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Abstract. The present work evaluates the use of the evolutionary programming in problems of Industrial Automation. It is well
known that technical of the evolutionary calculation as theGenetic Algorithms have provided satisfactory results when facing
problems of automatic control, especially of continuous type, while the study of discrete dynamics have been relegated. In
this work, an identification technique based on the evolutionary programming is proposed for Discrete-Event Dynamic Systems
(DEDS), using finite state machines (like the machines of Mealy).
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1. Introduction

The systems designed by the man present dynamic
highly not lineal that cannot be modeled for continu-
ous dynamic in many cases, reason why it is neces-
sary to use Discrete-Event Dynamic Systems (DEDS).
These systems are managed through transitions. When
are modeled continuous dynamics, they are attached
to physical laws. In the case of the discrete events
dynamics, the models are formulated according to the
experience of the “engineer”, and frequently it is nec-
essary to take into account some considerations and/or
restrictions to obtain a model to events based on some
points of view.

A Discrete-Event System (DES) describes the be-
havior by means of the enumeration (or occurrence) of
events from an initial state, or by means of the history
of the changes of states happened starting from an ini-
tial state. Several ways exist of studying the behavior
of the DEDS. Particularly, we will remit ourselves to
work with Sequential Machines.
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On the other hand, the identification of systems tries
to follow the behavior of inputs-outputs of an unknown
plant using an appropriate model. In the continuous
dynamic, the behavior of an unknown plant can be
modeled as a non lineal function of the input sign,
the sign of previous inputs and the previous outputs of
the plant. The purpose is to select a model that can
reproduce the behavior of the plant exactly.

Some intelligent techniques as the Neural Networks,
the Fuzzy Logic and the Evolutionary algorithms [1,
7–9] have been used to create models of continuous
plants, and this way to solve a great quantity of identi-
fication problems. But until now, the intelligent tech-
niques applied to the identification problem of discrete
dynamic are very limited.

Some interesting recent works in the domain of iden-
tification problems are: In [6] they present a survey
of the state-of-the art about the identification of DES
within the framework of Petri nets (identification of
discrete event systems using Petri nets) [11] defines the
identification problem for DES as the problem of in-
ferring a Petri Net model using the observation of the
events and the available output vectors, that correspond
to the markings of the measurable places. Two cases
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are studied considering different levels of the system
knowledge. In the first case the place and transition sets
are assumed known. In the second case the transition
and place sets are assumed unknown and only an upper
bound of the number of places is given [12] presents a
comparative study of identification approaches of DES.
It focuses on three different approaches described in
recent publications: (i) a progressive identification ap-
proach in which several algorithms have been proposed
allowing the online identification of concurrent DES,
(ii) an offline input-output approach, in which, through
an efficient technique oriented to fault diagnosis, it is
obtained a nondeterministic FA representing exactly
the observed behaviour, (iii) and an offline approach
based on an integer linear programming (ILP) tech-
nique, which leads to free-labelled PN models repre-
senting observed sequences. In [4] is presented a sys-
tems identification method, for discrete time linear sys-
tems, based on an evolutionary approach, which allows
achieving the selection of a suitable structure and the
parameters estimation, using non conventional objec-
tive functions. This algorithm incorporates parametric
crossover and parametric mutation along a weighted
gradient direction. In [16] they focus on the identifica-
tion of large-scale DES for the purpose of fault detec-
tion. The properties of a model to be useful for fault
detection are discussed. As appropriate model basis
the nondeterministic autonomous automaton is chosen
and metrics to evaluate the accuracy of the identified
model are defined. An identification algorithm which
allows setting the accuracy of the identified model is
presented. In [10] they propose a new mathematical
framework in the context of a Mealy machine and lan-
guage theory, for system identification (SI) for DES.
They part of the idea of identifying system dynamics
from externally observed sample paths. The objective
of SI is to derive minimal valid automata that duplicate
the input-output relation in the observed sample paths,
while ensuring minimal realization. An algorithm to
compute minimal valid automata and special properties
regarding SI are explained with illustrative examples.
Real time identification and dependence of the expert
knowlegement about the real system for the identifica-
tion model are several of the limitations of these works,
which we try to solve using intelligence techniques.

The purpose of this work is to apply a technique of
the Evolutionary Computing to the study of Discrete-
Events Dynamic Systems (DEDS). The technique to
use is the EvolutionaryProgramming, and it is not more
than a search and optimization method. The idea is to
make evolve a group of individuals, each one represent-

ing a model of DES that in turn is a possible solution of
the system that we like to identify. This way, through
a finite number of generations these systems should
adjust to the environment. That is, the Evolutionary
Programming proposes a group of finite state machines
that reproduce the general behavior of the real system.

This work is organized in the following way: An
introduction is made to the theoretical aspects that are
used in this paper. Then, the proposal is presented, and
a methodology is exposed to use it in identification pro-
cesses. Finally, some results are presented, particularly
the identification of a Real System is analyzed.

2. Theoretical aspects

2.1. Discrete-event systems and identification problem

It is a system where its states space is a discrete set
which is managed by events, such that its evolution of
states depends exclusively of the asynchronous occur-
rence of discrete events in the time [18]. If we con-
sider a DES as a generator of a formal language, we
can introduce the characteristic of control when taking
into account certain events or transitions that can be
disabled by an external controller. But before being
able to control any system, first we must have a model.

It is not always possible to obtain that model analyz-
ing the process, it can be mathematically difficult, or
not all the parameters of the real system can be known.
Then, we need to carry out the system identification.
The problem of Identification refers to have a black
box, where we can only observe the change of the out-
put due to the change of the input [7–9]. The objective
is to find a description of the behavior that is observed.
If we don’t have some idea of what could be in the box,
the identification task is more difficult, for example, it
is more complex to interpret the obtained data. In real
situations, what is usually made is to prove with a finite
number of experiments and to increase more and more
the complexity of the model, until being able to explain
or to justify the resulting data.

2.2. Finite state machine(FSM) and systems
identification

A FSM is a transducer which operates on a finite
group of input symbols (alphabet), it possesses a finite
number of internal states, and it produces output sym-
bols from a finite alphabet [3,17]. It is essentially a
computer program: it represents a sequence of instruc-
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Table 1
Table of transition

Current state/ next state A B C

A 1 /β 0 /β
B 0 /δ 1 /α
C 1 /δ 0 /β

tions to be executed, where each instruction depends
on the current state of the machine and of the current
stimuli.

The possible inputs to the system are a sequence of
symbols selected from a finite groupI of input sym-
bols, and the resulting outputs are sequences of sym-
bols chosen from a finite groupZ of output symbols.
More formally, a FSM is described like:

M = (Q, I, Z, S, O)

Where: Q is the group of states;I is the group
of symbols of input;Z is the group of output sym-
bols; S(QxI)− > I is the function of the next state;
O(QxI)− > Q is the function of the next output. The
behavior of a FSM is described as a sequence of events
that happen in discrete instantst = 1, 2, 3, etc.

Two techniques are commonly used to represent the
analytic properties of a machine: the transition dia-
grams and the transition tables. Next, the Table 1
presents an example of a transition table for a machine
with three states (A, B, C) whose alphabet of input
symbols is 0 and 1, and the alphabet of output symbols
is α, β andδ. For example, in this machine when the
system is in the state A, and there is an input 0, the
system change to state B and its output symbol isβ; an
so for the rest of states.

Generally, to carry out the identification of a FSM
we settle down a group of conditions that should be
satisfied to be able to determine the properties of the
unknown machine. First, it is assumed that the whole
group of input symbols is defined, if this information is
not possessed it cannot be defined the transition func-
tions completely (output and next state).

The final condition that should be completed to iden-
tify a FSM is that this should be strongly connected.
The problem of a machine that is not strongly connected
resides basically in the fact that it is not possible to ob-
tain a sequence that evolves through the different states
of a machine. Two examples of FSM do not strong-
ly connected are when the machine possesses special
states (recurrent, etc.), or when there are states non-
connected (the FSM possesses one or more unreach-
able states). This makes that the system is not glob-
ally controllable. In some works that present methods
to identify machines, besides of the previous restric-

tions, they also restrict the identification to machines
that have not equivalent states.

The identification of FSM has been carried out
through experiments, which require that the engineer
makes use of its knowledge of sequential machines and
DES to select the appropriate input sequence in each
stage of the identification. The basic idea is to apply
a sequence and to observe the answer of the machine.
Then, another input sequence is applied and the answer
is used to extend or to eliminate the previously formed
partial state diagrams. This way the process continues
until is obtained a totally defined state diagram that
describes the machine that we search.

2.3. Evolutionary computing

Under the term of Evolutionary Computing it is in-
cluded to a wide group of technical of resolution of
complex problems based on the emulation of the natural
processes of evolution [1,5,13–15]. That is, these tech-
niques use as elements some mechanism of the theory
of the evolution for their design and implementation.

The main contribution of the Evolutionary comput-
ing to the methodology of resolution of problems con-
sists on the use of mechanisms of selection of so-
lutions potentials, and of construction of new candi-
dates’ for recombination of characteristic of other al-
ready present, in a similar way to like it happens in the
evolution of the natural organisms.

The purpose of the Evolutionary Algorithms is to
guide a stochastic search making evolve a group of
structures and selecting iteratively the most capable.
An Evolutionary Algorithm is executed on a population
of individuals that represent to a group of candidates
solutions of a problem; these individuals are subjected
to a series of transformations and later to a selection
process that favors the best individuals. It is expect-
ed from the Evolutionary Algorithm that after certain
number of generations (iterations) the best individual
is reasonably close to the searched solution.

The Evolutionary Operators are those that carry out
the population’s changes during the execution of an
Evolutionary Algorithm. Classically, two genetic oper-
ators exist: mutation (it is an operator unary that simu-
lates the evolutionary process that happens in the indi-
viduals when they change their genetic structure), and
crossover (it is usually a binary operator that allows to
represent the processes of natural mating. they take
diverse components of different individuals to generate
with them new individuals). However, there are oth-
er operators, for example: Dominance, Segregation,
among others. The steps of an Evolutionary Algorithm
are the following:
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– Generation of an initial population, generally ran-
domly.

– Evaluation of the individuals
– Selection of some individuals.
– Modification of the genes of the selected progeni-

tors using the genetic operators.
– Generation of a new population.
– Verification of the convergence of the Algorithm,

or returns to the step 3, if it is the case.

The main techniques of the Evolutionary Computa-
tion are [1]: the Genetic Algorithms, the Evolutionary
Strategies, the Genetic Programming, and the Evolu-
tionary Programming.

2.3.1. Evolutionary Programming(EP)
The Evolutionary Programming was originally con-

ceived by Lawrence J. Fogel in 1960 [1,13–15]. It is
a mechanism that makes evolve a group of finite state
machines. This technique develops a group of solu-
tions which show a good behavior with respect to an
environment and an objective function. The steps of
the EP are:

– InitPopulation P(t): It begins with a population of
finite state machines that represent solutions to the
problem in question.

– Evaluation of P(t): Each machine is evaluated by
means of a specific function that calculates the
individual’s capacity to solve the problem.

– Mechanism of Selection: The selection of the ma-
chines that will become parents of the next gener-
ation is made, that is, all the individuals are select-
ed.

– P’(t) = mutate (P(t)): the population’s member is
altered through a mutation process, the crossing is
not used. That is, each machine generates a de-
scendant through a mutation process that is applied
on it Classically five types of random mutations
exist:

∗ To change an output symbol.
∗ To change the transition a state to another.
∗ To add a state.
∗ To eliminate a state.
∗ To change the initial state.

– P (t + 1) = survive (P’(t)): the individuals are
chosen that will survive for the following genera-
tion. Normally, we chose a number k of the best
individuals of the total machines population. The
population’s size generally remains constant, but
there is not restriction in this case.

– Stopping Criterion: The process finishes when the
solution reaches a predetermined quality, when a
specific number of iterations has been obtained
(generations), or some other stop approach.

3. The evolutionary programming in the
identification of dynamic systems

In this section, our approach to obtain discrete event
models is presented. We require two phases: a) Char-
acterization of the system according to the EP: in this
first part the structure of the individuals is designed, the
parameters values and the cost function are defined, as
well as the initials population. b) Search of the FSM
using the EP: in this phase the EP searches the FSM that
better follows the behavior of the real system. This is a
global search through different generations, treating to
avoid local optimals.

3.1. Characterization of the system according to the
EP

3.1.1. Design of the Structure of the Genotype
The Genotype in the EvolutionaryProgramming rep-

resents a FSM, it should also be able to generate an
output sequence due to one input. This requirement is
indispensable for the fact that we like to make an iden-
tification process. Two models of finite state machines
can be used (or two forms of sequential machines) [3,
17]: Mealy and Moore.

We used the Mealy model by their computacional
perfomance, since it requires generally less states than
the Moore model to recognize an input signal and
to generate the output corresponding. As we require
working with great populations, then we do not like to
diminish the search speed due to the introduction of
very complex individuals.

The model of Mealy is represented by the following
expression:

M = (Q, I, Z, S, O, q(0))

Where: Q is the group of states;I is the group of
input symbols; Z is the group of output symbols;
S(QxI)− > Q is the function of the next state;
O(QxI)− > Z is the function of the next output;q(0)
is the initial state.

A machine of Mealy only generates an output symbol
when an input symbol is presented. The procedural
semantics of the model of Mealy is the following: the
machine is in a stateq(0), when it receives a literal of
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Fig. 1. Diagram of transition of a machine of mealy.

Table 2
Table of transition of a machine of mealy

States / inputs 1 2

A A/0 B/1
B B/1 A/0

input, then it emits the output symbol and it passes to
the new state. An example of a machine of Mealy is
shown in the Fig. 1 (the transition diagram) and in the
Table 2 (the table of transition), respectively.

This table is encoded to describe each individual of
the EP algorithm how a FSM.

3.1.2. Initialization of the machines
This process is only executed once, and it is at the

beginning of the algorithm. In the system two ways
were implemented of initializing of the population of
finite state machines:

– Randomly: an initial state is assigned, later it is
chosen a value that will be the number of states
that possesses the machine that should be small-
er or similar to the maximum number of possible
states. Then, we begin to fill each one of the cells
of the Table of transitions; the quantity of columns
is previously defined, since it is the group of input
symbols. In each state with transition symbol in-
tersection is the cell that indicates the state will be
passed and which will be the corresponding output
symbol. These two elements are also generated
randomly. Lastly, a vector is believed that will
contain the labels respective to identify the states.
This vector cannot contain repeated elements (re-
peated states), and is updated together with the
Table of transitions when a mutation is made on
the individual (only if the mutation is to add or to
eliminate a state).

– The other way is to initialize it from a population
existent.

3.1.3. Mutation
The five mutations are used randomly.

3.1.4. Costs function
It possesses two attributes that are two chains of

characters, the input sequence and the output sequence
that are shared for the population’s individuals. The
capacity of each machine is measured comparing the
output sequence that the individual generates with the
sequence of the output reference, when it is faced to
the input sequence. This procedure is executed in the
following way: the first input symbol is applied over
the individual that is in an initial state, if that symbol
is not recognized by the FSM it is penalized with a big
positive value. Otherwise, if the symbol is recognized
the output symbol generated is compared with the sym-
bol of output reference. If the symbols are different the
individual is penalized with a small positive value; but,
if the output symbols coincide the scheme is rewarded
with a negative value. Then, there is a transition of
state and we repeat the process for the following input-
output symbol until we reach the end of the sequences.
According to our cost function those individuals with
more negative values will be the most capable in the
generation.

We also incorporated in the cost function the capacity
to reward those FSM that have fewer states. This is
optional and it is with the purpose of obtaining FSM
that not only follow an input sequence, but that also are
simple (from the point of view of the size).

3.2. Search of the FSM using the EP

Next, the process to search FSM of real systems is
described. We consider a set of steps that are going to
allow the identification of a real system.

– Obtain the succession of events of the DEDS to
identify. It is the fundamental step of all process
of identification of dynamic systems (continuous
or discrete); the sequence should be the most rep-
resentative possible.

– Analyze the complexity of the system to identify,
in order to determine if it is necessary to modulate
in different phases the identification process. Each
phase search to adapt the individual to different
patterns, some phases more drastic than others, but
with the same purpose, the important is that each
new phase is a succession of the previous ones,
incorporating new characteristics.

– Begin to generate prototypes that are possible re-
sults, of phases, or of the totality of the experi-
ment.
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Fig. 2. Real system.

– It is advantageous to make first tests where we
are interested that the individual recognizes the
entirety succession of events (input signs), without
caring for the quantity of states that this possesses.

– Then, to initialize the population with the resulting
individuals of the previous step, but in this new
executionof the algorithm we fix that the machines
with less states are rewarded, in order to eliminate
their redundant states.

– Verify the resulting models, if they don’t present
satisfactory behaviors to return to the step 3, or
to analyze the input and output sequences to de-
termine the possibility to make the evolution with
new data (return to the step 1).

– If the individuals are the sufficiently capable, in
this step they should be confronted to a validation
sequence, with which we can analyze the behavior
of the model, and this way to generate an error
function. If the machines don’t approve with suc-
cess this phase, new prototypes should be studied.

4. Case of study

We propose a system compose by a tank where a
liquid is stored and a couple of valves to its input and
output that regulate the level (see Fig. 2). It is obvious
that it can be modeled as a discrete events system; how-
ever we should take into account a series of specifica-
tions. Before beginning the identification process, it is
indispensable to have the sequence of input and output
events (input and output signs, respectively). Since we
have not the plant, it is necessary to have a model to ob-
tain some data to start the identification process; it will
also serve as reference to compare it with the model to
discrete events generated by the identification process
(see Fig. 3). We use the EP tool proposed in [2] to built
FSM.

4.1. Modeling the system

The internal behavior of the plant is described by a
group of twelve (12) states, an input alphabet composed

Table 3
Symbols of the input Alphabet

Input Description

α To empty the Tank, there is only liquid leaving but not
entering

β To fill the Tank, there is only liquid entering but not
leaving

γ To give liquid, a normal flow is wanted where the liquid
continually enters and leaves

δ To restart or to Turn off the system, they close the two
valves

ε The height of liquid in the tank passed of minimum level
to normal

ζ The height of liquid diminished, passing from the nor-
mal level to the minimum

η The level of liquid in the tank overflows the maximum
height allowed

θ The liquid passed from the maximum height to the nor-
mal level of operation

Table 4
Symbols of the outputt Alphabet

Ouput Description

A After being generated the event, the height of the liquid
in the tank passed at a minimum level

B After being generated the event, the height of the liquid
in the tank passed at the normal level

C After being generated the event, the height of the liquid
in the tank passed at the maximum level

by eight (8) symbols, and an output alphabet of three
(3) symbols. It is assumed that the tank can reach three
states:

– Low level: it happens when the liquid in the tank
is below a reference mark H(tank)<H(minimum).

– Normal level: the height of the liquid in the
tank is between two reference limits, indicat-
ing that it is below of the maximum lev-
el allowed, but above of the minimum level,
(minimum)<H(tank)<H(maximum).

– High level, in this state the level of liquid in the
tank has overflowed the maximum height allowed,
H(tank)>H(maximum).

Also, the valves are assumed of type (ON/OFF),
restricting them to only two possible states. According
to that, it is obtained three states for the tank and two
for each valve, being twelve possible states in that the
plant can be in a given moment (see Fig. 3).

The Symbols of the input Alphabet are shown in
Table 3.

The Symbols of the Alphabet of Output are shown
in Table 4.

The events here presented were selected since they
make to pass the system for all the states mentioned.
On the other hand, it is considered that the flow that
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Fig. 3. Automate machine that models the Real System.

goes by the input valve is bigger to the output flow; this
difference is used to allow that the FSM has events that
are caused internally, as the events of level change.

The outputs can be confused with the states, but
this can be used to favor. A sample would be when
one obtains a model result of the identification process,
it is able to give information of the level in that the
liquid is (assuming that one doesn’t know the internal
configuration of the system), valuable information to
the moment to present an external event to the system.
For example, it should not empty the tank when the
previous output indicated that the level is minimal.

Of the real FSM the sequences of events are acquired
that will be used in the identification algorithm, besides
during the validation.

4.2. Process of identification

The procedure to make the identification is based on
the propose methodology in the previous section. The
fundamental characteristic of the methodology is that
each phase constitutes a concatenation of the previous
one, and in each step the training sequences become
more extensive. The reason to use this approach is

because we like to find the machine the simplest. In
each one of the phases we introduce new elements of
the alphabet to allow that the EP learns these elements
(a pattern) in that phase. In this way, we can obtain a
simple FSM of a complex system.

The main parameters of the experiment are: Size of
the Population= 10; Size of the Group of Input= 8
symbols; Size of the Group of Output= 3.

4.2.1. First phase
In this stage the population is initialized randomly,

and the algorithm is executed according to the previous
parameters, for this first case we select a sequence of
events, which allows passing for some states of the sys-
tem (not all). Also, it is chosen the option of gratifying
the population’s individuals that recognize the input
word and that possess few states. The used sequence
is: of Input= γ, ε, β, α, ζ, δ, γ, ε, β, α, ζ, δ, β, γ, β,
α, ζ, δ, β γ, β, α, ζ, δ, β, α, ζ, β, ε, α, γ, α, ζ, β, ε, α,
δ; and of Output= A, B, B, B, A, A, A, B, B, B, A, A,
B, B, B, B, A, A, B, B, B, B, A, A, B, B, A, A, B, B,
B, B, A, A, B, B, B, B, A, A, B, B, B.

One can observe that the sequence of input and of
output events have not all the elements of the alphabet.
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Fig. 4. Generated machine in the First Phase.

However, the algorithm has as parameter the total num-
ber of symbols, because in the following phases we are
going to incorporate the rest of the events.

In this phase we have not still used a sequence of
validation events. The result of this first identification
stage is shown in Fig. 4.

For this first step the machine generated by the iden-
tification algorithm reached a value of objective func-
tion of−423, in a total of 822 generations. That mean,
this FSM, does not follow the FSM of the real system
(see Fig. 3) and has less states and transitions because
the initial sequence of events is less that from the orig-
inal system. The computation effort for these 822 gen-
erations is of 45 seconds and the quality of the FSM is
very good (The model generated accepts the sequence
presented).

4.2.2. Second phase
For this step of the identification process, the algo-

rithm is executed again, but in this occasion the initial
population is loaded with the file that contains the ma-
chines of state finite resultants of the first part. Now, the
individuals are subjected to a new sequence of events,
for what we need to recalculate the value of the objec-
tive function of each machine when beginning the algo-
rithm. The input word and their corresponding output
are: Input= γ, β, α, δ, α, β, γ, β, α, δ, γ, δ, γ, δ, α,
ζ,δ, γ, ε, β, α, δ, α, ζ, δ, γ, ε, β, α, δ; output= B, B,
B, B, B, B, B, B, B, B, B, B, B, B, B, A, A, A, B, B, B,
B, B, A, A, A, B, B, B.

The sequence of events inserted in this phase of the
experiment doesn’t introduce a new symbol, but it pro-
vides a different path to the studied in the first phase.
It is importance to link is sequence of events to the one
introduced in the previous phase, to force the individ-

Fig. 5. Generated machine in the Second Phase.

ual to not forgetting the behavior acquired previously;
although it can happen that the algorithm in their search
of the best machine for the word inserted in this exe-
cution phase causes deteriorations achieved in the first
phase.

The result of the second phase of the experiment is
shown in Fig. 5, in this part the FSM possesses three
states less than the machine generated in the previous
step, however, if the two models are compared, it is
possible to notice that the most recent machine elimi-
nated five (5) states and added two (2) new with regard
to the initial individual.

In this second phase the individuals obtained have a
value of objective function of−726, in a total of 2245
generations, being a FSM “more simple” that the one
obtained in the previous phase. The computation effort
for these generations is of 69 seconds. Additionally,
the model generated in this step accepts the sequence
presented in the first phase completely. Also, it is not
still pertinent to submit the model to a validation word
because the experiment has not been completed.

4.2.3. Third phase
Again, the population in this phase of the experi-

ment is initialized with the resulting individuals of the
previous phase. The sequence introduces new events,
two input symbols and an output symbol, with these
are introduced all the elements of the input and output
alphabets.

Next, we present the input and the output word, the
new symbols areη, θ and C, of the input and output
alphabets, respectively. Input= α, β, δ, α, β, δ, α, ζ,
δ, β, α, δ, γ, β, δ, γ, β, δ, γ, η, α, θ, δ, γ, η, α, θ, δ;
Output: B, B, B, B,B, B, B, A, A, B, B, B, B, B, B,B,
B, B, B,C, C, B, B, B, C, C, B, B.
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Fig. 6. Machine generated in the Third Phase.

The obtained FSM behaves efficiently for the suc-
cessions of events presented until the moment (Fig. 6).
One can observe that the algorithm has introduced three
new states (q23, q2, q5) and one has eliminated (q3),
considering this way this individual like the most capa-
ble according to the environment to which was submit-
ted. The model obtained in this step also possess more
states that in the previous phase, What did it Happen?;
the fundamental mission of the developed algorithm is
to get a model that reconstructs the input-output sign,
without important that this implies to add more states,
then those that are redundant will leave eliminating.

In this stage the FSM reach a value of objective
function of −1004, after having evolved along 2457
generations. The computation effort is of 81 seconds
and the FSM generated accepts almost all the sequences
presented until now (the success rate is the 96%, that
mean recogmize almost all the events in all the states).

4.2.4. Fourth phase
This phase was only designed so that the model that

one comes studying recognizes a transition especially,
not for the fact that that transition is important, but to
show with which easiness and speed the FSM adapts
to this sequence. The model obtained before develop-
ing this phase doesn’t recognize a certain event ((α/B)
when this it happens after ((γ/B), assuming that the
machine is in the state q18.

A sequence of events was developed that made pass
the machine until that state (this sequence is also ob-
tained of the model). The sequence is: Input= α,
β, γ, α, β, γ, δ, α, β, γ, α, β, γ, δ; Output =
B,B,B,B,B,B,B,B,B,B,B,B,B,B. The resulting machine
is shown in Fig. 7.

The resulting FSM is approximately similar to that
of the previous phase, with some small discrepancies
that do not deteriorate the behavior of the model, the

Fig. 7. Result of the Fourth Stage of Identification.

Fig. 8. Generated machine in the fifth stage.

only difference is that now it understand satisfactorily
the special case that was studied in this stage. This
is achieved in only 326 generations. To conclude this
phase, we can see that using our approach we can sub-
mit a machine to small transformations, to achieve a
specific objective, without making changes of more
relevance in the behavior of the model.

4.2.5. Fifth phase
In this phase we try to improve the behavior of the

model before the events introduced in the third phase,
because they were handled very superficially.

The sequences used for the fifth phase are, Input:γ,
η, δ, α, θ, δ, γ, η, δ, α, θ, δ; Output= B, C, C, C, B,
B, B, C, C, C,B, B. For the sixth is: Input:γ, η, α, θ,
β, η, α, θ, β, η, α, θ, δ, γ, η, α, θ, β, η, α, θ, β, η, α,
θ, δ; Output: B, C, C, B, B, C, C, B, B, C, C, B, B, B,
C, C, B, B, C, C, B, B, C, C, B,B.

In the phase five the model increased their number
of states at seven. The FSM of the Fig. 8 is the result of
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Fig. 9. Identified machine of the real system.

evolving along 1780 generations, to reach cost function
of −1263. The computation effort is of 65 seconds and
the FSM generated accepts all the secuences until know
studied.

4.2.6. Last phase
This phase shows a sequence where all the events

defined in the input alphabet are included, in the same
way all the output symbols are analyzed. Because this
is the last phase, it is wanted to improve the model gen-
erated until the previous phase. This becomes possible
inserting to the algorithm a word that presents a suc-
cession of all the events defined in the input alphabet.
Input= α, β, η, δ, α, δ, α, θ, δ, α, β, η, δ, α, δ, α, θ,
δ, ζ, γ, ε, η, α, θ, δ, α, ζ, γ, ε, η, α, θ, δ; Output: B, B,
C, C, C, C, C, B, B, B, B, C, C, C, C, C, B, B, B, A, A,
B, C, C, B, B, B, A, A, B, C, C, B, B.

It is possible to observe that the final FSM adds a
new state (q11) (see Fig. 9). It is feasible to contin-
ue designing experiments, but when concluding this
phase we have obtained a model that presents a quite
approximate behavior to the real system (it accepts all
the sequences presented until now with a success rate
of 100%). This FSM has less states and transitions than
the FSM of the Fig. 3, but can follow the behavior of
the real system. To finish, we only need to validate the
identified machine.

The validation sequence for the Final machine is:
Sequence of Input= β, η, δ, α, θ, β, η, α, θ, δ, α,
ζ, β, ε, α, ζ, γ, ε, η, δ; Sequence of Output= B, C,
C, C, B, B, C, C, B, B, B, A, A, B, B, A, A, B, C, C.
The sequence of validation allows concluding that our
model has a similar behavior to the system “in study”.

To conclude, it is possible to have introduced the
complete sequence and to wait certain number of gen-
erations to that the algorithm give a FSM that recog-
nizes the entirety word. However, the machines gen-
erated by the identification process can not be the sim-
plest. For that reason, in some cases when we have a
very complex system and need an elaborated DEDS,
it is advisable to modulate the procedure, in the way
explained here. The sequences of events presented in
each phase are the new patterns inserted in the phase,
in a way that the EP can learn these one whitout forget
the previous one.

5. Conclusions

It has been analyzed along this investigation the in-
cidence of the EP for the resolution of DES problems.
In particular, the identification of this type of dynamic
was studied, obtaining satisfactory results and demon-
strating this way the efficiency of the EP in the search
of models that adapt to the presented characteristics. A
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methodology of System Identification is exposed that
shows a combinationof simplicity, facility, rapidity and
effectiveness, which allows it to compete with any other
way to analyze DEDS.

It is evident the efficient form like the EP generates
possible candidates to identify the system in study; it
is made optimizing dynamically the behavior that each
machine presents through evolutive changes.

Although the technique of EP for the identification
of DEDS is not exempt of inconveniences, these com-
plications are not bigger than those that are presented
when identifying the systems for conventional meth-
ods, which require a coarse domain of the theory of
sequential machines, among other things.
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