This article was downloaded by: [C N R S]

On: 05 July 2012, At: 09:38

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence: An
International Journal

Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/uaai20

THE COMBINATORIAL ANT SYSTEM

JOSE AGUILAR ? | LUIS VELASQUEZ " & MARIa E. VELASQUEZ "

# Departamento de Computacion, Facultad de Ingenieria, Mérida,
Venezuela

b Dpto. de Ing. en Informatica e Indutrial, Universidad Nacional Exp.
de Guayana, Puerto Ordaz, Venezuela

Version of record first published: 16 Aug 2010

To cite this article: JOSE AGUILAR, LUIS VELASQUEZ & MARIa E. VELASQUEZ (2004): THE
COMBINATORIAL ANT SYSTEM, Applied Artificial Intelligence: An International Journal, 18:5, 427-446

To link to this article: http://dx.doi.org/10.1080/08839510490442067

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.



http://www.tandfonline.com/loi/uaai20
http://dx.doi.org/10.1080/08839510490442067
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [C N R §] at 09:38 05 July 2012

Taylor & Francis

Applied Artificial Intelligence, 18:427—446, 2004
e Taylor & Francis Group

Copyright © Taylor & Francis Inc.
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510490442067

[0 THE COMBINATORIAL ANT
SYSTEM

JOSE AGUILAR

Departamento de Computacién, Facultad de
Ingenieria, Universidad de los Andes,
Mérida, Venezuela

LUIS VELASQUEZ and MARIA E. VELASQUEZ
Dpto. de Ing. en Informatica e Indutrial,
Universidad Nacional Exp. de Guayana,

Puerto Ordaz, Venezuela

This paper presents a new distributed algorithm based on Ant System (AS) concepts called
Combinatorial Ant System (CAS). It is oriented to solve static discrete-state combinatorial
optimization problems. Our approach consists of mapping the solution space of the combi-
natorial optimization problem in the space where the ants will walk, and defining the tran-
sition probability and the pheromone update formula of the Ant System, according to the
objective function of the Combinatorial Optimization Problem. We test our approach on
the graph partitioning, graph coloring and traveling salesman problems.

Real ants are capable of finding the shortest path from a food source to
their nest without using visual cues by exploiting pheromone information
(Bonabeau et al. 1999). While walking, ants deposit pheromone trails on
the ground and follow pheromone previously deposited by other ants. The
above behavior of real ants has inspired the Ant System (AS), an algorithm
in which a set of artificial ants determine the solution of a problem by ex-
changing information via pheromone deposited on a graph. Dorigo (1992)
proposed the first AS in his Ph.D. thesis. Currently, considerable work is be-
ing done in the direction of applying AS to combinatorial optimization pro-
blems (Bonabeau et al. 1999; Dorigo 1992; Corne et al. 1999; Costa and Hertz
1997; Dorigo et al. 1996; Dorigo and Gambardella 1997; Hidrobo and Aguilar
1998; Kuntz and Snyers 1994; Kuntz et al. 1997; Schoonderwoerd et al. 1997;
Stutzle and Hoos 1997). AS has been applied to the traveling salesman prob-
lem and quadratic assignment problem, among others. On the other hand,
different groups have been working on various extended versions of the

Address correspondence to Jose Aguilar, CEMISID, Departamento de Computacion, Facultad de
Ingenieria, Universidad de los Andes, Merida, 5201 Venezuela. E-mail: aguilar@ing.ula.ve

427



Downloaded by [C N R §] at 09:38 05 July 2012

428 J. Aguilar et al.

AS paradigm (Ant-Q, etc.), (Bonabeau et al. 1999; Dorigo and Gambardella
1997; Hidrobo and Aguilar 1998).

In the AS applied to the traveling salesman problem (TSP), a set of coop-
erating agents, called ants, cooperate to find good solutions to TSP’s using an
indirect form of communication through pheromone trails that they deposit
on the edges of the TSP graph while building solutions. Informally, each ant
constructs a TSP solution in an iterative way: It adds new cities to a partial
solution by exploiting information gained from both past experience and a
greedy heuristic. Memory takes the form of pheromone trails deposited by
ants on TSP edges, while heuristic information is simply given by the edge’s
weights. There are two reasons to use the AS on the TSP:

1. The TSP graph represents the solution space of this problem. This TSP
graph is used to describe the space where the ants walk (AS graph). That
is, the TSP graph can be directly used by the AS because its structure is the
same as the AS uses to build the solutions (AS graph).

2. The AS transition function has goals similar to the TSP objective func-
tion. The AS transition function goal is a trade-off between visibility
(which says close nodes should be chosen having high probability) and
trail intensity at a given time (the pheromone update formula is based
on the edge length and the ants traffic). The TSP goal is to find a minimal
length closed tour that visits each city once.

That is not the case for other combinatorial optimization problems. We pro-
pose a new distributed algorithm based on AS concepts, called the Combina-
torial Ant System (CAS), to solve static discrete-state combinatorial
optimization problems. The main novel idea introduced by our model is
the definition of a general procedure to solve combinatorial optimization
problems using AS. In our approach, the graph that describes the solution
space of the combinatorial optimization problem is mapped on the AS graph,
and the transition function and the pheromone update formula of the AS are
built, according to the objective function of the combinatorial optimization
problem. We test our approach on the classical graph partitioning problem
(GPP), graph coloring problem (GCP), and TSP.

THEORETICAL ASPECTS
Ant Systems

In general, the behavior of ant colonies is important for their objectives of
survival. It is derived from a process of collective behavior. This process is
based on the ant communication capacities, which define the inter-relations
between them. These inter-relations permit the transmission of information



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 429

each ant is processing. The communication among agents (ants) is made
through a trace called pheromone. Thus, an ant leaves a certain quantity of
pheromone trail as it moves. In addition, the probability that an ant follows
a path depends on the number of ants having taken the path (a large quantity
of pheromone in a path means a large probability that it will be visited).

AS is the progenitor of all research efforts with ant algorithms and it was
first applied to the TSP problem (Dorigo 1992; Dorigo et al. 1996). Algo-
rithms inspired by AS have manifested as heuristic methods that permit re-
solving combinatorial optimization problems. These algorithms mainly rely
on their versatility, robustness, and operations based on populations. The
procedure is based on the search of agents called “ants,” that is, agents with
very simple capabilities that try to simulate the behavior of the ants.

AS utilizes a graph representation (A4S graph) where each edge (r, s) has a
desirability measure v,,, called pheromone, which is updated at run time by
artificial ants. Informally, the AS works as follows. Each ant generates a
complete tour by choosing the nodes according to a probabilistic state tran-
sition rule; ants prefer to move to nodes that are connected by short edges,
which have a high pheromone presence. Once all ants have completed their
tours, a global pheromone updating rule is applied: A fraction of the phero-
mone evaporates on all edges, and then each ant deposits an amount of pher-
omone on edges, which belong to its tour in proportion to how short the tour
was. Then we continue with a new iteration of the process.

The state transition rule used by AS is given by the Eq. (1), which gives
the probability with which ant k in city r chooses to move to the city s while
building its ¢/ tour (transition probability from node r to node s for the kth
ant) (Bonabeau et al. 1999; Dorigo 1992; Corne et al. 1999; Dorigo et al.
1996; Dorigo and Gambardella 1997):

P = { O ) e O 1 s € 0 1)
0 Otherwise

where y,,(t) is the pheromone at iteration ¢, 1, is the inverse of the distance
between city r and city s(d(r,s)),Ji(r) is the set of nodes that remain to be
visited by ant k positioned on node r, and f and « are two adjustable para-
meters which determine the relative importance of trail intensity (y,,) versus
visibility (7,,).

In AS, the global updating rule is implemented as follows. Once all ants
have built their tours, pheromone (that is, the trail intensity) is updated on all
edges, according to the equation (Bonabeau et al. 1999; Dorigo 1992; Corne
et al. 1999; Dorigo et al. 1996; Dorigo and Gambardella 1997):

() = (1= )= 1)+ > A1) @
k=1



Downloaded by [C N R §] at 09:38 05 July 2012

430 J. Aguilar et al.

where p is a coefficient such that (1 — p) represents the trail evaporation in
one iteration (tour), m is the number of ants, and Ayffs(t) is the quantity
per unit of length of trail substance laid on edge (r,s) by the kth ant in that
iteration:

A (1) = 1/Li(¢) 1If edge (r,s) € tour completed by ant k
" 0 Otherwise

where Li(t) is the length of the tour performed by ant & at iteration . Pher-
omone updating is intended to allocate a greater amount of pheromone to
shorter tours. Pheromone placed on the edges plays the role of a distributed
long-term memory; this memory is not locally within the individual ants, but
is distributed on the edges of the graph. The general algorithm is summarized
as follows:

1. Place the m ants randomly on the nodes of the AS graph.
2. Repeat until system convergence.
21. Fori=1,n
2.1.1.Forj=1,m
2.1.1.1. Choose the node s to move to, according to the tran-
sition probability (Eq. 1).
2.1.1.2. Move the ant m to the node s.
2.2. Update the pheromone using the pheromone update formula

(Eq. 2).

The time complexity of AS is O(t - n? - m), where ¢ is the number of iterations
done (until the system convergence) and n the number of nodes to be
visited.

Different versions to improve the classic AS have been proposed
(Bonabeau et al. 1999; Dorigo and Gambardella 1997; Hidrobo and Aguilar
1998). Two of them are the ant-density and ant-quantity algorithms. They
differ in the way the trail is updated. In these models, each ant lays its trail
at each step, without waiting for the end of the tour. In the ant-density
model, a quantity Q of trail is left on edge (r, s) every time an ant goes from
r to s; in the ant-quantity model an ant going from r to s leaves a quantity
Q/d(r,s) of trail on edge (r, s) every time it goes from r to s. In a most recent
work (Dorigo 1992; Kuntz and Snyers 1994), new extension to AS is pro-
posed, called ACS (Ant Colony System). The ACS differs from the previous
one on:

e The state transition rule provides a direct way to balance between explo-
ration of new edges and exploitation of a priori and accumulated knowl-
edge about the problem.



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 431

e The global updating rule is applied only to edges, which belong to the best
ant tour.

e A local pheromone-updating rule is applied while ants construct a sol-
ution.

Graph Partitioning Problem

The GPP problem consists of dividing a graph in several subgraphs, so as
to minimize the connection costs between them. We can complicate the prob-
lem by weighting the arcs. In this case, we must minimize the sum of the
weights between the subsets. Also, we can add a weight to the nodes and de-
fine again what we want to minimize, according to the particular character-
istics of the problem (Hidrobo and Aguilar 1998; Battiti and Bertossi 1999;
Bui and Moon 1996). In order to formulate mathematically the problem,
the following definition is necessary:

G =(N,A),

where G is an undirected graph and N = {1,...,n} is a set of n nodes on
which we can associate a weight function Q: N — R. In our paper,
Q(i)=1fori=1,...,n and A = a;; are node pairs that define the arcs. It
is known as the adjacency matrix.

According to certain constraints, the problem consists of dividing the
graph into K different subgraphs. The classic constraints are:

e Subgraphs must have a specific size or must have a weight sum of nodes
less than a given value.

e Arcs with extremities in different subgraphs must be minimal, or the
weight sum of arcs which join nodes in different subgraphs must be mini-
mized.

The cost function associates a real value to every subgraph configuration.
We use the following cost function (Hidrobo and Aguilar 1998; Battiti and
Bertossi 1999; Bui and Moon 1996):

K
cf:Za,,-+bZ Ng- —n/K)?*/ (3)

i,jeD z=1

where D = {i € Gm,j € Gl and 1 # m}; Ng, = number of nodes in sub-
graph z; and b = balance factor [0, 2].

The first term minimizes the weight sum of arcs that belong to the cut.
The second summation term will have a minimum value only when the num-
ber of nodes by subgraph is the same. The balance factor (b) defines the



Downloaded by [C N R §] at 09:38 05 July 2012

432 J. Aguilar et al.

importance of the interconnection cost with respect to the imbalance cost.
The GPP is reduced to find a subgraph configuration with minimum value
for the cost function:

F = MIN(Cy)

The Traveling Salesman Problem

The traveling salesman problem is a classical optimization problem that
could be described according to the next statement: Given # cities, the sales-
man should visit each city one time and the total cost of the tour should be
minimal. We can define the cost of the tour as the sum of the distances be-
tween the visited cities. This problem can be expressed as:

G = (N,A).

where N = {I,...,n} is the graph with n nodes and A = {a;} is the adjac-
ency matrix.

If we suppose that the cities are numbered from 1 to #n, a solution to the
problem could be expressed through a state matrix (E) that indicates the or-
der cities are visited:

o — 1 If the city i was visited in the position j
Y 0 Otherwise

The matrix E will allow the verification of the validity of a solution, that is,
all the cities must be visited only once:
n n

e,'j = n;
=1 j=1

L

The matrix E allows an array V' to be defined with n elements. This array
contains the city that was visited in each position.

V; =i (if the city i was visited in the position j).

Finally, we use a function composed of two parts. The first one calculates
the distances between the cities, and the other determines the grade of validity
of the solution. These functions are (Bonabeau et al. 1999; Dorigo and



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 433

Gambardella 1997; Hidrobo and Aguilar 1998; Freisleben and Merz 1996):
n n n—1
=338 e
i=1 k=1 j=1

where Lﬁ.j = distance between the cities i and j
and

Fzzc(

where C = penalty factor.
Finally,

n n

E il — N
1

i=1 k=

n

n n n
+Zzeik_l +Zzeik—1
i=1 k=1 k=1]i=1

)

C,=Fl+F2 (4)

The problem consists of finding the tour of cities that minimizes the value of
the cost function Cy.

The Graph Coloring Problem

The graph coloring problem is one of the best known combinatorial opti-
mization problems in the class of NP-hard and arises in numerous applica-
tions. A graph coloring of a graph G is a function which associates a color
with each node such that no two nodes of the same color have common
edges. This problem can be expressed of the following manner.

G = (V,E,A)

where V is a set of n vertices, E is a set of edges, and A = ajj,, is the adjacency
matrix of size n - n.

Then, if we suppose that the colors are numbered from 1 to ¢, we are
asked to find the minimum chromatic number ¢, such that the vertices
Vi € V can be partitioned into ¢ color classes, or nonempty disjoint subsets
SVp C V (for p=1,...,q); none of which contains both endpoints of any
edge in E. We formulate the GCP as a typical combinatorial optimization
problem and handle the constraint about edges by introducing penalty for
constraint violation. Let Ps = {SVy,...,SVy} be an arbitrary partition of
the set V, and SEp (for p =1,...,q) be the subset of edges from E both of
whose endpoints are included in the same SVp. For this problem, an objec-
tive function can be defined as (Costa and Hertz 1997)

q q
Cr==>_ISVpl> +> 2|SVp||SEp| (5)
p=1 p=1



Downloaded by [C N R §] at 09:38 05 July 2012

434 J. Aguilar et al.

When a partition is one of the feasible solutions of the GCP, all the subsets of
edges become empty (SEp = 0). An important observation about the objec-
tive function in Eq. (5) is that all its local optimal solutions correspond to the
feasible solutions of the GCP. Another objective function for the GCP,
expressed through a state matrix X that indicates the color of each node, is:

Cf—CZZ (Xic—1) +Zq:ZZa,]chX]c (6)

i=1 ¢= c=1 i=1 j=

where X, = { 1 if verthe i has a color equal to ¢
0  Otherwise
C = factor of penalty.
In the second case, we obtain a feasible only when C¢ = 0. The problem
consists of finding the chromatic number ¢ with its respective partition (cost
function 1) or the state matrix (cost function 2) that minimizes the value of Cs.

OUR APPROACH: THE COMBINATORIAL ANT SYSTEM

There are two reasons for using AS on the TSP. First, the TSP graph can
be directly mapped on the AS graph. Secondly, the transition function has
similar goals to the TSP. This is not the case for other combinatorial optimi-
zation problems. We propose a new distributed algorithm based on AS con-
cepts, called the Combinatorial Ant System (CAS), to solve combinatorial
optimization problems. In our approach, we must define:

e The graph that describes the solution space of the combinatorial optimiza-
tion problem (COP graph). The solution space is defined by a graph where
the nodes represent partial possible solutions to the problem, and the edges
the relationship between the partial solutions. This graph will be used to
define the AS graph (this is the graph where the ants will walk).

e The transition function and the pheromone update formula of the CAS,
which are built according to the objective function of the combinatorial
optimization problem.

In this way, we can solve any combinatorial optimization problem. The
COP graph defines the structure of the AS graph. Each ant builds a solution
walking through this graph according to a transition rule and a pheromone
update formula defined, according to the objective function of the combina-
torial optimization problem. The main steps of CAS are:

1. Build the AS graph.
2. Define the transition function and pheromone update formula of the CAS.
3. Execute the classical AS procedure (or one of the improved versions).



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 435

Building the AS Graph

The first step is to build the COP graph, then we define the AS graph with
the same structure of the COP graph. The AS graph has two weight matrices:
The first one is defined according to the COP graph and registers the re-
lationship between the elements of the solution space (COP matrix). The se-
cond one registers the pheromone trail accumulated on each edge
(pheromone matrix). This weight matrix is calculated/updated, according
to the pheromone update formula. When the incoming edge weights of the
pheromone matrix for a given node become higher, this node has similarly
and a higher probability to be visited. If an edge between two nodes of the
COP matrix is low, it means that ideally if one of these nodes belongs to
the final solution, the other one must belong too. If the edge is equal to infi-
nite, it means that they are incompatible.

We define a data structure to store the solution that every ant k is
building. This data structure is a vector (A¥) with a length equal to the
length of the solution (number of nodes that an ant must visit). For a
given ant, the vector keeps a register of each node of the solution space that
it visits.

Defining the Transition Function and the Pheromone Update Formula

The state transition rule depends on the ant traffic and the trail intensity
at a given time. The trail intensity at a given time is defined by the pheromone
update formula. The state transition rule and the pheromone update formula
are built using the objective function of the combinatorial optimization prob-
lem. The transition function between nodes is given by:

T (1), CF5 L (2)) = Qi%?),;

where Cf*, (z) is the cost of the partial solution that is being built by the ant
k when it crosses the edge (r, s). If it is in the position r,z — 1 is the current
length of the partial solution (current length of A¥), and « and f are two ad-
justable parameters that control the relative weight of trail intensity (y,(t))
and the cost function. In the CAS, the transition probability is as follows:
An ant positioned on node r chooses the node s to move according to a prob-

ability PX(¢), which is calculated according to the equation given by:

TS (1), G, (2)) )
Pi(y =14 X 00, G, () Ifs € J; o

ueJk

0 Otherwise




Downloaded by [C N R §] at 09:38 05 July 2012

436 J. Aguilar et al.

when f = 0, we exploit previous solutions (only trail intensity is used) and,
when o = 0, we explore the solution space (a stochastic greedy algorithm is
obtained). A trade-off between quality of partial solutions and trail intensity
is necessary. The pheromone updating rule is defined by Eq. (2), where the
quantity per unit of length of trail substance laid on edge (r, s) by the kth
ant in that iteration (AyX (7)) is calculated, according to the following for-
mula:

If edge (r,s) has been crossed by ant k

1
w0 = { TF@) ®)

0 Otherwise

where C}‘ (t) is the value of the cost function (objective function) of the sol-
ution proposed by ant k at iteration ¢.
The general procedure of our approach is summarized as follows:

1. Generation of the AS graph.
2. Initialization of the pheromone matrix.
3. Definition of the state transition rule and the pheromone update formula,
according to the combinatorial optimization problem.
4. Repeat until system convergence.
4.1. Place the m ants on different nodes of the AS graph.
42. Fori=1,n
42.1.Forj=1,m
4.2.1.1. Choose the node s to move to, according to the tran-
sition probability (Eq. 7).
4.2.1.2. Move the ant m to the node s.
4.3. Update the pheromone using the pheromone update formula (Egs. 2
and 8).

The time complexity of our algorithm is the same as the AS algorithm,
O(t-n?-m), where ¢ is the number of iterations done until the system
convergence.

EXPERIMENTS

We have developed a version of our approach on C++ and executed our
program on a PC. Our approach has been tested for a set of benchmarks for
the GPP, GCP, and TSP. We have run the algorithm 30 times to calculate
every point. Our computational implementation is composed of three classes:

1. Graph class: which defines the AS graph.
2. Ant class: which manages, for example, the vector (Ak) of each ant.
3. Ant System: which manages the AS (pheromone updating, etc.).



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 437

Building the AS Graph

In the case of the GPP, the COP graph is defined as (see Figure 2): Nodes
represent the possible assignment of each node of the graph to be divided (for
example, the node (A, 1) in Figure 2 represents the assignment of the node A
of the graph G in Figure 1 on the first subgraph). Arcs represent the relation-
ship between the possible assignment. A weight edge equal to infinite means
that these nodes cannot belong to the final solution together (they constitute
an incompatible solution). For example, the node A cannot be assigned to
subgraphs 1 (A, 1) and 2 (A, 2) at the same time. A weight arc equal to 0
means that these nodes do not introduce additional communication costs to-
gether (because they represent assignments of the same subgraph). A weight
value equal to aag corresponds to the edge weight between nodes A and B of
the graph G to be divided (graph in Figure 1). We use this information to
build the AS graph structure and its COP matrix.

In the case of the GPP problem, the data structure registering the sol-
ution that every ant k is building (Ai‘) is a vector of length n. Each element
(A¥) registers the assignment of one node of the graph to be divided in a

e\‘c‘e

FIGURE 1. Partition of a graph G with three nodes in two subgraphs.

inf

FIGURE 2. COP graph for the GPP problem of the graph G defined in Figure 1.



Downloaded by [C N R §] at 09:38 05 July 2012

438 J. Aguilar et al.

1 2 n
B, | A2 [(oR))

FIGURE 3. Data structure of an ant for the GPP problem.

given subgraph. For example, Figure 3 shows that node B is assigned to sub-
graph 1, etc.

In the case of TSP, the AS graph is the TSP graph that describes the dis-
tance between cities. Each element of 4(AX) keeps the node (city) that has
been visited in this position.

In the case of the GCP, the COP graph is defined as (see Figure 5):
Each node represents the possible color of each node of the graph to color
(for example, the node (A, 1) of Figure 5 represents that the node A of the
graph G of Figure 1 has a color equal to 1). Arcs represent the relationship
between the nodes colored. A weight edge equal to infinite means that these
nodes cannot belong to the final solution together (they are an incompat-
ible solution). For example, the node A cannot have color 1 (A, 1) and 2
(A, 2) at the same time, or the nodes (A, 1) and (B, 1) cannot have the
same color because they have a common edge. A weight arc equal to 0
means that these nodes can have the same color (because they do not have
common edges) or they are compatible solutions (for example, the nodes
(A, 1) and (B, 2)).

In this case, the value of Q of the COP graph is equal to » (maximal
number of colors). For each ant, we fix the value of ¢*(f) <n (the
maximum chromatic number that each ant is going to use) in the following
manners:

e When we place the ant on a node of the AS graph, randomly (SI).

e When we start the execution of a new iteration (the same value of ¢ for the
set of ants during that iteration), randomly (S2).

e When we add an outloop to carry out an exhaustive search over the
different possible values of ¢ (S3). In this way, we modify our general
algorithm with a time complexity equal to O(t-n’-m), in the following
manner:

FIGURE 4. Data structure of an ant for the TSP problem.



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 439

inf

inf

FIGURE 5. COP graph for the GCP problem of the graph G defined in Figure 1.

Forq=1,n
Repeat until system convergence.
Place the m ants on different nodes of the AS graph.
Fori=1,n
Forj=1,m

Choose the node s to move to, according to
the transition probability (Eq. 7).
Move the ant m to the node s.

Update the pheromone using the pheromone update formula

(Egs. 2 and 8).

In the case of the GCP problem, each element (A¥) registers the color of each
node of the graph to color (for example, Figure 6 shows that node C has a
color 1, etc.).

Defining the Transition Function and the Pheromone Update Formula

For the GPP problem, Cf*_ (z) is defined according to Eq. 3:

r—s

Cf¥,(z) = Ce + Cb

1 2 n
Gn | A2

FIGURE 6. Data structure of an ant for the GCP.



Downloaded by [C N R §] at 09:38 05 July 2012

440 J. Aguilar et al.

where Cc is the communication cost, Cc =3, ) xm)cdt and p,men1) Dox
D1 = {p # m}, and Cb is the balance cost. '

where Nk is the number of nodes that ant k has assigned to subgraph Gj.
In the case of TSP, the cost function Cf*_ (z) is:

=il Z Z L/ D2 = {4, Z(SAf;Jrl =Jj}

m=1jeD2

In the case of GCP, we try to minimize the objective function Eq. (5). Then,
the cost function Cf* (z) is:

i ‘SV" ‘ v qZkZ‘SV;(z)HSEIIj(z‘

where {SV4(z),. SVk( )} is the partial set of colors of the graph G pro-
posed by ant £, and SEp (z) is the subset of edges from E both of whose end-
points are included in the same SVp*(z).

SVpk(z ZZI

i=1 Akfp

In each case, to calculate Cf* (z) the node s is included on A*.

Result Analysis

To test our algorithm, we use the graphs of the Web page http://www.iwr.
uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html for the TSP,
the Web page http://mat.gsia.cmu.edu/COLOR /instances.html for the
GCP, and the Web page http://rtm.science.unitn.it/intertools/graph-parti-
tioning/benchmark.html and the graph generated on (Hidrobo and Aguilar
1998) for the GPP. Our approach has been tested on problems of various
sizes and compared with other general purpose heuristics and with one spe-
cialized graph partitioning heuristic, the Reactive Randomized Tabu Search
(RRTS) heuristic (Battiti and Bertossi 1999). In the case of TSP, we compare
our approach with the last version of the Ant system (ACS) proposed by
Dorigo et al. (Bonabeau et al. 1999; Dorigo and Gambardella 1997), the best
results reported for Genetic Algorithms (GA) (Freisleben and Merz 1996),
our previous work (Hidrobo and Aguilar 1998), and the optimal length



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 441

TABLE 1 Comparison of the Best Results on TSP Problems
Results for ACS are from Bonabeau et al. (1999) and Dorigo and Gambardella (1997). Results for GA
have been obtained using the approach proposed on Hidrobo and Aguilar (1998).

Graph CAS ACS GA Optimal
Eil50 425 (431) 425 (1830) 426 (5590) 425
Eil75 535 (931) 535 (3480) 540 (9445) 535
KroA100 21282 (1025) 21282 (4820) 21291 (12031) 21282

reported on the Web page for the TSP or Bonabeau et al. (1999); Dorigo and
Gambardella (1997); and Freisleben and Merz (1996). In the case of GPP, we
compare our approach with the results reported for Hidrobo and Aguilar
(1998), Battiti and Bertossi (1999); and Bui and Moon (1996). In the case
of GCP, we compare our approach with the optimal results reported for
Costa and Hertz (1997). Results are shown in the next tables. For Tables 1
and 4, the first number is the solution cost (the value of the objective function
of the best solution) and the second number represents the amount of itera-
tions of the algorithm before the best solution was discovered. For Tables 2,
5, and 6, the first number is the value of the objective function of the best
solution and the second number is the average CPU time in seconds for a
simple run. For the rest of the tables, we present only the solution cost.
The default value of the parameters are: « = 1,5 =1,p = 0.5, and m = 20.
In general, the values tested were o € {0,0.5,1},5 € {0,1,2},p € {0.1,0.5,
0.9}, and m € {5,10,15,20}. We obtain very good solutions for different
parameter combinations (x=1,=1,p=05m=20;0=1,=2,p=
0.5,m = 20, etc.). They have the same performance level. For more details
about the parameter values for each test, see Aguilar (2000).

In the case of the TSP, our approach obtains good results with a low
number of iterations (see Table 1) or execution times (see Table 2). In some
cases, we have obtained similar or better results than the ACS and GA
approaches (see Tables 1, 2, 3). Our approach needs the least number of itera-
tions. In the case of the GPP, our approach can obtain the optimal result (see
Table 5) or equivalent results to our GA approach (see Table 4) with a low

TABLE 2 Comparison of the Best Results on Symmetric TSP Problems
Results for ACS are from Bonabeau et al. (1999) and Dorigo and Gambardella (1997); results for GA are
from Freisleben and Merz (1996).

Graph CAS ACS GA Optimal
d198 15780 (224) 15780 (238) 15780 (253) 15780
lin318 42029 (423) 42029 (537) 42029 (2054) 42029
att532 27690 (687) 27693 (810) 27686 (11780) 27686

Rat783 8809 (1054) 8818 (1280) 8806 (21210) 8806




Downloaded by [C N R §] at 09:38 05 July 2012

442 J. Aguilar et al.

TABLE 3 Comparison of the Best Results on Asymmetric TSP Problems
Results for ACS are from Bonabeau et al. (1999) and Dorigo and Gambardella (1997); results for GA are
from Freisleben and Merz (1996).

Graph CAS ACS GA Optimal
ry48p 14430 14422 14422 14422
kro124p 36230 36230 36230 36230
ftv170 2755 2755 2755 2755

TABLE 4 Comparison of CAS with our GA (Hidrobo and Aguilar 1998) on Randomly Generated GPP

Graph CAS GA

20 nodes and 4 subgraphs 46 (215) 46 (1103)
50 nodes and 5 subgraphs 244 (334) 244 (2903)
50 nodes and 7 subgraphs 260 (355) 262 (3276)
100 nodes and 5 subgraphs 1517 (823) 1517 (9819)
200 nodes and 5 subgraphs 1775 (1903) 1772 (19101)

number of iterations, but with a moderate execution time (see Table 5). Its
performance level is lower than that of specialized algorithm for the GPP
(RRTS). In the case of the GCP, an exhaustive search of the different values
of ¢ (S3) is very expensive at the level of the execution time (see Table 6). We
can obtain good results with the other approaches (S1, S2) with one short ex-
ecution time. We obtain the best result with S1 because this approach carries
on a better search over the different possible value of ¢. In the case of S1, the
ants carry on a parallel search over the space of possible value of ¢ in each
iteration. For the GCP, if we compare CAS with a specialized ant system

TABLE 5 Comparison of the Best Results on GPP Problems

Results for RRTS are from Battiti and Bertossi (1999). Results for the “Best” column are from http: //rtm.
science.unitn.it/intertools/graph—partitioning—benchmark.html, these values are either the globally
optimal ones, or the best values obtained by all algorithms considered in http://rtm.science.unitn.it/
intertools/graph—partitioning—benchmark.html.

Graph Best RRTS CAS
G500.2.5 49 49 (2) 49 (74)
G500.05 218 218 (2.5) 218 (64)
G1000.05 445 445 (6.5) 445 (73)
G1000.20 3382 3382 (14.7) 3384 (91)
U500.05 2 2 (1.7) 2 (65)
U500.40 412 412 (10.2) 412 (65)
U1000.40 737 737 (24.3) 737 (103)
besstk13 2355 2355 (6.7) 2355 (181)

Nasad704 1292 1292 (11.1) 1294 (323)




Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 443

TABLE 6 Comparison of the Best Results over 100 Runs
Obtained by the different versions of the CAS approach on GCP problems with those reported by
http://mat.gsia.cmu.edu/COLOR /instances.html.

Graph Optimal CAS(S1) CAS(S2) CAS(S3)
1le450_15a.col 15 15 (53.9) 15 (60) 15 (183.4)
1e450_15c.col 15 15 (65.1) 15 (61.1) 15 (142.1)
1le450_25a.col 25 26 (64.2) 29 (64.7) 25(211.2)
1e450_25c¢.col 25 28 (63.1) 30 (61.2) 25(173.3)
flat_1000-50_0.col.b 50 52 (101.2) 55 (91.3) 50 (453.2)
flat_1000_60_0.col.b 60 63 (121.2) 66 (111.3) 60 (541.1)
flat_300-20_0.col.b 20 20 (43.1) 20 (38.5) 20 (170.1)
flat_300-28_0.col.b 28 29 (34.3) 31 (40.9) 28 (212.2)
inithx.i.1.col 54 56 (65.3) 56 (76) 54 (411.1)
inithx.i.3.col 31 34 (71) 37 (69.9) 32 (432)
mulsol.i.1.col 49 49 (17.8) 49 (21.1) 49 (87)
mulsol.i.3.col 31 33 (18.9) 33 (23.5) 33 (89)
mulsol.i.4.col 31 33 (16.9) 35 (20.1) 31 (82)
miles250.col 8 8 (13.1) 8 (11.8) 8 (34.7)
miles500.col 20 22 (14.2) 20 (12.2) 20 (41.2)
miles1000.col 42 42 (12.8) 44 (13.4) 42 (38.8)
myciel3.col 4 4(2.1) 4(2.2) 4(7.1)
myciel4.col 5 5(2.1) 5(4.5) 5(13.2)
myciel5.col 6 6 (5.1) 6 (6.5) 6 (21.1)

(ANTCOL) (Costa and Hertz 1997), then our approach reaches the same
results, but its number of iterations is larger (see Figure 7). The advantage
of our approach is at the level of implementation, which is very easy in
our case.

Like ACS, our system doesn’t converge to a single common solution.
Figure 8 represent the evolution of the best solution and the population stan-
dard deviation in the case of the Eil50 problem. Our approach maintains a
high diversity, although the best solution is obtained at the iteration 431.
That is, our approach has the nonconvergence property, which is common
to many swarm-based systems. It avoids getting trapped in local optima.
In our system, some ants can find incorrect solutions of the problems, mainly

Cost Function Our Approach .
21 .............. [4] —
w0 e

N
o~ >

10 20 30 40 50 60 Iterations

FIGURE 7. Comparison of CAS with ANTCOL for a graph with 100 vertices (Costa and Hertz 1997).



Downloaded by [C N R §] at 09:38 05 July 2012

444 J. Aguilar et al.

at the beginning, but the objective functions penalize that. In this way, other
ants will avoid the solutions found for these ants in order to obtain correct
solutions (see Figures 8, 9, 10).

Our approach never reaches the best solution within a small number of
iterations. At the end, the set of ants follows similar solutions (small standard
deviation). In addition, the execution time of one iteration in our approach is
not small because we must calculate the partial solution costs each time an
ant needs to make a decision about what is its next transition. An improved
version of our approach augmented with a simple local search can reduce the
number of iterations. That is, in our approach, we need to improve the com-
bination between the global search (it expects that every ant searches a differ-
ent zone of the solution space) and the local search (the good information
found for an ant must be transmitted to the others). Currently, the local
search is transmitted in the trail form when the pheromone is updated. The
global search is carried out by assigning the ants to different places at the be-
ginning. Another alternative is to avoid the same route for the ants in the first
iterations. We need to implement a mechanism to undertake an improved
local search.

Best Solution (___) Standard Deviation ( )
120
80
400 Vg Ay 40
k%4 Y*"‘v"‘-—-~~~..,4.....«..4--\......,“_,._,‘
0p
0 100 200 300 400 500 600 700 Iterations

FIGURE 8. Evolution of the best solution and the population standard deviation for the case of the Eil50
problem (TSP).

Best Solution ( ___) Standard Deviation ( ...... )
A 00
2400
2000 150
1600 100
1200 0p
0 50 100 150 200 250 300 350 Tterations

FIGURE 9. Evolution of the best solution and the population standard deviation for the case of the
Nasa4704 problem(GPP).



Downloaded by [C N R §] at 09:38 05 July 2012

Ant System 445

Best Solution ( ___) Standard Deviation ( ....... )
A A,
12
10 3
8 2
6 >
0 20 40 60 80 100 120 140 Iterations

FIGURE 10. Evolution of the best solution and the population standard deviation for the case of the
miles 250.col problem (GCP).

CONCLUSIONS

In this work, we have presented a versatile approach for AS to solve
combinatorial optimization problems. Our system is suited for static dis-
crete-state combinatorial optimization problems. This versatility has been
exemplified by the possibility of using the same model to solve different
combinatorial optimization problems of various sizes. Our approach can
be applied to any combinatorial optimization problems by defining an appro-
priate graph representation of the solution space of the problem considered
and an objective function that guides our heuristic to build feasible solutions.
In our approach, we define the solution space of the combinatorial optimiza-
tion problem (COP graph) as the space where the ants will walk (AS graph).
Ants walk through this space according to a set of probabilities updated by a
state transition and a pheromone update rule defined according to the objec-
tive function of the combinatorial optimization problem considered. In this
way, we can solve any combinatorial optimization problem. We have tested
our approach on the GPP, GCP, and TSP. The results show that our ap-
proach obtains good performances with a moderate number of iterations
or execution times. We must improve the execution time of a given iteration
and reduce the number of iterations. The execution time of a given iteration
is high because our approach has an evaluation phase of the partial costs
each time an ant is going to move. In general, CAS allows unfeasible solu-
tions to make an exhaustive search the partial solution of an incorrect sol-
ution could be part of an optimal solution). Penalty functions in Eqs. (4)
and (6) could be unnecessary if we set Ay~ (¢) to zero Vrs crossed by ant k,
when the solution found by ant k violates the constraints (that is an incorrect
solution). In general, CAS is a versatile and general approach for static
discrete-state combinatorial optimization problems, which has better perfor-
mances than the classical ACS. Furthermore, we will develop a parallel



Downloaded by [C N R §] at 09:38 05 July 2012

446 J. Aguilar et al.

version of our approach and we will test our approach over other combina-
torial optimization problems, particularly, dynamic combinatorial optimiza-
tion problems.

REFERENCES

Aguilar, J. 2000. A general ant colony model to solve combinatorial optimization problems. Technical
Report, CEMISID-10-2000, Universidad de Los Andes, Mérida, Venezuela.

Battiti, R., and A. Bertossi. 1999. Greedy, prohibition, and reactive heuristics for graph-partitioning.
IEEFE Transactions on Computers, 48:361—385.

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm Intelligence: From Natural to Artificial Swarm
Systems. Oxford University Press.

Bui, T., and B. Moon. 1996. Genetic algorithms and graph partitioning. JEEE Transaction on Computers,
45:841-855.

Corne, D., M. Dorigo, and F. Glove. 1999. New ideas in Optimization. McGraw Hill.

Costa, D., and A. Hertz. 1997. Ants can colour graphs. Journal of the Operational Research Society

48:295—-305.
Dorigo, M. 1992. Optimization, Learning and Natural Algorithms. Ph.D Thesis, Politecnico de Milano,
Italy.

Dorigo, M., and L. Gambardella 1997. Ant colony system: A cooperative learning approach to the travel-
ing salesman problem. IEEE Trans. on Evolutionary Computation, 1:53—66.

Dorigo, M., V. Maniezzo, and A. Coloni. 1996. The ant system: Optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man, Cybern. 26:29—41.

Freisleben, B., and P. Merz. 1996. Genetic local search algorithm for solving symmetric and assymetric
traveling salesman problems. In Proceedings IEEE International Conference on Evolutionary Compu-
tation, pages 616—621, Chicago.

Hidrobo, F., and J. Aguilar. 1998. Toward a parallel genetic algorithm approach based on collective intel-
ligence for combinatorial optimization problems. In Proceedings IEEE International Conference on
Evolutionary Computation. pages 715—720, Washington.

Different results for the graph coloring problem. http://mat.gsia.cmu.edu/COLOR /instances.html

Benchmarks for the graph partitioning problem. http://rtm.science.unitn.it/intertools/graph-
partitioning/benchmark.html

Kuntz, P., P. Layzell, and D. Snyers. 1997. A colony of ant-like agents for partitioning in VLSI tech-
nology. In Proceedings Fourth European Conference on Artificial Life. pages 417—424, Barcelona.

Kuntz, P., and D. Snyers. 1994. Emergent colonization and graph partitioning. In Proceedings Third
International Conference on Simulation of Adaptive Behavior: From Animals to Animals, page 3.

Schoonderwoerd, R., O. Holland, J. Bruten, and L. Rothkrantz. 1997. Ant-based load balancing in tele-
communications networks. Adaptive Behavior. 5:169—207.

Stutzle, Y., and H. Hoos. 1997. The max-min ant system and local search for the traveling salesman prob-
lem. In Proceedings 4th Int. Conf. on Evolutionary Computation, pages 309—314, Orlando.



