
R. Khosla et al. (Eds.): KES 2005, LNAI 3681, pp. 700�706, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Architecture of a Web Operating System
Based on Multiagent Systems

José Aguilar, Niriaska Perozo, Edgar Ferrer, and Juan Vizcarrondo

CEMISID, Dpto. de Computación, Facultad de Ingeniería, Universidad de los Andes
Av. Tulio Febres, Mérida, 5010, Venezuela

aguilar@ing.ula.ve

Abstract. The amount of systems, services and applications developed for the
Web has grown considerably. The support of the existing operating systems to
them, is not the awaited one. Like a solution to this necessity, we propose a
model of operating system denominated SOW. It supports and handles a set of
services in a heterogenous and dynamic environment like Internet. The SOW is
conformed by four subsystems (resource, repositories, web object and
communities manager subsystems), where each one carries out a series of
coordinated functions, that allow an efficient use of the resources on Internet.
In this work we present the design of the SOW based on Agents.

1 Introduction

Given the wide variety of unimaginable services everyday in the web, it�s difficult to
design an operating system to support each of those services individually. A new
domain to solve these needs are the Web Operating Systems (WOSs), which have
like main objective provide a platform that allows users to benefit from the computa-
tional potential offered in the web, through resource sharing and solving problems of
heterogeneity and dynamic adaptability present in it. Thus, in order to reach the best
performance in a dynamic environment of distributed resources such as the Internet,
the WOS should be configurable and able to adapt to changes related to the availabil-
ity of software and hardware resources. Taking into account that, the WOS model
presented in this paper suggests a series of aspects in order to provide services that
can adapt to the web�s special features. Hence, our WOS (called SOW) offers a set of
services to enable the utilization of the available resources through the Internet.

There are different proposals for management and integration of the computational
resources available in a global computer system. Perhaps the most general project is
the WOS [2] since it allows for management and integration of resources addressing
the issue of heterogeneity and volatility in the Web. This project, as well as our pro-
posal, is based on the idea of using versions as a solution to these problems. Other
efforts to exploit the resources distributed in global computing include Jini, Netsolve,
Globe, Legion, and WebOS [1, 3, 4, 5]. In contrast with our proposal, most of these
systems require entry privileges (login) in participating devices and software. Particu-
larly, our model differs from all the mentioned projects, in the sense that no central-
ized global resource catalog is needed. Our SOW model supports and manages a
series of services in a heterogeneous, dynamic and adaptive context, under the appli-
cation of a reconfiguration approach.

Architecture of a Web Operating System Based on Multiagent Systems 701

2 General Considerations of the Proposed Architecture

2.1 SOW Features

The main features of our SOW are: i) Distributed and with different versions:
Different versions of services offer by the SOW are running simultaneously along the
network; ii) Dynamic: The web is a constantly evolving entity, therefore, the SOW
should adapt to unforeseen changes, through the dynamic configuration of its ser-
vices; the dynamic modification of the information on the resources available in each
node; the dynamic grouping of existing nodes according to certain features, and the
migration and replication of web objects, iii) Open: Our SOW is an open system
from two points of view: it accepts different technologies through the network (het-
erogeneity), and it also allows every node in the Internet to be incorporated into the
system; iv) Intelligent: Each one of the SOW subsystems will have a certain level of
intelligence for the development of some of its functions.

2.2 Integration of the SOW in a Distributed Environment

Our SOW should be at the top of a standard distributed platform (Middleware) in
order to use the services provided by this platform. In this way, it coexists with tradi-
tional distributed applications, and can be used by a wide community. Particularly,
among the distributed services that require our SOW are: a Name Service (white
pages) for identification and location of resources in the distributed environment by
designation; a Directory Service; (yellow pages) for identification and location of
resources in the distributed environment by attribute; a Security Service that provides
confidentiality, integrity, and availability; Synchronization and Coordination Ser-
vices; a Process Management Service which will be in charge of the processors allo-
cation, internal and global processes scheduling, and processes migration; a Distrib-
uted File System that will allow the management of different file systems in different
nodes and the sharing of information; and a Communication Services that allow inter-
action between existing models (client/server, intermediaries (Proxy, Caches, among
others), group communication (multicast), etc.). The interactions can be carried out
by messages passing and shared memory.

3 Description of the SOW

The SOW is composed by the resource manager subsystem, the repositories manager
subsystem, the web object manager subsystem and the community manager subsys-
tem.

3.1 Resource Manager Subsystem (SMR)

In our proposal, the SMR is made up of mechanisms that allow managing and inte-
grating computational resources present in the Web. The resources may have a physi-
cal representation, such as a file or a printer, or abstract representations, such as the
CPU time. Due to the dynamic nature of the Web, it�s impossible to develop a catalog

702 José Aguilar et al.

with every available resource and service. Therefore, instead of having an operating
system that provides a set of fixed techniques of process scheduling or caches man-
agement, we have an operating system that satisfy the requirement with the particular
scheduling technique needed in a given time. In such cases, the concept of versions
will be used, and in this way, an action will have the possibility of being coordinated
by combining the appropriate versions (which could be physically distributed along
the network) in order to achieve an efficient execution of the required services. The
SOW has a service configuration mechanism to adequate the utilization of these ver-
sions and to have the catalogue of the versions of the different resources, services or
strategies. An inference engine handles every requirement to the system. This works
as a demand managing reactive system through which heterogeneous computational
environment resources provided by the Web are managed. It will particularly carry
out the complete search process, determine the service to be provided and assign
resources. The SOW will have various inference engines distributed along the net-
work. Whenever a user tries to access a web resource, the SOW gets the request and
this request is handled by the local inference engine, which will consult with its re-
pository to determine whether it�s possible to satisfy the request locally. Otherwise
the request is sent to another inference engine and the previous process is repeated
until the request is finally fulfilled. In general, each inference engine has access to its
local and remote resource repositories, which store information about the resource
versions. The local resource repository is always consulted; the remote resource re-
pository is consulted only if the resource request can�t be satisfied locally.

3.2 Local Repositories Manager Subsystem (SMRL)

One of the great challenges of our SOW is implementing an efficient algorithm for
the search and discovery of services or resources available in the network. The re-
positories associated with the SOW nodes provide the necessary information in order
to satisfy the service requests. Thus, every node uses its repositories in order to store
and continuously update the information about the node, the services and the re-
sources available in it and in its near nodes (a near node is defined by the community
manager system). This allows the interaction with different repositories, each one
offering different versions of the available services, resource, techniques, applica-
tions, etc. The local repositories will have the ability to store local information. When
that information is perhaps replicated in other sites, data coherence mechanisms must
be at hand in order to keep the information consistent. The SMRL will establish poli-
cies to make efficient use of the available capacity in the devices and will use effi-
cient local search procedures. For example, some of the techniques are for the storage
optimization, disk access scheduling, among others. On the other hand, since most
Internet applications require real time interactions and it�s necessary to share avail-
able information, the SMRL might establish efficient transaction mechanisms such as
the use of parallel I/O scheduling, etc.

3.3 Remote Repositories Manager Subsystem (SMRR)

A problem that our SOW must solve is that it has not an adequate bandwidth to trans-
port web objects. One of the ways to tackle this deficiency is trying to bring users
closer to the information they�ll require. In our proposal we�ll consider the remote

Architecture of a Web Operating System Based on Multiagent Systems 703

repositories as a cache in the web, with the capacity to store objects close to the users,
so it�s not necessary to move an object from its original location every time it�s
needed. The most critical aspect in designing these caches in the web is that the stor-
age size is finite. That�s why a policy must be used to guarantee optimization of the
reduced space, every time old objects have to be replaced with new ones. Other basic
elements are the mechanisms to keep the information coherent in these repositories.
Among the advantages of having a cache in the web are the reduction of response
times (when downloading web objects), the elimination of traffic in the network (by
having the information the user would need close to him), among others. The cache in
the web works as follows: if a user requests an object, the cache makes a local copy;
when the same object is required again, the cache shows its available copy, this way
it�s not necessary to request it again from the original server.

3.4 Web Object Manager Subsystem (SMOW)

This subsystem manages every kind of web object, particularly the mobile objects
and those that have to be replicated. Mobile objects are those that move through
Internet sites following certain criteria. Among the advantages offered by the migra-
tion of objects in the Internet, we find the reduction of communication costs, and a
more fault tolerant system [5, 6]. We use the idea of traces in the definition of mobile
object administration policies. When the object moves it leaves a trace of its move-
ments, which is used to locate it when is requested by a user. In addition, the trace
can evaporate each certain time. The intention behind the disappearing trail is not to
leave confusing traces that might complicate the search of an object at any given
time. On the other hand, web objects can be replicated, in this way the system must
establish administration policies to guarantee accessibility and best possible location
of the replicas in the web.

3.5 Communities Manager Subsystem (SMC)

The nodes will interact in the SOW through mechanisms of request/reply and nego-
tiations. Those nodes exhibiting functional and behavioral affinity are able to associ-
ate themselves dynamically to form communities. A node in the SOW is defined
according to its abilities and behavior. Those are the elements considered as node
features, which as a whole (with its resources and functions) are affiliated to a given
community. Our SOW will treat communities from an emerging point of view, that
is, communities that emerge and adapt to their environment, that self-organize ac-
cording to the requirements; without a central control and showing a global order (the
group of nodes works very efficiently and with a good structure) [6]. The SMC will
have protocols that manage the creation, change and elimination of communities and,
in general, the incorporation, elimination or migration of nodes between communi-
ties.

4 Design of Our SOW Like a Multiagent System

Each subsystem of the SOW is a MAS. To describe each subsytem like a MAS we
will use the MASINA methodology [7].

704 José Aguilar et al.

4.1 Design of the SMR

In the SMR the operations are coordinated by four agents:

• Interface with the User: It receives requests of the users, to send them to the
reasoning system, and to send the results of the requests to the users.

• Reasoning System: It is the main agent of the system. It receives requirements of
the interface for processing them, with the purpose of giving an suitable answer to
them. It has an inference engine to coordinate the mechanisms of location,
configuration and allocation of services required by the users.

• Services Search: This agent has like objective the search of services that are
required by the inference engine.

• Versions Manager: This agent has a self-configuration module, which handles
the versions of the services found, in order to produce the configuration of the
response according to the requirement of the users.

4.2 Design of the SMRL

In the SMRL the operations are coordinated by five agents:

• Search Coordinator: It receives the requests of search of services of other
subsystems. In addition, It controls the decomposition, classification and
distribution of the requests of search of local service.

• Local Resources Manager: It manages the resources of hardware and software
existing in the node. Also, it updates the catalogue of the local resources.

• Local Information Manager: It provides the local information required by the
search coordinator. On the other hand, it updates the local information, and also
maintains the consistent information after any process of update.

• I/O Optimizer: It establises policies to make an efficient use of the capacity
available in the devices. In addition, it establishes techniques of optimization and
efficient access to the devices.

• Traces Manager: it handles the traces at local level. This agent allows the SMRL
to participate in the process of creation, reinforcing, evaporation and elimination
of traces, altogether with the SMRR and the SMOW.

4.3 Design of the SMRR

In the SMRR the operations are coordinated by two agents:

• Search: this agent searches the replicas and the objects that are in the SMRR and
that are required by the SMR.

• Administrator: this agent maintains the repositories of the SMRR. For this, it has
three functions: a) when the SMRR needs to store a new replica or a referenciable
object and there are not space in the RR, it eliminates less used objects. b) It
enters, eliminates and updates replicas and referenciables objects in the RR. c) It
verify the consistency of the information that is in the RR.

Architecture of a Web Operating System Based on Multiagent Systems 705

4.4 Design of the SMOW

In the SMOW the operations are coordinated by two agents:

• Replicated Objects Administrator: this agent transfers the replicas of the
objects in the SOW.

• Migrated Objects Administrator: this agent migrates the objects Web in the
SOW and creates the traces.

4.5 Design of the SMC

In the SMC the operations are coordinated by two agents:

• Communities Manager: it manages the existing communities in the SOW. A
new community that emerges is characterized before being added to the SOW. In
addition, it allows locating communities with certain characteristics or profile, and
describing a node before it can be incorporated to a given community.

• Search Manager: It receives requests of search of services of a SMR or another
SMC, and processes them (It makes the search of a given service).

5 Coordination, Communication and Intelligence Models
The design of each one of the subsystems of the SOW according to the MASINA
methodology [7], allows to show the existing communications (speech acts) between
the agents. These can be shown through a diagram of interaction of UML. For
example, the conversation to update community [6], of the agent communities
manager of the SMC, is shown in figure 1. In addition, MASINA allows the descrip-
tion of the existing intelligence in some of the agents through the intelligence model.
For the same previous agent of the SMC we describe its intelligent model in table 1.

Table 1. Mechanism of Reasoning of agent CA

 REASONING MECHANISM
INFORMATION
SOURCE

Obtained results of the group of nodes.

ACTIVATION
SOURCE

Request to incorporate or to transfer node.

TYPE OF INFERENCE Deductive, Inductive.
REASONING
STRATEGY

To coordinate activities related to the group of nodes,
update and creation of communities, through tools of
recognition of patterns based on neuronal networks and
fuzzy logic (Engine of fuzzy rules).

6 Conclusions
In spite of the great efforts put on so far, the existing operating system and traditional
Middleware architectures aren�t prepared to offer an efficient management of web
resources. We propose a WOS model that tries to address these issues. The WOS
proposed is made up of four subsystems that will carry out a series of coordinated
functions that allows an efficient use of Internet resources, in spite of its dynamic
features, high mobility and heterogeneity.

706 José Aguilar et al.

Communities
Administrator

Node of the
SOW

Result_of_the_Incorporation

Characterize_Node

Create_Type_Community

Localize_Community

Characterize_Community

Incorporate_Node_Community

Request_To_Incorporate_Node

Eliminate_Type_Community

Request_Reactivate _Node

Inhibit_Node

Reactivate_Node

 Request_Inhibit _Node

Result_Reactivate _Node

Result_Inhibit _Node

Determine_Type_Community

Create_Community

Eliminate_Node_Community

Eliminate_Community

Transfer_Node

Fig. 1. Conversation: To Update Community in the SMC

References

1. Vahdat A., Belani E., Eastham P., Yoshikawa C.: WebOS: Operating System Services for
Wide Area Applications�. Proc. of Seventh IEEE Symposium on High Performance Dis-
tributed Systems (1998) 52-63.

2. Kropf P.: Overview of the WOS Project. Proc. of Advanced Simulation Technologies Con-
ferences, High Performance Computing (1999) 350-356.

3. Casanova, H., Dongarra, J.: NetSolve: A Network-Enabled Server for Solving Computa-
tional Science Problems. International Journal of Supercomputer Applications and High
Performance Computing, 3 (1997) 212-223.

4. Morgan, S.: Jini to the Rescue. IEEE Spectrum, 37 (2000) 44-49.
5. O�Reilly, T.: Building the Internet Operating System. Proc. of O�Reilly Emerging Technol-

ogy Conference, (2002) 1-2.
6. Aguilar, J., Ferrer, E., Perozo, N., Vizcarrondo, J.: Arquitectura de un Sistema Operativo

Web", Gerencia, Tecnología, Informática (electronic journal: www.cidlisuis.org/aedo), In-
stituto Tecnológico Iberoamericano de Colombia, 2 (2003).

7. Aguilar, J.: Especificación Detallada de los Agentes del SCDIA � MASINA
CommonKADS. Reporte Técnico Proyecto Agenda Petróleo 9700381, Universidad de los
Andes (2003).

	Architecture of a Web Operating System Based on Multiagent Systems
	1 Introduction
	2 General Considerations of the Proposed Architecture
	2.1 SOW Features
	2.2 Integration of the SOW in a Distributed Environment

	3 Description of the SOW
	3.1 Resource Manager Subsystem (SMR)
	3.2 Local Repositories Manager Subsystem (SMRL)
	3.3 Remote Repositories Manager Subsystem (SMRR)
	3.4 Web Object Manager Subsystem (SMOW)
	3.5 Communities Manager Subsystem (SMC)

	4 Design of Our SOW Like a Multiagent System
	4.1 Design of the SMR
	4.2 Design of the SMRL
	4.3 Design of the SMRR
	4.4 Design of the SMOW
	4.5 Design of the SMC

	5 Coordination, Communication and Intelligence Models
	6 Conclusions
	References

