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Abstract. The purpose of this paper is to describe the use of the multiple 
classes random neural network model to learn various statistical patterns. We 
propose a pattern recognition algorithm for the recognition of statistical patterns 
based upon the non-linear equations of the multiple classes random neural net-
work model using gradient descent of a quadratic error function. In this case the 
classification errors are considered. 

1   Introduction 

The Random Neural Network (RNN) has been proposed by Gelenbe in 1989 [6], [7], 
[8]. This model calculates the probability of activation of the neurons in the network. 
Signals in this model take the form of impulses which mimic what is presently known 
of inter-neural signals in biophysical neural networks. The RNN has been used to 
solve optimization [1], [2], [3] and pattern recognition problems [4], [5]. Fourneau 
and Gelenbe have proposed an extension of the RNN, Multiple Classes Random Neu-
ral Network (MCRNN) [9]. The problem addressed in this paper concerns the propo-
sition of a pattern recognition algorithm for the recognition of statistical patterns, 
using MCRNN. In statistical pattern recognition a pattern is represented by a set of 
attributes, viewed like a d-dimensional feature vector [11], [12]. We present a back-
propagation type learning algorithm for the MCRNN, using gradient descent of a 
quadratic error function when a set of input-output pairs is presented to the network. 
This work is organized as follows, in section 2 the theoretical bases of MCRN are 
reviewed. Section 3 presents our pattern recognition algorithm for MCRNN. In sec-
tion 4, we present the statistical pattern recognition problem and some comparisons. 
Remarks concerning future work and conclusions are provided in section 5. 

2   The Multiple Classes Random Neural Model 

The MCRNN is composed of n neurons and receives exogenous positive (excitatory) 
and negative (inhibitory) signals as well as endogenous signals exchanged by the 
neurons. Excitatory and inhibitory signals are sent by neurons when they fire, to other 
neurons in the network or to outside world. In this model, positive signals may belong 
to several classes and the potential at a neuron is represented by the vector Ki =  

(Ki1, ..., KiC), where Kic is the value of the "class c potential" of neuron i, or its 
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"excitation level in terms of class c signals", and negative signals only belong to a 

single class. The total potential of neuron i is Ki = Σc=1C Kic. When a positive signal 

of class c arrives at a neuron, it merely increases Kic by 1, and when a negative sig-

nals arrives at it, if Ki>0, the potential is reduced by 1, and the class of the potential 
to be reduced is chosen randomly with probability Kic/Ki for any c=1, ..., C. Exoge-
nous positive signals of class c arrive at neuron i in a Poisson stream of rate Λ(i, c), 
while exogenous negative signals arrive at it according to a Poisson process of rate 
λ(i). A neuron is excited if its potential is positive (Ki>0). It then fires, at exponen-
tially distributed intervals, sends excitatory signals of different classes, or inhibitory 
signals, to other neurons or to the outside of the network. The neuron i sends excita-
tory signals of class c at rate r(i, c)>0, with probability Kic/Ki. When the neuron fires 
at rate r(i, c), deletes by 1 its class c potential and sends to neuron j a class ϕ positive 

signal with probability p+(i, c; j, ϕ), or a negative signal with probability p-(i, c; j). 
On the other hand, the probability that the deleted signal is sent out of the network is 
d(i, c). Let q(i, c) with 0 < q(i, c) < 1 be the solution of the system of non-linear equa-
tions: 

q(i,c) = λ+(i, c)/(r(i, c)+λ-(i)) (1) 

where,  λ+(i, c) = Σ(j, ϕ) q(j, ϕ)r(j, ϕ)p+(j, ϕ ; i, c)+Λ(i, c)       

λ-(i) = Σ(j, ϕ) q(j, ϕ)r(j, ϕ)p-(j, ϕ; i)+λ(i) 

The synaptic weights for positive (w+(j, ϕ; i, c)) and negative (w-(j, ϕ; i)) signals 
are defined as: 

w+( j, ϕ; i, c) = r(j, ϕ)p+( j, ϕ; i, c)  w-( j, ϕ; i) = r(j, ϕ)p-( j, ϕ; i) 

and, r(j, ϕ) = [Σ(i, c) w+( j, ϕ; i, c) + Σ(i, c) w-( j, ϕ; i)] 

3   Pattern Recognition Algorithm 

We propose a gradient descent learning algorithm for choosing the set of network 

parameters w+(j, z; i, c) and w-(j, z; i) in order to learn a given set of m input-output 
pairs (X, Y) where the set of successive inputs is denoted by:   

 X = {X1, ..., Xm}   Xk= {Xk (1,1), ..., Xk (n, C)} 

where,  Xk (i, c) is the cth class  on the neuron i for the  patron k 

 Xk(i, c) = {Λk(i, c),  λk(i)} 

and the successive desired outputs are the vector 
Y = {Y1, ..., Ym} 

where,  Yk= {Yk (1,1), ..., Yk (n, C)}, and  Yk (1,1)={0, 0.5, 1} 
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The values Λk(i, c) and  λk(i) provide the network stability. Particularly, in our 

model Λ(i, c)=Lic and λ(i)=0, where Lic is a constant for the class c of the neuron i. 
Xk(i, c) are initialized as follows: 

Yk(i, c)>0 => Xk(i, c) = (Λk(i, c), λk(i)) = (Lic, 0) 
Yik(i, c)=0 => Xk(i, c) =  (Λk(i, c), λk(i)) = (0, 0) 

The rule to update the weights may be written as: 

wk
+ (u,p; v,z) = wk-1

+ (u,p; v,c)- µΣn
i=1 Σ

C
c=1 (qk(i,c)- yk(i,c))[ δq(i,c) / δw+ (u,p; v,z)]k

 

wk
-(u,p; v) = wk-1

- (u,p; v)- µΣn
i=1 Σ

C
c=1 (qk(i,c)- yk(i,c))[ δq(i,c) / δw- (u,p; v)]k 

(2) 

where,  µ > 0 is the learning rate (some constant).  

qk(i) is calculated using Xk, w+
k(u, p; v, z) = w+

k-1(u, p; v, z) and  

 w-
k(u, p; v) = w-

k-1(u, p; v) in (1) 

[δq(i,c) / δw+(u,p;v,z)]k and [δq(i,c) / δw-(u,p;v)]k are evaluated  

using the values q(i,c) = qk(i,c), w+
k(u, p; v, z) = w+

k-1(u, p; v, z)  

and w-
k(u, p; v) = w-

k-1(u, p; v) in (2) 

and,  δq(i, c)/ δW+(u,p;v,z) = γ+(u,p;v,z)/q(u,p) [I-W]-1  

 δq(i, c)/ δW-(u,p;v) = γ-(u,p;v)/q(u,p) [I-W]-1  
if (u=i) and (v≠i) then   if (u≠i) and (v=i) then 

 γ+(u,p;v,z) = -1/D(i,c)     γ+(u,p;v,z) = 1/D(i,c) 

γ-(u,p;v) =  -1/D(i,c)   γ-(u,p;v) =  -q(i,c)/D(i,c) 
if (u=i) and (v=i) then   if (u≠i) and (v≠i) then 

 γ+(u,p;v,z) = 0      γ+(u,p;v,z) = 0 

γ-(u,p;v) =  -(1+ q(i,c))/D(i,c)  γ-(u,p;v) =  0 

finally, D(i,c) = r(i, c)+ Σn
j=1 Σ

C
z=1 q(j, z) w-(j, z; i)] 

 W = Σn
j=1 Σ

 C
z=1 [w

+(j, z; i, c) + w-(j, z; i)q(j,z)]/D(j,z) 

The complete learning algorithm for the network is: 

− Initiate the matrices W0
+ and W0

- in some appropriate manner. Choose a value 

of µ in (2). 
− For each successive value of m: 

− Set the input-output pair (Xk, Yk) 

− Repeat 
− Solve the equation (1) with these values 

− Using (2) and the previous results update the matrices Wk
+ and Wk

-  

Until the change in the new values of the weights is smaller than some predeter-
mined valued. 
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Once the learning phase is completed, the network must perform as well as possi-
ble the completion of noisy versions of the training vectors. In this case, we propose a 
progressive retrieval process with adaptive threshold value.  Let X'= {X'(1, 1), ..., 
X'(n, C)} be any input vector with values equal to 0, 0.5 or 1, for each X'(i, c), i=1, ..., 
n and c=1, ..., C. In order to determine the corresponding output vector Y= {Y(1,1), 
..., Y(n, C)}, we first compute the vector of probabilities Q=(q(1, 1), ..., q(n, C)). We 
consider that q(i, c) values such that 1-T<q(i, c)<T/2 or 1-T/2<q(i, c)<T, with for 
instance T=0.8, belong to the uncertainty interval Z. When the network stabilizes to 
an attractor state, the number NB_Z of neurons whose q(i, c)∈Z is equal to 0. Hence, 
we first treat the neurons whose state is considered certain to obtain the output vector 

Y(1)= (Y(1)(1,1), ..., Y(1)(n,C)), with: 

        1   if q(i, c) > T  

  Y(1)(i, c)=Fz(q(i, c))={   0 if q(i, c) < 1-T  

0.5      if T/2 <= q(i, c) <= 1-T/2 
      x'i otherwise 

where Fz is the thresholding function by intervals. If NB_Z=0, this phase is termi-

nated and the output vector is Y=Y(1). Otherwise, Y is obtained after applying the 
thresholding function fβ as follows: 

     1 if q(i, c) > β 

  Y(i, c) = fβ (q(i, c))={ 0.5 if β/2 < q(i, c) < β 

     0 otherwise 
where β is the selected threshold. Each value q(i, c)∈Z is considered as potential 
thresholds. That is, for each q(i, c)∈Z: 

    q(i, c) if q(i, c) > 0.666  
   β= {  
    1-q(i, c) otherwise 
     
Eventually, Z can be reduced by decreasing T (for T>0.666). For each potential 

value of β, we present to the network the vector X'(1)(β)= fβ(Q). Then, we compute 

the new vector of probabilities Q(1)(β) and the output vector Y(2)(β) = Fz(Q(1)(β)). 

We keep the cases where NB_Z=0 and X'(1)(β) = Y(2)(β). If these two conditions are 
never satisfied, the initial X' is considered too much different of any training vector. 
If several thresholds are candidate, we choose the one which provides the minimal 
error (difference between q(i, c) and Y(i, c), for i=1, n and c=1, ..., C): 

E(β) = 1/2 Σn
i=1 [q(i, c)(1)(β)- Y(i, c)(1)(α)]2  

4   Statistical Pattern Recognition Problem 

We test our approach in statistical pattern recognition problems [11]. In statistical 
pattern recognition a pattern is represented by a set of attributes, viewed like a d-
dimensional feature vector [11], [12]. Well-known concepts from statistical decision 
theory are used to establish decision boundaries between pattern classes. The decision 
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making process in statistical pattern recognition can be summarized as follow: A 
given pattern is to be assigned to one of c categories w1, ..., wc based on a vector of d 
attributes values x={x1, ..., xd}. The attributes are assumed to have a probability den-
sity or mass function condition on the pattern class (depending on whether the attrib-
utes are continuous or discrete). A number of well-known decision rules are available 
to define the decision boundary (Bayes decision rule, maximum likelihood rule, etc.) 
[11]. Various strategies are utilized to design a classifier in statistical pattern recogni-
tion according to: the kind of information available about class-conditional densities, 
supervised learning versus unsupervised learning, whether the decision boundaries 
are obtained directly (geometric approach) or indirectly (probabilistic approach). We 
compare our approach with several classifier systems for the recognition of a digit 
dataset that consists of handwritten numeral ("0"..."9") extracted from a collection of 
Dutch utility maps [10], [12]. Two hundred patterns per class (for a total of 2000 
patterns) are available in the form of 30*48 binary images. These characters are rep-
resented in terms of the following six attributes: 76 Fourier coefficients of the charac-
ter shapes, 216 profiles correlations, 64 Karhunen-Loeve coefficients, 240 pixel aver-
ages, in 2*3 windows, 47 Zernike moments, 6 morphological attributes. The 
following classifiers are used to compare with our approach [11]: the bayes-plug-in 
rule assuming normal distributions (BP), the Nearest Mean rule (NM), the Parzen 
technique, a feed-forward neural networks (based on the Matlab Neural Network 
Toolbox), with a hidden layer consisting of 20 neurons (NN), and the quadratic Sup-
port Vector classifier (SV). The classifiers were trained on the same patterns from 
each of the six attribute sets and tested on the same patterns. The resulting classifica-
tion errors (in percentage) are reported in table 1. 

Table 1. Error rate (in percentage) of different classifiers. 

                                                               Attribute Sets 
Classifiers 1 2 3 4 5 6 
BP 21.3 3.4 5.7 9.9 18.9 29.1 
NM 19.8 3.7 4.6 7.3 18.7 26.6 
Parzen 17.1 7.9 3.7 3.7 18.5 52.1 
NN 18.6 3.7 4.6 7.3 18.1 26.6 
SV 21.2 5.4 4.8 6 19.3 81.1 
Mult 18.2 3.5 4.2 6.2 18.6 28.2 

Some of the classifiers, for example, the SV, do not perform well on this data. 
Some of the classifiers such as the Parzen and BP give good results. The perform-
ances of different classifiers vary substantially over different attribute sets. Only with 
our approach, we obtain good performances (it is not the best one) for all the attribute 
sets. 

5   Conclusions  

In this paper, we have proposed a learning algorithm based on the Multiple Classes 
Random Neural Model for the statistical pattern recognition problem. We have shown 
that this model can efficiently work as associative memory. We can learn arbitrary 
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statistical patterns with this algorithm. During the learning phase, we have met classi-
cal problems like the existence of local minimal and large learning times. However, 
most of the computations are intrinsically parallel and can be implemented on SIMD 
or MIMD architectures. Next work will study a new retrieval algorithm adapted to 
these types of figures. 
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