heuristic is also very large, and can 
sometimes be larger than that of simulated annealing. This is because the 
computations for each generation are time-consuming. 

The genetic algorithm and the random neural network-based heuristics 
could be easy to implement on a parallel machine, and this can consider- 
ably improve the speed obtained with these methods. 
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