
'~. lnforrnatics and
Computer Science

blOgllt. IRKIAd~

Task Assignment and Transaction Clustering Heuristics
for Distributed Systems

JOSE AGUILAR

EHEI, UFR de Mathernatiques et lnformatique, Universit~ Ren~ Descartes,
45 rue des Saints-Peres, 75006 Paris, France

and

EROL GELENBE

Department of Electrical Engineering~ Duke Unioersity, Durham, North Carolina 27708-0291

ABSTRACT

In this paper, we present and discuss the task assignment problem for distributed
systems. We also show how this problem is very similar to that of clustering transactions
for load balancing purposes and for their efficient execution in a distributed environ-
ment. The formalization of these problems in terms of a graph-theoretic representation
of a distributed program, or of a set of related transactions, is given. The cost function
which needs to be minimized by an assignment of tasks to processors or of transactions
to clusters is detailed, and we survey related work, as well as work on the dynamic load
balancing problem. Since the task assignment problem is NP-hard, we present three
novel heuristic algorithms that we have tested for solving it and compare them to the
well-known greedy heuristic. These novel heuristics use neural networks, genetic algo-
rithms, and simulated annealing. Both the resulting performance and the computational
cost for these algorithms are evaluated on a large number of randomly generated
program graphs of different sizes. ©Elsevier Science Inc. 1997

1. I N T R O D U C T I O N

The p rob lem of assigning each task in a parallel p rogram to some
processing uni t of the system has major impact on the resul t ing perfor-
mance . The p rob lem arises in all areas of parallel and dis t r ibuted compu-
tat ion, where programs are decomposed into tasks or processes, which
must then be assigned to processing uni ts for execution.

INFORMATION SCIENCES 97, 199-219 (1997)
© Elsex, ier Science Inc. 1997 0020-0255/97/$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0020-0255(96)00178-8

200 J. A G U I L A R AND E. G E L E N B E

In certain systems, this assignment is carried out dynamically at run-time;
this gives rise to the load balancing problem [26]. However, in many cases,
the user or the system will wish to exert explicit control over the assign-
ment of each task. This paper addresses the latter, which is known as the
task assignment problem.

This problem is very similar to that of clustering transactions for
load balancing purposes and for their efficient execution in a distrib-
uted environment. These problems can be formalized in terms of a graph-
theoretic representation of a distributed program, or of a set of related
transactions. The issue is then to minimize an adequate and meaningful
cost function by an assignment of tasks to processors or of transactions to
clusters.

The task assignment problem is usually addressed using a graph-
theoretic representation of the program. Typically, a distributed program is
represented as a collection of tasks, which correspond to nodes in a graph.
The arcs of the graph may represent communication between tasks, or
precedence relations, or both. Task assignment is then formulated as a
problem of partitioning the graph so as to minimize some cost function.
Typically, each element (or block) in the partition will represent a set of
tasks which will be assigned to the same processor. The cost function may
represent a combination of communication costs (which will increase as
tasks are dispersed among a larger number of processing units) and
computation times (which will typically decrease as the number of tasks
included in any block becomes smaller). The assignment is then chosen to
minimize this combined cost.

In the general case, since this problem is NP-hard, approximate heuris-
tics are needed because exact solutions would require excessive execution
times when the number of tasks in the program and the number of
processing units are large.

In the following sections, we first introduce task assignment and briefly
discuss the related issue of task scheduling. We also discuss load balancing
in order to differentiate it with the work presented here. Then, we
formalize the task assignment problem and its related cost functions in a
graph-theoretic framework. Finally, we survey other work, and present our
own approaches and heuristic algorithms to solve the task assignment
problem.

Thc approaches we propose and evaluate in this paper are a heuristic
based on the random neural model of Gelenbe [24, 25], a heuristic based
on genetic algorithms [5, 27, 53], and the well-known simulated annealing
heuristic [2, 5].

TASK ASSIGNMENT AND TRANSACTION C LU S TERIN G 201

2. P R O B L E M DEFINITION

Task assignment is simply the choice of a mapping of a set of tasks to a
set of processors so as to achieve a predefined goal. This goal is usually
represented as some cost function which may consider a combination of
several criteria: equitable load sharing between the processors, maximiza-
tion of the degree of parallelism, minimization of the amount (and delay)
of communication between the processors, minimization of the execution
time of the program, etc. In order to be of use in achieving a satisfactory
solution, the cost function must obviously include the constraints and
characteristics of the programs involved (such as task execution times,
amount of intertask communication, precedence between tasks), and of
the system architecture, including the nature and topology of interconnects
between processing units, the speed of the processors, memory system
properties (shared or private to processors, limits in memory size, etc.).

Usually, the task assignment problem will not consider the actual
schedule or order in which the tasks are executed. On the other hand, task
scheduling has been actively researched over the years and precisely
addresses this specific issue [16, 29, 44, 50]. Thus in the present paper, we
will not discuss scheduling issues.

The related dynamic load balancing, or dynamic task assignment, prob-
lem will allocate tasks during program execution [8, 34, 36, 38, 56] and use
task migration to shift the workload in the system among processing units
[7, 10, 19, 45, 52]. Dynamic load balancing algorithms use system-state
information, and the workload may migrate from one processor to another
during run-time. Task migration is a mechanism where a process on one
machine is moved to another machine, that is, it consists in interrupting
the task executions and in transferring a sufficient amount of information
so that the task can be executed in another place.

Policies for dynamic load balancing, or dynamic task assignment, will
often use the following types of rules [10, 19, 45]:

• the information rule, which describes how to collect and where to
store the information used in making decisions;

• the transfer rule, which is used to determine when to initiate an
attempt to transfer a task and whether or not to transfer a task;

• the location rule, which chooses the machine to or from which tasks
will be transferred;

• the selection rule, which is used to select a task for transfer.

202 J. AGUILAR AND E. GELENBE

Dynamic task assignment is obviously better suited to a processing
environment which changes frequently due to variations in workload, or
due to unexpected events such as processor slowdowns which may occur
when a local load has higher priority, processor or network failures,
processor withdrawal when a processor is preempted by a higher-priority
job, etc. Dynamic load balancing is itself quite complex and the redistribu-
tion process creates additional overhead that can adversely impact system
performance. Krueger and Livny [35] show that while initial task assign-
ment is capable of improving performance, the addition of task realloca-
tion mechanisms, in many cases, can provide considerable additional
improvement.

In the sequel, we will only deal with the task assignment problem.

2.1. GRAPH-THEORETIC A P P R O A C H TO TASK A S S I G N M E N T

The graph-theoretic approach to task assignment models a program as a
graph, and then uses graph-theoretic techniques to solve the problem.
Each task in the parallel program is modeled as a node in the graph, and
communicating tasks are connected by an edge. Both nodes and arcs will,
in general, be weighted, the first representing task execution times, while
the latter represent communication times or amounts of data being ex-
changed. Both directed and nondirected graphs may be used to represent
programs. A nondirected graph will only represent information exchange
and concurrent execution between tasks, while a directed graph will deal
also with precedence relations between tasks.

There is a very substantial literature about the graph-theoretic ap-
proach to task assignment. Stone et al. [51] use the "max flow-minimal
cut" theorem of Ford and Fulkerson [21] to search for an optimal assign-
ment which will minimize the communication cost of a system with two
processors. In [40], an extension of this approach to a system with n
processors is proposed, by recursively using the same theorem combined
with a greedy algorithm to find suboptimal assignments. The approach is
augmented to include the interference cost, which reflects the degree of
incompatibility between tasks. In [41], the same author describes two
heuristic algorithms to find suboptimal assignments of tasks to processors.
Both algorithms model the task assignment problem as a graph-partition-
ing problem and show that an appropriate goal is the minimization of the
total interprocessor communication cost while meeting a constraint on the
number of tasks assigned to each processor. Shen et al. [49] present a
graph-matching approach using the minimax criterion, based on both
minimization of interprocessor communication and balance of processor

TASK ASSIGNMENT AND TRANSACTION CLUSTERING 203

loading. Task assignment is transformed into a type of graph matching,
called weak homomorphism. The search of the optimal weak homomor-
phism corresponds to the optimal task assignment. Both [12] and [54]
propose to use the critical-path notion to assign tasks to processors so as to
minimize program execution time based on task graph precedence. Ercal
et al. [20] present a recursive algorithm based on the Kernighan-Lin
bisection heuristic for the effective mapping of the tasks of a parallel
program onto a hypercube parallel architecture. Heuristic algorithms are
potentially fast, though some (such as those which are based on simulated
annealing) can be rather slow. However, they are not guaranteed to yield
an optimal solution.

2.2. HEURISTIC A L G O R I T H M S FOR TASK A S S I G N M E N T

Much work on approximate algorithms has been devoted to the mini-
mization of the communication time resulting from task assignment [18,
22], while other work has also included the minimization of execution time
[49, 14]. Other research also considers the effect of precedence constraints
[15]. Task assignment in real-time systems [47] requires that deadlines be
taken into consideration; in [28], the execution time and the degree of
parallelism are also optimized while also considering finite memory capac-
ity and task delay. In [13], both load balancing and processor capacity
constraints are discussed in the context of real-time and have as a goal the
minimization of the communication cost.

Ere [18] presents an algorithm called "2 module clustering" that finds
task pairs to be assigned to the same processor. This procedure is run until
all the candidate task pairs are grouped together. The goal is to minimize
intergroup communication. An improvement of this approach is proposed
in [48]. Chu [14] has proposed a similar approach where the minimization
of communication cost and load balancing is accomplished in two phases.
Tasks are first fused among a set of processors with a clustering algorithm
until the number of processors is equal to the number of groups. Task
fusion is realized in such a way that two tasks which communicate with
each other are assigned either to the same processor or to neighbor
processors. Then, one checks to see whether or not the system satisfies the
load balancing constraint; if it does not, then some tasks are assigned from
processors exceeding the tolerated level of load, to processors that are
below this level, while minimizing the cost of communication. More
recently, Chu et al. [15] present a method for optimal task allocation that

204 J. AGUILAR AND E. GELENBE

considers the effects of precedence, intertask communication, and cumula-
tive execution time of each task to search for a minimum-bottleneck
assignment.

Bowen et al. [13] propose and evaluate a hierarchical clustering and
allocation algorithm, called A divisible, that drastically reduces the inter-
process communication cost while respecting lower and upper bounds of
utilization of the processors. This algorithm is also well suited to dynamic
task assignment. Baxter et al. [9] present an algorithm for static task
allocation called LAST (Localized Allocation of Static Tasks), which suc-
cessively allocates sets of tasks to processors, until a completed mapping is
constructed. The next task to be allocated is chosen on the basis of
connectivity with the previously allocated tasks, and then assigned to
processors based on the speed with which the assignment can be com-
puted. The overall cost of the mapping is the time required for the system
to execute all the tasks. In [43], several algorithms are given to relocate
processes when the system configuration changes. These algorithms modify
the process and processor cluster trees generated during the original
allocation, to reflect these changes. Generally, only a small subtree of the
process cluster tree will have to be remapped to another small processor
cluster subtree. Wells et al. [55] have developed a parallel task allocation
methodology for nonbuffered message-passing environments. The algo-
rithm incorporates a set of list-based heuristics (priority list, etc.) and
graph-theoretical procedures (graph precedence layering, graph width,
minimum cut graph traversal for partitioning, etc.) designed to balance
computational load with communication requirements. In [54], Tantawi
and Towsley study a distributed system composed of a set of heteroge-
neous processors and develop a technique for static optimal probabilistic
assignment. Other work on the static task assignment problem includes
[32, 33, 37].

There has also been substantial work on dynamic load balancing and
process migration. For example, [38, 39, 42] propose algorithms which
migrate tasks from overloaded to less loaded processors, while in [38], a
gradient procedure for moving tasks is examined. In [42], a drafting
algorithm is proposed, based on the idea that a task only has to communi-
cate with a subset of the other tasks. In [11], a model for dynamic task
assignment based on "phases" is suggested, where a phase is a complete
period of execution of a task, and the idea is to reconsider assignment for
every distinct phase of a task. Krueger and Livny [35] study a variety of
algorithms combining a local scheduling policy, such as processor sharing,
with a global scheduling policy, such as load balancing, to achieve dynamic
task allocation. In [26], an adaptive load balancing algorithm is proposed
for both tasks and files. The gradient descent paradigm is used to make

TASK A S S I G N M E N T A N D T R A N S A C T I O N C L U S T E R I N G 205

on-line load balancing decisions for tasks, and balancing is based on
redistribution of files so as to maintain an equal file load at all nodes.
Other work on dynamic task assignment using process migration includes
[7, 8, 10, 19, 30, 36, 52, 56].

3. F R A M E W O R K F O R T H E T W O P R O B L E M S OF TASK
A S S I G N M E N T A N D T R A N S A C T I O N C L U S T E R I N G

The task assignment problem addresses the clustering of a set of tasks
on a set of processors so as to optimize system performance. Therefore, we
first describe the formal environment within which this problem is consid-
ered.

However, this problem is very similar to another important question in
distributed systems: how to cluster a set of transactions so that they will be
executed on a set of processors. In fact, one may consider that transactions
are simply tasks of a special kind. Thus, we will address here the frame-
work for that problem as well.

3.1. TASK GRAPHS AND TASK ASSIGNMENT

In our study, we consider a distributed system architecture which
consists of a collection of K processors with distributed memory, i.e., with
sufficient memory at each processor so that any one task can be executed.
The processors are fully interconnected via a reliable high-speed network.

A parallel program which will be executed in this environment is
represented by a task graph [23], which is denoted by

I-I=(N , A , e , C) ,

where N = { 1 n} is the set of n tasks that compose the program,
A = {aij} is the incidence matrix which describes the graph, and e, C are
the amounts of work related to task execution and to communication
between tasks. Thus, e i defines the amount of w o r k - - o r code to be
execu ted - - in task i = 1...n. Cii will denote the amount of information
transferred during communicat ion from task i to task j, if a i j = 1. Clearly,
ai/= 0 implies that Cij = O.

Note that this model may describe precedence between tasks if the
graph is directed and acyclic, or it may be used to represent a set of tasks
which interact via passage of information when the graph is not directed
(in which case we will have aij =a/ i for all i , j).

206 J. A G U I L A R A N D E. G E L E N B E

The task assignment problem at hand is that of assigning the n tasks to
K processors. This means that we have to fred a partition (I I 1 I1 K) of
the set of n tasks in a way which optimizes performance, as expressed by
criteria such as:

• The communicat ion between different processors of the system must
be kept to a minimum.

• The load of the different processors must be balanced.
• The total effective execution time of the parallel program must be

minimized.

3.2. CLUSTERING OF TRANSACTIONS

Now consider once again the task graph model described above with the
following differences in the manner in which it is interpreted. We will
consider a transaction graph:

r = (T , P , e , C) ,

where T={1 n} is a set of n transactions, P={Pij} is the n-by-n
precedence matrix which describes the transaction graph, i.e., the prece-
dence dependencies between transactions, and the n-vector e and the
n-by-n matrix C represent, respectively, the amount of work related to
transaction execution and the amount of information or data granules
shared between transactions. Thus, e i denotes the amount of w o r k - - o r
code to be executed--assoc ia ted with transaction i = 1...n. Cii will denote
the number of information granules which are shared by transactions i
and j.

Clearly, we will seek an assignment of transactions to processing units
so that related transactions are executed on the same processor. Related
transactions would be those which share common information or data
granules, as well as those which have precedence relations between them.
Similarly, we would be seeking to cluster transactions so that those which
have such affinities are placed in the same cluster.

In the sequel, we shall follow the terminology of task assignment, but
will keep in mind that a similar approach can be adopted for transaction
clustering and that the same algorithms will apply to both problems.

TASK ASSIGNMENT AND TRANSACTION CLU S TERIN G 207

4. TASK ASSIGNMENT AND T H E R E L A T E D
COST FUNC-q'IONS

Contrary to load balancing, task assignment usually refers to decisions
which are made before program execution, and which are not changed
during program execution [6, 9, 17, 41]. Thus, this approach to distributing
processes or tasks to processing units can be applied effectively to pro-
grams whose run-time behavior is relatively predictable, since the decision
must rely on a priori knowledge of the system and of the programs. There
are numerous examples of applications where this approach is useful,
including major numerical algorithms such as matrix multiplication or
inversion, solution methods for differential systems, as well as large nonnu-
merical problems such as searching and sorting.

As mentioned previously, task assignment is usually carried out so as to
optimize a criterion which describes the "costs" or "benefits."

The assignment itself can be characterized by a set of binary variables
{X~p}, where i ranges over the set of tasks and p ranges over the set of
processors. Thus, Xip is the binary variable whose value is 1 if task i is
assigned to processor p, and is 0 otherwise. For an assignment to be valid,
we must have that each task is assigned to exactly one processor:

Xip.Xiq=O, foralli, p~q, and ~,Xip=l f o r a l l i . (1)
p

Since there are a variety of considerations involved, there are different
elements which enter into the cost function. We present the main compo-
nents of the cost function below [4-6, 9, 11, 40].

The total program execution time. This cost depends on the "size" of
the tasks, expressed in size of executed code, or in execution time on some
normalized processor, and on the speed of the processors. It can be
expressed as

Ce= E Ee,UpX~p,
p i

where e i is the size of task i in number of instructions executed, and Up is
the (average) time of execution for one instruction on processor p.

208 J. A G U I L A R AND E. G E L E N B E

The communication cost. This is often considered to be one of the
most important factors which need to be minimized by the task assign-
ment. It depends on the quantity of information to be exchanged between
tasks, on the interconnection system topology, and on the speed of the
communication links:

C c = E E E E (f f e p i q j k - C f P q j p i k - f i j O p q k - f j i O q p) g i p X j q ,
p q4~p i j~ i

where Cfepiqj is the time necessary for processor p to set up the
communication between tasks i and j, if i is on p and j on q; note that
bilatcral communication is assumed; C~/ is the total quantity of informa-
tion transferred between tasks i and j; and Dpq is the average time needed
to transfer a unit of information from processor p to processor q, after
set-up is complete.

The cost of access to the files. Depending on where a task is situated,
the time it will take to access files also varies. Specifically, we assume that
some file f will be resident on (or accessible through) processor i, if the
binary variable Yrp takes the value 1; otherwise it will be O. The corre-
sponding cost term becomes

= E E E E (CCF, qs+CCFqr i + V D,,)XJrq.
p q~p i f

where V~f is the average quantity of information that task i needs from file
f , and CCFpiqf (CCFqfpi) is the average time necessary for processor p to
set up communication bctwcen task i on processor q and file f on q.

The interference cost. This is meant to represent the fact that when
several tasks are assigned to the same processor, specific overhead may be
incurred due to competition both for the processor's attention and for the
processor's communication subsystem's attention. This overhead is com-
posed of: (i) the competition for the use of the processor's computation
(Ie); (ii) the competition to use the communication services of the proces-
sor (I t) :

p i j~ i

TASK ASSIGNMENT AND TRANSACTION CLUSTERING 209

where Ipiy is the interference cost between the tasks i and j for the
processor p:

= 1;ij + 1;,j.,

and

I;ij = (ei -t- ej) Up ,

[;ij = E E (Cfepiqt-t-fitOpqd-ffepjqt~-fitOpq)gtq •
q~p t~ist~j

The cost o f load imbalance. An optimal assignment must assure an
equitable distribution of the workload between the processors. A possible
form for this cost term is

C B = l (~ p (~i eiUpXip--~)2),

where C E is the total (sequential) execution time of the task graph (or the
total work it contains), and K is the number of processors in the system.

5. THE HEURISTIC ALGORITHMS USED IN THIS STUDY

Let us now turn to the three heuristic methods we have applied and
compared for solving the task assignment problem, namely, a neural
network approach, a genetic algorithm approach, and simulated annealing.
All of these methods are compared below with the standard greedy
algorithm heuristic for the task assignment problem.

In the sequel, we describe each of the methods, including the basic
principles involved, as well as the specific technique used for the problem
at hand. Then we summarize the experimental results which have been
obtained.

5.1. THE RANDOM NEURAL NETWORK MODEL

Neural networks have been used over the last several years to obtain
heuristic solutions to hard optimization problems [46].

The random neural network model has been developed by Gelenbe [24,
25] to represent a dynamic behavior inspired by natural neural systems.

210 J. A G U I L A R A N D E. G E L E N B E

This model has a remarkable property called "product form" which allows
the direct computat ion of joint probability distributions of the neurons of
the network.

The basic descriptor of a neuron in the random network [24, 25] is the
probability of excitation of the M neurons, q(i), i = 1 M, which satisfy
a set of nonlinear equations:

~ = 1 q (j) r (J) P- (j , i) + A(i)
q(i) En l q (j) r (j) P - (j , i) + A (i) ' (2)

j =

where A(i) is the rate at which external excitation signals arrive to the ith
neuron, A(i) is the rate at which external inhibition signals arrive to the
ith neuron, r(i) is the rate at which neuron i fires when it is excited,
and P+(i , j) and P - (i , j) , respectively, are the probabilities that neuron
i (when it is excited) will send an excitation or an inhibition signal to
neuron j.

Notice that this is a "frequency modulated" model, which translates
rates of signal emission into excitation probabilities via (2). For instance,
q(j) r (j)P+(j , i) denotes the rate at which neuron j excites neuron i. Eq.
(2) can also be viewed as a sigmoidal form which treats excitation (in the
numerator) asymmetrically with respect to inhibition (in the denominator).

In order to construct a heuristic for the solution of the task assignment
problem, we construct a random neural network composed of M = n K + K
neurons, where n is the number of tasks and K is the number of
processors.

For each (task, processor) pair (i,u), we will have a neuron Ix(i,u)
whose role is to decide whether task i should be assigned to processor u.
We denote by q(Ix(i, u)) the probability that Ix(i, u) is excited, and if this
probability is close to 1, we will be encouraged to assign i to u.

In order to reduce communicat ion times in the assignment, and encour-
age the placement on the same processor of tasks which communicate with
each other, Ix(i, u) will excite any neuron IX(j, u) if aii= 1 or aji = 1, and
will tend to inhibit Ix(j, v) if u 4= v. Similarly, p.(i, u) will inhibit Ix(j, u) if
aii = O, a j i = O.

Neurons Ix(i, u) and Ix(i, v), u 4: v, will strongly inhibit each other so as
to indicate that the same task should not be assigned to different proces-
sors.

For each processor u, we will have a neuron 7r(u) whose role is to let us
know whether u is heavily loaded with work or not. If u is very heavily
loaded, it will a t tempt to reduce the load on processor u by inhibiting
neurons /z(i,u), and it will a t tempt to increase the load on processors
v ~ u by exciting neurons 7r(u). In the same way, Ix(i, u) will excite neuron
7r(u) to provide information about processor u 's load.

T A S K A S S I G N M E N T A N D T R A N S A C T I O N C L U S T E R I N G 211

T h e p a r a m e t e r s o f the r a n d o m ne twork m o d e l express ing these intui t ive
cr i te r ia a re chosen as follows:

A(/~(i , u)) = random,
A 0 r (u)) =n/K, to express the des i rab le equa l load shar ing p rope r ty ,
A(/z(i , u)) = 0,
X(~r(u)) = 0,
r(Iz(i, u)) = nK,
r(~r(u)) =n + K - 1,
r(ix(i, u))P÷(~(i , u) , / z (j , v)) = 1 if (aij = 1 o r aii= 1) and u = v,

0 o therwise .
r(lz(i, u))P-(/z(i, u), tz(j , v)) = 1 if u 4: v and (air = 1 o r aji = 1 o r i = j) ,

o r if aij = 0 and aji = 0,
0 o therwise .

r(ix(i, u))P+(/z(i, u), ~r(v)) = 1 if u = v,
0 o therwise .

r(rr(u))e-(Tr(u),/z(i, u)) = 1 if q(Tr(u)) ~ 1,
0 o therwise .

r(1r(u))P+(Tr(u), 7r(v)) = 1 if q(~r(u)) .~ 1,
0 o therwise .

T h e equa t ions for this case are

q(t z (i ,u))=(Y'~ q(iz(j ,u))r(iz(j,u))P+(tx(j ,u) , lz(i ,u)))
ai j = 1 o r a i t = 1

(r(Ix(i,u))+ E E q(r(iz(j,v))
v ~ u a ~ j = 1 o r aft = 1 o r i = j

×P-(lx(j ,v) ,g(i ,u)))

+ E E q(r(t z (j ,v))P-(tz(j ,v), tz(i ,u))
U ai j = 0

6a ji = 0

+q(rr(u))r(Tr(u)) P- (Tr(u),lz(i,u))) },

h (7r (u)) "t- ~ , 7 = 1 q(ix(j, u))r(tx(j, u)) Pp(iz(j, u), rr(u))
K +Ev=l q(~r(v))r(~r(v))P+ (Tr(v), ~r(u))

q(Tr(u)) = r(Tr(u))

212 J. AGUILAR AND E. GELENBE

The results obtained with this approach and other methods are pre-
sented and compared in Section 6.

5.2. S IMULATED A N N E A L I N G

Simulated annealing (SA) is a well-known method which uses the
physical concepts of "temperature and energy" to represent and solve
optimization problems using a Monte Carlo simulation. The objective
function of the optimization problem is treated as the "energy" of a
dynamical system, while temperature is introduced to randomize the
search for a solution. The state of the dynamical system being simulated is
related to the state of the system being optimized.

This approach has been applied to numerous examples and is known to
provide very good approximations to the optimal solution of combinatorial
optimization problems. The simulation runs can be very lengthy, however,
and the results are sensitive to the "cooling" procedure that is used, i.e., to
the manner in which the temperature parameter is progressively reduced.
The idea is to start with an initial solution, and then try to improve it
through local changes. It is inspired by the analogy of a physical system
behavior in the presence of a hot temperature bath.

The procedure is the following: the system is submitted to high temper-
ature and is then slowly cooled through a series of temperature levels. For
each level, we search for the system's equilibrium state through elementary
transformations which will be accepted if they reduce the system energy

Enew <Eold"
As the temperature decreases, smaller energy increments are accepted,

and the system eventually settles into a low energy configuration that is
very close, if not identical, to the global minimum.

One has to consider the effect of the initial temperature, the cooling
rate, and the threshold (Fac-accep) which define the probability that an
uphill move of size A will be accepted.

As there are many parameters which need to be set in order to obtain
the best results, we have studied their influence one at a time, in hope of
isolating their effect. In general, we select values that yield the quickest
running time without sacrificing the quality of the solutions found. The
best values of these parameters differ from application to application, and
possibly, from instance to instance.

If the initial temperature is very high, then the execution time of the
heuristic becomes very long, and if it is low, then poor results are obtained
[2, 5].

TASK ASSIGNMENT AND TRANSACTION CLUSTERING 213

The cooling rate def'mes the procedure to reduce the temperature: a
rapid reduction yields a bad local optimum. Slow cooling is also expensive
in CPU time. Good results have been obtained when the reduction factor
of the temperature is 0.93 between two steps. For low temperature values,
we consider that the system has reached a state near the minimum energy
(ground state) which corresponds to an optimal solution; consequently, we
decrease the temperature slowly (0.965) when the temperature is already
low. Several functions have been proposed to determine the probability of
acceptance, normally named "heat bath" functions. We use e x p (- A / T) ,
where T is the temperature, because of its simplicity.

There are other parameters which need to be fixed, including the
number of iterations to be performed (L), and the number of identical
iterations before it is considered that steady-state has been reached for a
given temperature level. We have taken the total number of possible
elementary transformations to be n (K - 1) . Practically, when an elemen-
tary transformation has been proposed about 100 times at a given temper-
ature, the equilibrium is considered to be reached, when the number of
steps that are tested is lOOn(K- 1).

5.3. GENETIC ALGORITHM

This is an optimization method based on the principles of evolution in
biology [27].

A genetic algorithm (GA) follows an "intelligent evolution" process for
individuals based on the utilization of evolution operators such as muta-
tion, inversion, selection, and crossover [27, 53, 2]. The idea is to find the
best local optimum, starting from a set of initial solutions, by applying the
evolution operators to successive solutions so as to generate new and
better local minima. The procedure evolves until it remains trapped in a
local minimum.

The GA applied in our problem follows the following structure. We
create a search space of n-vectors, where every vector v corresponds to a
possible assignment of the n tasks. Each element v(i) of the vector takes a
value from 1 to K, representing the assignment of task i to one of the K
processing units.

We use the cost function of the task assignment problem to determine
the cost of every individual. We begin with an initial random population of
individuals, and choose those individuals with minimal cost for generating
new individuals using the genetic operators. We replace the worst individu-
als of the current solution by the best individuals which are generated, and
keep the population constant. The procedure stops if we exceed a given
number of generations without finding a better solution.

214 J. AGUILAR AND E. GELENBE

In this method, several parameters play an important role, including the
maximum number of generations (NUMGEN) tried before the procedure
is stopped, the probability (PM) of use of the mutation operator after the
crossover operator, and the size of the population.

The first parameter determines the speed-up of the algorithm to reach
an optimal solution. If the graph is large, a larger NUMGEN may be
needed. We have found that a larger PM parameter will provide better
results, especially for large graphs when the crossover operator is ineffec-
tive, because it will tend to reproduce very similar individuals. A large PM
implies a larger execution time. Talbi et al. [53] consider varying PM
dynamically in the population. If the size of the population is large, we
generally obtain better results, but the execution time is obviously corre-
spondingly large. For small populations, rapid convergence is possible but
an optimal or very good solution will seldom be found.

6. PERFORMANCE COMPARISONS

In this section, we summarize the results we have obtained for the three
heuristics described above, which we compare with each other and with the
well-known Kernighan-Lin graph-partitioning heuristic [31]. Comparisons
are carried out for a large number of randomly generated task graphs
having a number of nodes which varies widely.

The evaluations are carried out on a large number of randomly gener-
ated task graphs having different numbers of nodes n. The task graphs are
randomly generated as follows. For a fixed n, and for each node of the
graph, we draw at random the number d of neighbors of the node, from a
uniform distribution running from 1 to some maximum value D. Each task
in the node is assumed to have an execution time of 1, and the time for
communicating between tasks is also taken to have unit value.

Each simulation run then corresponds to the execution of one job (i.e.,
a single task graph) using only one method for the task assignment (RNA,
GA, SA) and one set of parameters.

The cost function which the Kernighan-Lin greedy heuristic, the genetic
algorithm, and simulated annealing attempt to minimize is a composite
function including the load balancing effect C B and the communication
cost Co. It is given by

C=~(~p (~i eiUpSip--~-) 2)

+ E E E E (cce; j + + + p qCp i j~=i

TASK ASSIGNMENT AND T R A N S A C T I O N C L U S T E R I N G 215

600

RNM = "4"'" / 1

400 Kern = "~- J -

 nctio.

100 ~ ~

o - - ~ r , . ,
20 50 100 500

Number of Tasks

Fig. 1. Resulting cost function C for acyclic graphs.

where we have taken e i = 1, and Cij = 1 when aij = 1. Also Opq = 1 and the
set-up times for communications CCPpiqi are zero.

The results we have obtained are summarized in Figures 1 to 4 . These
results are obtained for task graphs with D = 5, and for both directed
acyclic task graphs and for undirected task graphs.

We clearly see that of all the heuristics we have tested, simulated
annealing provides the best results with respect to minimizing the cost
function. The next best results are obtained using the genetic algorithm.

800.

,00 J
F~nc'io~30 o J --

20o ~

20 50 100 500
Number of Tasks

Fig. 2. Resulting cost function C for series-parallel graphs.

E x e c u t i o n
Time

100 500
N u m b e r o f T a s k s

90O0

80OO

7O00

6000

5000

4000

3O0O

20OO

lOOO

o-7- .
2 0 5 o

216 J. A G U I L A R AND E. G E L E N B E

Fig. 3. Execution time of the four heuristics for acyclic graphs.

However, it is also quite clear that these two methods are very time-
consuming in program execution time. On the other hand, the Kernighan-
Lin heuristic yields the worst results, though it does run very fast. Interest-
ingly enough, the random network model generally provides results which
are substantially better than the Kernighan-Lin heuristic, yet substantially
worse than either the genetic algorithm or simulated annealing. However,
its run-time is comparable to that of the Kernighan-Lin heuristic even for
very large task graphs.

50O00

45O60

40000

35OOO

3OOOO

Execution 25000
Time 2O0OO

15OOO

IOO00

5OOO

f..--4

0 F - -
2O 50 I00 5OO

Number of Tasks

Fig. 4. Execution time of the four heuristics for series-parallel graphs.

TASK ASSIGNMENT AND T R A N S A C T I O N C L U S T E R I N G 217

The experiments we have run show that the results obtained by each
approximate method vary significantly as a function of the size of the
graphs considered. However, the relative performance of each of the
heuristics tested is consistent over different graph sizes.

Simulated annealing consistently gives the best results, but with a
substantially larger execution time than the other approaches. The execu-
tion time for the genetic algorithm heuristic is also very large, and can
sometimes be larger than that of simulated annealing. This is because the
computations for each generation are time-consuming.

The genetic algorithm and the random neural network-based heuristics
could be easy to implement on a parallel machine, and this can consider-
ably improve the speed obtained with these methods.

R E F E R E N C E S

1. J. Aguilar, Comparison between the random neural network model and other
optimization combinatorial methods for large acyclic graph partitioning problem, in:
Proceedings of the 7th International Symposium on Computer and Information Sci-
ences, ISCIS VII, Antalya, Turkey, 1992.

2. J. Aguilar, Combinatorial optimization methods: A study of graph partitioning
problem, in: Proceedings of the Panamerican Workshop on Applied and Computational
Mathematics, PWACM, Caracas, Venezuela, 1993.

3. J. Aguilar, Heuristic algorithms for task assignment of parallel programs, in:
Proceedings of the International Conference on Massivety Parallel Processing, Applica-
tions and Development, Delft, Holland, 1994.

4. J. Aguilar, Resolution du probl~me de placement de t~ches avec de techniques
d'optimisation combinatoires, in: Proceedings 6~me Rencontres Francophones du
parallelisme, Lyon, France, 1994.

5. J. Aguilar, L'Allocation de t~ches, l'6quilibrage de charge et l'optimisation combina-
toire, Ph.D. Thesis, Ren6 Descartes University, Paris, France, 1995.

6. F. Andre and J. Pazat, Le placement de t~ches sur une architecture parall~ie, Tech.
Sci. Inf. 7:385-401 (1988).

7. S. Baker and K. Milncr, A process migration harness for dynamic load balancing, in:
Proceedings of the 14th Technical Meeting of the World Occam and Transputer User
Group, 1991.

8. A. Barak and A. Shilob, A distributed load balancing policy for a multicomputer,
Software Pract. Exp. 15:901-913 (1985).

9. J. Baxter and J. Patel, The LAST algorithm: A heuristic based static allocation
algorithm, in: Proceedings of the International Conference on Parallel Processing,
Pennsylvania, 1989.

10. G. Bernard, D. Steve, and M. Simatic, Placement et migration dans les syst~mes
repartis faiblement coupl6s, Tech. Sci. Inf. 10:307-337 (1989).

11. S. Bokhari, On the mapping problem, IEEE Trans. Computers C-30:207-214 (1981).
12. S. Bokhari, Assignment Problems in Parallel and Distributed Computing, Kluwer

Academic, Boston, MA, 1987.

218 J. A G U I L A R A N D E. G E L E N B E

13. N. Bowen, C. Nikolaou, and A. Ghafoor, On the assignment problem of arbitrary
process systems to heterogeneous distributed computer systems, IEEE Tram'. Com-
puters 41:257-273 (1992).

14. W. Chu, L. Holloway, M. Lan, and K. Ere, Task allocation in distributed data
processing, Computers, pp. 57-68 (1980).

15. W. Chu and M. Lan, Task allocation and precedence relations for distributed real
time systems, IEEE Trans. Computers C-36:667-679 (1987).

16. J. Colin, Probl~mes d'ordonnancement avec drlais de communication: Complexit6
et algorithmes, Ph.D. Thesis, Paris VI University, Paris, France, 1989.

17. D. Du, Allocation de t'~ches dans les syst~mcs rcconfigurables de type statique,
Ph.D. Thesis, Orsay University, France, 1992.

18. K. Efe, Heuristic models of task assignment scheduling in distributed systems,
Computers 15:50-56 (1982).

19. M. Eskicioglu, Process migration in distributed systems: A comparative survey,
Technical Report, University of Alberta, 1990.

20. F. Ercal, J. Ramanujam, and P. Sadayappan, Task allocation onto a hypercube by
recursive mincut bipartitioning, J. Paral. Distrib. Comput. 10:35-44 (1990).

21. L. Ford and D. Fulkerson, Flows in Networks, Princeton University, Princeton, N J,
1962.

22. A. Gabrielian and D. Tyler, Optimal object allocation in distributed computer
systems, in: Proceedings of the 4th International Conference on Distributed Computing
Systems, Cambridge, MA, 1984.

23. E. Gclenbe, MultiprocessorPerformance, Wiley, New York and Chichester, 1989.
24. E. Gelenbe, Random neural networks with positive and negative signals and

product form solution, Neural Comput. 1(4):502-511 (1989).
25. E. Gclcnbc, Stable random neural networks, Neural Comput. 2(2):239-247 (1990).
26. E. Gelenbe and R. Kushwaha, Incremental dynamic load balancing in distributed

system, in: Proceedings of the International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), Durham, NC,
1994.

27. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

28. E. Houstis, Module allocation of real-time applications to distributed systems, IEEE
Trans. Software Engrg. 16:699-709 (1990).

29. J. Hwang, Y. Chow, F. Anger, and C. Lee, Scheduling precedence graphs in systems
with interprocessor communication times, SlAM J. Comput. 18:244-257 (1989).

30. W. Joosen and P. Verbaeten, On the use of process migration in distributed
systems, Microproc. Microprogr. 28:49-52 (1990).

31. B. Kcrnighan and S. Lin, An efficient algorithm for partitioning graphs, Bell Syst.
Tech. J. (1970).

32. C. Kim and H. Kameda, An algorithm for optimal static load balancing in dis-
tributed computer systems, IEEE Trans. Computers 41:381-384 (1992).

33. S. Kim and J. Browne, A general approach to mapping of parallel computations
upon multiprocessors architectures, in: Proceedings of the International Conference
on Parallel Processing, Pennsylvania, 1988.

34. O. Krcmin and J. Kramer, Methodical analysis of adaptive load sharing algorithms,
IEEE Trans. Paral. Distrib. Syst. 3:747-759 (1992).

35. P. Krueger and M. Livny, The diverse objectives of distributed scheduling policies,
in: Proceedings of the 7th International Conference on Distributed Computing Systems,
Berlin, Germany, 1987.

T A S K A S S I G N M E N T A N D T R A N S A C T I O N C L U S T E R I N G 219

36. H. Kuchen and A. Wagener, Comparison of dynamic load balancing strategies,
J. Paral. Distrib. Proc. 303-314 (1991).

37. K. Kyrimis, Placement of processes and files in distributed systems, Technical
Report, Princeton University, 1990.

38. H. Lin and M. Keller, The gradient model load balancing policies, IEEE Trans.
Software Engrg. SE-13:32-38 (1987).

39. H. Lin and C. Raghavendra, A dynamic load-balancing policy with a central job
dispatcher, IEEE Trans. Software Engrg. 18:148-157 (1992).

40. V. Lo, Heuristic algorithms for task assignment in distributed systems, IEEE Trans.
Computers 37:1384-1397 (1988).

41. V. Lo, Algorithms for static task assignment and symmetric contraction in dis-
tributed computer systems, Technical Report, University of Oregon, 1988.

42. L. Ni, C. Xu, and T. Gendreau, A distributed drafting algorithm for load balancing,
IEEE Trans. Software Engrg. SE-11:1153-1159 (1985).

43. C. Nikolaou, D. Ferguson, G. Leitner, and G. Kar, Allocation and relocation of
processes in a distributed computer system, Curt. Adv. Distrib. Comput. Commun. 1
(1986).

44. C. Papadirnitriou and J. Tsitsiklis, On stochastic scheduling with in-tree precedence
constraint, SIAMJ. Comput. 16(1):1-6 (1987).

45. K. Park, Process migration policies in distributed operating systems, Trans. Inf.
Proc. 31:1080-1090 (1990).

46. G. Peretto, Neural networks and combinatorial problems, in: Proceedings of the
International Conference on Neural Networks, Paris, France, 1990.

47. K. Ramamritham, J. Stankovic, and W. Zhao, Distributed scheduling of tasks with
deadlines and resource requirements, IEEE Trans. Computers 38:1110-1123 (1989).

48. M. Schaar, K. Efe, L. Delcambre, and L. Bhuyan, Load balancing with network
cooperation, in: Proceedings of the l lth Conference on Distributed Computing Sys-
tems, Arlington, VA, 1991.

49. C. Shen and W. Tsai, A graph matching approach to optimal task assignment in
distributed computing systems using minimax criterion, IEEE Trans. Computers
C-34:197-203 (1985).

50. N. Shirazi and M. Wang, Analysis and evaluation of heuristic methods for static task
scheduling, J. Paral. Distrib. Comput. 10:222-232 (1990).

51. H. Stone, Multiprocessor scheduling with the aid of network flow algorithms, IEEE
Trans. Software Engrg. SE-3:85-93 (1977).

52. J. Soh and V. Thomas, Process migration for load balancing in distributed systems,
in: Proceedings of TENCON'87, 1987, pp. 888-892.

53. E. Talbi and P. Bessiere, Un algorithme g6n&ique massivement parall~le pour le
probl~me de partitionement de graphes, Rapport de Recherche, Laboratoire de
G~nie Informatique, Grenoble, France, 1991.

54. A. Tantawi and D. Towslcy, Optimal static load balancing in distributed computer
systems, J. ACM 32:445-465 (1985).

55. B. Wells, D. Jackson, and C. Caroll, A parallel task allocation methodology for
nonbuffered message-passing environments, Technical Report, University of Al-
abama, 1989.

56. C. Xu and F. Lau, Analysis of the generalized dimension exchange method for
dynamic load balancing, J. Paral. Distrib. Comput. 16:386-393 (1992).

Received 1 October 1995; revL, ed 1 October 1996

