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Abstract

In this paper is presented a distributed algorithm based on Ant System concepts,
called Combinatorial Ant System, to solve dynamic combinatorial optimization prob-
lems. Our approach consists of mapping the solution space of the dynamic combina-
torial optimization problem in the space where the ants will walk, and defining the
transition probability and the pheromone update formula of the Ant System accord-
ing to the objective function of the optimization problem. We test our approach on a
telecommunication problem.
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Resumen

En este articulo es presentado un algoritmo distribuido basado en conceptos de
los Sistemas de Hormiga, llamado Sistema Combinatorio de Hormigas, para resolver
problemas de optimización combinatoria dinámicos. Nuestro enfoque consiste en usar
el espacio de solución del problema de optimización combinatoria dinámico bajo es-
tudio como el espacio dónde las hormigas caminarán, y en definir la probabilidad de
transición y la función de actualización del feromona del Sistema de Hormiga según
la función objetivo del problema de optimización combinatorio. Nosotros probamos
nuestro algoritmo en un problema de telecomunicaciones.
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1 Introduction

Real Ants are capable of finding the shortest path from a food source to their nest without
using visual cues by exploiting pheromone information [1]. While walking, ants deposit
pheromone trails on the ground and follow pheromone previously deposited by other ants.
The above behavior of real ants has inspired the Ants System (AS), an algorithm in which
a set of artificial ants cooperate to the solution of a problem by exchanging information via
pheromone deposited on a graph. Dorigo [2] proposed the first AS in his Ph.D. thesis. AS
has been applied to the traveling salesman problem and quadratic assignment problem,
among others combinatorial optimization problems [1-9]. On the other hand, different
groups have been working on various extended versions of the AS paradigm (Ant-Q, etc.)
[1, 5, 6].

In the AS applied to the Traveling Salesman Problem (TSP), a set of cooperating
agents, called ants, cooperate to find good solutions to TSP’s using an indirect form
of communication through pheromone trails that they deposit on the edges of the TSP
graph while building solutions. Informally, each ant constructs a TSP solution in an
constructive way: it adds new cities to a partial solution by exploiting information gained
from both past experience and a greedy heuristic. Memory takes the form of pheromone
trails deposited by ants on TSP edges, while heuristic information is simply given by the
edge’s weights. There are two reasons to use the AS on the TSP: a) The TSP graph
represents the solution space of this problem; b) The AS transition function has goals
similar to the TSP objective function.

That is not the case for other combinatorial optimization problems. We have pro-
posed a distributed algorithm based on AS concepts, called the Combinatorial Ant System
(CAS), to solve static discrete-state combinatorial optimization problems [8, 9]. The main
novel idea introduced by our model is the definition of a general procedure to solve Com-
binatorial Optimization Problems using AS. In our approach, the graph that describes the
solution space of the Combinatorial Optimization Problem is mapped on the AS graph,
and the transition function and the pheromone update formula of the AS are built accord-
ing to the objective function of the Combinatorial Optimization Problem. In this paper we
test the CAS on dynamic combinatorial optimization problems, that is, problems changing
over time. Particularly, we study a telecommunication problem. This paper is organized
as follows: Section 2 presents the AS and the CAS. Section 3 summarizes the experiments.
Finally, conclusions of this work are presented in Section 4.

2 Theoretical Aspects

2.1 Ant Systems

In general, the behavior of Ant Colonies is impressing to perform their objective of survival.
It is derived from a process of Collective Behavior. This process is based on the ant com-
munication capacities, which define the inter-relations between them. These inter-relations
permit the transmission of information that each ant is processing. The communication
among agents (ants) is made through a trace, called pheromone. Thus, an ant leaves a
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certain quantity of pheromone trail when it moves. In addition, the probability that an
ant follows a path depends on the number of ants having taken the path (a large quantity
of pheromone in a path means a large probability that it will be visited).

AS is the progenitor of all research efforts with ant algorithms and it was first applied to
the TSP problem [2, 4]. Algorithms inspired by AS have manifested as heuristic methods
that permit resolving combinatorial optimization problems. These algorithms mainly rely
on their versatility, robustness and operations based on populations. The procedure is
based on the search of agents called ”ants”, that is, agents with very simple capabilities
that try to simulate the behavior of the ants.

AS utilizes a graph representation (AS graph) where each edge (r, s) has a desirability
measure γrs, called pheromone, which is updated at run time by artificial ants. Informally,
the AS works as follows. Each ant generates a complete tour by choosing the nodes
according to a probabilistic state transition rule; ants prefer to move to nodes that are
connected by short edges, which have a high pheromone presence. Once all ants have
completed their tours, a global pheromone updating rule is applied: a fraction of the
pheromone evaporates on all edges, and then each ant deposits an amount of pheromone
on edges which belong to its tour in proportion to how short this tour was. Then, we
continue with a new iteration of the process.

The state transition rule used by ant system is given by the equation (1), which gives
the probability with which ant k in city r chooses to move to the city s while building its
tth tour (transition probability from node r to node s for the kth ant) (see [1-5]):

P k
rs(t) =

{
[γrs(t)]α[ηrs]β∑

u∈Jk
r
[γru(t)]α[ηru]β

if s ∈ Jk
r

0 otherwise,
(1)

where γrs(t) is the pheromone at iteration t, ηrs is the inverse of the distance between
city r and city s (1/d(r, s)), Jk

r is the set of nodes that remain to be visited by ant k
positioned on node r and, β and α are two adjustable parameters which determine the
relative importance of trail intensity (γrs) versus visibility (ηrs). In AS, the global updating
rule is implemented as follows. Once all ants have built their tours, pheromone (that is,
the trail intensity) is updated on all edges according to the equation (see [1-5]):

γrs(t) = (1 − ρ)γrs(t − 1) +
m∑

k=1

∆γk
rs(t) (2)

where ρ is a coefficient such that (1 − ρ) represents the trail evaporation in one iteration
(tour), m is the number of ants, and ∆γk

rs(t) is the quantity per unit of length of trail
substance laid on edge (r, s) by the kth ant in that iteration:

∆γk
rs(t) =

{
1/Lk(t) if edge (r, s) belongs to the tour completed by ant k
0 otherwise,

where Lk(t) is the length of the tour performed by ant k at iteration t. Pheromone
updating is intended to allocate a greater amount of pheromone to shorter tours. The
general algorithm is summarized as follows:
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1. Place the m ants randomly on the nodes of the AS graph

2. Repeat until system reaches a stable solution

2.1 For i = 1, n
2.1.1 For j = 1,m
2.1.1.1. Choose the node s to move to, according to the transition probability

(equation (1))
2.1.1.2. Move the ant m to the node s

2.2 Update the pheromone using the pheromone update formula (equation (2))

Different versions to improve the classic AS have been proposed [1, 5, 6]. In a most
recent work [1], they propose an extension to AS, called ACS (Ant Colony System). The
ACS differs from the previous one on:

• The state transition rule provides a direct way to balance between exploration of new
edges and exploitation of a priori and accumulated knowledge about the problem.

• The global updating rule is applied only to edges, which belong to the best ant tour.

• A local pheromone-updating rule is applied while ants construct a solution.

2.2 The Combinatorial Ant System

There are two reasons for using AS on the TSP. First, the TSP graph can be directly
mapped on the AS graph. Secondly, the transition function has similar goals to the
TSP. This is not the case for other combinatorial optimization problems. In [8, 9], we
have proposed a distributed algorithm based on AS concepts, called the CAS, to solve
Combinatorial Optimization Problems. In our approach, we need to define:

• The graph that describes the solution space of the Combinatorial Optimization Prob-
lem (COP graph). The solution space is defined by a graph where the nodes represent
partial possible solutions to the problem, and the edges the relationship between the
partial solutions. This graph will be used to define the AS graph (this is the graph
where the ants will walk).

• The transition function and the pheromone update formula of the CAS, which are
built according to the objective function of the Combinatorial Optimization Problem.

In this way, we can solve any Combinatorial Optimization Problem. Each ant builds
a solution walking through the AS graph using a transition rule and a pheromone update
formula defined according to the objective function of the Combinatorial Optimization
Problem. The main steps of CAS are:

a) Build the AS graph.

b) Define the transition function and pheromone update formula of the CAS.

c) Execute the classical AS procedure (or one of the improved versions).
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2.2.1 Building the AS graph

The first step is to build the COP graph, then we define the AS graph with the same
structure of the COP graph. The AS graph has two weight matrices: the first one is defined
according to the COP graph and registers the relationship between the elements of the
solution space (COP matrix). The second one registers the pheromone trail accumulated
on each edge (pheromone matrix). This weight matrix is calculated/updated according
to the pheromone update formula (equation (2)). When the incoming edge weights of the
pheromone matrix for a given node become high, this node has a high probability to be
visited. On the other hand, if an edge between two nodes of the COP matrix is low then
it means that ideally if one of these nodes belongs to the final solution then the other
one must belong too. If the edge is equal to infinite then it means that the nodes are
incompatible (they can’t be at the same time in a final solution).

We define a data structure to store the solution that every ant k is building. This
data structure is a vector (Ak) with a length equal to the length of the solution (number
of nodes that an ant must visit). For a given ant, the vector keeps each node of the AS
graph that it visits.

2.2.2 Defining the transition function and the pheromone update formula

The state transition rule and the pheromone update formula are built using the objective
function of the combinatorial optimization problem. The transition function between
nodes is given by:

Tf
(
γrs(t), Cfk

r→s(z)
)

=
γrs(t)α

Cfk
r→s(z)β

where Cfk
f→s(z) is the cost of the partial solution that is being built by the ant k when

it crosses the edge (r, s) if it is in the position r, z − 1 is the current length of the partial
solution (current length of Ak), and, α and β are two adjustable parameters that control
the relative weight of trail intensity (γrs(t)) and the cost function. In the CAS, the
transition probability is as follows: an ant positioned on node r choose the node s to move
according to a probability P k

rs(t), which is calculated according to the equation given by:

P k
rs(t) =





Tf(γrs(t),Cfk
r→s(z))∑

u∈Jk
r

Tf(γru(t),Cfk
r→u(z)) if s ∈ Jk

r

0 otherwise.
(3)

When β = 0 we exploit previous solutions (only trail intensity is used) and when α = 0 we
explore the solution space (a stochastic greedy algorithm is obtained). A tradeoff between
quality of partial solutions and trail intensity is necessary. The pheromone updating rule
is defined by the equation (2), where the quantity per unit of length of trail substance
laid on edge (r, s) by the kth ant in that iteration (∆γk

rs(t)) is calculated according to the
following formula:

∆γk
rs(t) =

{
1/Ck

f (t) if edge (r, s) has been crossed by ant k

0 otherwise,
(4)
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where Ck
f (t) is the value of the cost function (objective function) of the solution proposed

by ant k at iteration t.
The general procedure of our approach is summarized as follows:

1. Generation of the AS graph.

2. Definition of the state transition rule and the pheromone update formula, according
to the Combinatorial Optimization Problem.

3. Repeat until system reaches a stable solution

3.1 Place the m ants on different nodes of the AS graph.

3.2 For i = 1, n

3.2.1 For j = 1,m
3.2.1.1. Choose the node s to move to, according to the transition probability

(equation (3)).
3.2.1.2. Move the ant m to the node s.

3.3 Update the pheromone using the pheromone update formula (equations (2) and
(4)).

3 Experiments

In this section we test our approach in a dynamic combinatorial optimization problem and
compare the results with [1].

3.1 The dynamic combinatorial optimization problem

A dynamic combinatorial optimization problem is a problem changing over time. That is,
it is a distributed time-varying problem which is a current challenger in the combinatorial
optimization domain. The dynamic problem that we are going to study is the routing in
telecommunication networks. Routing is a mechanism that allows information transmitted
over a network to be routed from a source to a destination through a sequence of interme-
diate switching/buffering stations or nodes. Routing is necessary because in real system
not all nodes are directly connected. The problem to be solved by any routing system
is to direct traffic from sources to destinations maximizing network performances (e.g.,
rate of call rejection, throughput, etc.). In real networks traffic, the conditions and the
structure of the network are constantly changing, for this reason are necessary dynamic
routing algorithms.

4 Resolution using the Combinatorial Ant System

We can use our approach for point to point or point to multipoint requests. In the case
of N nodes, N ants are launched to look for the best path to the destination. For a
multipoint request with m destinations, N ×m ants are launched. The source node keeps
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in memory all paths that have been found by ants. Then, it chooses the best one. Finally,
the path is reserved and a connection is eventually set up (in the case of a multipoint
request, it is spanning trees found by ants to the multiple destination nodes which are
compared).

4.0.1 Building the AS graph

For this case we use the pheromone matrix of our AS graph like the routing table of
each node of the network. Remember that this matrix is where the pheromone trail is
deposited. Particularly, each node i has ki neighbors, is characterized by a capacity Ci, a
spare capacity Si, and by a routing table Ri = [ri

n,d(t)]ki,N−1. Each row of the routing table
corresponds to a neighbor node and each column to a destination node. The information
of each row of the node i is stored in the respective place of the pheromone matrix (p.e.,
in the position i, j if ki neighbor = j). The value ri

n,d(t) is used as a probability. That
is, the probability that a given ant, where the destination is node d, be routed from node
i to neighbor node n. We use the COP matrix of our AS graph to describe the network
structure. If there are link or node failures, then the COP graph is modified to show that.
In addition, in each arc of the COP graph is stored the estimation of the trip times from
the current node i to its neighbor node j, denoted Γi = {µi→j , σ

2
i→j}, where µi→j is the

average estimated trip times from node i to node j, and σ2
i→j is its associated variance.

Γi allows maintenance a local idea of the global network’s status at node i. Finally, we
define a cost function for every node, called Cij(t), that is the cost associated with this
link. It is a dynamic variable that depends on the link’s load, and is calculated at time t
using Γi.

4.0.2 Defining the transition function and the pheromone update formula

In our model (equation (3)), Ck
f (t) is the cost of kth ant’s route, ∆γk

is(t) is the amount of
pheromone deposited by ant k if edge (i, s) belongs to the kth ant’s route (it is used to
update the routing table Ri in each node), and P k

ij(t) is the probability that ant k chooses
to hop from node i to node j. Ant k updates its route cost each time it traverses a link
Ck

f (t) = Ck
f (t)+Cij(t). An ant collects the experience queues and traffic load, which allows

it to define information about the state of the network. Once it has reached its destination
node d, ant k goes all the way back to its source node through all the nodes visited during
the forward path, and updates the routing tables (pheromone concentration) and the set
of estimations of trip times of the nodes that belong to its path (COP graph) as follows:

• The times elapsed of the path i → d(Ti→d) in the current kth ant’s route is used to
update the means and variance values of Γi. Ti→d gives an idea about the goodness
of the followed route because it is proportional to its length from a point of view
and from a traffic congestion point of view.

• The routing table Ri is changed by incrementing the probability ri
i−1,d(t) associated

with the neighbor node i− 1 that belongs to the kth ant’s route and the destination
node d, and decreasing the probabilities ri

n,d(t) associated with other neighbor nodes
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n, where n 6= i − 1, for the same destination (like a pheromone trail). The values
stored in Γi are used to score the trip times so that they can be transformed in a
reinforcement signal r = f1(Γi), r ∈ [0, 1]. r is used by the current node i as a
positive reinforcement for the node i − 1:

ri
i−1,d(t + 1) = ri

i−1,d(t)(1 − r) + r,

and the probabilities ri
n,d(t) for destination d of other neighboring nodes n receive a

negative reinforcement

ri
n,d(t + 1) = ri

n,d(t)(1 − r) for n 6= i − 1.

Finally, Cij(t) is updated using Γi too

Cij(t + 1) =
µi→j

σ2
i→j

4.1 Result Analysis

We have tested our algorithm on a set of model networks among which is US NSFNET-T1
(composed by 14 nodes and 21 bidirectional links, with a bandwidth of 1.5 Mbits and
propagation delay with range from 4 to 20 ms). A number of different traffic patterns,
both in term of spatial and temporal characteristics, have been considered. The network
performance is expressed in throughput (delivered bits/s) and delivered time from source
to destination. We compare our algorithm with the AntNET approach and the Shortest
Path First algorithm (SPF) [1, 7]. Due to the space, we present part of the result, see
[9] for the rest of experiments. Figures 1 and 2 show some results regarding throughput
and packet delay for a Poisson temporal and random spatial distribution of traffic (this is
the traffic pattern used) on NSFNET. These results are exemplar of the behavior of our
algorithms, results obtained on other traffic pattern ant network topology combinations
are qualitatively equivalent (see [9] for more details).
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Figure 1: Throughput comparison between the algorithms

Figure 2: Packet delay comparison between the algorithms

The throughput of our approach is at least as good as that AntNET and the packet
delays are much better than that of the others. Particularly, at the beginning our approach
has not the best performance because it has learnt the current network situation, etc.
After, it can optimize the route to be chose in an impressing way.

5 Conclusions

In this work we have presented the versatile of the CAS to solve dynamic combinatorial
optimization problems. Our system is suited for both static discrete-state and dynamic
combinatorial optimization problems. This versatility has been exemplified by the pos-
sibility of using the same model to solve different combinatorial optimization problems
(static and dynamic) of various sizes. Our approach can be applied to any combinatorial
optimization problems by defining an appropriate graph representation of the solution
space of the problem considered, the dynamic procedure to update that representation,
and an objective function that guides our heuristic to build feasible solutions. In our
approach, the dynamic environment of the combinatorial optimization problem is defined
through the COP matrix (it form part of the space where the ants will walk (AS graph)).
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Ants walk through this space according to a set of probabilities updated by a state tran-
sition and a pheromone update rule defined according to the objective function of the
combinatorial optimization problem considered.

We have tested our approach on a dynamic optimization problem (the routing prob-
lem). The results show that our approach obtains good performances, but we must improve
the execution time of a given iteration and reduce the number of iterations. In general,
CAS allows making an exhaustive searched, in this way it can obtain better performances
than previous heuristic routing algorithms. Furthermore, we will develop a parallel version
of our approach, we will test our approach over other dynamic combinatorial optimization
problems. In addition, for the routing problem, we will test with a general packet-switching
network avoiding the “symmetric path costs”, and we will develop a network failure man-
agement system based on this approach.
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